
UCLA
Papers

Title
Energy-Efficient Data Organization and Query Processing in Sensor Networks

Permalink
https://escholarship.org/uc/item/9xz2k840

Authors
Gummadi, Ramakrishna
Li, Xin
Govindan, Ramesh
et al.

Publication Date
2005-05-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9xz2k840
https://escholarship.org/uc/item/9xz2k840#author
https://escholarship.org
http://www.cdlib.org/

Poster Abstract: Energy-Efficient Data Organization and
Query Processing in Sensor Networks

Ramakrishna Gummadi Xin Li Ramesh Govindan Cyrus Shahabi Wei Hong
gummadi@usc.edu xinli@usc.edu ramesh@usc.edu cshahabi@usc.edu wei.hong@intel.com

ABSTRACT
Recent sensor networks research has produced a class of data stor-
age and query processing techniques called Data-Centric Storage
that leverages locality-preserving distributed indexes like DIM, DIFS,
and GHT to efficiently answer multi-dimensional range and range-
aggregate queries. These distributed indexes offer a rich design
space of a) logical decompositions of sensor relation schema into
indexes, as well as b) physical mappings of these indexes onto
sensors. In this poster, we explore this space for energy-efficient
data organizations(logical and physical mappings of tuples and
attributes to sensor nodes) and devise purely local query optimiza-
tion techniquesfor processing queries that span such decomposed
relations. We propose four design techniques: (a) fully decompos-
ing the base sensor relation into distinct sub-relations, (b) spatially
partitioning these sub-relations across the sensornet, (c) localized
query planning and optimization to find fully decentralized optimal
join orders, and (d) locally caching join results. Together, these
optimizations reduce the overall network energy consumption by
4 timesor more when compared against the standard single multi-
dimensional distributed index on a variety of synthetic query work-
loads simulated over both synthetic and real-world datasets. We
validate the feasibility of our approach by implementing a func-
tional prototype of our data organizer and query processor on Mica2
motes and observing comparable message cost savings.

Categories and Subject Descriptors: H.4 [Information Systems
Applications]: Miscellaneous

General Terms: Design, Performance, Experimentation

Keywords: Sensor Networks, Data-Centric Storage, DCS, Data
Organization, Query Optimization, Caching

1. INTRODUCTION AND MOTIVATION
Wireless sensor networks are an emerging class of highly dis-

tributed systems with widespread applicability. In such networks,
nodes generate, process and store sensor readings within the net-
work. This architecture is necessitated by the relatively high en-
ergy cost of wireless communication—this cost makes it infeasible
to consider centrally collecting and processing voluminous sen-
sor data. An important component of these networks, then, is an
energy-efficient system that enables users to query the stored data.

Existing approaches to organizing data and processing queries
fall under one of the two broad categories namely, Data-Centric
Routing(DCR) and Data-Centric Storage(DCS). In DCR, the data
generated by the sensors is stored at the nodes that generate them,

Copyright is held by the author/owner.
SenSys’04,November 3–5, 2004, Baltimore, Maryland, USA.
ACM 1-58113-879-2/04/0011.

and queries are flooded throughout the network. Data from the
sensors in the sensornet is then aggregated along the query tree
that is built during the query flooding phase on a per-query ba-
sis. This approach, pioneered by early systems such as TinyDB [5]
and Cougar [1], is efficient for continuous(long-running) queries,
where the high energy cost incurred during the query flooding and
per-query data aggregation phases is amortized over time.

DCS is a relatively new class of data storage and query method-
ologies proposed in [7]. In DCS, data generated by a sensor is first
stored intelligentlyat remotenodes as soon as it is generated. This
is done with an eye toward exploiting data locality during querying
because relatedsensor data gets stored together regardlessof where
in the sensornet the data originates. Consequently, queries can be
directed to precise data locationsof the network during the query
propagation phase without flooding, and, data can be efficientlyand
locally aggregated during the query processing phase. Thus, the
overall (insertion+query) cost for DCS is lower than for DCR for
many ad-hoc(short-lived) workloads.

DCS can use any locality-preserving geographically distributed
index structure such as DIM [4], GHT[6], DIFS [3], and DIMEN-
SIONS [2]. In this poster, our focus is to examine techniques that
improve the overall energy performance of vanilla DCS based on
such a family of distributed indexes:

1. We exploit the flexibility offered by these data structures to
derive better performing data organizations(mappings of tu-
ples and attributes to network nodes) compared to the naı̈ve
and rigid mapping used today.

2. We study decentralized and high performance query plan-
ning and optimizationin such DCS systems.

2. APPROACH
Consider a sensor network with an m-relation schema 〈uuid ,a1,a2, . . . ,am〉.
Such a relation schema is called a base relation. Tuples in this
schema can be stored in one DIM. Alternatively, we can fully de-
compose them into m DIM’s each of which stores a single relation
of the form 〈uuid,ai 〉, and we can then join on uuid on demand
to evaluate queries. A spectrum of partial decompositions of the
base relation into sub-relations of the form 〈uuid,ai , . . . ,aj〉 is, of
course, also conceivable. Clearly, we can expect these different
data organizations to yield different performance under different
workloads. Our measure of performance is the total energy cost
incurred for a given workload, including data inserts and query re-
trievals. (We approximate the energy cost of a single message as a
product of the size of the message (in bits) and the number of hops
the message traverses.)

In this work, we want to analyticallyand experimentallyexplore
the design space of data storage and query processing in sensornets.
We use DIM’s [4] as the distributed index for our base storage, in-

273

dexing, and querying layer. We found that, in many cases, fully
decomposingthe base relation performs better than zero or any par-
tial decomposition, even if the decomposition is carried out with an
eye toward a given query workload. We also propose three related
mechanisms that can improve the efficiency of query processing
when a base relation is fully decomposed into multiple DIM’s:

Spatially Partitioning Sub-Relations Each fully decomposed sub-
relation is stored in a DIM, and all DIM’s are assigned spa-
tially disjoint sections of the sensor field.

Efficient Query Planning via Decentralized Join-Ordering We im-
port the database notion of joins into sensornets for range and
range-aggregate query processing within our system. Our
system compiles an SQL query at the query issuer and con-
structs an efficient query planthat includes an optimal join
order using only locally available information in the form of
a histogram. We argue that it is important to choose a good
join order during query optimization and demonstrate that
it is possible to do so using only summarized global infor-
mation in the form of a low overhead coarse-grained multi-
dimensional histogram that approximates the distribution of
data stored within the network. Our query optimizer com-
putes the total query energy cost as:

E = |ā1|×D(ā1, ā2)+ |J(ā1, ā2)|×D(ā2, ā3)+
|J(ā1, ā2, ā3)|×D(ā3, ā4)|+ . . .+

|J(ā1, . . . , ¯ak−1)|×D(¯ak−1, āk)+ |J(ā1, . . . , āk)|×∑āk

(1)
where āi denotes the query range on attribute ai , |ā1| denotes
the number of tuples that would be produced by the first step
of the range selection, D(āi , āj) denotes the average distance
between the nodes in the DIM’s containing āi and āj , and
āj), and |J(ā1, ā2, . . . , āi)| denotes the number of tuples that
would be produced after the ith join operation in the query.
In particular, |J(ā1, ā2, . . . , ¯ak−1)| denotes the number of tu-
ples that would be produced by k− 1 joins before the final
join step; this latter yields |J(ā1, . . . , āk)| tuples that need to
be aggregated within DIM DIMak for an average aggrega-
tion cost per tuple of ∑āk

. The query optimizer then picks a
join order that minimizes this energy cost. The various terms
in the above equation are estimatedusing the histogram and
query selectivity factors.

Efficient Query Execution via Optimistic Join-Caching We pro-
pose a simpleand robustmechanism to locally cache the re-
sults of partial joins across sub-relations at each sensor node.
This caching strategy enhances query performance by elimi-
nating redundant tuple movement during query execution.

3. EVALUATION

3.1 Simulation
We evaluated the performance of our approach using simulations

over both real-world (Great Duck Island) and synthetic datasets on
a wide variety of query workloads. We observed a performance
benefit well over a factor of 4compared to the base case of a single
full-dimensional DIM. We also compared our performance against
schemes that do not perform join order optimization, and those that
do not perform join tuple caching to understand the individual per-
formance contribution of each of the techniques mentioned in Sec-
tion 2.

In Figure 1, we compare the bit energy performance of our full
scheme (called optimized), our scheme with random join ordering

0

5

10

15

20

25

0 50 100 150 200 250

Nodes

E
n

er
g

y

Optimized
Random

4-DIM

Uncached

Worst

Figure 1: Bit-energy costs of 4-DIM, Optimized, Random,
Worst, and Uncached for with 100 queries

000

0(13)

010 011 110 111

10110010011

0010 1000

3(13)

1(6)

2(6)

4(12)

9(12)

8(13)

7(12)

5(7)

6(6)

Figure 2: Topology used for Implementation

(called random), our scheme with worst-case join ordering (called
worst), base case single vanilla DIM on four attributes (called 4-
DIM), and our scheme without join caching (called uncached).

3.2 Implementation
In Figure 2, we show the topology we used for an implemen-

tation prototype on Mica2 motes in which we observed a perfor-
mance benefit of 2.7X with just two attributes.

4. REFERENCES
[1] P. Bonnet, J. E. Gerhke, and P. Seshadri. Towards Sensor

Database Systems. In Proceedings of the Second International
Conference on Mobile Data Management, January 2001.

[2] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS:
Why do we need a new Data Handling architecture for Sensor
Networks? In Proc. HotNets-I, Princeton, NJ, October 2002.

[3] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker. DIFS: A Distributed Index for Features in Sensor
Networks. In Proc. IEEE WSNPA, Anchorage, AK, May 2003.

[4] X. Li, Y. J. Kim, R. Govindan, and W. Hong.
Multi-dimensional Range Queries in Sensor Networks. In
Proc. Sensys, Los Angeles, CA, November 2003.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. In Proc. ACM SIGMOD, pages 491–502. ACM
Press, 2003.

[6] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
and S. Shenker. GHT: A Geographic Hash Table for
Data-Centric Storage. In Proc. WSNA, Atlanta, GA,
September 2002.

[7] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and
D. Estrin. Data-centric storage in sensornets. SIGCOMM
Comput. Commun. Rev., 33(1):137–142, 2003.

274

