skip to main content
10.1145/1032222.1032226acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
Article

Representing spatiality in a conceptual multidimensional model

Published:12 November 2004Publication History

ABSTRACT

Data Warehouses and On-Line Analytical Processing systems rely on a multidimensional model that includes dimensions, hierarchies, and measures. Such model allows to express users' requirements for supporting the decision-making process and to facilitate its afterward implementation. Although Data Warehouses typically include a spatial or location dimension, this dimension is usually represented in an alphanumeric format. However, it is well-known that a visual representation of spatial data allows to reveal patterns that are difficult to discover otherwise. Further, a multidimensional model is seldom used for representing spatial data.

In this work we propose an extension of a conceptual multidimensional model with spatial dimensions, spatial hierarchies, and spatial measures. We also consider the inclusion of topological relationships and topological operators in the model. We analyze different scenarios showing the significance and convenience of the proposed extension.

References

  1. Y. Bédard, T. Merrett, and J. Han. Fundaments of spatial data warehousing for geographic knowledge discovery. In H. Miller and J. Han, editors,Geographic Data Mining and Knowledge Discovery, pages 53--73. Taylor & Francis, 2001.Google ScholarGoogle Scholar
  2. M. Egenhofer. A model for detailed binary topological relationships. Geomatica, 47(3&4):261--273, 1993.Google ScholarGoogle Scholar
  3. ESRI, Inc. ArcGIS data models. http://www.esri.com/software/arcgisdatamodels/index.html, 2004.Google ScholarGoogle Scholar
  4. F. Ferri, E. Pourabbas, M. Rafanelli, and F. Ricci. Extending geographic databases for a query language to support queries involving statistical data. In Proc. of the 8th ACM Symposium on Advances in Geographic Information Systems, pages 220--230, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Gray, S. Chaudhuri, A. Basworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and P. H. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):29--53, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Han, K. Koperski, and N. Stefanovic. GeoMiner: a system prototype for spatial data mining. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 553--556, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W. Inmon. Building the Data Warehouse. John Wiley & Sons, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. Jensen, A. Klygis, T. Pedersen, and I. Timko. Multidimensional data modeling for location-based services. VLDB Journal, 13(1):1--21, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. Jullens. Spatial customer intelligence: The map shows the future. GeoInformatics, 3(12), 2000.Google ScholarGoogle Scholar
  10. R. Kimball, M. Ross, and R. Merz. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. John Wiley & Sons, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Z. Kouba, K. Matou&ššek, and P. Mikšovský. Novel knowledge discovery tools in industrial applications. In Proc. of the Workshop on Intelligent Methods for Quality Improvement in Industrial Practice, pages 72--83, 2002.Google ScholarGoogle Scholar
  12. W. Lehner, J. Albrecht, and H. Wedekind. Normal forms for multidimensional databases. In Proc. of the 10th Int. Conf. on Scientific and Statistical Database Management, pages 63--72, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Luján-Mora, J. Trujillo, and I. Song. Multidimensional modeling with UML package diagrams. In Proc. of the 21st Int. Conf. on Conceptual Modeling, pages 199--213, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Malinowski and E. Zimányi. A conceptual representation of spatial hierarchies in data warehouse and OLAP systems. To appear, 2004.Google ScholarGoogle Scholar
  15. E. Malinowski and E. Zimányi. OLAP hierarchies: A conceptual perspective. In Proc. of the 16th Int. Conf. on Advanced Information Systems Engineering, pages 477--491, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Mark and M. Egenhofer. Modeling spatial relations between lines and regions: Combining formal mathematical models and human subjects testing. Cartography and Geographical Information Systems, 21(3):195--212, 1994.Google ScholarGoogle Scholar
  17. M. Miquel, A. Brisebois, Y. Bédard, and G. Edwards. Implementation and evaluation of hypercube-based method for spatio-temporal exploration and anlysis. http://sirs.scg.ulaval.ca/yvanbedard/enseigne/SCG66124/345-A.pdf, 2004.Google ScholarGoogle Scholar
  18. D. Papadias and M. Egenhofer. Algorithms for hierarchical spatial reasoning. Geomatica, 1(3):251--273, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data warehouses. In Proc. of the 6th Int. Symposium on Spatial and Temporal Databases, pages 443--459, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Parent, S. Spaccapietra, and E. Zimányi. Spatio-temporal conceptual models: Data structures + Space + Time. In Proc. of the 7th ACM Symposium on Advances in Geographic Information Systems, pages 26--33, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Pedersen and N. Tryfona. Pre-aggregation in spatial data warehouses. In Proc. of the 7th Int. Symposium on Advances in Spatial and Temporal Databases, pages 460--478, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. Pourabbas. Cooperation with geographic databases. In Rafanelli citeRaf03a, pages 393--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. E. Pourabbas and M. Rafanelli. Hierarchies. In Rafanelli {25}, pages 91--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Price, N. Tryfona, and C. Jensen. Modeling topological constraints in spatial part-whole relationships. In Proc. of the 20th Int. Conference on Conceptual Modeling, pages 27--40, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Rafanelli, editor. Multidimensional Databases: Problems and Solutions. Idea Group Publishing, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Riedewals, D. Agrawal, and A. El Abbadi. Efficient integration and aggregation of historical information. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 13--24, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application to GIS. Morgan Kaufmann, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Rivest, Y. Bédard, and P. Marchand. Toward better suppport for spatial decision making: Defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica, 55(4):539--555, 2001.Google ScholarGoogle Scholar
  29. C. Sapia, M. Blaschka, G. Höfling, and B. Dinter. Extending the E/R model for multidimensional paradigm. In Proc. of the 17th Int. Conf. on Conceptual Modeling, pages 105--116, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2003.Google ScholarGoogle Scholar
  31. N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Trans. on Knowledge and Data Engineering, 12(6):938--958, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Tryfona, F. Busborg, and J. Borch. StarER: A conceptual model for data warehouse design. In Proc. of the 2nd ACM Int. Workshop on Data Warehousing and OLAP, pages 3--8, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. Tryfona and M. Egenhofer. Consistency among parts and aggregates: a computational model. Transactions in GIS, 4(3):189--206, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  34. N. Tryfona, R. Price, and C. Jensen. Conceptual models for spatio-temporal applications. In Spatio-Temporal Databases: The Chorochronos Approach, chapter 3, pages 79--116. Springer, 2003.Google ScholarGoogle Scholar

Index Terms

  1. Representing spatiality in a conceptual multidimensional model

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GIS '04: Proceedings of the 12th annual ACM international workshop on Geographic information systems
        November 2004
        282 pages
        ISBN:1581139799
        DOI:10.1145/1032222

        Copyright © 2004 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 November 2004

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate220of1,116submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader