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Abstract. Motivated by Manuel Blum’s concept of in-

st ante checking, we consider new, very fast and generic

mechanisms of checking computations. Our results

exploit recent advances in interactive proof protocols

[LFKN], [Sh], and especially the MIP = NEXP proto-

col from [BFL].

WJe show that every nondeterministic computational

task S(Z, y), defined as a polynomial time relation be-

tween the instance x, representing the input and output

combined, and the witness y can be modified to a task S

such that: (i) the same instances remain accepted; (ii)

each instance/witness pair becomes checkable in poly!og-

ariihmic Monte Carlo time; and (iii) a witness satisfying

S’ can be computed in polynomial time from a witness

satisfying S.

Here the instance and the description of S have to be

provided in error-correcting code (since the checker will

not notice slight changes). A modification of the MIP

proof was required to achieve polynomial time in (iii);

the earlier technique yields N“(*OglOg’1 time only.

This result becomes significant if software and hard-

ware reliability are regarded aa a considerable cost factor.

The polylogarithmic checker is the only part of the sys-

tem that needs to be trusted; it can be hard wired. (We

use just one Checker for all problems!) The checker is

tiny and so presumably can be optimized and checked

off-line at a modest cost.

In this setup, a single reliable PC can monitor the

operation of a herd of supercomputers working with

possibly extremely powerful but unreliable software and

untested hardware.
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In another interpretation, we show that in polyno-

mial time, every formal mathematical proof can be

transformed into a transparent proo~ i.e. a proof verifi-

able in pcdylogarithmic Monte Carlo time, assuming the

“theorem-candidate” is given in error-correcting code.

In fact, for any c > 0, we can transform any proof P

in time IIPII l+C into a transparent proof, verifiable in

Monte Carlo time (log llPll)”(l/’).

As a by-product, we obtain a binary error correcting

code with very efficient error-correction. The code trans-

forms messages of length N into codewords of length

< Nl+c; and for strings within 10~o of a valid codeword,

it allows to recover any bit of the unique codeword within

that distance in polylogarithmic ((log N)”(lte)) time.

1 Introduction

1.1 Very long mathematical proofs

An interesting foundational problem is posed by some

mathematical proofs which are too large to be checked

by a single human.

The proof of the Four Color Theorem [AHK], consid-

ered controversial at the time, started with a Lemma

that the Theorem follows if certain computation termi-

nates. It was completed with the experimental fact that

the computation did indeed terminate within two weeks

on contemporary computers.

The “Enormous Theorem” [Go] provides the classifi-

cation of all finite simple groups. Its proof, spread over

15,000 pages in Gorenstein’s estimate, consists of a large

number of difficult lemmas. Each lemma was proven by

a member-of a large team, but it seems doubtful that

any one person was able to check all parts.

An even more difficult example is a statement that

a given large tape contains the correct output of a

huge computation (with program and input on the same

tape). One might attempt to verify the claim by repeat-

ing the computation, but what if there is a systematic

error in the implementation?

The first two examples are special cases of the last one.

The requirements for mathematical proofs can be com-

pletely formalized. The statement of the theorem would
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haveto incorporate the definitions, basic concepts, no-

t ation, and assumptions of the given mathematical area.

They should also include the general axiom schemes of

mathematics used (say, Set Theory), furthermore, the

logical axioms and inference rules, parsing procedures

needed to implement the logic, etc. The theorem will

then become very large and ugly, but still easily man-

ageable by computers. The computation would then just

check that the proof adheres to the specifications.

1.2 Transparent proofs

Randomness offers a surprisingly efficient way out of the

foundational problem. As we shall see, all formal proofs

can be transformed into proofs that are checkable in poly-

logarithmic Monte Carlo time. Note that no matter how

huge a proof we have, the logarithm of its size is very

small: The logarithm of the number of particles in the

visible Universe is under 300.

A probabilistic proof system is a IIT, Pll”tl) time algo-

rithm A(T, P, u). It has random access to the source w of

coin flips and two input arrays: T (“theorem candidate”)

and P (“proof candidate”). T is given in an error cor-

recting code: If T is not a valid code word, but is within,

say, 10~o Hamming distance of one, this valid codeword

T! is uniquely defined and recoverable in nearly linear

time. Each pair (T, P) is either

1. correct: accepted for all w, or

2. wrong: rejected for most u, or

3. imperfect: can be easily transformed into correct

(T’, P’), with unique T’ close to T.

In the last case the checker is free either to reject (there

are errors) or to accept (errors are inessential). Using a

special error correcting code, we can guarantee the ac-

ceptance with high probability if there are < 10~o of

errors and make “easily transformed” to mean polylog-

arithmic time per digit.

P is a proof of T if (T, P) is correct. T is a theorem if it

has a proof. A deterministic proof system is the special

case with no use of w. Extension is a system with more

proofs but not more theorems.

A proof P of T is transparent if it is accepted in a

(specific) poly-logarithmic time (log IIT, Pl])”(’). The

system is friendly if every proof P can be transformed

in IIT, P\l”(lJ time into a transparent proof of the same

theorem.

Theorem 1.1 Each determ~ntsttc proof system has a

friendly probabilistic extension.

It will be sufficient to consider just one proof sys-

tem which is lVP-complete with respect to polyloga-

rithmic time reductions (see definition in Sec. 2.3). In

fact, using a RAM model rather than Turing machines,

we construct a proof system, complete for nearly-linear

non-deterministic time with respect to such reductions.

This enables us, in time IIT, PI]l+C, for any c > 0, to

put the proofs into transparent form, verifiable in time

(log IIT, P\l)O(l/CJ. It is an interesting problem to elimi-

nate l/e from this exponent.

1.3 Comments

Polynomial and poiyiog above refer to IIT, Pl]”(l) and

(log IIT, Pll)”(’j, resp., where I] xl I denotes the length of

the string z. Nearly linear means linear times polylog.

Theorem 1.1 asserts that given T (ss a valid code-

word) and a correct proof P, one can compute in poly-

nomial time another proof P of T which is accepted in

polylog time (by the extended system).

Note that acceptance of (T, P) does not guarantee the

correctness of “(T, P). But, if acceptance occurs with a

noticeable probability, then both T and P can easily be

corrected.

Correcting the Theorem. Error-correcting format

(encoding) of the input refers to any specific polynomial-

time computable encoding with the property that ev-

ery codeword can be recovered in polynomial time from

any distortion in a small constant fraction of the dig-

its. Such codes can be computed very efficiently by log-

depth, nearly linear size networks (e.g. variants of FFT).

The error-correcting encoding of the theorem-

candidate is crucial; otherwise P could be a correct proof

of a slightly modified (and therefore irrelevant) theorem,

and it would not be possible to detect in polylog time

the slight alteration. In case T fails to be in valid error-

correcting form, acceptance of the proof means correct-

ness of the unique T’ to which T is close.

One would not need error-correcting encoding if we

were only concerned about short theorems with long

proofs. This is rare in computing, where inputs/outputs

tend to be long. But even in mathematics there are

good reasons to assume that truly self-contained theo-

rem statements will be very long. Indeed, as discussed

in Sec. 1.1, the statement of a theorem in topology, for

instance, would include lots of relevant textbook mate-

rial on logic, algebra, analysis, geometry, topology.

Correcting the Proof. If (T, P) has a noticeable

chance of accept ante in the extended system then T (af-

ter error-correction, if not a valid code-word) is guaran-

teed to be a theorem, i.e. to have a correct proof. We

do not guarantee that P itself is a correct proof, but

a simple Monte-Carlo procedure with random access to

P will correct it, revising each digit independently in

polylog time. (This is a self-correction feature related

to a self-correction concept introduced by Blum–Luby-
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Rubinfeld and Lipton. Theproof uses the interpolation

trick of Beaver–Feigenbaum–Lipton.)

2 Pointer machines and the

Kolmogorov–Uspenskii thesis

In order to apply the theory efficiently to actual compu-

tations and mathematical proofs, we need a formaliza-

tion of the concept of proofs, more accurately reflecting

their perceived length.

Within an accuracy of polynomial-time transforma-

tions a formalization of proofs is quite established. It

is based on the nondeterministic Turing machine model.

Proofs could be represented as witnesses to instances

of any lVP-complete problem (say 3-coloring). Their

length and checking time will be bounded by a polyno-

mial of [IT, Pll for any reasonable formal system.

We need a greater accuracy. First, our polylogarithmic

time checker has no direct way to verify the polynomial

time transformations. We can afford only very trivial

(polylog-time) reductions on instances (below, they will

simply prefix the input with short strings). Second, we

intend to transform very long mathematical proofs into

transparent form. Squaring the length of the proof of

the Enormous Theorem would seem too much.

Better accuracy is harder to achieve in machine-

independent terms. One possibility is to accept the the-

sis of Kolmogorov and Uspenskii [KU] that the Pointer

Machine model of computation proposed there (the orig-

inal and cleaner version of RAM; see below) simulates,

with constant factor time overhead, any other realistic

model (including formal mathematical proofs).

This thesis suggests the following solution. We define

the class NF of problems solvable in nearly linear time

on nondeterministic pointer machines (or, equivalently,

RAM’s). (NF = “Non-deterministic Fast”; we use the

term “fast” as a synonym to “in nearly linear time’).)

We find an NF-complete problem with respect to our

very restrictive reduction concept. We use the witnesses

of this problem as “proofs”. This defines a specific proof

system, for which we design our checker. Proofs in other

systems can then be padded to allow nearly-linear time

verifications and reduced to our complete problem.

2.1 Pointer Machines and RAMs

Kolmogorov-UspenskiY Machines (often called Pointer

Machines) are an elegant combinatorial model of real-

istic computation. Pointer Machines are equivalent to

RAM’s within the accuracy relevant for us (polylog fac-

tors). We describe a slightly generalized version (to di-

rected graphs) due to A. Schonhage [Shg], This defini-

tion is not required for the technical details of the proofs

but it may contribute to conceptual clarity.

The memory configuration of a Pointer Machine (PM)

is a directed graph with labeled edges. The set of labels

(colors) is finite and predefine independently of the in-

put. Edges coming out of a common node must differ in

colors (thus constant outdegree), There is a special node

O, called the centra[ node. All nodes must be reachable

from O via directed paths.

The input of a PM is the starting memory configura-

tion. Based on the configuration of the constant depth

neighborhood of O (w.1.o.g. depth 2), the program of PM

chooses and performs a set of local operations: delete

or create an edge, create a new node connected to O,

halt. The operations transform the configuration step

by step until the halt. The final configuration represents

the output. The nodes (and their edges) which become

unreachable from O are considered deleted,

Now we compare this PM model to RAM’s. Our va-

riety of RAM has an array of registers R< with content

rn(Ri ). These include RI, . . . , Rn, initially storing the

input, and a Central Register R. = (s, a, w, t). R. has

a time counter t and O(]]t, nl]) other bits. The RAM

works as a Turing Machine on R. and, at regular inter-

vals, swaps the contents ofs and Rmta). A copy tf of t is

maintained in a part of the field s, except that at each

swap it is overwritten for a moment. At the start, the

RAM reads consecutively the entire input.

Proposition 2.1 PM’s and RAM’s can simulate each

other in nearly linear time.

2.2 An ~.F’-complete Problem.

Let f be a function which transforms strings w called

“witnesses” into “acceptable instances” z = $(w). We

say that ~ is fast if it is computable in time nearly

linear in [If(w) [l. An NF problem is a task to in-

vert a fast function. (Note that this definition requires

a sufficiently strong model, such as Pointer Machines

or RAM ‘s. ) Representation of objects (say graphs) as

strings is flexible, since nearly linear time is sufficient for

translation of various representations into each other.

A fast reductaon of problem P to Q is a pair of map-

pings f, h. The instance transformation f, computable

in polylogarithmic time, maps the range of P into the

range of Q. The witness transformation h, computable

in nearly-linear time, maps the inverses: P(h(w)) = x

whenever ~(z) = Q(w).

We need a combinatorial problem with witnesses re-

flecting space-time histories of nearly-linear time com-

put ations.

The history of the work of a RAM is the the sequence

of records rn(Ro), for all moments of time. Each record

contains two time values

or swapped from Rmfa).

t and t) in s: copied from t

Each time value may appear

23



in two records: at its own time and at the next time

the same register Rm(a) will be accessed again. Clearly,

any error in the history creates an inconsistency of two

records (including the inputs). It can be either a Turing

error or some “read” inconsistent with the “write” at the

last access time or two “reads” indicating the same last

access time. We can easily find the errors by comparing

two copies of the history: sorted by t and sorted by t’.

The contradicting records will collide against each other.

So we have accomplished three goals:

b

●

●

The length of our history is nearly linear in time:

a contrsst to quadratic lengths (linear space times

linear time) of customary (Turing machine or RAM)

histories.

Its verification can be done on a sorting network

of fixed structure. (Simulation by a fixed structure

network was first done in [Ofman 65].)

The verification takes polylogarithmic parallel time.

Thus the space-time record of the verification is

also nearly linear. Note that only the verification,

not the constructitm of the history can be so paral-

lelized. So, only non-deterministic problems allow

such reductions.

To implement the verification we need a sorting net-

work of nearly linear width and polylogarithmic depth.

Of course, the sorting gates will be simple circuits of bi-

nary gates comparing numbers in binary. This network

will also need to perform a simple computation verifying

other minor requirements.

The history of this verification (assigning the “color”

i.e. the bit stored at each gate at each time) is a color-

ing of the Carrier Graph on which the network is im-

plemented. The verification is successful if the coloring

of the carrier graph satisfies certain local requirements.

So, we obtain the following IV.F-complete problem: Ez-

tend a given partial coloring (the input part) of a sorting

network to a total coloring, so that only a fixed jinite

set of permitted types of colored neighborhoods of given

fixed depth occurs. We may extend the number of colors

to represent such a whole neighborhood as the color of

a single node. Then consistency need only be required

from pairs of colors of adjacent nodes.

2.3 The Domino Problem

We now describe a simplified iVI’-complete problem. We

choose a family of standard directed graphs Gn of size

@(2n ). We denote by gn,~,c(i) the kth digit of the bi-

nary name of the c~h neighbor of node i. It does not

make much difference what G. we choose (say, Shuffle

Exchange Graph), as long as g

a boolean formula of the digits

can be repre~ented by

of i, computable from

n, c, k in time no(l) and a polylog time sorting network

can be implemented on Gn. A coloring of a graph is a

mapping of its nodes into integers (colors). The base is

the subgraph of (O, I)-colored nodes. We require it to be

an initial segment of consecutive nodes of Gn. A domino

is a two-node induced colored subgraph, with nodes un-

labeled. The Domino Problem is to color the standard

graph to achieve given domino set and base (specified as

a string of colors).

Proposition 2.2 The Domino Problem is NF-

complete, i.e. all NF problems have fast reductions to

it.

The instance transformation will leave the base string

intact and supplement it with a fixed domino set, specific

for the problem. Alternatively, we can use a fixed univer-

sal domino set and prepend the input with a problem-

specific prefix to get the base string. The idea of the

construction was outlined in section 2.2. Other (straight-

forward) details will be given in the journal version,

3 Checking computations

We shall now interpret Theorem 1.1 in the context of

checking of computations. There will be two parties in-

volved: the Solver, competing in the open market to

serve the user; and the Checker, a tiny but highly reli-

able device.

3.1 A universal Checker

A non-deterministic programming task is specified by

a deterministic polynomial-time predicate S(z, y, W)

meaning W is a witness that (z, y) is an acceptable

input–output pair in error-correcting form.

A Solver may present a program which is claimed to

produce a (possibly long) witness W, and running Son a

reliable machine with reliable software might be expen-

sive and time-consuming, Instead, our result allows to

modify the specification such that (a) the same input-

output pairs will be accepted; (b) the same Solver can

solve the modified task at only a small extra cost to him;

(c) the result can be checked in polylogarithmic time. -

We now rephrase Theorem 1.1 in the checking context.

The following corollary assumes t to be an up-

per bound on {lx, y, Wll and on the running time of

S(Z, y, W); w is a random sequence of coin flips. We

select a value c > 0.

Corollary 3.1 There ezist machines E Editor, tl+’

[running time) and C (Checker, (logt)” l/’J running

time) such that for any S, x, y with error-correcting codes

~,7iT,~ and W:

24



●

●

if S(Z, y, W’) accepts then C(S, Z, ~, E(W), w) ac-

cepts for all u.

If C’(S, x, y, W, w) accepts for > 1% of all w then

S, x, y are within “1% Hamming distance from error-

correcting codes of unique and easily recoverable

S’, x’, /, Moreover, S’(z’, y’, W) accepts for some

w.

Only the Checker but neither the software nor the

hardware used by the Solver/Editor need to be reliable,

If reliability is regarded as a substantial cost factor, the

stated result demonstrates that this cost can be reduced

dramatically by requiring the unreliable elements to work

just a little harder.

The relation to Theorem 1.1 is that E(W) will be the

“transparent proof” of the statement (3 W)S(Z, y, W).

3.2 Space saving, parallelization

E(W) from Corollary 3.1 could be long. While

IIE(W)[I < [1Wllly’, this e should not be taken too

small: that raises the exponent in the polylogarithmic

time bound of the Checker. But we do not need the

Solver to write down the entire E(W). Instead, he can

provide a devilish program, which computes the ith bit

of z, from i. This could save considerable space, and as

a result, possibly even time.

However, such a program could then cheat by being

adaptive, i.e. making its responses depend on previous

questions of the Checker. We can eliminate this pos-

sibility by implementing the multi-prover model: run a

replica of the program separately; after the Checker had

asked all its questions from the original, select one of

these questions at random and ask the replica. If the

answer differs, reject. Repeat this process a polylog-

arithmic number of times. If no contradiction arises,

accept (cf. [BGKW], [FRSJ, [BFL]).

We can give a helping hand to the Solver to enable his

program to respond in something like real time to the

Checker’s questions, after some preprocessing.

Proposition 3.2 Using the notaiion of Corollary 3.1,

there exists an NC2 algorithm to compute any entry of

E(W) from z, y, W, after a nearly linear (in Ilz, VII) pre-

processing time.

3.3 Comparison with Blum’s models

Our result says that any computation is only “Nl+e time

away” from a computation checkable in polylogarithmic

time in a sense related to Blum’s.

Blum and Kannan [BK] define a program checker C:

for a language L and an instance z E {O, 1}* as a prob-

abilistic polynomial-time oracle Turing Machine, that,

given a program P claiming to compute L and an input

x, outputs with high probability:

1. “correct ,“ if P correctly computes L for all inputs.

2. “P does not compute L,” if P(z) # L(z).

In recent consecutive extensions of the power of inter-

active proofs, complete languages in the correspond-

ing classes were shown to admit Blum–Kannan instance

checkers: P#p [LFKN], PSPACE [Sh], EXP [BFL].
(See [BaF] for more such classes.)

The Checker of the present paper runs in polylogarith-

mic time and needs no interaction with the program to

be checked. There is some conceptual price to pay for

these advantages.

What we check is the computation as specified by the

User, rather than the language or function to be com-

puted. We do allow the Solver to use a devilish pro-

gram, though; conceivably such a program maybe help-

ful not only in establishing the right output but also to

compute the requested entries of E(W) without writ-

ing all of it down. One objection might be that this

excludes some more efficient algorithms (e.g. if we spec-

ify compositeness-testing by way of computing a divisor

as witness, this may make the Solver’s task exceedingly

hard).

For a comparison with the Blum–Kannan definition

consider a program P which is claimed to compute the

entries of E(W). Assuming now that x and S are given

in error correcting encoding, our Checker Cp

● outputs “correct, “ if P correctly computes all en-

tries of E( W).

● with high probability outputs “P does not compute

a correct E(W) ,“ unless (except for a small frac-

tion of easily and uniquely recoverable errors) z, S

are in error-correcting form and z is acceptable (i.e.

(3W)S(Z,w)).

4 Low degree polynomials

In Section 6 we shall turn the combinatorial conditions of

the Domino Problem into problems on low degree poly-

nomials. This section presents technical preliminaries,

of which an algorithmic result on codes might be of in-

dependent interest (Prop. 4.6).

4.1 Low degree extension

The ‘<proof” in our proof system consists of an admissible

coloring A of the graph Gn. We may assume A is a string

of “colors” of length 2n. The set C of colors will be

viewed as a subset of a field F. The transparent version
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will involve an extension of this string to a table of values

of a multivariate polynomial over F.

[BFL] suggests to identify the domain V of A with

{O, I}n, and, regarding {Oj 1} as a subset of F, extend A

to a multilineal function over In where I is a finite subset

of F. However, in order for the [L FKN]-type protocol

of [BFL] to work, one requires I to have order f2(n2),

forcing the table of the multilineal function to have size

~n(~) = ~$_@Og 10g~), where IV = 2“ is the length of

A. This would render the “transparent proof” slightly

superpolynomial.

Instead we select a small subset H c F of size IHl = 2Z

where 1 = @(log n/c) where c > 0 is the quantity appear-

ing in the comments after the statement of Theorem 1.1

as well as in Cor. 3.1 We may assume m := n/t is an

integer; and we identify V with the set Hm. The next

Proposition allows us to extend A to a low degree poly-

nomial in only m variables. Now the size of the table of

the extended function has size

lIlm = IV(lI1/lHl)~ = N(@(n2))m = IV’+o(’l, (1)

using the stipulation, to be justified later, that the right

size of I is @(n21Hl).

Proposition 4.1 (Low degree extension)

-Let Hi,..., Hm~Fand let f: H1x. xH~ +F_

be a function. Then there exists a unique polynomial f

in m variables over F such that

● f has degree s IH;l in its ith variable;

● f, restricted to HI x . . . x Hm, agrees with f.

Proof. Let u = (u,,..., Um)EK:=HIX. .. XHm.

Consider the polynomial

9tJ(~) = jj l-’J (z, –h). (2)

i=l hGH, \{14, }

Now gu(u) # O but gu(ic) = O for all z E K\{u}. Clearly,

every function K b F is a linear combination of the g~,

restricted to 1<. This proves the existence part of the

statement. The uniqueness can be proved by an easy

induction on m. ❑

4.2 Low degree test

One of the key ingredients of the program that checks the

“transparent proof” is a test that a function f : F~ ~ F

is a low degree polynomial.

We say that two functions defined over a common fi-

nite domain are ~-approximations of one another if they

agree on at least a (1 — a) fraction of their domain.

An important feature of low degree polynomials is

that they form an error-correcting code with large dis-

tance: two such polynomials can agree on a small frac-

tion of their domain only, assuming the domain is not too

small. This follows from a well known lemma of J. T.

Schwartz [Swz] which we quote.

Lemma 4.2 (J. T. Schwartz) Let I C F be a finite

subset of the field F. Let f : F’” - F be an m-varzate

polynomial of (combined) degree d >0. Then f cannot

vanish in more than a d/111 fraction of 1*.

(The proof is by a simple induction on m.)

An important property of low degree polynomials over

not too small finite fields is that they are random self-

reducibie, as observed by Beaver-Feigenbaum [BeF] and

Lipton [Li]. They show that an m-variate polynomial

p : F~ ~ F of degree d can be recovered from an a-

approximation assuming a < l/(2d) and IFI ~ d + 2.

A. Wigderson has pointed out to us that the bound on

a can be improved to a constant, say 15’%0, using known

error-correction techniques in the way used by Ben-Or,

Goldwasser, and Wigderson [BGW] in their “secret shar-

ing with cheaters” protocol. We briefly review the tech-

nique and state the result.

Proposition 4.3 Let p be an unknown polynomial of

degree d in m varzables over the finite field F. Let f :

Fm -+ F be an cr-approximation ofp, where a = .15. Let

n be a dzvisor of IFl – 1, and assume n ~ 3d + 1. Then

there M a Monte Carlo algorithm which for any x E Fm

computes p(x) with large probability in time polynomial

tn n, m, and log IFI if allowed to query f.

Proof. Let u be a primitive nth root of unity in

F. We select a random r c F~, query the values

p(ui) = f(x+rcui) for i = 0,. ..,l–l. Let ~be defined

analogously, using p in place of f. Now @ is a univariate

polynomial of degree < d < (n – 1)/3, and with some

luck, no more than (n – 1)/3 of the queried values off

differ from the corresponding values of p. If this is the

case, the polynomial @ can be recovered from the values

of q. Indeed, as observed in [BGW, p. 5], this is a case

of correcting errors in a generalized Reed-Muller code,

cf. [PW, p. 283].

Repeating this process we are likely to succeed and

obtain the correct value of p(x) for a majority of the

random choices of r. D

Let us say that a multivariate polynomial f is h-

smooth if it has degree < h in each variable. A function

is a-approximately h-smooth if it is an a-approximation

of an h-smooth function. l-smooth polynomials are

called multilineal. One of the key ingredients of the

MIP = NEXP protocol in [BFL] is a multilinear-

it y/low degree test.
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Theorem 4.4 ([ BFL]) Let F be a jield, h, m positive

integers, and I a jinite subset of F. There exists a Monte

Carlo algorithm which tests approximate h-smoothness

of a function f : Im 4 F in the following sense:

(i] if f is h-smooth, the algorithm accepts;

(ii) if f is not a-approximately h-smooth, the algorithm

rejects with high pro babiiit y, where a = 4m2h/ [II,

The algorithm queries hmOflJ values off.

For the proof, see [BFL, Thin. 5,13 and Rem. 5.15].

(Specific citations refer to the journal version.) A more

efficient version of the algorithm was recently found by

Szegedy [Sz].

We shall now combine this result with the ideas of

Beaver, Feigenbaum, Lipton, Ben-Or, Goldwasser, and

Wigderson to upgrade the test, incorporating a strong

self-correction feature which makes the test tolerant to

errors of up to a substantial fraction of the domain. In

order to do so, we have to take I = F.

Corollary 4.5 Let F be a jinite jield, and h, m positive

integers. Assume IFI ~ 28m2h. There exists a Monte

Carlo algorithm which tests approximate h-smoothness

of a function f : F~ * F in the following stronger sense:

(i)

(ii)

if f is .I$approximately h-smooth, the algorithm

accepts with high probability; and for any z c Fm,

computes the value of the unique h-smooth approx-

imation off at z;

if f is not .16-approximately h-smooth, the algo -

rithm rejects with high probability.

The algorithm runs in time (lFlm)O(lJ, including the

queries to values off.

Proof Let us first pretend that f is .15-approximately

h-smooth. Apply the procedure of Prop. 4.3 to (hm)O(l)

~oints z c Fm to establish values (random variables)

f(x). If the procedure fails to produce a value or the

value produced is different from f(z) more than 15.570

of the time, reject. Else, perfor~ the h-smoothness test

of Theorem 4.4 to the values off rather than those off.

If indeed f is .15-approximately h-smooth then let g

be its unique smooth approximation. For ev~ry x it has

very large (1–exp((hm)’)) probability that f(z) = g(z),

so the smoothness test will accept. On the other hand,

if the self-correction procedure does not reject, then it is

likely that there exists a function g(z) such that for al-

most every x, ~(z) = g(z) with large probability. Now if

the smoothness test accepts, then g must very closely ap-

proximate an h-smooth function g’. Now we are almost

certain that f and g agree on all but 15.5% of the places,

so all put together f is very likely to .16-approximate the

h-smooth g’. ❑

4.3 An efficiently correctable code

We describe an error-correcting code with a polylogarith-

mic error correction algorithm, capable of restoring each

bit from a string which may have errors in a substantial

fraction. This code plays a multiple role in this paper.

In addition to being the code of choice for the “theorem-

candidate”, it can be added onto the transparent proof

to make the proof itself error–tolerant. Moreover, the

ideas involved motivate parts of the construction of the

“transparent proof”.

Theorem 4.6 Given c >0 and a sufficiently large pos-

itive integer No, there exists an integer N, No ~ N <

No(log No)ljc and an error-correcting code with the fol-

lowing properties:

(a)

(b)

(c)

(d)

given a message string x C {O, l}N, one can com-

pute in time N1+’ the codeword E(x) of length

m(N) ~ N1+C;

the Hamming distance of any two valid codewords is

at least 75% of their length;

gwen random access to a stringy of length m(N), a

(logN)O(l/~)-~” zme Monte Carlo algorithm will, with

large probabihty, output “accept” ify is within 10%

of a valid codeword, and ‘reject” if y is not within

15% of a valid codeword;

if y is within 15% of a (unique) valid codeword y’

then a (log N)l/’-time Monte Carlo algorithm will

be able to compute any dtgit of y’ with large confi-

dence.

Proof. We choose N in the form N = 2mL . k where

k – t is slightly greater than 2 log m; and (k – t?)/1 < c.

So 1 = 2 logm/c. Let F be a finite field of order q = 2k

and H c F be a subset of size 2e. We identify F with

{O, 1}~ and thereby the message string with a function

x : Hm ~ F. A message of N breaks into 2mt tokens,

each an element of F,

We shall perform a two-stage (concatenated) encod-

ing. The first stage associates with z its unique lHl-

smooth extension to Fm which we denote by E.(z)

(Prop. 4.1). Eo(z) is a token-string of length 2m~.

Clearly, the bit-length of

these strings is N(N/k)(k-t)/t < N1+C; and they are

computable (if done in proper order) at polylogarithmic

cost per token.

The degree of Eo(z) as a polynomial of m variables

is < mlH 1. Therefore, by the quoted result of J. T.

Schwartz [Lemma 4.2) this polynomial cannot vanish on

more than a ml Hi/l Fl fraction of its domain Fm. We

observe:

mllI1/lFl = m/2k-1 < I/m. (3)
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But m log m % c log IV, so I/m will be small for fixed s

and sufficiently large N. This justifies statement (b) (for

tokens). (c) and (d) (for tokens) follow from Cor. 4.5.

Now to switch to bits from tokens, we have to apply

an encoding of the tokens themselves. Here we have a

large degree of freedom; e.g. Justesen’s codes will work

(cf. [MS, Chap.10.l l]). The properties required are now

easily verified. ❑

5 LFKN-type protocols

5.1 Verification of large sums

We shall have to consider the following situation: let F

be a field. (We shall use F = Q.) Assume we are given

a polynomial of low degree in m variables over 1~ where

1 is a (small) finite subset of F. We have to verify that

~ f(u)= a (4)

UEHm

for some small If ~ I and a c F. ( IH I will be polylog-

arithmic. ) We assume that we have random access to a

database of values of j as well as their partial sums

over I. Clearly, ~~ = ~, and

(6)

hEH

(using self-explanatory notation)

Assumption on the database. We assume that the

database gives the correct values off but we allow that

it give false values of the other f~.

Protocol specifications. The protocol is required to

accept if the entire database is correct and eqn. (4) holds;

and reject with large probability if eqn. (4) does not hold

(regardless of the correctness of the database).

We review the protocol which is a slight variation of the

one used for an analogous purpose in [B FL, Prop .3.3].

The protocol builds on the technique of Lund, Karloff,

Fortnow, and Nisan [LFKN].

The protocol will work assuming the degree off is ~ d

in each variable (~ is d-smooth), and III ~ 2dm.

The protocol proceeds in rounds. There are m rounds.

At the end of round i, we pick a random number ri c I;

and compute a ‘stated value” bi. We set b. = a. It will

be maintained throughout that unless our database is

faulty, for each i, including i = O,

bi =fi(rl, . . ..ri). (7)

So by the beginning of round i > 1, the numbers

r’1, . ..>~l-l have been picked and the “stated values”

bo=a, bl, ..., bi- 1 have been computed.

Now we use the database to obtain the coefficients of

the univariate polynomial

9z(~)=.fi(rl, . . ..rl.z), z) (8)

(by making d+ 1 queries and interpolating). Let ~i de-

note the polynomial thus obtained. We perform a

Consistency Test; with equation (6) in mind, we check

the condition

(9)

If this test fails, we reject; else we generate the next

random number ri c I and declare bi := Ii (ri) to be

the next “stated value”. After the mth round we have

the stated value b~ and the random numbers rl, . . . . r~;

and we perform the Final Test

bm=f(rl, . . ..rm). (lo)

We accept if all the m Consistency Tests as well as the

Final Test have been passed.

The proof of correctness exploits the basic idea that if

equation (4) does not hold but the data pass the Con-

sistency Tests then we obtain false relations involving

polynomials with fewer and fewer variables; eventually

reaching a constant, the correctness of which we can

check by a single substitution into the polynomial be-

hind the summations.

Proof of correctness of the protocol. Assume first that

eqn. (4) holds and the database is correct. Then we shall

always have Ii = gi and eventually accept.

Assume now that at some point, there is a mistake:

~i– 1 # gi– 1. Here we allow i = 1; we define the con-

stant polynomial ~. := b. = a. Then with probability

~1– d/111, hi-l = ~i_l(ri-l) # gi-l(ri-l) since two

different univariate polynomials of degree < d cannot

agree at more than d places. Assuming now that the

next Consistency Test is passed (eqn. (9)) it follows that

the same error must occur in the next round: ~i # gi.

If now eqn. (4) does not hold, then the constant a =

b. = ~. differs from go = ~., an error occurs in round O.

It follows that unless one of the Consistency Tests fails,

with probability z 1 — dm/ III, the same error will have

to occur in each round. But the error in the last round

is discovered by the Final Test. ❑

5.2 Simultaneous vanishing

In [BFL], simultaneous vanishing of all values j(x), z c

D was reduced to the statement ~Z~D j(x)2 = O. This

trick works over subfields of the reals and will be used

in the main procedure (Sec. 7). However, if we wish
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to avoid large–precision arithmetic, a different approach

is required. We modify a procedure described in [BFL,

Sec.7.1].

The situation is similar to Sec. 5.1, except that rather

than verifying eqn. (4), we have to verify that f(u) = O

for each u c Hm. In this section we show how to reduce

this problem to the result of Sec. 5.1.

Let us extend the (small) field F to a large field K

where 21Hlm ~ [K[ < 21HlmlF1. Let [H] = d. Let

p: Ha{ O, l,..., d – 1} be a bijection; and for u =

(uCl,..., um_l) G Hm, set a(u) = ~~~1 dip(ui). So,

O: Hm --{O , . . . . dm – 1} is a bijection.

Let us now consider the univariate polynomial p(t) =

ZU@f~ f (u)t”(u).< Unless all the ~(u) are zero, a random

t c K has probablhty ~ 1/2 to be a root. We show that

checking p(~) = O for a given ~ c K is an instance of

eqn. (4).

Indeed, let ~i = <d’; then

m-1 m-1

where the Lh are Lagrange interpolation polynomials:

for h, hl C ~, Lh(h~) = 1 if h = hl and zero otherwise.

The right hand side is therefore a product of polynomials

of degree ~ (d– 1) of each Ui, and the protocol of Sec. 5.1

can be used to verify that p(~) = O.

Having verified this for a number of independent ran-

dom choices off c K, we are assured that all the f(u)

are zero.

6 Arithmetization of admissibil-

ity of coloring

The purpose of this section is to turn the essentially

Boolean conditions describing the admissibility of a col-

oring .4 of the standard graph Gn of the Domino Prob-

lem (Sec. 2.3) into algebraic conditions of the following

type: some family of low degree polynomials of several

variables must vanish on all substitutions of the variables

from some small set.

Let C be the set of colors and D the set of admissible

dominoes. Let G~ be the standard graph referred to

in the domino problem, with edge set E, vertex set V,

and functions B1, B2 : E * V and B3 :E~{O,l}

describing the head, the tail, and the type of each edge.

(The “type” is either directed or undirected.)

Let now Do be the set of all conceivable dominoes.

For6CD0, let Vb:Cx C’x{O,l} e{ 0,1} be the

predicate describing the statement @6(-yl, 72, c) that an

edge of type 6 haa type e with its head colored 71 and

its tail colored 72.

Let F be afield. We assume C’ c F. Let A : V + F be

a function. We wish to express by arithmetic formulas

that A is an admissible coloring of V. By an arithmetic

formula we mean a correctly parenthesized expression

involving the operations +, –, x, variable symbols, and

constants from F.

First we observe that the statement that A is an ad-

missible coloring of Gn is equivalent to the following:

(V6 E Do \ D)(Ve E E)

(ti~(A(Bl(e)), A(Bz(e)), Ba(e)) = 0); (12)

(VO c V)(A(v) E C). (13)

As in Section 4.1, let H C F be a set of size 2e where

1 = log n/c. (We choose & so as to make this an inte-

ger.) We may assume also that m := n/l? is an integer.

We embed both E and V into a Cartesian power of H:

E, V ~ Hm. Furthermore, we identify H with {O, I}t.

So the elements of H are represented as binary strings

of length 1. For h E H,’ let ~j (h) denote the jth bit of

h(l~j<l). Forv=(hl,..., h~)GV, letus call the

hi the tokens of v; and the bits of the hi the bits of v.

So v has m tokens and me = n bits. We use the same

terminology for E. After a slight technical trick we may

assume that V = E = Hm.

We assume B1, Bz, B3 are given in the form of a fam-

ily of Boolean functions defining the bits of the output

in terms of the bits of the input. We assume th;t these

functions are given by Boolean formulas, where the en-

tire collection of these formulas is computable from n in

time ncl.

Let us arithmetize these formulas; i.e. create equiva-

lent arithmetic expressions in the same n variable sym-

bols which give the same value on Boolean substitutions.

This is easily accomplished by first eliminating V’s from

the Boolean formulas (replacing them by 7A-), and sub-

sequently replacing each A by multiplication and each

subformula of the form ~ f by (1 – f). The length of the

arithmetic expression created is linear in the length of

the initial Boolean formula.

So we now may assume that B1, Bz, B3 are given by

arithmetic expressions over F describing families of poly-

nomials of degree ncl in ml variables. We now wish to

turn this representation in n variables over {O, 1} into a

representation in m variables over H.

Each projection function Tj : H ~ {O, 1} C F can be

viewed as a polynomial of degree ~ Ill] = nllc in a single

variable over F. Combining these families of polynomi-

als, we obtain the families of composite polynomials

Pj(Ul,. ..j urn) = Bi(rl(ul), 7rz(uI), . . ., Tt(Um)). (14)

The degree of this polynomial is ~ n“+lf’.

Similarly, for each 6 ~ Do, 46 is a polynomial of degree

~ ICI in each of yl and 72 and linear in c so its total

degree is ~ 21Cl + 1 (by Prop. 4.1).

Let now A : V d F be an arbitrary function.
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First, let us consider the following polynomial .f of

degree ICI in a single variable:

f(t)+ (q)=o. (15)

Yec

Now the statement that A is a coloring of V is equivalent

to

(Vv E V)(.f(A(v)) = O). (16)

Next, we consider the polynomials Pi defined above.

Setting

d(e) = b(4~l(e)), -4R(e)), R(e)) (17)

we observe that the coloring A is admissible precisely if

(V6 c DO \ D)(Ve G E)(v$(e) = 0) (18)

where each edge e is viewed as a member of Hm. We

summarize the result.

Proposition 6.1 There exists a family of arithmetic

formulas Pl, Pz, P3, 46, f computable from n in time

IHln”(l) such that a function A : V A F represents

an admissible coloring of G~ if and only if conditions

(16) and (18) hold.

This result almost accomplishes our goal, except that

A is not a ~olynomial. Let us now consider the unique

extension A : Fm ~ F of A as a polynomial which has

degree ~ IHI in each variable (4.1). Replacing A by

~ in the formulas (16) and (18), we obtain arithmetic

conditions in terms of the vanishing of certain polyno-

mials of degree < nlfcl+lic over Hm (the set which was

identified with V and E).

7 The procedure

We use the code of Theorem 4.6 to encode the “theorem-

candidate”. The proof system includes this information

and is encoded into our instance of the domino prob-

lem. The “proof-candidate” is therefore a coloring of

the standard graph in the Domino Problem.

We define the parameters n, m, 1 and the set H as

suggested in Sec. 4.1, with F = Q and III = 0(n21iYl).

The Solver is asked to extend the coloring A to an lffl-

smooth polynomial over 1~.

The verification consists of the LFKN-type protocol

(Sec. 5.1), employed to verify that the sum of squares of

the quantities in eqns. (16) and (18) vanishes.

The “transparent proof” will consist of a collection

of databases: one for the extended A; others for each

LFKN-type partial sum encountered in the verification

(according to Sections 5, 6). We test ]H1-smootlmess of

the extended A.

Let P. be the collection of the databases obtained. It

should be clear that P. qualifies as a transparent proof,

except that it does not have the error-tolerance stated

in Sec. 1.2: at this point the Checker is allowed to reject

on the grounds of a single bit of error.

In order to add error-tolerance, we encode P. accord-

ing to Theorem 4.6. to obtain the transparent proof P’.

The Checker operates on P’ by locally reconstructing

each bit of P. as needed. If P. was incorrect even in a

single bit, then P’ will be more than 10~o away from any

correct proof.

Remarks. 1. The encoding of the Theorem–

candidate does not need to use the encoding of Theo-

rem 4.6. Any error–correcting code will do; the code

of Theorem 4.6 can be incorporated in the transparent

proof and serve the same purpose (correction of any bit

of T in polylog time). 2. Rather than working over Q,

we could use the trick of Sec. 5.2 in the protocol. This

would require a separate LFKN protocol for each ~ G K,

thus squaring the length of the transparent proof. This

blowup can be avoided with the following 3/2-round in-

teractive protocol: 1. Prover: low degree extension of

coloring; 2. Verifier: random ~ c K; 3. Prover: p(~) = O.
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