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Abstract

Heuristic algorithms manipulating finite groups often

work under the assumption that certain operations lead

to “random” elements of the group. While polynomial

time methods to construct uniform random elements

of permutation groups have been known for over two

decades, no such methods have been known for more

general cases such as matrix groups over finite fields.

We present a Monte Carlo algorithm which constructs

an efficient nearly uniform random generator for finite

groups G in a very general setting. The algorithm pre-

sumes a priori knowledge of an upper bound n on log IGI.

The random generator is constructed and works in

time, polynomial in this upper bound n. The process

admits high degree of parallelization: after a preprocess-

ing of length O(n log n) with 0(n4) processors, the con-

struction of each random element costs O(log n) time

with O(n) processors.

We use the computational model of “black box

groups”: group elements are encoded as (O, I)-strings of

uniform length; and an oracle performs group operations

at unit cost. The group G is given by a list of generators.

The random generator will produce each group element

with probability (1/lGl)(l + c) where c can be prescribed

to be an arbitrary exponentially small function of n.

The resr.dt is surprising because there does not seem to

be any hope to estimate the order of a matrix group in

polynomial time. A number of previous results have in-

dicated close connection between nearly uniform random

generation and approximate counting.

The proof involves elementary combinatorial consid-

erations for finite groups as well aa linear algebra and

probabilistic techniques to analyse random walks over

vertex-transitive graphs, i.e. graphs with all vertices

“alike” (equivalent under the action of the automor-

phism group). The key tool is a local expansion lemma
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for groups, which generalizes to vertex-transitive graphs.

As a by-product, we obtain fairly general results on

random walks on vertex-transitive graphs which may be

of interest in their own right.

1 Introduction

1.1 Random generation in finite groups

In manipulating finite groups, it is often desirable to have

access to uniformly distributed random elements.

In [Bal], “strong generators” for a chain of subgroups

is constructed in polynomial time under the assumption

of access to to random elements; an assumption justified

by an application to a subcase of graph isomorphism. A

particularly efficient version of this algorithm, exploit-

ing random elements with great ingenuity, was found in

[CFS]. Neumann and Praeger [NP] have recently con-

structed efficient algorithms for certain matrix group

problems assuming access to random elements.

For permutation groups (given by a list of generators),

standard basic algorithms due to Sims [Sire] suflice in or-

der to construct uniformly distributed random elements

in polynomial time (cf. [FHL], [Je], [Kn], and the recent

considerable speedup [BCFLS].) It is crucial for those

methods that a permutation group G of degree n (=

the number of elements permuted) possesses a subgroup

chain G = Go~G1 ~... ~ Gn = 1 with small jumps:

lGi_l : Gi I < n. This fact can be interpreted as a kind

of self-reducibility of permutation groups and is largely

responsible for the sizable polynomial time library avail-

able for permutation groups (cf. [KL]).

The situation is drastically different for another, po-

tentially more important, class of representations of fi-

nite groups: matrix groups over finite fields. Such groups

in general do not have subgroups of small index. While

most finite simple groups are defined as matrix groups

(cf. [Ca]), current algorithmic techniques to handle them

first convert them into permutation groups, thus incur-

ring a tremendous blowup of the size of the representa-

tion. For a group G of d x d matrices over the field of q

elements, typically IGI = qe~d’), and the elements of G

are represented as strings of length @(dz log q). So this
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encoding of the group elements is optimal. On the other

hand, these groups typically act on permutation domains

of size at least n = qe(d), exponentially large compared

to the matrix representation. This effectively rules out

handling matrix groups even of modest dimension.

It should therefore be of particular interest to perform

efficient group comput at ions in the matrix representa-

tion itself. Generating random elements in a group of

which we have no hope of determining the approximate

order (cf. Section 9) might seem an exaggerated goal.

Yet, we solve this problem in polynomial time in an

even more general setting. While the random elements

we construct will be slightly non-uniformly distributed,

such a small (and prescribable) deviation from unifor-

mity could hardly affect the potential applications.

1.2 Black box groups: the cost of ran-

dom generation

Our model of computation is that of “black box groups”.

Group elements are encoded somehow (preferably by

strings of uniform length, but the nature of the encod-

ing is irrelevant for our discussion). Group operations

(multiplication, inverse) are performed by an oracle (the

black box). A “black box group” G is given by a list of

generators. Our cost measure comprises three elements:

the number of oracle calls (group operations), the cost of

ordinary computation that controls the oracle calls, and

the number of random bits used.

The algorithm presumes a priori knowledge of an up-

per bound IV on the order of G. (In the matrix group

case, N = q‘2 is a convenient upper bound; typically

log IGI = @(log N) in this case. More generally, for a

black box group with elements encoded as binary strings

of length n, we may set N = 2n. ) All the three cost mea-

sures will be bounded by a polynomial of log N, clearly

the best we can hope for, up to the implied constant

in the exponent. In fact, while this statement describes

the cost of the preprocessing phase (setting up the ran-

dom generator), the cost per random element will be

O(log N).

The group elements we generate will not be truly uni-

formly distributed. But their deviation from uniformity

can be made arbitrarily small: if each group element is to

have probability (1/lGl)(l + .s) to be selected, the costs

will be polynomial in log iV and Iog( 1/s).

To be more precise, our algorithm is Monte Carlo. If

we wish that the algorithm succeed with probability ~

1 – 6 in constructing a random generator, uniform within

(1+ e) in the above sense, then the cost is polynomial in

log N, log(l/&), and log(l/6).

The cost per random group element requested will be

O(log N + log(l/c) + log(l/cf)) (after preprocessing).

In Section 9 we show that it is impossible to determine

the approximate order of black box groups. Indeed one

cannot even tell elementary abelian groups of such wildly

differing orders as nearly 2“ and about 26 apart with

a polynomial number of oracle queries.

This makes our main result more surprising; for self-

reducible languages, approximate counting and near-

uniform random generation are equivalent [JVV].

1.3 Erd& - R6nyi generators and

straight line programs

Let G be a finite group and S a set of generators of G. A

straight line program in G with respect to S is a sequence

of group elements gl, . . . . gm such that each gi is either

a member of S, or the inverse of gj for some .i < i, or a

product g~gk fOr some j, k < i.

The Reachability Lemma [BSZ] (cf. Section 6.2 below)

asserts that every element of a group G can be reached

by a straight line program of length m < (1+ log IGI)2.

(Throughout this paper, log stands for base 2 loga-

rithms.) The lemma states the existence of such a

straight line program but does not say how to construct

one. (If we knew how to, we would in particular solve

the discrete logarithm problem.)

Our main result can be viewed as an efficient version

of the Reachability Lemma. We show how to construct

a straight line program that, starting from an arbitrary

set of generators of G, leads to a set of O(log N) el-

ements, from which nearly uniformly distributed ran-

dom elements of G can be obtained at the cost of only

O(log N) multiplications per random element. (?V is an

a priori upper bound on IGI.)

Letgl, ..., gk be a sequence of group elements. By

a subproduct of this sequence we mean an element of

the form g;’ . . . 9;*, where ei C {O, 1}. The set of sub.

products is the cube C(gl, ..., gk) ~ G based on this se-

quence. A random subproduct is a subproduct obtained

by choosing the exponents e~ by independent flips of a

fair coin. Note that these products are not necessarily

uniformly distributed over the cube.

A probability distribution over a set S is called e-

uniform if each element is selected with probability y

(1+ s)/1S1, i.e. between (1 - c)/lSl and (1 + c)/lSl.

We call a sequence hl, ..., hk ~ G a sequence of 6-

uniform Erd6% – R t%yi (E–R) generators if every ele-

ment of G is represented in (2k/lG[)(l + S) ways as a

subproduct of the hi. In other words, we require ran-

dom subproducts to be c-uniformly distributed over G.

Erd6s and R&yi [ER, Theorem 1] proved that for

k z 210g IGI + 210g(l/c) i- log(l/&), (1)

a sequence of k random elements of G is a sequence of

e-uniform E–R generators with probability z 1 – 6.
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The target of the straight line programs to be con-

structedis a short sequence ofs-uniform E–R generators

for G for any s >0, where “short” means length

k = 210g N + 2 log(l/c) + log(l/8). (2)

(Here, 6 is the reliability parameter just mentioned.)

1.4 The ingredients

The basic idea is to emulate the “cube doubling” tech-

nique of the proof of the Reachability Lemma [BSZ]

which we review in Section 6.2.

The method requires reaching, in each phase, elements

that cannot be represented as too short words in the

current generators. This will be achieved through the

analysis of random walks in groups. The key ingredient

is a local expansion property of groups (Section 3). This

property has independent interest in its own right and

has already been applied in the context of interactive

proofs [Ba2], [Ba3]. More recently it has played a key

role in a very fast (nearly linear time) Monte Carlo al-

gorithm to handle permutation groups with a small base

(a case of particular importance in computational group

theory) [B CFS]. Curiously, while in the present paper we

have to assume an a priori bound on the order of G in or-

der to know when to terminate the algorithm, under the

circumstances of [BCFS] the local expansion property is

utilized to make such an a priori bound unnecessary.

The local expansion property generalizes (easily) to all

vertex-transitive graphs (even to infinite ones with some

restrictions), with implications of quite general nature on

random walks. (In a vertex-transitive graph, all vertices

are equivalent under automorphisms; cf. Section 2).

The local expansion property is employed to show that

random walks over a vertex-transitive graph have a fair

chance of being reasonably far from their origin at a ran-

dom time within a short period. The proof of this fact

involves element ary probabilistic arguments exploiting

the symmetry of the graph (Section 5); and a linear al-

gebra argument exploiting local expansion (Section 4),

foolowing Alon’s work [Ale].

In Section 6.3 we indicate, reviewing ideas from

[BCFLS], how to reduce, if necessary, the number of in-

put generators to O(log N).

Having completed the description of the ingredients of

Phase One of the algorithm, we describe this phase in

Section 7. The result there is a set of O(log N) genera-

tors such that every element of G is representable as a

product of length O(log N) of these (“small diameter”).

In Section 6.1 we show that such a set suffices to reach

nearly uniform random group elements by random walks

of length, polynomial in log N. This follows by expansion

through Alon’s eigenvalue bound [Ale].

In Section 8.1 we review the required modification of

the Erd& - Rdnyi result. Section 8.2 completes the de-

scription of the algorithm and its analysis. We close this

section with stating the main result of the paper.

Theorem 1.1 Let c, C >0 be given constants, and let

c = N-c where N is a given upper bound on the order of

the group G. There is a Monte Carlo algorithm which,

given any set of generators of G, constructs a sequence

of O(log N) e-uniform Erdos-R&nyi generators at a cost

of O((log N)5) group operations. The probability that

the algorithm fails is ~ N-c.

If the algorithm succeeds, itpermits the construction

of c-uniformly distributed random elements of G at a

cost of O(log N) group operations per random element.

The number of random bits required is O(log log N) bits

per group operation. The local computation consists

merely of storing the labels of group elements consid-

ered and is therefore bounded by O(n) time per group

operation, where n is the length of the codewords repre-

senting each group element.

The proof of Theorem 1.1 will be completed in Section

8. For a contrast, we prove in Section 9 that in the “black

box group” model, it is impossible to obtain even a rough-.
estimate of the order of

time.

2 Definitions,

All graphs in this paper

finite graphs and groups

the group within polynomial

notation

are undirected. We consider

only, unless otherwise stated.

Some of the results remain valid for the infinite case with

some restrictions (see the remarks in each section).

Throughout the paper, X will denote a graph with

vertex set V. For v c V, the ball of radius t about v is the

set I’%(v) = {u E V : distx(v, u) < t},where distx(v, u)

denotes the length of the shortest path in X between v

and u. We omit the subscript X if the graph of reference

is clear from the context. The diameter diam(X) is the

greatest distance between pairs of vertices of X.

The degree deg(v) of vertex v is the number of its

neighbors; so 11’l(v)l = deg(v) + 1. A graph is regular if

each vertex has the same degree.

A random walk over X is a Markov chain with V as the

set of states; from vertex v, a transition to each neighbor

is allowed with probability 1/ deg(v). Random walks

over undirected graphs are reversible Markov chains.

The boundary of a subset D g V is the set 13D = {w ~

V \ D : w is adjacent to some v c D}.

Let 11 c V be such that for every subset W ~ U we

have l~Wl ~ sIWI. Such a subset is called e-ezpanding.

Let Y denote the subgraph induced by U. We call Y an

c-expanding subgraph.
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The graph X is an c-expander if every subset U c V

with IUI s [Vi/2 is c-expanding. (Alon [Ale] calls these

graphs c-magnifiers.)

The Cayley graph C(G, S) of the group G with respect

to the set S of generators has G for its vertex set; two

vertices g, h 6 G are adjacent iff sg = h for some s c

S U S-1. The assumption that S generates G ensures

that C(G, S) is connected.

The automorphisms of the graph X are its self-

isomorphisms, i.e. those permutations V + V which

preserve both adjacency and nonadjacency of pairs of

vertices. The automorphisms form a group Aut(X) un-

der composition; this is a subgroup of Sym(V), the sym-

metric group acting on V.

A permutation group G ~ Sym(V) is transitive if for

every pair v, w of elements of the permutation domain

V there exists g E G such that vg = w. A graph X is

vertez-transitive if Aut(X) is transitive. Informally this

means that all vertices are alike, a condition we shall

frequently use. It implies for instance that the expected

time a random walk starting at v c V takes to exit I’t(v)

does not depend on v.

The group G acts on the Cayley graph C(G, S) by

right translations pg : z * zg (g, ~ E G). Hence all

Cayley graphs are vertex-transitive. (The converse is

false; the smallest counterexample is Petersen’s graph.)

For additional definitions, see esp. Section 1.3 (c-

uniform probability y distribution, Erd6s - R6nyi gener-

ators, straight line program, random subproducts, the

cube over a sequence of group elements etc.).

3 Local expansion of vertex-

transit ive graphs

The following lemma is stated aa Lemma 10,2 in [Ba3].

A weaker version was announced in [Ba2, p.428]. This

lemma is true for finite as well as infinite groups.

Lemma 3.1 (Local Expansion of Groups). Let S

denote a set of generators of the group G, and set T =

S U S-l U {l}. Let D be any finite subset of Tt, the set

oft -term products of members of T (in any order). Let,

finally O < a ~ l/(2t + 1) be such that

(3)

Then for at least one generator g 6 S,

\D\Dgl ~ allll. (4)

For completeness, we include the short proof.

Proof. For a contradiction, suppose (4) fails for every

gEs.

The fact that S generates G means that G = Uk>O Tk.

Let us observe that for each g G S, ID\ Dg=l ] =

lDg \ D[ = Ill\ Dgl < alD1. Observing in addition that

D \ my ~ (D\ Dy) u (D \ Dz)y, (5)

it follows by induction on k that for any u c Tk, we have

ID\ Du/ < k+ll. (6)

As long as kcz < 1, this implies that u ~ D-1 D. Since

a ~ l/(2t + 1), we can choose k equal to 2t + 1 and

so it follows that T2t+1 ~ D- lD ~ T2t and therefore

T2t=T2t+1=... =G.

Next we observe that for any u E G, the number of

z G D such that m c D is greater than (1–2at)lD[. This

is the case because u c T2t and thus ID\ Dul < 2&[D1.

Consequently, the number of pairs (z, u) such that z c

D and ZU ~ D is greater than (1 – 2at)lGllD1. On the

other hand, the number of such pairs is precisely [D [2.

Hence

(1 - 2at)lG[lDl < ID12, (7)

contradicting assumption (3). 4

This lemma states that Cayley graphs have a certain

local expansion property which we make explicit below.

The result extends in a very simple way to all vertex-

transitive graphs. Recall that I’~(v) denotes the set of

vertices at distance < t from v c V,

Theorem 3.2 (Local Expansion of Vertex-

Transitive Graphs). Let X be a connected vertex-

transitive graph with vertex set V. If D Q I’t(v) and

IDI ~ lV1/2 then lt3Dl ~ [D1/(4t).

In other words, under these conditions, the set D is

l/(4t)-expanding.

Proof. Let us first consider the case when X is a Cayley

graph of a group G with respect to the set S of gener-

ators. Then, setting a = l/(4t) in the previous lemma

we obtain that lgD \ D I ~ lD1/(4t) for at least one of

the generators g E G. (We use the lemma with multipli-

cation in the reverse order, clearly an equivalent state-

ment.) But then gD \ D ~ ~D completing the proof in

this case.

For the general case, let G be the automorphism group

of X. Let us fix the vertex v in X. Take the following

lG[/[V[-fold cover Y of X: set V(Y) = G; and join

g,h EGifv9 andvh are either adjacent in X or they

coincide. (Y is the lexicographic product of X and the

complete graph on IG]/ [Vl vertices.) Clearly, Y is con-

nected, and G acts on Y by right translations. Therefore

Y is a Cayley graph of G. Let m : G ~ V be the projec-

tion defined by ~(g) := vg (g E G). We observe that r

preserves dist antes, with the exception of the cases when

disty (g,h) = 1 and distx(r(g), n(h)) = O. In particular,
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D ~ r>(v) implies T-l(D) ~ I’~(l). We can thus ap-

ply the result to the set ~-1(D) in the Cayley graph Y.

Noting that 8(r-l(D)) = r-l(d(D)) we conclude that

laD[/lDl = [7r-l(8D)l/17r-’(D)l > l/(4t). 4

Remark 3.3. Lemma 3.1 remains valid for infinite

groups provided the set S of generators is finite. Our

proof of Theorem 3.2 remains valid if X is locally finite

(the vertices have finite degree) and AutX has a transi-

tive subgroup G such that the stabilizer GV of a vertex

is finite. Szegedy recent Iy gave an elegant direct proof

of Theorem 3.2 which eliminates this restriction [Sze].

We note that some of the most studied random walks

are over Cayley graphs of infinite groups (cf. [M W], [Va]).

Remark 3.4. Theorem 3.2 implies that every vertex-

transitive graph of diameter A is a l/(4 A)-expander.

‘??his result can be improved by a factor of 2, using a

result of D. Aldous [Aid].

Proposition 3.5. Let X be a vertex-transitive graph

of diameter A. Then X is a l/(2 A)-expander.

Proof. For Cayley graphs, this is stated as Lemma 3,1

in [Aid]. The reduction of the general case to Cayley

graphs is identical with the corresponding argument in

the proof of Theorem 3.2. ~

4 Rapid exit from expanding

subgraphs: the eigenvalue

bound

In this section we show that random walks tend to exit

rapidly from expanding subsets.

Lemma 4.1. Let A denote the largest eigenva]ue of

the adjacency matrix of an E-expanding subgraph Y of a

regular graph X of degree d. Then A ~ d – .52/(4+ 2e2).

This is a local variant of Alon’s Cheeger-type inequality

[Ale, Lemma 2.4]. The difference is that Alon requires

the graph itself to be expanding in the sense that every

subset U of V with [Ul < lV1/2 has boundary I13UI ~

.sIUI. His conclusion is that the second largest eigenvalue

of X is z d – .s2/(4 + 2s2). (The largest eigenvalue of X

is d.)

The proof of this lemma follows, mutatis mutandis, the

steps of Alon’s proof, We leave the details to a journal

version of this paper.

Next we estimate the probability of a random walk ex-

iting U in terms of the largest eigenvalue.

Proposition 4.2. Let V. be a vertex in U. Let us

consider a random walk over X, starting from V.. The

Probability that the first / stews will all be within U is

Proof. Let A denote the adjacency matrix of U. Then

(1/d)A describes the transition probabilities between

pairs of vertices of U. (Note: this is not a stochastic

matrix since it is possible to exit from the set U.) Let

e. denote the column vector of length IU I with 1 in po-

sition V. and O elsewhere. Let j be the all-ones vector.

Then the probability that the random walk makes no

exit from U during the first 1 steps is e$(A/d)zj where

the superscript T refers to transpose. Now A is a sym-

metric matrix hence A = CTDC for some orthogonal

matrix C and diagonal matrix D. All diagonal entries of

D are at most A in absolute value. Therefore

e~A’j = (Ceo)TD’(Cj) < llCeoll . IIDII’ . llCjll.~ (8)

Corollary 4.3. Let U be an e-expanding subset of the

vertices of a regular graph X of degree d. Then the

probability that during its first 1 steps, a random walk

over X starting in U does not exit U is less than

lU11i2 exp(-e24/(d(4 + 2C2))).A (9)

5 Random walks over vertex-

transitive graphs

The results of the previous section guarantee that over

a locally expanding graph, a random walk has a good

chance of going reasonably far within a short time. The

difficulty in using this fact is that we cannot point to

a particular point in time at which the random walk is

likely to be at a reasonably great distance.

In this section, we exploit the symmety of our graphs

to show that a random walk stopping at a random time

has a fair chance of ending up reasonably far.

Let X be a vertex-transitive graph. Let Z. be the

start vertex (origin) and Zt the position at time t of a

random walk over X. Let ft = dist(zo, Zt). Let ql =

max{to, &l,...,&}. Fix positive integers k and t? such

that

Prob(~l ~ 4k + 1) > 1/2, (lo)

i.e. with probability z 1/2, by time 1 the random walk

will have reached distance ~ 4k + 1 from the origin at

least once.

Lemma 5.1. Let k and f satisfy (1 O). Let r be a ran-

dom number selected uniformly from {k+ 1, k +2, . .../}.

Then

Prob((, ~ k + 1) ~ 1/16. (11)
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Claim 1. %n <1 such that Prob(&) < 2/3.

We prove the Claim. Let Ai denote the event that j

is the first time that ~j z 4k + 1 happens. Then the Aj

are mutually disjoint events, and ~~=1 Prob(Aj ) ~ 1/2.

By vertex-transitivity, the distribution of dist(cj, ~j+m)

is the same aa the distribution of &. By the tri-

angle inequality we observe that if [j ~ 41c + 1 and

dist(zj, xj+~) S 2k then ~j+m z 2k + 1. Hence

Prob(Bj+~ IAj) s 1 – Prob(lk). (12)

For a contradiction assume now that Prob(l?m) > 2/3

for all m s 1. Then

1/3 > Prob(171) z ~~=1 Prob(lZIAj)Prob( Aj) >

(2/3) ~~=~ prob(~j) z 1/3, (13)

a contradiction, proving Claim 1.

Let now Cj denote the event that (~j < k). Let further

T= {t: Os t ~ 1; Prob(Ct) > 3/4.

Claim 2. lT]/1 < 3/4.

Let m be the integer guaranteed to exist by Claim 1;

so Prob(13~ ) ~ 2/3. Using, as before, vertex-transitivity

and the triangle inequality, we observe that for t E T,

we have Prob(Cm~~ 1~~) ~ 1- Prob(C~) < 1/4; and

therefore

Prob(C~+~),s Prob(C~~t ll?~). Prob(%) + Prob(%)

<1 – (3/4) Prob(&) s 3/4. (14)

Hence if t E T then m+-t @T. It follows that lTl < 31/4.

We also note that T ~ {O, 1,2,... ,k}.

To conclude the proof of the Lemma we infer that

Prob(~ G T) < ]T]/1 ~ 3/4. Therefore Prob(C,) 2

Prob(~7 IT @ T) Prob(~ @ T) ~ (1/4)(1/4) = 1/16. 4

The results of the previous two sections guarantee that

inequality (10) automatically holds in vertex-transitive

graphs for some reasonable value of 1. The results thus

add up to the following.

Theorem 5.2. i2et X be a connected vertex-transitive

graph of degree d on the vertex set V. Assume, for

some k z O, that 11’4k(v)l ~ lV1/2 for some (any) v 6

V. Let r be a random number selected uniformly from
{k+l, k+2,...,l}, where

1 ~ 513k2d. (21n2 + in lr4k(w)l). (15)

Then inequality (11) holds, i.e. with probability ~ 1/16,

a random walk of length r, starting at v, will end ou tsicle

rk(v).

Remark 5.3. A sufficient condition to ensure 11’4k(v) I S

lV1/2 is that k < diam(X)/8.

Remark 5.4. The following trivial estimate is useful in

applications of Theorem 5.2.

in 11’4k(v)l < min{4k lnd,ln IV I – ln2}. (16)

Proof. Let U = r*k(v). By Theorem 3.2, this set

is e-expanding in the sense defined in Section 4 for

c = l/(16 k). Substituting a value 4 satisfying (15) we

obtain lU11j2 exp(–s21/(d(4 + 2e2))) < 1/2. Hence, by

Corollary 4.3, inequality (10) holds. An application of

Lemma 5.1 concludes the proof. ~

6 Rapid mixing, reachability,

and reduction of the number

of generators

In the next section we describe Phase One of the algo-

rithm. The output will be a logarithmic number of gen-

erators such that each element of G can be represented

as a product of logarithmic length of these generators.

First we show how such an output can be used to obtain

e-uniform random elements for any c >0.

6.1 Rapidly mixing random walks

We prove that random walks over vertex-transitive

graphs of small degree and diameter rapidly approach

the uniform distribution.

Lemma 6.1. Let X be a vertex-transitive graph of de-

gree d and diameter A. Then the second eigenvalue of

the adjacency matrix of X is A2 ~ d – l/(16 .5A2).

Proof. By Proposition 3.5 we know that X is a l/(2A)-

expander. By Alon’s eigenvalue bound [Ale, Lemma 2.4],

we obtain

d – A2 ~ 72/(4+ 272) > l/(lf3A2 + 2) (17)

where ~ ~ l/(2A) is the expansion rate. t

The following well known estimate shows how to use the

eigenvalue gap to find nearly uniformly distributed ver-

tices.

Consider the following lazy random walk on the graph

X: we begin each step by flipping a fair coin. If it comes

out heads, we don ‘t move in this step; else we move

to a neighbor, each neighbor having equal probability y

to be visited. If A denotes the adjacency matrix of X,

then the transition matrix of the lazy random walk is

(A+ dI)/(2d). This matrix is positive semidefinite so we

won’t have to worry about negative eigenvalues.

Proposition 6.2. Let X be a regular graph of degree
d and let vo, Vi c V. Let ~’ be the second Jargest eigen-

value of the adjacency matrix A of X. Let p(t) denote
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the probability that after 4 steps, the lazy random walk
starting at V., arrives at VI. Then

1P(4- (vlvl)l < ((~+ kw)’. (18)

Proof. Standard exercise, omitted. (Cf. Prop. 4.2.) ~

Theorem 6.3. Let X be a vertex-transitive graph of

degree d and diameter A. After t steps, the lazy random

walk, starting at a given vertex, ends at an e-uniformly

distributed random vertex, where

~ < IVI exp(–1/(33A2d)). (19)

Proof. We have (d + A2)/(2d) < 1 – l/(33A2d) <

exp(–1/(33A2d)) by Lemma 6.1. Now apply Prop. 6.2.

4

6.2 The Reachability Lemma

The following result appears in [BSZ] as Theorem 3.1.

Lemma 6.4 (Reachability Lemma, [BSZ] ). Given a

set S of generators of the finite group G, every element of

G can be reached from S by some straight line program

of length < (1 + log IGI)2.

We briefly review the proof since it provides the basic

motivation of Phase one of our algorithm.

What one proves in effect is the following.

Lemma 6.5. Given a set S of generators of the finite

group G, there exists a straight line program of length <
(log IGI)2 which reaches a sequence of elements hl, . . . . h,

such that

(ii) every element of G can be represented w a product

x-ly, where x,y belong to the cube C(hl, . . . . ht).

Recall (Section 1.3) that C(hl, . . . . ht) is defined as the

set of subproducts h~’ . . . h;’ where ei E {O, 1}. Hence

every element of G can be represented as a product of

length s 2t – 1 of the hi and their inverses.

This clearly implies the Reachability lemma. We prove

Lemma 6.5.

Proof. For i z O, suppose h~ has already been defined

for all j, 1 ~ j ~ i. (This is certainly true in the initial

case i = O.) Let C’i = C(hl, . . . . hi) denote the cube

based on the sequence hl, ,.. , hi. (For i = O we set

CO = {l}.) Let hi+l E C,~lCiS be such that

Ci n Cihi+l = 0. (20)

If no such hi+l exists, declare t= i and halt.

Clearly Ci+l = Ci U Cihi, hence lCi+ll = 21Cil. Con-

sequently, t ~ log IG 1, verifying condition (i).

Set D z C%: ~Ci. If some x E DS is not an appropriate

choice for hi+l because it violates equation (20) then

x c D. If none of the elements of DS are appropriate

then DS ~ D, therefore G = DSN ~ D, hence D = G.

This proves that it was correct to conclude that i = t:

condition (ii) holds.

Finally since hi+l E C,: 1C~S, the “straight line cost”

of adding hi+l to S U {hl, . . . , hi} is < (’2i – 1). Hence

the total cost is ~ ~~=l(2i – 1) = t2.4

6.3 Reducing the number of generators:

Phase Zero

A group G of order ~ N cannot have subgroup chains of

length greater than log N. Therefore any set of> log N

generators is redundant. A simple Monte Carlo algo-

rithm to reduce the number of generators of a black box

group to O(log N) is described in [BCFLS]. We review

this result.

Lemma 6.6 [BCFLS] Let m denote the length of the

longest subgroup chain in the group G. (Note: m <

log IGI.) Let S be an ordered sequence of generators of

G. Let further T be a set of 2m + t random subproducts

of S. Then the probability that T does not generate G

is less than exp(–t2/(4m + %)).

Corollary 6.7. Let G be a group given by a set S

of generators and an upper bound N for lG1. For any

constant c > 0, a Monte Cario algorithm constructs,

with probability ~ 1 — N–C, a set of O(log N) generators

for G at a cost of 0( IS I log N) group operations.

The algorithm simply consists oft aking the stated num-

ber of random subproducts.

Remark 6.8. Another, more efficient Monte

Carlo algorithm, also described in [B CFLS], re-

quires O(ISI log ISI log(l/c)) group operations to obtain

O(log N) generators with probability ~ 1 – c.

7 The algorithm: Phase One

Let G be a group of order known to be ~ N.

The input of Phase One is the integer N and a set S

of generators of G.

If successful, the output of Phase One will be another

set S’ of generators such that

(i) IS’I = ISl + c1 log N;

(ii) every element of G can be represented as a prod-

uct of length ~ C2 log N of elements of S’ and their

inverses.
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Our Monte Carlo algorithm is not Lsa Vegas; we have

no way of checking whether or not Phase One was suc-

cessful, i.e. whether or not objective (ii) was met. How-

ever, the probability that Phase One fails is exponen-

tially small as a function of log N.

The algorithm will construct an increasing sequence

s=s~cs~ c... c Sm = S’ of subsets of G, where

m= C3log N. The sets will have cardinality

pit = Isl + c4(i - 1), (21)

where C4 = c1/c3 (cf. (i)). In each round, we have to

augment Si by a set ~+1 of CAelements, to obtain S~+l

(l~i<rn- l). Weset R~=S.

To obtain the elements of &+l for i z 1, we consider

random walks on the Cayley graph Xi = C(G, Si). Each

of the C4 elements of Q+l is obtained as the result of a

random walk of random length, starting at the identity.

The length of the random walk is a random integer be-

tween 2i + 1 and /i where

/i = [2052 i21Si I ln(2N)l, (22)

(Distinct random choices should be made for each new

element,) Here is a pseudo-code of the algorithm.

procedure P31ASE.ONE(N,S)

Initialize: S’ := S

fori=ltoc310g Ndo

initialize: R = 0

forj=ltoc4do

select random integer ~ E {2i + 1, ..., f?~}

make random walk of length r, starting from 1,

in the Cayley graph C(G, S’)

add the element reached to R

end

set S’ := S’ u R

end

In this procedure, .& is defined by equation (22), where

lS~l = ISl + c~(i – 1) (eqn. (21)).

Theorem 7.1 For any constant C5 > 0 and appropri-

ate positive constants C3, C4, procedure PHASE.ONE

constructs, with probability > 1 – exp(–c5 log N), a

set S’ such that the Cayley graph C(G, S’) has di-

ameter ~ 16c3 log N. The cost of the algorithm is

O((log N)5) group operations and O((log N)5 log log N)

random bits,

The cost estimate presumes that ]Sl = O(log N), an

assumption justified in Section 6.3.

Proof. Let R; = I& U {l}; Ci = R~ ..,R~, Co = {1}.

As in the proof of the Reachability Lemma, if

then lCi+l I ~ 2 lCi 1. Our objective was to select a small

number of elements to guarantee that (23) has a good

chance to hold.

Let Xi = C(G, Si). Observe that C$V1C~ ~ I?~i where

17~is the ball of radius t about the identity in Xi. It fol-

lows by Theorem 5.2 and Remark 5.4 that each element

added to Ri+l has probability 2 1/16 to be outside r~i,

unless 2i ~ diamC(G, Si )/8 (see Remark 5.3). Conse-

quently, as long as 16i < diamC(G, Si), the probability

that (23) fails is ~ (15/16) ’4. E.g. for C4 = 11, this

probability is <0.4917< 1/2.

Let now c!= (16/15)” and C3 > c~. Then by a Cher-

noff estimate, a Bernoulli trial with probability of suc-

cess l/cj, if repeated C3log N times, has more than log N

successes with probability > 1 — exp(–c5 log N). Since

the cardinality of Ci cannot double more than log N

times, an easy argument shows that with probability

>1 – exp(–c5 log N) we must reach diamXi ~ 16i. ~

We call PHASE.ONE successful if its output meets the

diameter bound stated in Theorem 7.1. The probability

that PHASE-ONE is unsuccessful is exponentially small

in log N.

Proposition 7.2 After a successful completion of

PHASE. ONE (at a cost of O((log N)5) group opera-

tions), we are able to generate, for any c > 0, c-

uniformly distrib uted random elements of G at a cost

of O((log N)4 + (log N)3 log(l/c)) group operations per

random element.

Proof. By Theorem 6.3, lazy randcm walks of length

1 z 33 A2d(ln N + ln(l/.s)) will produce s-uniformly dis-

tributed random elements of G, where A is the diame-

ter and d the degree of the Cayley graph C(G, S’) from

Phase One. Both quantities are O(log N). ~

8 The Erd& - R6nyi generators

The aim of Phase Two is to set up, at a cost not greater

than that of Phase One, a generator producing e-uniform

random elements of G at greatly reduced cost per ran-

dom element.

8.1 The Erdos - R6nyi theorem

Erd6s and R6nyi [ER, Theorem 1] proved that for

k ~ 210g IG] + 210g(l/e) i- log(l/6), (24)

a sequence of k random elements of G will be a sequence
of e-uniform E-R generators with probability y ~ 1 — 6.

The slight problem is that the random elements obtained

after Phase One (Prop. 7.2) are not truly uniform. How-
ever, an easy modification of the [ER] argument yields

the following.
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Theorem 8.1 Let -y >1, 9 Impossibility of approximate ing

k ~ 210g IGI + 210g(l/c) + log(l/8) + log(~), (25)

and O < w ~ (-y – l)lG1/2~.

Then a sequence of k random elements of G from an

w-uniform distribution will form a sequence of c-uniform

Erd6’s - R&yi generators with probability ~ 1 – 6. h

8.2 The algorithm: Phase Two

Phase Two of the algorithm assumes successful comple-

tion of Phase One.
The input of Phase Two is a pair of positive parame-

terss, 6, together with the output of a (successful) Phase

One, i.e. a set S’ ofs C6log N generators of G such that

every element of G can be represented as a product of

length ~ Czlog N of elements of S’ and their inverses.

(We assume Phase Zero (Section 6.3) was successful.)

The output of Phase Two is a sequence of k elements

of G which, with probability ~ 1 – 6, form a sequence of

e-uniform Erd&-R6nyi generators. Here

k = [210g N + 210g(l/e) + log(l/6) + 11 (26)

procedure PHASE. TWO(C, 6, S’).

Set w = c215/N2. Generate k random elements of G

which are w-uniforndy distributed, according to Propo-
sition 7.2, where k is defined by eqn. (26). End,

Theorem 8.2. With probability ~ 1 – 6, proce-

dure PHASE. TWO produces a sequence of c-uniform

Erd6s-R&yi generators. The cost of the procedure is
O((log N)5 + (log N)3(log(l/c) + (log(l/b))z)) group op-

erations.

Proof. We set y = 2 and apply Theorem 8.1. Our

choice of k satisfies the condition in Theorem 8.1 since

IGl < N. Our choice of u satisfies the second condition

in Theorem 8.1, namely w ~ (~ — l)lG1/2~ since now

W = &26/N2 ~ (c26/N2)(lGl/2) = (y – l)lG1/2!

By Theorem 8.1, all that remains to be justified is the

claimed cost.
By Proposition 7.2, the cost is O(k((log N)4 +

(log N)3 log(l/w))). Since log(l/w) = O(log N +

log(l/c) + log(l/6)), the stated bound is immediate. h

Remark 8.3.

The repeated doubling process seems inherently se-

quential.

Open problem 8.4. Is there an RNC algorithm to con-

struct nearly uniform random elements of matrix groups

over finite fields?

We remark that for permutation groups such an NC-

alorithm exists [BLS].

the order

Below, we consider an infinite sequence of black box

groups, one for every n. The elements of the nt~ black

box group are encoded as binary strings of length n; so

N = 2“ is an upper bound on the order of the group.

Let p be a fairly large prime, not bounded by any

polynomial of n, and let m ~ 2 be such that pm < 2“.

(So m can still be quite large.) Let G be a cyclic group

of order p and H an elementary abelian group of order

pm, i.e. the direct sum of m copies of G. Assume H is

given by a basis T, i.e. a set of m generators. On the

other hand, assume G is given by a list S of m randomly

selected elements (which of course form a redundant set

of generators of G). The encoding of each group is done

by random injections G, H + {O, 1}”.

We claim that no polynomial time Monte Carlo algo-

rithm has a chance of distinguishing the two groups.

Indeed, let w : f-l -+ G be the homomorphism obtained

by extending the bijection T + S of the (ordered) lists
of generators.

Let us follow the course of a Monte Carlo algorithm,

applied to (H, T). The algorithm computes a sequence

of group elements hl, . . ., ht. Let g; = ~(hi).

Claim. The probability that there exist i, j < t such

that hi # hl but gi = gi is less than t2/(2p).

Proof. The probability here is understood to refer to a

fixed set T and a random choice of S. The probability

that any particular element h: Ihj # 1 belongs to the

kernel of p is (pm-l – 1)/(p’” – 1) < l/p; thus the prob-
ability that this happens to at least one element of this

type is less than (~) /p. 4

In the cases when this does not happen, there is a

measure-preserving transformation between the runs of

the algorithm on (H, T) (with random labeling of the

elements of H) and the runs of the algorithm on G

(with random list of m generators and random label-

ing of the elements) which preserves all the codewords

(code(hi) =code(gj) for every i < t).

Let us now consider a black box group defined as fol-

lows: we flip a coin to decide whether the group will

be (G, S) or (H, T); and perform the randomization in
encoding as well as the randomization of S in case of

(G, S).

It follows that a (fixed) Monte Carlo algorithm run-

ning in time t is expected to have no more than t2/p

advantage at guessing the order of the group. (The ac-

tual advantage is a random variable, depending on the

random choices made in the previous paragraph. We

consider the advantage to be a nonnegative value; i.e.

being able to guess wrong 60’% of the time also counts

as 10~o advantage. Clearly, this is as unlikely as being

172



able to guess right 60% of the time.)

Let us now consider the following group oracle. The

oracle consists of a black box group for every n; the ele-

ments of the nth group are encoded by strings of length

n. Each of the groups is selected at random as just de-

scribed, with p = pn between 2+ and 21+@ and m

approximately fi.

Then, for any randomized oracle Turing machine A4

running in time t(n) on inputs of length n, the follow-

ing event is true with probability y 1: For all but finitely

many values of n, the machine Al has no more than

2n2i(n)22-fi advantage at guessing whether the order

of the nth group is less than 21t@ or more than 2“/2.

(The role of the n2 factor inserted is to make the prob-

ability for the n~h group less than l/n2; then by the
Borel-Cantelli lemma, almost surely this happens a fi-
nite number of times only.)

Hence this is true for all Turing machines simultane-

ously with probability y 1. It follows that there exists a

group oracle for which the above statement is still true

for every Turing machine M.

We summarize the result.

Proposition 9.1. There exists a group oracle, i.e. a se-

quence of black box groups B. with the following prop-

erties:

(i)

(ii)

(iii)

for every n, the elements of B. are encoded as bi-

nary strings of length n;

B. is an elementary abelian group of order either
< 21+fi or more than 2“12;

for every t (n)-time-bounded randomized oracle Tur-

ing machine M and for every n > no(M), the mach-

2
nie M has no more than 2n2t(n 22-@ advantage

at guessing whether lBn [ < 21+ n or lBn I > 2“/2.

In particular, no polynomial time Mon te Carlo algorithm

can guess the logarithm of the order of a black box group

within a factor of ~.

10 Some applications

10,1 Permutation groups with a small base

A base of a permutation group G ~ Sym(Q) is a set

A C O such that no element of G\ { 1} fixes A pointwise.

A is a small base if IAI is bounded by polylog(n), where
n = IQ 1. Such groups are particularly significant in com-

putational group theory. Clearly, 21AI s IGI < nlAl (the

first inequality assumes sequential irredundance of A in

some ordering), so G has a small base precisely if log IGI

is bounded by polylog(n).

A combination of the nearly uniform generator of this

paper and the efficient data structure of [CFS] yield

a nearly linear lime algorithm for basic manipulation

(membership, order, etc.) for groups with a small base.

More specifically we obtain:

If N is an a priori bound on the order of G ~ S. then

basic group manipulation can be solved in Monte C’arlo

time O(n(log N)’) for an absolute constant c.

The constant c does not seem small enough to make this

algorithm competitive in practice. A substantially bet-

ter constant has been obtained in [BCFS]; work on that

paper has been a source of motivation for this work. In

addition, an application of the Local Expansion Lemma

to the product of partial transversals in [BCFS] allows

to avoid the need for an a priori bound on IGI.

10.2 Sylow subgroups of small index

Let G be a black box group, N a known upper bound

on IGI, and r a known upper bound on the index of a

Sylow p-subgroup. Then, a Sylow p-subgroup can be

constructed in Monte Carlo time r(log N)c.

The algorithm uses the Monte Carlo polynomial time

recognition algorithm of nilpotence [B CFLS]. A group is

a p-group if and only if it is nilpot ent and all generators

have order a power of p. We build a p-subgroup P,

starting from P = {1}, by adding a random element g c

G whenever (Pj g) is a p-group. We stop after O(log N)

rounds.

10.3 Interactive proofs

This author introduced his version of interactive proofs

[Ba2] in order to put the problems of matrix group order

and nonmembership into suitably low complexity classes

[Ba3]. The Local Expansion Lemma was a key tool. The

result of the present paper allows a very simple “non-

membership” protocol for black box groups, along the

lines of the quadratic nonresiduosity protocol of [GMR]:

to verify that g # G, the verifier privately generates ran-

dom elements hi E G, and for each i flips a coin to decide

whether to show hi or hig to the prover. Subsequently,

the prover has to guess for each i the outcome of the

coin flip. If indeed g @ G, he can answer correctly all

the time; otherwise he is unlikely to answer correctly

more than 51% of the time. – I do not know such a

simple protocol to verify the order of G [Ba3].
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