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Abstract. We are interested in understanding the

exact power randomization provides to online algo-

rithms. We study this problem in terms of com-

putability, using the formulation of online problems

as closed or F. infinite games [BBKTW, RaS~. Thus,

our discussion will mainly focus on the case when

our player follows a computable strategy and the ad-

versary may use any strategy, which formulates the

notion of comp u ter against extremely formidable na-

ture. In this context, we say that an infinite game

is semicompu tably determinate if either the adver-

sary has a winning strategy or our player has a com-

putable winning strategy.

We show that, whereas all open games are semi-

compu tably determinate, there is a semicomputab]y

indeterminate e closed game. Since we want to prove

indeterminacy result of closed games and the adver-

sary’s strategy set is uncoun t able and our player’s

strategy set is countable, our proof for the indetermi-

nacy result requires a new diagonalization technique,

which might be useful in other similar cases.

We also show that, there exists an in firlite Fo

,game such that there is a 1– competitive randomized

computable strategy, but there is no a— competitive

computable deterministic strategy for any a ;> O. A

slightly weaker result can be obtained if we insist that

the game be closed. By defining a smoothly grow-

ing cost function, we can associate an artificial online

problem with the game constructed above. For this

problem, there is a simple competitive randomized

algorithm but no computable competitive determin-

istic algorithms. We also obtain an indeterminate

game for which both players have a simple random-

ized winning strategy against all the deterministic

strategies of the other.
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Section 1. Introduction.

One of the motivations of our study is the following

question: How much more power does randomization

provide to solve online problems than deterministic

algorithms? Formulating online problems as closed

and Fc games, respective y, [B BKTW, RaS] proved

that, when playing against offline adaptive adver-

sary, randomization does not yield more competitive

algorithms. Raghavan and Snir also noticed that al-

though the randomized strategy may be computable,

the deterministic strategy guaranteed by their theo-

rem may not be computable [RaS]. We confirm this

belief by showing that there is an infinite F@ game

for which we have a simple randomized competitive

strategy but there is no computable competitive de-

terministic strategy.

The differences in these results, which manifest

a myth of randomization, arise out of the distinc-

tion between determinacy and semicomputable de-

terminacy of infinite games. When each player has

complete information and each has unlimited power

of computation, games formulating online problems

are determinate [RaS, Mar]. That is, either there

is a strategy for player I which beats all the strate-

gies of player II, or, there is a strategy for player II

which beats all the strategies of player I. However,

in some cases, it may not be realistic to assume that

the two players have the same computational power.

One such situation is in the task of designing online

algorithms to serve an unknown sequence of future

requests, such as server problems [MMS] and metri-

cal task systems [BLS]. Robot navigation in unknown

world [PY, BRS], and robot learning [RiS, DP] are

similar situations. In all such cases, while we may ss-

sume that the adversary may have unlimited power,

our player is restricted by the computing machinery

that is available to it. [Pa] noticed the asymmetry of

players in terms of computational complexity by for-

mulating nature as an amiable indifferent adversary:

a randomized adversary with equal probabilities on
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choices of its moves.

The study of situations dealing with unknown

future events leads to the concept of competitive-

ness: An online algorithm is a–competitive if its

cost on any sequence of requests is within a factor

of a of the optimal cost by an algorithm knowing

all the future requests [KMRS]. For one problem of

this type, the k–server problem, a matched upper

bound and lower bound of k is conjectured [MMS].

The conjecture remains unsolved in spite of many

efforts, even though it is shown to be true on sev-

eral particular metric spaces [CL, CKPV,MMS]. The

above mentioned result in [BBKTW, RaS] provides

another approach to solve the conjecture. Thus, if

one can design a k—competitive randomized online

algorithm for the k–server problem, the above con-

jecture is proven even though one may not be able to

design a computable deterministic algorithm. This

approach depends very much on the possibility of

a k-competitive algorithm against the ofilne adap-

tive adversary. However, all known k –competitive

randomized algorithms for the server problem are

against an online adaptive adversary [RaS, CDRS].

The failure in resolving the conjecture for general

metric space, however, may not be attributed to the

conjecture being false: The optimal strategy may

simply be noncompu table.

When we require that our player use only com-

putable strategies (but the adversary is not so con-

strained) and we call strategy sets of the game to be

semicomputable. If either our player or the adver-

sary player has a winning strategy under this restric-

tion, we say the game is semicomputably determi-

nate. Our new result depends on the construction of

a semicomputably indeterminate closed game.

In fact, it would be much easier if we only want

to construct a semicomputably indeterminate game.

For this purpose, we can simply take the list of all

the computable strategies each player can have. Fol-

lowing standard diagonization technique, we can ob-

tain two subsets A, B of infinite paths of plays such

that for each computable strategy a of the adversary,

there is a computable strategy r. of our player with

the path < u, TO >C A; for each computable strategy

~ of our player, there is a computable strategy UT of

the adversary with the path < UT, r >C B. Let A be

the winning set of our player and B be the winning

set of the adversary, we have

[0] There exists an indeterminate game when both

players are restricted to use only computable

strategies.

Put all the other paths in the winning set of our

player, we see that this becomes a semicomputably

indeterminate game.

[0’] There exists a semicomputably indeterminate

game.

With possible applications to online problems

in mind, however, we want to study the semicom-

putable determinacy of F. games and closed games.

In particular, we want to know whether F. games

(that is, games in which the winning set is a count-

able union of closed sets) are semicomputably deter-

minate; or there is a closed semicomputably indeter-

minate game. Our main results are:

[I.] There is a semicomputably indeterminate closed

game.

In contrast, we have:

[2.] All open games (open with respect to our player)

with a finite adversary choice space are semi-

computably determinate.

To study randomized algorithms for infinite games,

we also need to specify the proper probability distri-

bution. Raghavan et al. formally defined it through

a probability distribution over the strategy space of

our player [RaS]. When the adversary’s strategy is

specified, it induces a probability distribution over

the pruned tree according to the adversary strategy.

Halpern and !Mttle had a similar idea for distributed

systems [HT]. Thus, a statement about a randomized

algorithm is true iff it is true for all the pruned trees.

We prove

[3.] There exists a semicomputably indeterminate

F. game on which there is a randomized com-

putable strategy which wins almost surely.

We can also prove a slightly weak result for a closed

game:

[3’.] For any c >0, there is a closed semicomputably

indeterminate game on which there is a random-

ized computable strategy which wins with prob-

ability 1 – c.

When none of the players is restricted in their com-

putational power, we have

[4] There exists an indeterminate game for which

both players have a randomized strategy which

wins against all the deterministic strategies of

the other player.

Section 2 will introduce the necessary notations and

definitions. We discuss semicomputable determinacy

of infinite games in Section 3. In Section 4, we look

into possible implications to online problems of our
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main result. Section 5 will discuss randomized strate-

gies for indeterminate games. Section 6 concludes the

paper with remarks and many open problems.

Section 2. Definitions and Notations.

An infinite game is described as an infinite tree on

which the two players make their moves in turn,

starting at the root. We distinguish the players by

naming Player I the adversary and Player II our

player. The set of all the infinite paths is partitioned

into two subset A and B, where A is the winning set

for our player and B is the winning set of the adver-

sary. A strategy ~ (u) for the adversary (our player)

corresponds to a pruned tree Tr (Ta ) from the origi-

nal game tree on which each branching at even (odd)

levels is pruned to allow at most one possible child.

The resulting play (a, r) for a given ~ and a given

a is specified by a path in the game tree. We call

CTa winning strategy for our player if for (every r,

(a, ~) belongs to A. The winning strategies for the

adversary are defined similarly. Finally the game is

determinate if either player has a winning strategy.

We now define a topology on the set of all plays.

A subset S of all the paths is defined to be open iff

for every path (aO, al, . ..) ~ S, there exists a number

n such that, for all b~+l, bn+z, . . . .

(ao, a~,..., an, bn+~, bn+,, . ..) ES.

A set of paths is closed if it is complement of an open

set.

A game is open (closed) if the winnini< set of

our player is open (closed). In their classical paper

on infinite games [GS], Gale and Stewart showed that

all open and closed galmes are determinate, and that

there exists a game that is indeterminate, Martin

[Mar] then showed that all Borel games are determi-

nate (a game is Bore] if the winning set of Player I

(or II) is Borel under the topology defined above).

Observe that, in classical infinite game theor,y, there

is no restriction on the strategies in terms of com-

putability.

In [BBKTW], online problems are formul ated as

finite games, and in [RaS], an infinite game formu-

lation is given. Depending on the criteria of com-

petitiveness, one may gets different winning sets for

an online problem. Let us denote by OC, the cost

of our player and by AC, the adversary’s cost. A

simple a–competitiveness requirement is defined by

OC $ CY. AC. We will call it the strong competitive

condition. When the cost function is accumulative,

e.g., in the case of the server problem, strong com-

petitiveness will will define a closed game: The ad-

versary wins iff the play reach a node the condition

is violated. Raghavan and Snir use a formulation

which allows an arbitrary additive constant, which

gives rise to a game with a winning set in FO (count-

able union of closed sets):

UiUj nk2j{(xo,01, ...) : oc($o,””-,~k)

—a .AC(zo, . . ..zk) ~ i}.

Thus, infinite paths of constant cost are in the win-

ning set. We call it the weak competitive condition.

Even though the weak competitive condition is more

general, it suffers in the situation when the cost of the

online problem is bounded: It can be O–competitive

in that case! Therefore, we may want to impose

a requirement that an online algorithm be at most

l–competitive.

W .Lo.g., we assume that each player has two

choices at each turn of their play. A randomized

strategy for our player is a function that makes an

assignment of probability to the choices aO, al de-

pending on the position of the node on the game

tree. We say a randomized strategy is computable

if the probability distribution on the choice space is

a computable function. As noted in [RaS, HT], a

statement about a randomized strategy is true if it

is true for all adversary strategies. Thus, given a

randomized strategy, we consider each adversary de-

terministic strategy T, and the induced probability

distribution for the pruned tree T,. We specify a

topology and a probability measure on the smallest

u–algebra generated by the topology, by specifying

them on all the basic open sets: A basic open set U

is specified by a node x on T? such that it contains

all the paths passing through z and its probability

measure is the probability the randomized strategy

reaches x. The measure is extended to all the Borel

sets in the topology by the standard method [CT].

When we specify an adversary strategy T, similar

method is applied to define the conditional distribu-

tion on the pruned tree T,. Again, a randomized

strategy is a–competitive almost surely, iff for all

the pruned tree T., it is a–competitive almost surely

with respect to this probability distribution.
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Section 3. Semicomputable Determinacy of

Infinite Games.

While all Borel games are determinate [Mar], we

would lilie to know, under what topological condi-

tions, a game is semicomputably determinate. First,

we have

Theorem 1. There is a semicomputably indetermi-

nate closed game.

We give both players two choices of actions: rO, rl

for the adversary and aO, a 1 for our player. We first

give some intuitions on the proof of the theorem. We

need to partition the set of all the paths into two sets

A (the winning set for our pIayer which is closed) and

B (the winning set for the adversary) such that for

each computable strategy a of our player, there ex-

ists an adversary strategy r such that (o, ~) is in B

(call it condition Cl), and for each adversary strat-

egy ~ of the adversary, there exists a computable

strategy of our player u such that (u, I-) is in A (call

it condition C2). Cl and C2 force certain plays to

be put in A and B respectively, and we should make

sure that (A, B) is a partition. Moreover, we want a

construction which makes A a closed set.

Observe that the indeterminacy proof given in

[GS] cannot be translated into this case. Our result

is obtained via a new method which may be useful

in other similar situations.

We construct A and 1? in stages. Initially both

are empty. Let the computable strategies of our

player be ordered as ~i, i = O, 1,2, . Say that a

strategy a is killed in stage j, if we put (a, ~’) c B

for some T’ of the adversary in B in stage j. Simi-

larly for an adversary strategy. At each stage, we kill

at least one a and perhaps an uncountable number

of m, so that A and B remain disjoint and make sure

that each u and each r is killed in some finite stage

without destroying the disjointness criterion, An in-

determinate game is thus constructed. The construc-

tion will guarantee that A so constructed is closed.

Now we give the technical details of the result.

Proof of Theorem 1. For simplicity, we assume

each player has two choices at each step of their plays:

The adversary has move rO, rl and our player has

move aO, al. We list all (computable) strategies our

player in set

X={ao, ol,. ... an}..}

such that U. is the strategy that choose move aO all

the time. Informally, we need to construct a game

with winning sets A for a’s and B for ~’s such that

[Cl] for each a ~ Z there is r c T and (CT,r) E B;

[C2] for each r G T there is a G 2 and (u, r) ~ A.

Construction of A, B. Initially, we set

A = (rO, aO, rO, aO, . . .,rO, aO, . . .)

and B = 0. Let us denote the root of the game tree

to be Level O. Incrementally assign level number to

the tree. We will prune the tree in levels. First Level

1 is processed, and then we show inductively how to

process Level n for each n = 2,3, . . . .

Level 1. Denote by 71 all the strategies making

first request as rl. We assign the paths {(ao, r) :

T G T1 } to the set B1 and all the other paths

starting with rl are assigned to Al. Update

A - A u Al and 1? e B U B1. Thus, Condition

[Cl] holds for U. and Condition [C2] holds for

all r ~ TI. At Level 2, according to the choice

of our player, the strategy set for our player is

partitioned into two subset E., Xl, where the

lists for X., )21 keep the same order as the list in

x.

Level 2i. Inductive assumption for the pruning

process at the end of Level 2i, Each remaining

node at Level 2i is a descendent of the adver-

sary playing TO at all the past i requests. Thus,

each node can be denoted by an i—bit binary

number corresponding pIays made by our player

from the root to the node. At node j, Zj repre-

sents all our player strategies which are consis-

tent with j up to this node. ~j’s, j = O;, . s ., Ii,

form a partition of the remaining members in X

which does not satisfy Condition [Cl] yet. All

the adversary strategies remaining at node j are

those which makes i consecutive requests of rO’s,

when played against our pIayer which answers j

correspondingly. We will denote them by Tj.

Level 2i + 1. Consider each node independently.

W.1.o.g., let’s look at node Oi. Let

Denote by TOt ~ all the strategies in 7., which

makes the (i + 1)—st request as rl. We assign

the paths {(ao,O, ~) : r c To,l} to the set Bo; l

and all the other paths starting from Oi and con-

tinuing with ?’1 are assigned to Ao,l. At Level

2i + 2, according to the choice of our player, the

strategy set for our player is partitioned into two

subset Zoto, Zotl, where the lists for Xo:o, Eotl

keep the same order as the list in Z. Thus, Con-

dition [Cl] holds for ao,O and Condition [C2]

292



holds for all ~ c 7.,1, We also do the similar

operations on all the nodes j of i bits. l?or all j

of i bits, Condition [Cl] holds for ajO and Con-

dition [C2] holds for all ~ c ~ 1. Upclate the

set A and B by assigning A + A U~~O, .Aj 1 and

B+ BIJ1’ j=o, Bj~.

Correctness Proof. Now we prove that Conditions

[Cl] and [C2] are true for all adversary strategies

and our player strategies, Notice that our player’s

strategies are first enumerated in the set Z and the

ordering is kept when it is partitioned at each level.

For the first strategy a in Xj, there is an adversary

strategy ~ such that (a, r) c B, according to our

pruning process. Therefore, for each i = 1,2, ..., Ui

satisfies Condition [Cl] no later than Level 2i in our

construction. To prove that Condition [C2] holds for

all adversary strategies, we consider two cases: one is

the case the adversary plays TO all the time; another

is the case the adversary plays an rl at least once for

some strategy. The first case is done by the initial

assignment of the set A. For the second case, we

notice that, for any other strategy r of the adversary,

it will play an rl at least once for a strategy of our

player at a finite level. If the strategy of our player

is not a computable strategy, we can simply truncate

the infinite strategy at that finite level and append

it by always playing aO. This will be a computable

strategy a(r). Suppose j is the node for the first

step the adversary plays an rl, then the adversary

strategy I- will lose to u(~) at one path in Tj 1.=

In contrast, all open games with a finite choice

space for the adversary have enough mathematical

structure to make them semicomputably determi-

nate.

Theorem 2. All open games are selmicomputably

determinate, if the choice space for the adversary is

finite.

Since the strategy of our player has to be com-

putable, classical game theory results about determi-

nacy and indeterminacy cannot trivially carry over in

this situation. However if we are careful about com-

putability issues, the classical game theory proofs can

be modified to obtain the result The proof is thus

omit ted. We should, however, int reduce a simpler

proof for the case when the choice space of our player

is also restricted to be finite.

Lemma 3. For every open game, either there is an

adversary strategy which wins over all the strategies

of our player, or there is a computable strategy of

our player which wins over all the strategies of the

adversary.

Proof: Suppose no adversary strategy wins over

all computable strategies of our player. Since open

games are determinate[GS, Mar], then there is a strat-

egy u of our player which wins against all the adver-

sary strategies(though a may not be computable.)

Consider the pruned tree To. Since A is open, for

each infinite path in Tq, there is a node x on the

path such that all the paths passing through x are in

A. We can thus remove all the children of c, and all

the siblings of x as well as their children, from the

tree TO without changing the win/lose situation of

the tree. The game tree thus pruned has no infinite

path. Since both players have only a finite number of

choices at each node, the pruned tree is finite. Thus,

if there is no adversary winning strategy, our player

can simply code the structure of the pruned tree and

choose its moves accordingly. We have thus reduced

the strategy a to a computable strategy. ■

Theorem 2 follows immediately from the above

lemma, if our player’s choice space is also finite. No-

tice that the above lemma also holds even if we re-

strict our player to use finite state machines. We

thus have the following corollary.

Corollary 4. For closed games, either there is a

finite state adversary strategy which wins against all

strategies of our player or there is a strategy of our

player which wins against all adversary strategies,

if the choice spaces for both the adversary and our

player are finite.

For the notion of strong competitiveness, winning

set of our player is closed. If there is no determinis-

tic winning strategy of our player, then the winning

strategy of the adversary will enable us to prune the

tree to a finite tree, according to the above corollary.

We will thus easily conclude that there is no compet-

itive randomized strategy for our player. The result

of [B BKTW, RaS] for infinite games follows imme-

diately. The above corollary also implies if we allow

our player to use unlimited power, we only need to

look for lower bound by adversaries with a simple

computational power: finite state machines.

Section 4. Applicatoins to Online Algorithms.

While online problems are formulated as closed and

F. games, we would also like to formulate closed and

F. games as online problems such that there is a
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winning strategy for our player in a given game iff

there is an a–competitive online algorithm for the

corresponding online problem. This may not be true

in general. However, for games constructed in this

paper, we want make sure that the above condition

is satisfied.

First, we construct a game similar to the one

given in the last section for this goal.

Theorem 5. There exists a semicomputably inde-

terminate Fa game such that there is a computable

randomized strategy for our player which wins al-

most surely.

Before go into the proof, we notice that the following

two corollaries derived from the theorem give us the

desired results for the strong competitiveness and the

weak competitiveness, respectively.

Corollary 6. There exists an online problem for

which there is no computable deterministic strong

competitive strategy but there is a computable ran-

domized strong 1–competitive strategy (a.s.).

Corollary 7. There exists an online problem of

accumulative cost such that there is a computable

randomized weak l–competitive strategy (as.), but

there is no computable deterministic weak competi-

tive strategy.

Proof of Theorem 5. We follow a, similar construc-

tion to the game in the last section. The change is

that in forming the sets A and B, we put all the

paths irrelevant to the indeterminacy in A instead of

B. Initially, we will put all the paths (ai, I-o) into A,

where To is the strategy that always requests rO. In

level one, we will choose one strategy ~1 ~ 71 and

put (Co, T1) in B1 and all the other paths starting

with ?’1 are put into AI. Similarly, at node j, we

will choose one strategy ~~ E ‘Tj and put (ujO, ~~) in

Bj 1 and all the other paths starting at node j and

continuing with rl are put into Ajl. All other con-

structions follow the same pattern, Similar to the

proof in Theorem 1, the game can be shown to be

semicomputably indeterminate,

Consider the randomized algorithm which al-

ways chooses aO, al with probability 0.5 : 0.5. We

claim that this simple (computable) randomized al-

gorithm wins almost surely. Consider a pruned tree

T, corresponding to an arbitrary adversary strategy

~. From the construction of the winning set A, when

the adversary first chooses rl, the branch of TT start-

ing from that node will contain exact one winning

path for the adversary and our player wins almost

surely starting from that node. With this observa-

tion, we further prune T, as follows: Start from the

root until a request rl is encountered and delete the

branch after that node. Thus, the only infinite paths

of the newly pruned tree will contain request rO only.

Since those paths are all in the winning set of our

player, the randomized strategy wins almost surely

in T,. Because the game is semicomputably indeter-

minate, any given computable strategy is doomed to

lose to some adversary. ■

We may have different formulations of infinite

games as online problems but we shall use the two

formulations defined below for our discussion.

If we adopt the concept of strong competitive-

ness, there is no need to require the adversary’s cost

grow as the game being played. For the strong condi-

tion, we can simply assign cost zero to each infinite

path in the winning set of the player, and cost one to

each path in the adversary winning set. Corollary 6

follows immediately by assigning such cost function

since the randomized strategy has cost zero almost

surely.

However, one may want to have an accumulative

cost function such that it increases unfoundedly as

plays proceed. For each request sequence, we elimi-

nate rO at the head of the sequence until the request

rl is at the beginning. We call the remaining request

sequence the suffix. If all the requests leading to a

node are rO, the cost of reaching this node will be

O. For other nodes, the cost will be the number of

the requests on the suffix before the node which are

coincident to an infinite path in the winning set of

the adversary. The cost of our player will be the cost

of the node it is on. The cost of the adversary will be

the minimum cost over all the nodes with the same

request sequence (i.e., we consider an ofline adaptive

adversary. ) The cost of an infinite path for our player

is defined as the limit of the cost of its intermediate

nodes. The cost of the adversary is again defined as

the minimum cost over all the infinite paths with the

same request sequence. The competitive ratio of an

algorithm a is the supremum over the limits of the

ratios of the two costs along all the infinite paths on

To.

To prove Corollary 7, we want to use the accu-

mulative cost function defined above. First, let us

consider an adversary which makes its first request

on rl. In the construction of the game, we notice that
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there is only one winning path for the adversary from

this node on. The adversary’s cost will be one since it

can avoid that path by serving the first request with

an answer which is not on that path. Since all the

path except the one in the adversary’s winning set in

this pruned tree has bounded cost, the randomized

algorithm is 1–competitive almost surely. For the

pruned tree corresponding to each adversary strat-

egy, we can take those nodes for which all but the

last request are TO and the last request is rll. From

the construction of the game, the conditional distri-

butions from those branches on are the same as the

above case. Since paths with all requests being TO

are in the winning set of our player anyway, the re-

sult follows. We also notice that similar statements

hold when we use the notion of expected value for

competitiveness instead of almost surel~~. In fact, for

the case when the first request is rl, the randomized

algorithm of our player will incur a cost of i with

probability $ for all z ~ 1. The expected ratio of

cost the randomized algorithm over the cost of any

offline adaptive adversary will be two.

If a further restriction that the winning; set be

closed is imposed, we can choose an open set of mea-

sure c which contains (a., rl) to put in 131 and do

similar thing to all the l?; is.

Theorem 5’. For any c >0, there exists a semicom-

putably indeterminate closed game such that there

is a computable randomized strategy for our player

which wins with probability 1- e.

Section 5. Indeterminacy and Randomization

In the section, we discuss indeterminate infinite

games and the power of randomization in this case.

The result of [BBKTW,RaS] basically says that,

for a determinate game, whenever there is a random-

ized strategy for Player I, which wins with probabil-

ity 1, there is a deterministic winning strategy for

Player I. If this result is extendible to the indeter-

minate games, it means that, for every indetermi-

nate game, there is no randomized winning strategy

for any of the players. The following theorem gives

a negative answer to this question. Moreover, this

artificially constructed game has another counter-

intuitive implication: Even though Player I has a

randomized strategy winning almost surely against

all the deterministic strategies of Player II, that ran-

domized strategy does not win almost surely against

all the randomized strategies of Player II.

Theorem 8. Assuming Axiom of Choice and Con-

tinuum hypothesis, there is an indeterminate game

for which Player I has a randomized winning strategy

which wins almost surely against any deterministic

strategy of Player II, and vice-versa.

The theorem shows that the [BBKTW, RaS] re-

sult is the best possible in the sense that there is an

indeterminate game which has randomized winning

strategies for both players, when the other player is

only allowed to use deterministic strategies. This

result assumes Axiom of Choice and Continuum Hy-

pothesis. Axiom of Choice seems necessary here be-

cause it is not even known if indeterminate games

exist in absence of Axiom of Choice.

Proof: We assume that each player has two choices

at any point in the game. By Axiom of Choice, we

can well-order Player I’s deterministic strategies as

CO for a < 2~0, and Player II’s deterministic strate-

gies as rp for ~ <280.

Our randomized strategy for either the Player I

or 11 (6 and y respectively) assigns a probability

of 0.5 to each of the two possible moves. We now

construct the winning set for Player I and that for

Player II so that both these strategies are winning

strategies if the other player uses only deterministic

strategies.

[1.]

[2.]

We need to satisfy the following conditions:

For each deterministic strategy a of Player I,

only countably many paths in the pruned tree

corresponding to u belong to the winning set of

Player I and the rest belong to the winning set

of Player II.

For each deterministic strategy ~ of Player II,

only countably many paths in the pruned tree

corresponding to T can belong to the winning

set of Player II.

It is clear that if we can satisfy these conditions,

then 6 wins with probability 1 against any determin-

istic strategy of Player II, and -y wins with probabil-

ity 1 against any deterministic strategy of Player I

(Each path has probability measure O, and by the

countable additivity of probability measure, count-

ably many such paths will have measure O).

We say a deterministic strategy c is killed if we

can satisfy Condition 1 for this u (define killing of

~ symmetrically). We kill a’s and r’s in stages. At

stage a < 2~0 we kill Ua and then ra making sure

that the winning sets of the two players are disjoint.

We denote the winning set of Player I by A and the

winning set of Player II by 1?. Initially, they are

295



empty. They are updated in each stage by transfinite

induction on the stages.

At stage a, we put in B all paths of the pruned

tree Tom corresponding to Ca, that have not already

been put in A. Then we put in A all paths of the

pruned tree T~a corresponding to ra, that have not

already been put in B.

This completes the construction. It is easy to see

that the disjointness condition of A and B is auto-

matically’satisfied when these sets were constructed.

We prove Conditions 1 and 2 by transfinite induc-

tion on stages. To verify Condition 1, consider stage

a. In the pruned tree Tam for Player I’s strategy

aa, the paths already put in A are Toa n A. Since

A G Up<.T~@ , To. n A Z UP<~T~m nT,p. By Con-

tinuum Hypothesis, each a < 2*o is either finite or

countable. TOO n T,p is a single path. Therefore,

Toe n A g ufl<QTOe n T., contains only a countable

number of paths. This proves Condition 1. Condi-

tion 2 can be proven similarly. m

We notice that the above proof still works with

minor modifications even if the Continuum Hypoth-

esis is replaced by a strictly weaker axiom, the Mar-

tin’s Axiom. One of the consequences of Martin’s

Axiom is that for any cardinal ~ strictly between No

and 2~0, union of ~ sets (as subsets of R) of Lebesgue

Measure O has Lebesgue measure O. The topology

that we use for the game tree is similar to the real

line, and the probability measure on the paths in-

duced by 7 or 6 is similar to the Lebesgue Measure.

So this consequence applies to our case.

Although the randomized strategy 8 for player I

(y for player II) wins against all deterministic strate-

gies of player II (player I), it does not win against

all randomized strategies of player II (player I). In

particular, 6 does not win against y (and vice versa).

Perhaps the power of randomization in this case re-

sults from its easy access to all deterministic strate-

gies at once.

We have addressed the situation when one player

uses randomized strategy and the other uses deter-

ministic strategy. What happens when both use ran-

domized strategies? Is it possible to obtain an equi-

librium solution? That is, is there a pair of random-

ized strategies of the players such that none can gain

by deviating from this randomized strategy? The

problem has been long open when the choice space

is continuous [Me]. We conjecture that this is true

for games with universally measurable winning set.

A set is universally measurable if it is measurable

under any probability measure. Even if the conjec-

ture is confirmed, we still need to know if there is an

indeterminate game which is also universally mea-

surable. For a complete understanding of the exact

power randomization provides to infinite games, we

need to resolve these problems.

Section 6. Remarks and Open Problems.

While the [BBKTW, RaS] result is a first step in un-

derstanding the relationship of randomized strategies

and deterministic strategies in online problems, our

study attempts to get a more refined understanding

of this relationship in terms of computability. The

answer to our main question is not very satisfactory

since it is done by an artificially constructed prob-

lem. It would be much more interesting if this can

be done on natural problems.

Though online problems can be easily formu-

lated as infinite games [B BKTW, RaS], there is no

immediate transformation from the latter to the for-

mer. Even though we tried to construct a game to

emulate the behavior of online problems, one may

notice that the construction of the specific game for

our main result needs the power of enumerating all

computable strategies, which makes the game non-

computable. Thus, there is still a gap to be filled

between our result and the result of [BBKTW,RaS].

A more legitimate candidate for infinite games as on-

line problems is closed computable games. A closed

game is computable, if there is a Turing machine

which can test for membership of basic open sets of

the winning set of the adversary. We thus have an

immediate question.

[1.] Does randomization provide more power to com-

putable closed games?

Another question is whether or not the result

of [BBKTW,RaS] can be strengthened to apply to

semicomputably determinate games.

[2.] Is there an a–competitive computable deter-

ministic strategy if there is an a–competitive

randomized strategy against an off-line adaptive

adversary and the game is semicomputably de-

terminate.

[BBKTW] also show that competitive ratio of

a strategy versus offline adaptive adversaries is re-

lated to that versus online adaptive adversaries by

a quadratic function. But the exact relative power

of these two types of adversaries is still unknown.

In particular, Does there exist an online problem

which separates online adaptive adversaries from of-

fline adaptive adversaries?
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There are two notions of separability that one

can talk about. In the first notion, we ask if there

is a randomized algorithm for a problem, which is

a–competitive (for some a ~ 1) against any on-line

adversary, but it is not a–competitive against some

off-line adversary. This question was answered in

the affirmative by Raghavan and Snir [RaS]. However

there is another notion of separability. In this con-

text, we ask if there is an on:line problem for which

there exists an a-competitive randomized algorithm

(for some a ~ 1) against any on-line adversamy, but

there does not exist any a–competitive randomized

algorithm against an off-line adversary for the prob-

lem. A negative answer to this question would give

a positive answer the k-server conjecture for resistive

metric spaces [C DRS].

Again, we can separate these two types of adver-

saries for an artificially constructed finite game but

the separation for a natural problem seems l;o be a

real challenge in this field.

Theorem 9. There is a game for which offline adap-

tive adversary is strictly more powerful than online

adaptive adversary.

1221

Figure 1: A Game Tree.

Proof, Consider the two stage game tree in Figure 1,

where there is only one choice for the request on the

first stage and the answers for the second stage. The

costs of paths are given at the leaves. The optimal

offline cost will always be one no matter what, is the

request sequence. On the other hand, any online

strategy can get no better than two against the worst

oflline adversary. So by the [BBKTW] result no ran-

domized strategy can perform better than a compet-

itive ratio of 2 against an offline adversary. However

it is easy to see that the randomized strategy tliat an-

swers aO with probability 0.5 and al with probability

0.5 gives a competitive ratio of 1.5 against the worst

adaptive online adversary. Recall that an adaptive

online adversary strategy is a pair (a, /3) where cr is

an adversary strategy and /3 is an algorithm strat-

egy. And (Q, ~) gives requests according to a and

serves its own requests using /3. The expected cost

is thus calculated according to the probability distri-

bution function of the request sequences induced by

our randomized algorithm and the request strategy

a, and the cost of serving these request sequences by

the algorithm ~. ■

Still the question on natural online problems re-

mains open though we believe that they should be

separable, at least for some natural online problems.

[3.] Can offline adaptive adversaries be separated

from online adaptive adversaries for a natural

online problem?

We know that the k-server game whose winning

set is defined by set of all those paths which achieve

a ratio of less than c for any c < k is semicomputably

determinate from the lower bound results of [MMS].

We also know from Fiat et. al.’s result [FRR] that

when c > e“(krogk), the k server game is semicom-

putably determinate for every metric space. (Ob-

serve that the 2-server game is semicomputably de-

terminate for any c and any metric space, as we have

a computable algorithm [MMS] whose competitive

ratio is 2).

[4.] Can we show that the k-server game is semi-

computably determinate when c is in neither of

these ranges?
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