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settles a problem posed by Grotschel et al. [6]. Moreover, if the constants explicitly involved in any
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operations {+, —, *. /, mod. <} that decides whether the gcd of @ and b is one, for all pairs of #n-bit
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A novel technique for handling the truncation operation is implicit in the proof of this lower bound.
In a companion paper {11]. other lower bounds for a large class of problems are proved using a similar
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1. Introduction

The problem of computing the greatest common divisor (gcd) of two integers is
one of the oldest computational problems. The first known algorithm to solve
this problem was the Euclidean algorithm, which was discovered more than two
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thousand years ago. Interestingly, this algorithm has survived to the present
day. Knuth [9] calls it *‘the granddaddy of all algorithms.”’

The question whether this algorithm and its variants are the best possible is an
important open problem. Much effort has been devoted to analyzing the
Euclidean algorithm and to binding its behavior. For an excellent summary, we
refer the reader to [9]. We mention only two results: the first due to G. Lamé
(1845), who proved that the worst-case running time of the Euclidean algorithm
with division steps is linear in the length of the input, and the second due to
Collins [4], who analyzed the average behavior of the same algorithm.

Instead of studying the behavior of an algorithm, we provide a nontrivial
lower bound on the complexity of the ged problem on a model of computation.
Our lower bound applies to the problem of deciding if a pair of integers @ and
b, is relatively prime, that is, is ged(a, b) = 1? Note that the problem of
computing the ged is at least as hard as this relative primality testing problem.

The model of computation considered in this paper is the computation tree
[2, 14, 20]. We prove that no finite computation tree with operations
{+.—,* /,mod} can decide whether a and b are relatively prime. for all
pairs of integers @ and b. Moreover, if the constants explicitly involved in any
operation performed in the tree are restricted to be 0>’ and “*1’” (and any
other constant must be computed), then we prove an Q(log log n') lower bound
on the depth of any computation tree with operations { +, — , *, /, mod}. that
decides whether ¢ and b are relatively prime, for all pairs of n-bit integers
a > b > 0. A novel technique for handling the truncation operation is implicit
in the proof of the lower bound mentioned above.

Remark. Throughout the paper “*/** stands for exact division, for example,
8/5 = 1.6. Observe that division with truncation (‘*integer division’’) can be
implemented using “* /*” and ‘‘mod’" in a constant number of steps. In addition,
all sets of operations in this paper are assumed to include the ‘“ < > comparison
operation, which is never explicitly specified.

Grotschel et al. [6], while working on their book Geometric Algorithms and
Combinatorial Optimization, asked if there exists a strongly polynomial
algorithm for the gcd problem. (See [6, pp. 32-33, p. 225].) Notice that since
there are only two integer inputs to the ged problem, any strongly polynomial
algorithm for this problem must have a constant number of arithmetic opera-
tions. A result of Stockmeyer [18] implies that there is no strongly polynomial
algorithm for the ged problem when the set of operations is restricted to
{+.,—.%/}. The results of this paper imply that there is no strongly
polynomial algorithm for the gcd problem even when the set of operations is
extended to { +, — , *, /, mod}.

In the rest of the introduction, we briefly review some of the previous work
relevant to this paper. The computation tree is a nonuniform model of computa-
tion, while the Random Access Machine (RAM) is the corresponding uniform
model of computation, and hence, weaker in this sense. On the other hand, a
RAM is capable of indirect addressing while a computation tree is not.
However, the power of indirect addressing has not been characterized, and it is
not known whether it is a substantial advantage. The power of RAM has been
extensively studied [15, 17]. A RAM of time complexity 7 with operations

'The base of alt logarithms 1n the paper is two.
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from a set (of arithmetic and boolean operations) OP, and without indirect
addressing, can be simulated by a computation tree of depth O(T) with
operations from the set OP. (See. e.g., [13].) This implies that our lower
bound holds for RAMs without indirect addressing. In a companion paper [11],
we show that a similar lower-bound holds for RAMs with indirect addressing.

To the best of our knowledge, prior to this work, no nontrivial lower bounds
were known on the depth of computation trees with (i) operations from the set
{+,—,%, /,mod}, and (ii) a constant number of integer inputs. Perhaps, one
reason for the lack of progress in this area is that this set of operations does not
possess nice algebraic properties. It is worth pointing out that any decision
problem with an n-bit input can be solved by a computation tree of depth O(n),
that uses only the comparison operation. In addition, since the length of
numbers is not restricted in the computation, even the weaker uniform model,
that is, RAM without indirect addressing, can simulate any PSPACE-computa-
tion in polynomial time [3, 14, 17]. Moreover, it is known that hard problems,
for example, factoring, can be solved on such a RAM, in linear time [16].

For the model of algebraic computation trees (i.e., computation trees that
use only algebraic operations, including +, —, *, and /), good lower bound
techniques are known when all the inputs are either real or rational numbers
[2, 21]. On the other hand, few results are known when the inputs are restricted
to be integers (as in our case). Paul and Simon prove an Q(nlog n) lower
bound for sorting » integers [13]. (See also [5].) Their result also applies to
RAMs with indirect addressing. They also show that the sorting can be done in
O(n) steps if boolean operations are allowed.

Stockmeyer [18] proves a ©(n) bound on the depth of any algebraic
computation tree with the operations { +, — , *, /}, that decides if a given n-bit
integer is odd. This implies a ©(n) bound on the depth of any algebraic
computation tree that decides if (i) @ divides b, or (ii) gcd(a, b) = 1, and on
the depth of any algebraic computation tree [2, 19, 20] that computes
(i) ged(a, b), (i) amod b, (iii)) | a/b |, or (iv) bitwise O of a and b, for
O e{and, or, exclusive-or}; for all n-bit integers a and b.

The nature of the mod operation, which is the main object of study in this
paper, is examined in [1], [7] and [8]. Moran et al. [12] prove tight bounds on
the depth of decision trees with arbitrary queries (including queries involving
the mod operation). However, these bounds are nontrivial only when the
number of inputs is nonconstant.

The paper is organized as follows: Section 2 includes some preliminary
definitions. Sections 3 and 4 are devoted to the proof of the Q(loglog n) lower
bound on the depth of any computation tree with operations { +, — , *, /, mod},
that decides if @ and b are relatively prime for all pairs of n-bit integers
a > b > 0. The proof is presented in two parts. First, in Section 3, we prove a
nonconstant lower bound on the depth of any computation tree that tests relative
primality, that is, no fixed, finite depth computation tree can solve the relative
primality problem for all pairs of integers. Then, the Q(loglog n) bound is
obtained in Section 4 by a careful analysis of the proof in Section 3. Finally, in
Section 5 we summarize our results and list some open problems.

2. Preliminaries

In this section, we first recall the definition of the computation tree model.
Then, we define some properties of polynomials and rational expressions.
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Finally, we define a lexicographic order on the set of bivariate polynomials and
prove some of its properties.

2.1. Tue Compuration Tree MobeL. We assume that the reader is familiar
with the computation tree model. (See, e.g., [2] and [20].) Below, we briefly
recall this model, and define some additional terminology used throughout the
paper in relation to the model.

A computation tree 7' for a two input problem is a tree with labeled vertices.
The label of vertex v is denoted f,. The tree 7" has four types of vertices:

(1) Input vertices. The input vertices are the vertices in the first two levels
of T. Each of these two levels has exactly one vertex. The two input
vertices are labeled by the input variables (i.e., for input a, b, we have
f.=aand f = b, where r is the root and s is its only child).

(2) Computation vertices. Each computation vertex » is labeled with a
binary operation f, = gOh, and has only one child. Throughout this
paper, g, he «U { f,| u is an ancestor of » in T} and O € OP, where ¢
is the set of available constants, and OP is the set of available operations.
In this paper, OP = {+, — . *, /,mod}. The set ¥ will be restricted to
either the set of rationals (2), or the set {0, 1}.

(3) Comparison vertices. Each comparison vertex » is labeled with g : A,
where, again, g, #e€ U { f,| p is an ancestor of » in 7'}. Each compari-
son vertex has two children.

(4) Output vertices. The output vertices are the leaves of 7. Each leaf » of
T is labeled with an element from the set {0, 1}.

The computation for input (a. b) starts at the root of the tree 7. When it
arrives at a computation vertex ». the function f, = gO# is evaluated at the
input (a, b) by computing gO#, and then the computation proceeds to the only
child of ». When the computation arrives at a comparison vertex labeled with
g : h, the functions g and /4 are evaluated. The computation proceeds to the left
child if g < & at the point (a, b), and to the right child, otherwise. The
computation terminates at a leaf by producing the value of the label associated
with it as the output.

A computation tree is said to solve a decision problem, if it produces the
correct answer for each instance of the problem.

We remark that when OP = {+, — ,*, /}, we can associate a rational
expression r,(x, y) € Z(x, y), to each vertex v, which is either a computation
vertex or a leaf. This label will have the following interpretation: For all

inputs (a, b), if the computation on the tree T with input (a, b) arrives at
the vertex v, then f, = r (a. b).

2.2. PoLynomiaLs AND RaTioNaL Expressions. In the sequel, we consider
the degree and the height of polynomials and rational expressions.

The degree of a polynomial P(Xx, y) with respect to a variable x. denoted
deg .(P), is the maximum exponent of x appearing in any monomial of
P(x, y).

The degree of P, denoted deg(P), is max{deg (P),deg (P)}. The height
of P, denoted hgt(P). is the maximum among the absolute values of the
coefficients of P.
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For a set A of polynomials, the degree of A, denoted deg(A), is defined by
deg(A) = max p_,deg(P). Similarly, the height of A, denoted hgt(A), is
hgt(A) = max ,_,hgt( P).

For a rational expression R(x, y) = P(x, y)/Q(x, y), where P and Q are
bivariate polynomials, define the degree of R to be the larger of the degrees of
P and Q. Similarly, define the height of R to be the larger of the heights of P
and Q. Notice that in our definition of the degree and the height of rational
expressions cancellations are not allowed. For example, the degree of R(x, y)

= P(x, y)/P(x, y) will be the degree of P and not zero, and the height of R
will be the height of P and not one.

Lemma 2.1. Let P(x, y) and Q(x, y) be two bivariate polynomials.
Then, for Oe{+, —}, deg(POQ) < max{deg(P), deg(Q)} and
hgt(POQ) < hgt(P) + hgt(Q); deg(POQ) < deg(P) + deg(Q) and
hgt(POQ) < (1 + deg(P)) (1 + deg(Q))hgt(P)hgt(Q).

Proor. We only prove the bound on hgt(P - Q). Observe that when we
multiply two bivariate polynomials, each of the coefficients of the product is the
sum of at most (1 + deg(P))(1 + deg(Q)) terms, each of them being the
product of a coefficient in P by a coefficient in Q. The bound on hgt( PO Q)
follows.

The other bounds are also straightforward. [

Lemma 2.2, Let R(x, y) = P/(x, y)/Py(x, y) and S(x, y) =
Q/(x, »)/Q,(x, y) be two bivariate rational expressions. Then,
Jor Oe{+, -}, deg(ROS) < deg(R) + deg(S) and hgt(ROS) < 2(1 +
deg(R)) (1 + deg(S))hgt(R)hgt(S); deg(ROS) < deg(R) + deg(S) and
hgt(ROS) =< (1 + deg(R))(1 + deg(S))hgt(R)hgt(S).

Proor. The bounds follow from Lemma 2.1 and from the fact that for
Oef{+, -1, ROS = P Q,00,P, /P,Q,. LI

2.3. A LexicograPHIC ORDER ON THE BIVARIATE PoLynomiaLs. We define a
lexicographic order on the set of the bivariate polynomials. For this purpose,
we use the following lexicographic order on the set of bivariate monomials.

Definition 1. For two monomials cx’y’ and dx*y’, cx'y’ > dx*y' if
either (1) i>kor2Qyi=kand j>lor(3)i=k, j=1land |c| > |d].

We say that a polynomial is written in its normal form if it is written as a
minimal sum of monomials, and these monomials are sorted in descending

lexicographic order. Throughout this paper, we assume that all polynomials are
written in their normal form.

Definition 2. For two bivariate polynomials P(x,y) and Q(x, ),
P(x.y) > Q(x, y) if, when written in their normal forms, there exists some
i = 1, such that (the ith monomial in P) > (the ith monomial in Q), and all
the monomials preceding it are identical in both P and Q.

Given a polynomial P(x, y), let the leading monomial of P(x, y) be the
first monomial in the normal form of P(x, y). Let the leading coefficient of
P(x, y) be the coefficient of this monomial.

Below, we relate the lexicographic order defined on the polynomials, and the
order among their values at certain points.
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Lemma 2.3.  For each bivariate polynomial P(x, y), there exist positive
integers w (P) and w,(P) such that for all (a, b) satisfying a > b™" and
b > m,(P), the sign of P(a,b) is the same as the sign of the leading
coefficient of P(x. y). Furthermore, 7 (P) =< deg (P) + 1, and ©,(P) <
2M/L. where L is the leading coefficient of P and M is the height of P.

Proor. Let P(x,y) = Y j_oL,x"y’t, where P(x,y) is written in its
normal form, and L, is the coefficient of the kth monomial (L, = L). Denote
t(x, y) = x%yl. Let wm(P) =1+ maxg-,m_i{Jers — Jij. Clearly,
w(P) < deg (P) + 1. From the lexicographic order it follows that
Lo (X, )/ 1,(x, ¥) = x'y/, where either | < 0 and j < = (P)or i = 0 and
J < 0. Thus, for all positive (@, b), if @ > b™® then t,, (x, ¥)/t,(x, y) <
1/b, and hence, 7,(x, y)/t,(x, ¥) < 1/b*. Suppose that L > 0, we show
that for all (a, b) satisfying a > o™ and b > 7,(P), P(a, b) is also
positive. For all positive (a, b), such that @ > b™,

P(a, b) = Ltg(a, b) — > | L,| x"*p*
k=1

> Lty(a, b)(l - ;{i %)

To complete the proof, we show that for b > 2M /L, (1 — X;_,| L, |/Lb")
> 0 or, equivalently, >7_, | L, | /Lb* < 1. This latter inequality follows from

M o L \* M
<1
2l <

L i =h\2M 2M - L)
Similarly, we can prove the Lemma for the case L < 0. [

From Lemma 2.3, it follows that for any two polynomials Q(x, y) and
R(x,y) there exist positive integers 7 ,(Q — R) and 7,(Q — R) such that for
all (a, b) satisfying a > b™2 " ® and b > 7,(Q —~ R) either always Q(a, b)
< R(a. b) or always Q(a, b) = R(a, b).

3. The «(1) Lower Bound for an Arbitrary Set of Constants

In this section, we prove a nonconstant lower bound on the depth of any
computation tree with OP = { +, — , *, /,mod}, that computes the gcd of all
pairs of #n-bit integers. We assume that all constants explicitly involved in any
operation performed in the tree are rational numbers. In the next section, we
restrict the constants explicitly involved in any operation to be ‘0" and “‘1°’,
and prove an (loglog n) lower bound by a careful analysis of the proof given
below.

TueoreM 3.1. There is no ( finite depth) computation tree with OP =
{+, —,* /,mod}, that decides if a and b are relatively prime, for all
pairs of integers a > b > 0.

We begin with some notation and definitions.
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Definition 3. Let r, o, a,, and «; be nonnegative integers. Let A =
(6,,6,,...,6,)and A = (N, \,, ..., \,) be r-dimensional vectors of positive
integers. For positive integers u,, u,, u,, and u,,,, the pair (uy, u,) is
(r,a,a,, ay, A, A)-generated by the pair (u,, u,,,) if there exist positive
integers u,, Uy, ..., u,_, such that:

5
up = N(u,)" + u,, (1)
u = )\2(“2)82 + us,

— 61+1
uz - )\l+l(ul+l) + u1+2’

: .
U, ;= )\r(ur) + Urirs
o2
u, > (u,,,) ", (2)
Upp1 > Oy,
ur = ur+l =1 (mOd 013). (3)
In this case, (u,, u, ) is the (r, oy, a5, a5, A, A)-generator of (u,, u,),
and u,, Us, ..., U, is the (r, a, a,, a3, A, A)-generating sequence for
(ug, u,).
Notice that egs. (1) and (2) imply that uy > u; > u, > uy; > -+ >u, >
ur+l'

Definition 4. Let S(r, a;, oy, a3, A, A) denote the following set of or-
dered pairs of positive integers:

{(ug, u,) : there exist integers u, , u,,, such that (u,, u,)
is(r, aj, a,, az, A, A)-generated by (u,, u,,,)}. (4)

For convenience, we omit the null vectors A and A whenever r = 0. In this
case, the set S(0, oy, ,, «3) consists of all pairs (u,, u,) such that u, > (u,)™,
U, > a,, Uy =u; =1 (mod «,) (in accordance with the above definition).

Perhaps the most important characteristic of the above definitions is its
similarity to the Euclidean algorithm for solving the gcd problem. As an
immediate consequence of the definition, we get the two properties stated
below. These properties are the key to our proof strategy.

Lemma 3.2. THeE CorrRESPONDENCE Property. There is an one-to-one cor-
respondence between the elements of the sets S(r, oy, a,, a;, A, A) and
S0, «;, ay, as). Specifically, each pair (uy, u;) € S(r, o, oy, oy, A, A)
corresponds to the unique pair (u,,u,.,) €SO, «;, «,, a;) such that
(U, u,.,) is the (r, a;, oy, oy, A, A)-generator of (u,, u,). Furthermore,
if (uy, uy) corresponds to (u,, u,, ), then gcd(u,, u,) = ged(u,, u, ).

Proor. Let @, >a3;> -+ >a,, , and b, >b;> -+ > b, ,, be the
generating sequences for (a,, a,) and (b,, b,), respectively. It is easy to check
that if (a,, ;) # (b, b;, ) for some 0 < i < r, then (aj, ajﬂ) * (bj, ij)
for any j, O = j =< r. The assertion about the gcd’s follows from the Euclidean
algorithm. [

Lemma 3.3, Tue ConTAINMENT Property. Let A’ and A be (r + 1)-
dimensional vectors of positive integers, obtained from r-dimensional
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vectors A and A by appending positive integers &6 and N\, respectively.
Then, S(r+ 1, 1, a,, az, A, A) € S(r, a, ar, a3, A, A), provided
6= «a, and N\ =0 (mod o).

Proor. Suppose that (a,, @) e S(r + 1, 1. a,. a5, A, A), and let @, > a,
> -+ >gqg,>a,. ,>a,,, be its generating sequence. By definition, a, =
A\, + a,,,. Therefore, @, = 1 (mod @;), and @, > ¢ . In addition. «

r+1
> a, > «a,. Hence, (a,, a) € S(r, ay, a,, a3, A, A). [

Lemma 3.4. S0, a. oy, ) contains two pairs (a,, a)) and (by, b)),
such that ged(a,, a,) # 1 and ged(b,. b)) = 1.

Proor. Let e be the least exponent such that (I + o) > «,. Define
(ag. a;) = (I + a) "V (1 + «y)¢), and (b,, b)) = (1 +

ay(1 + a) P (1 + ;). Clearly, ged(ag. @) = (1 + ;)¢ # 1, and
ged(by, b)) = 1. U

The proot of Theorem 3.1 is based on the following lemma:

Lemma 3.5. Let T be a computation tree with the operations

{+, —,* /,mod}, that decides if a and b are relatively prime, for all
integers a > b > 0. Then, there is a path 7 from the root of T to a leaf,
and a subset ¥ of inputs, with the following properties:

(1) 7= 8(r. ;. 0y, 05, A, N), for somer., «,, oy, as. A, and A; and
(2) For each input (a, b) € v . the computation follows the path .

Before proving Lemma 3.5. we show how it can be used to prove Theorem
3.1

Proor oF THeorEM 3.1. Suppose that we are given a computation tree T
with the operations { +. — ., *, /, mod}, that decides if @ and b are relatively
prime, for all integers ¢ > b > 0. By Lemma 3.5, there is a path # from the
root of T to a leaf, and a set of inputs .= S(r, «y, a,. a5, A, A), such that
for each input (a, b) € ¥ the computation follows the the path #. Let » be the
leaf at the end of the path #. By the definition of a computation tree, the output
for each input whose computation terminates at the leaf » is the same as the
label of ». But this contradicts Lemma 3.4, which asserts that the set
S0, oy, @5, o5), and hence (by the Correspondence Property) the set 7,
consists of some pairs that are relatively prime, and some that are not. Hence,

the tree 7" does not decide the relative primality question for each pair of
integer inputs. L[]

The most involved part of this section is the proof of Lemma 3.5 given
below.

Proor orF Lemma 3.5. Let us denote the vertices on the path # by
Uy, Uy, ... . Uy, in that order, where v, is the root of the tree 7', v, is a child of
v,_,, and v; is a leaf of the tree 7. We define the path :” and the set ¥
inductively, starting with the path v,.v,.v; (v, and v, are the input vertices
and v, is the only child of v,), and the set @ = §(0, 1, 0, 1) (which consists
of all pairs (a, b), where @ > b > 0). As part of the induction hypothesis, we
maintain some additional properties of the path and set under consideration.
These properties are described below.
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Suppose that we have (a) selected a prefix of %, which starts at v,, and
ends at a vertex v, ,, and (b) constructed the set ¥ =

S(r, af”, af, of, AV, AY), with the following properties:

(1) For each input (a, b) € ¥ °, the computation follows the path from the root
to v,

(2) For each computation vertex » on the path from the root to the vertex v, ,,
excluding the vertex wv,,,, there is a pair of bivariate polynomials
(F/(x, ), G{x, y)) with integer coefficients, such that for each input
(a, b)e V“), G(u,v) #0, and f(a, b) = F{(u,v)/G!(u,v), where
(u.,v) is the (r(”, P, ol o, AV, AM)-generator of (a, b).

We construct the set " € @ guch that Property 2 is satisfied also for
the vertex v, , and each input (a, b) € 7 “*P. We also select an outgoing edge
of v, and prove that, for each input (a, b) € "V, the computation follows
this edge.

For the proof, we maintain two additional properties of the polynomials
(F)(x,y), Gi(x, y)) and the input set .7 ‘”. These properties are:

(3) The leading coefficient of each of the polynomials G/(x, y) is positive.

(4) For each polynom1al F!(x, y) and each (a, b) € /“’ the sign of F(u. v)
(where (u, v) is the (7 (’), al”, af, of, A, A)-generator of (a, b)) is
the same as the sign of the leadlng coefficient of F'(x, y). This also holds
for all polynomials G,(x, y). (That is, Gi(u,v) > 0.)

By the definition of the tree T, either the value f = g°h is computed, or
the comparison g : A is resolved, at the vertex v, ;. Here g.he 2U{f, v,
is a computation vertex, j < l} and ce{+, —,*, /,mod}. We use ’ the

following notation in the rest of this proof:

(Pi(x.2), Py(x, 7))
(numerator of g, denominator of g) if ge<,

(F/(x, ), Gi(x.)) if g=/,.

and

(Oi(x, ), 0,(x.y))

(numerator of /4, denominator of /) if hes

(F(x.5). G(x.)) it h=f,

Finally, let
P(x,y) =P(x,3)0,(x,¥). Q(x.¥) = P,(x, »)O,(x. ¥).

and
H(x,y)=P,(x,»)0:(x, ).
The proof is based on a case-by-case analysis. In each case, we will define
the next vertex v,,, on the path .#, the parameters r'*", o{'*D o{+h,

T, AUTD AUTD Dand the polynomials (F’“(x ), G’“(x y)) for each
computat1on verteX v, €{vy, Uy, ..., U4 }- Some of these’ parameters will be
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defined explicitly, while those not specified explicitly are assumed to take
the value of the corresponding parameter with superscript (i). After specify-
ing these parameters, the set % “*" will be defined to be S(r“*Y, af'*",
O{»(_,l+1), Ol(31+1), A(H'l), A(l+1)).

We note two things. First, our construction is such that the set .7 “*" is a
subset of . ”. Second, the only case where r*" # r; that is, the dimen-
sions of A+ and A“*1 are not the same as the dimensions of A" and A, is
in case v, , is a mod vertex and some power of y appears in the leading
monomial of Q(x, y) (the last case of the proof).

Let us first resolve the case when v, , is a comparison vertex. Let
B(x,y)=P(x,y) — Q(x,y) # 0. Then, Lemma 2.3 guarantees the exis-
tence of two positive integers «,(B) and w,(B), and e € { <, >}, such that
for all pairs (a, b), where

a>b"®  and b >m,(B),
P(a.b) _0\a.0)
Py(a.b) Q,(a,b) .

Thus, for all pairs (a, b) with this property, that arrive at the vertex v, . the
next vertex v, , is either left-child of v, , if ® =<, or the right- chlld of v,
if ® => . Define o{'*" = max(a!”, 7,(B)) and a(’“) = max(a’ ,(B))
Let % (+1) S(’,U—H)q (1+l)’ o[(H—l) (31-}—1; A(l—!—l) A(1+1)) Clearly (1+1)
c #™ and for each (a, b)e/“*” and each (F’“(x ¥). G’“(x ).
Properties 1-4 are satisfied.

Next, consider the case when v, , is a computation vertex. In this case, the
only child of v,,, is chosen as v,,,. However, the choice of the set % U*"
strongly depends on the particular operation ° performed at v, .

Suppose that O e {+, —}. This case is very similar to the case of a
comparison vertex discussed above. Following the argument in that case, let
B(x.y) = P(x, »)OQ(x. y). Define o{'*" = max(a!”, 7 (B)) and oz““’ =
max(ozm 7T2(B)) Let 2 (+1)y __ S(r(1+1)’ a§1+1)’ af21+1) (31+1 , A(1+1), A(1+1)’
and F(;13(x, ), G*Nx,y) = (B(x,y), H(x,y). Clearly, #%*" ¢
& and for each (a, 'bye U+ and each (F’“(x ), G’“(x »)), Prop-
erties 1-4 are satisfied.

Suppose that O = *. This is the simplest case. We just let (F ’”(x »).,

G’“(x ») = (P(x, »Qx,y), H(x, y)). Define #"*" = %@ Clearly.
for each (a, b) e Futh and each (F’“(x ), G’“(x ), Propertles 1-4
are satisfied.

Next, suppose that O = /. Let p be the sign of the leading coefficient of

Q\(x, ). Define (F,'(x.»). G,*!(x, ) = (pP(x, ). pQ(x,y)), and
S+ = O This is the only case where G;*!(x. ») is not a product of

G’“(x y)’s, for j < i. Nevertheless, G, (u, v) # 0 for any (w.v) that is

1
the <r(z+ )‘ §z+l)’ Oéf,l), 01(31+1), A(H-l) A(1+1)> generator of some (a b)e

&+ because T is a well-defined computation tree that does not contain any
division by zero. Clearly, for each (a, b)e """ and each (F’*’(x »),
G’“(x »)), Properties 1-4 are satistied.

The only remaining case is when O = mod. The rest of this section is
devoted to this case.
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Before we continue, let us recall the definition of the mod operation. The
mod operation is defined in the terms of the floor operation. For a real number
r, | r] isthe greatest integer < r. For two rational numbers a and b, where
b#0,amodb=a— |b||a/|b|]|. Notethat 0 < (amod b) < | b]|.

In the following discussion, we repeatedly use the fact that for polynomials

P(x.,y), Pyx,y), Q/(x,y), and Q,(x, y), a rational function R(x, y),
and any two integers (u, v),

Py(u,v) . mo Q,(u,v)
Py(uw) - RUeY) ( deu,v))’

if an only if P(u,v) = R(u, v)H(u, v) (mod Q(u, v)). (Recall that P(x, y)
= P(x, y)O,(x, y), Q(x, y) = P,(x, y)O(x, y), and H(x, y) =
Py(x, y)Q,(x, »).) .

Recall that for each (a, b) e &P,

P (u,v) d Q,(u,v)
Py(u,v) O O, v)

where (u, v) is the (r'?, of?, &y, o, AD, AD)-generator of (a, b). In view
of the above definition, we may assume, without loss of generality, that both
the operands of any mod operation are nonnegative. Then, Properties 3 and 4
imply that the leading coefficients of P(x, y) and Q(x, y) are positive. We
now show a way to construct ¥ “*" < ' guch that for each input (a, b) €
D the value of f.,,, is given by F," (i, )/G’“(u v), where the (4, ) is
the (r'*t0 olth oP g{*th A‘”“, A““)) -generator of (a, b) and
(F,’J’jll(x »), G’“(x y)) is a pair of bivariate polynom1als

Let d, = deg, 1 Q) d, = deg (Q), and let Lx“ y' be the leading monomial
of O(x, y). We con81der the followmg four cases in order: (1) P(x, y) <
O(x, »); (2) Q(x, y) is a constant, that is, d, = d, = 0; (3) No power of y
appears in the leading monomial of Q(x, ), that is, / =0; and (4) I > 0.

Case 1. P(x,y) < Q(x,y). Let B(x,y)=0Q(x,y)— P(x, ). Since
B(x,y) > 0, Lemma 2.3 guarantees the existence of two positive integers
m,(B), and 7,(B) such that for each (u, v) € S0, = (B), 7,(B), 1), B(u,v)
> 0. Observe that B(u, v) > 0 implies that Q(u, v) > P(u. v). Thus,

Q. (u,v) > P\(u,v)
Q,(u, v) Py(u,v)
We conclude that for each (u, v) € S(0, 7 ,(B), 7,(B), 1),
P\(u,v) Q\(u,v)  P(u.v)
————— mod = .
Py o) " 0(ue)  Palu)
Let oY = max(a!?, 7,(B)) and of*" = max(al®, w,(B)). Define

y(l+l) — S(r(l+l) (l+\), a(21+1) (l+1) A(l—kl)’ A(l+1)) and (Fl+l(x y)
Gt («x, = (P/(x, ), Py(x,»)). Clearl FUrD © p O and "for each
Yy Yy Y,

V
(@ b)ye 79" and each (F.*'(X, ), G,"'(x,¥)), Propetties 1-4 are
satisfied.

fv,“(a’ b) =

= 0.

Case 2. Q(x, y) is the constant (and, therefore, the positive integer) L.
Recall that all coefficients of P(x, y) are integers. Let P(1,1) = cL + 3,
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where c is an integer and ( is a nonnegative integer such that 0 < 8 < L. Let
af ™ = Lo’ Then, for each (u,v) eSO, o', of’, of*?), P(u,v) =
n,, L + [, where n,, is an integer that depends on the pair (u. v). (Recall that
u=v=1(mod a{"").) Dividing by H(u, v)(= P,(u, v)Q,(u. v)) we get

P(u,v) L B
Py(u.v)  "H(u.v)  H(w,v)
Substituting for L = Q(u, v)(= P,(u, v)Q,(u, v)). we get
Pu,v) O, (u,v) B
P,(u,v) :nuUQz(u,v) H(u,v)’
Since 0 = § < L, Property 3 implies that
B < L _ Qy(u.v)
H(u.v)  H(u,v) O (u,v)’

We conclude that for each (u, v) € S(0, o, af, a§*"),

0=

Py(u,v) Q,(u.v) B
——— mod = .
P o) ™ Quew) 0]
Define  #*D = S(ri*b ofTD oD oY AT AUy and

(FyT(x, ), G7lx, p) = (B, H(x. ). Clearly, .#“*" < @, and for
cach (a, b)ye # "V and each (F'*'(x, y), G'*'(x. »)), Properties 1-4 are
satisfied. ’ ’

Case 3. The leading monomial of Q(x, ¥) is Lx“, that is, no power of y
appears in the leading monomial of Q(x, y). Divide P(x, y) by Q(x, y) as
polynomials in x. Corollary 4.5 of the following section implies that P(x, »)
= L™ A(x, »)Q(x, ¥) + R(x, y)). where (i) d = deg (P) — deg (Q) +
1. (ii) all the coefficients of A(x, y) and R(x.y) are integers, and (iii)
deg (R) < deg (Q). Thus, R < Q.

As in Case 2, let A(1.1) = cL? + 3, where ¢ is an integer and ( is a
nonnegative integer such that 0 < 8 < L% Let «Y"" = L%Y. Then. for each
(u.v) €SO, ai”, o, ay’),

A(u.v) =g (mod L9).
Hence, for each such pair (u, v),

P(u.v) = L™(BO(u,v) + R(u,v)) (mod Q(u. v)).
Dividing by H(u, v)(= Py(u, v)Q,(u, v)), we get

P (u,v) _ BO(u.v) + R(u, v) (mod
Py(u,v)  LPy(u,v)Q,(u,v) \

We distinguish between two subcases:

Subcase 3.1. 3 > 0. Consider the polynomial L~9(8Q(x, v) + R(x. y)).
Since deg (R) < deg (Q) the leading coefficient of this polynomial is §/L?
times the leading coefficient of Q(x, y) (which equals L). Let B(x, y) =
Q(x,y) — L™4BO(x, y) + R(x, »)). The leading coefficient of B(x, y) is
(1 = B/LYL. Since 0 < /LY < 1, the leading coefficient of B(x, y) is

Ql(”’ v) >
Q,(u,v) |
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positive. Using Lemma 2.3, let 7, = max{w7(B), 7,(8Q + R)},
max{m,(B). 7,(8Q + R)}. Then, 0 < L~ "(BQ(u v) + R(u.v) < Q(u v)
for all ¥ > v™, and v > =,. This implies that

BO(u,v) + R(u.v) - Q,(u,v)
LPy(u,v)Q,(u,v) O, (u,v)

We conclude that for each such (u«, v),

Py(u,v) mod O,(u.v) _ BQ(u.v) + R(u,v)
P,(u,v) Q,(u,v) Lsz(u,v)Qz(u,v) .

Let o{*Y = max(a!”, 7,), and of"" = max(al’, T,). Define ¥V =
S(r”*”, OZEH—I). (1+l) (l+l) A(l+1) A(l+l) and (FH-](X y) Gl+l(x y))
= (BO(x, y)+R(x y L"P(x )0, (x, y)). Clearly, F D S ang
for each (a, b) € ¥'“*" and each (F’“(x ), G!T'(x, »)), Properties 1-4
are satisfied. N

0<

Subcase 3.2. 8 = 0. Define ﬁ(x, y) as follows:
R(x,y)
R(x,y) if the leading coefficient of R(x.y) = 0,
LQ(x, y) + R(x,y) otherwise.

The leading coefficients of the polynomials R(x y)and LYQ(x, y) — R(x. y)

are positive. Using Lemma 2.3, let =, = max{7r1(R) 7r1(LdQ R}, 7, =

max{ 7,(R), m,(LQ — R)} Then, 0 < R(u,v) < LYQ(u.v), for all u >
v™, and v > 7,. This implies that

ﬁ(“’v) < Q,(u,v)
LPy(u,v)Qy(u.v) — Qy(u,v)

We conclude that for each such (u, v),

P (u.v) mod O, (u,v) _ é(“’l’)
Py(u,v) Q,(u,v)  LPy(u.v)Qy(u,v)

Let o{*D = max(a!”, 7,), and of*" = max(al”, 7,). Define ¢V =
S(r(tj—l), Ol(lz+1)’ a(21+1) (1+1) A(l+l) A(l+l)) and (Fl+l(x )") Gl+1(x y))
= (R(x,y), LPy(x, y)Qz(x y)). Clearly, ¥*V'C @ and for each

(a, b)e 9D and each (F’“(x »), G’“(x ¥)), Properties 1-4 are
satisfied.

0=

Case 4. The leading monomial of Q(x, y) is Lx%y'. Our goal is to
reduce this case to Case 3 where no powers of y appear in the leading
monomial. We mtroduce a new indeterminate z and substitute x using it. We
substitute x by o{’y*” + z. Consider the polynomial Q(y, z) = Q(aPyet”
+ z, y). Observe that the leading monomial in Q( ¥y, z) is a constant times a
power of y, that is, no power of z appears in the leading monomial of
O(y, 7). Thus, we have reduced this case to Case 3 with only two differences:
(a) instead of the set .#? of inputs there, we have the set = S(rith, 1,
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of?, af), AU AUTDYwhere rOtY = @ 4 1; AYY and AT are the
(r + 1)- dimensional vectors obtained by appendmg ol and «f’ to A and
AY | respectively; (b) instead of the polynomials (F! (x, y) Gi(x, y)), we have
the polynomials (F/(y, z), G(¥.2)) = (F(a{y*" + z, y) Gl(ay* +
Z, ¥)).

By the Containment Property, 7< #®. Hence, by an argument similar to
that given in Case 3, we can define the parameters /", for j = 1,2,3 and
consequently the set #¢*" < %, and the polynomials (F l“( ¥, 2),
Gv’j“(y, z),for j=1,....i+1, that satisfy Properties 1-4.

4. The Q(loglog n)y Lower Bound for the Constants {0, 1}

In this section, we prove an (loglog n) lower bound on the depth of any
computation tree with OP = {4+, — , *, /, mod}, that computes the gcd of all
pairs of n-bit integers. We assume that ‘*0’” and “*1’’ are the only constants
explicitly involved in any operation performed in the tree (and that any other
constant must be computed). In the following proofs, we refer to the proofs in
the previous section.

In order to prove an Q(loglog n) lower bound, we need a modified version
of Lemma 3.4 and upper bounds on the parameters in the proof of Lemma 3.5.

Lemma 4.1, Let «, a,, oy, and t be positive integers such that o, < 1,
and o,, ay < 2. Then the set S0, oy, ay, a3) N {(u,v):0 < u,v<
221+ DY contains two pairs (ay, a,) and (b, b,), such that ged(ay, a,) # 1
and ged(b,. b,) = 1.

Proor. In order to prove this lemma, it is sufficient to prove each of the
numbers a,, a,, by, and b, (constructed in the proof of Lemma 3.4), is less
than 22TV If e is the least exponent such that (1 + «;)¢ > «,, then

(1 + a;)¢ < 27’ The desired upper bounds are an immediate consequence of
this observation. []

Lemma 4.2.  Let T be a computation tree of depth h that decides if a and
b are relatively prime, for all integers 2" > a > b > 0. Then, there is a
path P from the root of T to a leaf, and a subset 7 of inputs, with the
following properties:

() 7= 8(r, a,, oy, az, A, A) N {(a,b):0 < a, b<2"}, for some posi-
tive inlegers r, o, ®,, o3, 6, 0,,...,0,, N, N,..., N, where
A=1(6,0,,...,0,), and A= (N, N,..., N);

(2) For each input (a. b) € #', the computation follows the path ¥,

(3) For each computation vertex v on the path #, there is a pair of
bivariate polynomials (F(x.y), G/(x.y)) with integer coefficients,
such that for each input (a,b)e >, G(u,v) #0, and f(a,b) =
F(u,v)/G,(u,v), where (u,v) is the (r, o, a,, as, A, A)-generator of
(a, b); that is, the value computed at v on input (a, b)e .7, is the
value of the rational expression F(x, )/ G (x, y) at (u.v); and

(4) Let 2 = {F(x,»),G(x,y)|ve ?}. Define D and M to be the degree
and the height of I, respectively. Then, r < h, max{«,, D} < 2>,

and max{ a,, a;, M} < 22",

Before proving Lemma 4.2, we show how it can be used to prove the main
theorem of this section.
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Tueorem 4.3.  Any computation tree with OP = {+, — ,*, /,mod},
that decides if a and b are relatively prime, for all integers 2" > a > b > 0,
must have depth Q(loglog n).

Proor.  Suppose that we are given a computation tree T of depth & <
1/41oglog(n'/?), with OP = {4+, — , *, /, mod}, that decides if @ and b are
relatively prime, for all for all integers 2” > @ > b > 0. By Lemma 4.2, we
have the following: (i) there is a path ¢ from the root of T to a leaf », and a
set of inputs ¥'= S(r, a, oy, 03, A, A) N {(a, b):0 < a, b<2", such
that for each input (@, b) € ¥, the computation follows the path #; (ii) each
pair in ¥ is relatively prime if the label /€ {0, 1} of » is one; otherwise, none
of the pairs in 7" is relatively prime; (iii) o, < 22" = n'/5, @, a, < 22° =
27", hgt(F,(x, ¥)/G,(x, »)) < 2", and deg(F,(x, »)/G,(x, ) < n'/’.

Our goal is to arrive at a contradiction using Lemma 4.1.

Towards this end, let # = n'> — 1. We claim that each pair (u,v)e
SO, ay, ay, az) N {(u,v):1 < u, v <22+ DY generates a pair (¢, b) € &=
S(r, ap, 0y, a5, A, A) = S(r, o, 0y, a5, A, AN {(a,D):0<u, v< 2m.
Notice that the inputs @ and b are ‘‘computed’’ by the first two vertices of the
tree. If (u, v) is the generator of (a, b), then, by Lemma 4.2, @ and b are
polynomials in u# and v of height and degree less than 2”” and n'/,
respectively. This implies that the number of monomials in each of these
polynomials is at most n?/> and that the value of each monomial is at most
2772272 Therefore, a. b < n*/%27"2%7%" = p2/324n" < 27 for
large enough n.

But assertion (ii) in the first paragraph of this proof, together with the
Correspondence Property, contradict Lemma 4.1 which asserts that some pairs
in the set (u,v) €S0, oy, oy, a3) N {(u,v): 1 < u, v <22U*D) are rela-
tively prime, and some are not. [

Proor oF LEmma 4.2.  As in the proof of Lemma 3.5, we denote the vertices
on the path # by v, v,, ..., v,, in that order, where v, is the root of the tree
T, v; is a child of v,_,, and v, is a leaf of the tree 7. In the proof of Lemma
3.5, the path 2 and the set .7 were defined inductively, starting with the path
vy, Uy, v5 and the set @ = $(0, 1,0, 1) (which consists of all pairs (a, b),
where a > b > 0). Following that proof, suppose that (a) we have selected a
prefix of &, which starts at v,, and ends a vertex v,, . and (b) constructed the
set ¥ =8(r", of”, of), af, AD AV) with the following properties:

(1) For each input (@, b) € &', the computation follows the path from the root
0 v; 43

(2) For each computation vertex » on the path from the root to the vertex v, |,
excluding the vertex v, ,, there is a pair of bivariate polynomials (F/( x, ),
G,(x, y)) with integer coefficients, such that for each input (a, b) e &,
G,(u,v) # 0, and f,(a, b) = F/(u,v)/G!(u, v), where (u, v) is the (r®”,
a, af, o, AV, AD)-generator of (a, b); and

(3) The leading coefficient of each of the polynomials G!(x, y) is positive.

(4) For each polynomial F,(x, y) and each (a, b)e &7 the sign of F/(u, v)
(where (u, v) is the (', a{”, af?, af?, A”, A¥)-generator of (a, b)) is
the same as the sign of the leading coefficient of F/(x, y). This also holds
for all polynomials G!(x, y) (i.e., G,f(x, v) > 0).
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(5) Let =, = {E}’j(x, ), Gv’/(x, Y |Jj=<1i}. Define D, =deg(X)+ 2 and
M, = hgt(2). Then, r < i, max{«{’, D} <2?, and max{a}’, of’,
M} <2

As in the proof of Lemma 3.5, we construct the set .7 ™" < # @ guch that
Property 2 is satisfied also for the vertex v,,, and each input (a, b)ye 7"V,
We also select an outgoing edge of v,,, and prove that for each input
(a,b)e »“*" the computation follows this edge. It is easy to check that
r''*Y < i+ 1. Therefore, in order to complete this proof, it is sufficient to
show that the following two inequalities hold:

adtr+ 1)

(i) max{a{*", D,_,} <27,

J2Hi+D

(ii) max{ad™V, of ", M, } <27

Now we follow the various cases in the proof of Lemma 3.5, and argue that
Inequalities (i) and (ii) hold in each of them. Note that these inequalities hold
for v, and v, because v, and v, are input vertices. (See the definition of a
computation tree in Section 2.) In our arguments we repeatedly use Lemmas 2. 1
and 2.2.

Let us first resolve the case when v,,, is a comparison vertex. From the
proof of Lemma 3.5, D,,, = D,, M, , =M, o{'"" = max(a'”, =, (P —

1 1
0)), ay*t" = max(al”, 7,(P — Q)), and af ™Y = oY, Recall that each of P
and Q is a product of two polynomials of degree less than D,, and height at
most M,. Therefore, deg(P), deg(Q) < 2D, and hgt(P), hgt(Q) < D’M?.
Now, Lemma 2.3 implies that 7,(P —~ Q) < 2D, < 22" and 7, (P — Q)
<2M2D? <2* " Clearly, inequalities (i) and (ii) hold in this case.
Next, consider the case when v, is a compuration vertex. The following
possibilities may arise:
Suppose that O € {+. —}. The degree of POQ is less than 2D,, and its

height is bounded by 2 M>D?. From the proof of Lemma 3.5. it is clear that
D, <2D,. M, <2M?D}. o'V =max(a, ,(POQ), ol —

1 »
max(ay’, m,(POQ)). and af"" = «{”. By an argument similar to the one
given in the previous case, inequalities (i) and (ii) also hold in this case.

Suppose that O = {*, / }. From the proof of Lemma 3.5, it follows that:

D\ <2D;, M, =MD}, o'*" =a” for j=1,2,3. Therefore, in-
equalities (i} and (ii) hold in this case.

The only remaining case is when O = mod. The rest of this section is
devoted to this case.

Case 1. P(x.,y) < Q(x, y). From the proof of Lemma 3.5, it follows that
D =D, M, =M, """ =max(e!”, 7,(Q — P)), " = max(al’,
m,(Q — P)). and of "V = of’. By an argument similar to that in the case of

the comparison vertex, inequalities (i) and (ii) hold in this case.

Case 2. Q(x, y) is the constant (and, therefore. the positive integer) L.

Since L is the product of two constants of height at most M, L < M}. From
the proof of Lemma 3.5 o{"™*" = o{, oV =af". D, <2D, M, , <
M?D}, and oy "V = Lal” < M2a{). Therefore, inequalities (i) and (ii) hold
in this case.
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Case 3. The leading monomial of Q(x, y) is Lx“, that is, no power of y
appears in the leading monomial of Q(x, y). In this case, we work with the
bounds D and M instead of D; and M, respectlvely This is done in order to

simplify the arguments in Case 4. For now, it is convenient to assume that
D =D;and M = M,.

Observe that L < DM?, and deg (Q)(=d o> deg (Q) = 2D —2. By
Corollary 4.5, deg(R) < 4D?, and hgt(R) =< (2D)*2(D>M?)?P,

From the proof of Lemma 3. 5, it follows that a{*V = L% ol <
(DM?)*Po). Therefore, a{™ " satisfies inequality (ii) in this case.
In Subcase 3.1, (’“) = max{a{’, w(B), T(BQ + R)}, iV =

max{ o”, 7r2(B) ,(BQ + R)} and two new polynomials, BQ(x y) +
R(x, y) and L? Py(x, ¥)Q,(x, y) are added to the set =, ,. The degree and
height of each of these polynomials can be bounded as follows:

(1) deg(BQ + R) < 4D?% and hgt(8Q + R) < L7hgt(Q) + hgt(R) <
LiD’M? + (2 D)*°(D>M?)*P.

(2) deg(L?P,Q,) < 2D, and hgt(LP,Q,) = L°hgt(P,0,) < L'D>M>.

(3) Recall that LdB(x y) = LYQ(x, y) — (BO(x, y) — R(x, )). There-
fore, deg(L?B) < 4D?, and hgt(L?B) < L°hgt(Q) + hgt(R) < LD>M?>
+ (2D)2D(D2M2)“D This implies that w,(B) = «,(L?B) < 4D?, and
since L?B is a polynomial with integer coefficients also 7rZ(B) =
2hgt( LYB).

We conclude that inequalities (i) and (ii) hold in this case.

In Subcase 3.2 af'*" = max(a{’, 7)), ai*? = max(ay’, 7,), where 7, =
max{ (R), 7r1(LdQ R)}, ™, = max{ 7r2(R) 7,(LYQ — R)}, and two new
polynomials, R(x ») and LdP (x y)Q,(x y) are added to the set X .
Notice that deg(R) deg(LIQ ~ R) < 4D?, and hgt(R), hgt(Q — R) <
LD*M? + (2D)*°(D>M?)*P. Therefore, by an argument similar to that in
Subcase 3.1, inequalities (i) and (ii) hold in this case.

Case 4. The leading monomial of Q(x, y) is Lx%y’. .Recall that in order
to reduce this case to Case 3, we substitute x by «{’y®+ z in all the

polynomials of the set ¥, where 6 < D,. Let X be the set of polynomials (in
variables b and z) obtamed by this substitution. Let D= deg(E) + 1, and
M = hgt(3). 1t is easy to check that D < D? and M < («P)?~'D,M..

Then, the argument in Case 3 implies that the inequalities (i) and (ii) hold in
this case. []

In Case 3 of the above proof and in the previous section, we asserted bounds
on the degree and the height of the remainder polynomial R(x. y). For
completeness, we prove these well-known bounds in the following lemma.

Lemma 4.4, Let P(x, y) and Q(x, y) be two bivariate polynomials with
mteger coefficients bounded in absolute value by M and N, respectively. If
Lx? is the leading monomial of Q(x, y), then P(x,y) =
/L 'A(x, y)Q(x, y) + 1/L3*'R(x, y), where A(x, y) and R(x, y) are
polynomials with integer coefficients, hgt(R) < (2 + deg (Q))°T'MN®*",
6 =max{—1, deg (P) — deg (Q)}, deg (R) < deg (Q){=d}, degy(R)
= deg ,(P) + ddeg (Q).

Proor. The proof is by induction on §. The hypothesis holds for the basis
case 6 = — 1 with A(x, ) = 0and R(x, y) = P(x, y).
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For the induction step, assume that the hypothesis holds for all 6 < &, for
some k> —1. We prove it for k. Let P(x,») = p(»)x¢+ p,(»)x""
+ -+, be such that k =e — d. Consider the polynomial S(x,y) =
LP(x, y) — x*p(»)O(x, y). hg(S) < 2 + deg,(Q)MN, deg,(S) =<
deg (P) — 1. and deg (S) = deg ,(P) + deg (Q).

Applymg the hypothesxs to the pair S(x, ) and O(x, y). yields S(x, y) =
(1/L% A(x, »)Q(x, ») + (1/L*)R(x, y). Substituting for S(x.y), we get
P(x,y)=1/L""(A(x, y) + L’x*p, (MQ(x, ) + 1/L"'R(x, y). In ad-
dition, hgt(R) = (2 + deg (0)°((2 + deg (Q)MN)N® = (2 +
deg, (Q))“‘MN‘S+1 deg (R) < deg (Q){ =d}, and deg (R) < deg (S) +
(6 — Ddeg ,(Q) = deg, (P) + 5 deg ,(Q). [

CoroLLaRY 4.5. Let P(x, ¥) and Q(x, y) be two bivariate polynomials
of degree less than an integer D, and integer coefficients bounded in
absolute value by M. If Lx? is the leading monomial of Q(x, y), then
P(x,y) = 1/ A(x, »)Q(x, ) + 1/L*"'R(x, y). where A(x,y) and
R(x, y) are polynomials with integer -coefficients, hgt(R) < (I +
DYPMP*H! 5 = max{~1, deg (P) — deg (Q)}, deg (R) < deg (O){=
d}, deg (R) < D?.

5. Conclusion

We have proved an Q(log log n) lower bound on the depth of any computation
tree with operations from the set { +, — , *, /, mod}, that decides if « and b
are relatively prime, for all pairs of n-bit integers a, b. We do not believe this
bound to be tight, and a better lower bound for this problem would be
interesting.

In a companion paper [11], we prove other lower bounds for a large class of
problems using a similar technique. We also extend our technique to prove
similar lower bounds on the time complexity of Random Access Machines;
additional arguments are required to show that a RAM cannot use indirect
addressing to speed up computations in these cases. In [10}, we use some
additional tools from approximation theory to prove lower bounds for approxi-
mating the square root.

Notice that the gcd problem can be written as an Integer Linear Program.
Therefore, one of the consequences of our results is that there is no algorithm
for the Integer Linear Programming problem, using operations only from the
set {+, —,*, /,mod}, whose running time depends only on the number of
variables and the number of constraints, and not on the absolute value of the
coefficients.

Finally, we do not know of any techniques that give nontrivial lower bounds
when the set of operations is extended to include all Boolean operations.
Finding such a technique would be very interesting.
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