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Abstract. It is proved that no fimte computation tree with operations {+, – , *. /, mod, < } can decide

whether the greatest common divisor (gcd) of a and b is one, for all pairs of integers a and b. This

settles a problem posed by Grotschel et al. [6]. Moreover, if the constants exphcitl y involved m any

operation performed in the tree are restricted to be “O” and ‘‘ 1‘’ (and any other constant must be
computed), then we prove an Q (log log n) lower bound on the depth of any computation tree with

operations { + , – , *, /, mod, < } that decides whether the gcd of a and b is one, for all pairs of n-bit

integers a and b.
A novel technique for handling the truncation operation is implicit in the proof of this lower bound.

In a compamon paper [1 1], other lower bounds for a large class of problems are proved using a similar

technique.
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1. Introduction

The problem of computing the greatest common divisor (gcd) of two integers is

one of the oldest computational problems. The first known algorithm to solve

this problem was the Euclidean algorithm, which was discovered more than two
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thousand years ago. Interestingly, this algorithm has survived to the present

day. Knuth [9] callsit “the granddaddy of all algorithms. ”

The question whether this algorithm and its variants are the best possible is an

important open problem. Much effort has been devoted to analyzing the

Euclidean algorithm and to binding its behavior. For an excellent summary, we

refer the reader to [9]. We mention only two results: the first due to G. Lam6

(1845), who proved that the worst-case running time of the Euclidean algorithm

with division steps is linear in the length of the input, and the second due to

Collins [4], who analyzed the average behavior of the same algorithm.

Instead of studying the behavior of an algorithm, we provide a nontrivial

lower bound on the complexity of the gcd problem on a model of computation.

Our lower bound applies to the problem of deciding if a pair of integers a and

b, is relatively prime, that is, is gcd( a, b) = 1? Note that the problem of

computing the gcd is at least as hard as this relative primality testing problem.

The model of computation considered in this paper is the computation tree

[2, 14, 20]. We prove that no finite computation tree with operations

{+, -, *, /, mod} can decide whether a and b are relatively prime. for all

pairs of integers a and b. Moreover, if the constants explicitly involved in any

operation performed in the tree are restricted to be “O” and ‘‘ 1‘’ (and any

other constant must be computed), then we prove an Q (log log n 1) lower bound

on the depth of any computation tree with operations { + , – , *, /, mod}, that

decides whether a and b are relatively prime, for all pairs of n-bit integers

a > b > 0. A novel technique for handling the truncation operation is implicit

in the proof of the lower bound mentioned above.

Remark. Throughout the paper “/” stands for exact division, for example,

8/5 = 1.6. Observe that division with truncation (’‘integer division”) can be

implemented using ‘‘ /” and “mod” in a constant number of steps. In addition,

all sets of operations in this paper are assumed to include the ‘‘ < ‘‘ comparison

operation, which is never explicitly specified.

Grotschel et al. [6], while working on their book Geometric Algorithms and
Combinatorial Optimization, asked if there exists a strongly polynomial

algorithm for the gcd problem. (See [6, pp. 32– 33, p. 225]. ) Notice that since

there are only two integer inputs to the gcd problem, any strongly polynomial

algorithm for this problem must have a constant number of arithmetic opera-

tions. A result of Stockmeyer [18] implies that there is no strongly polynomial

algorithm for the gcd problem when the set of operations is restricted to

{ + , -, *, /}. The results of this paper imply that there is no strongly

polynomial algorithm for the gcd problem even when the set of operations is

extended to { +, – , *, /, mod}.
In the rest of the introduction, we briefly review some of the previous work

relevant to this paper. The computation tree is a nonuniform model of computa-

tion, while the Random Access Machine (RAM) is the corresponding uniform

model of computation, and hence, weaker in this sense. On the other hand, a

RAM is capable of indirect addressing while a computation tree is not.

However, the power of indirect addressing has not been characterized, and it is

not known whether it is a substantial advantage. The power of RAM has been

extensive y studied [15, 17]. A RAM of time complexity T with operations

1The base of all logarithms m the paper m two.
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from a set (of arithmetic and boolean operations) OP, and without indirect

addressing, can be simulated by a computation tree of depth 0(T) with

operations from the set OP. (See, e.g., [13]. ) This implies that our lower

bound holds for RAMs without indirect addressing. In a companion paper [1 1],

we show that a similar lower-bound holds for RAMs with indirect addressing.

To the best of our knowledge, prior to this work, no nontrivial lower bounds

were known on the depth of computation trees with (i) operations from the set

{+, – , *, /, mod}, and (ii) a constant number of integer inputs. Perhaps, one

reason for the lack of progress in this area is that this set of operations does not

possess nice algebraic properties. It is worth pointing out that any decision

problem with an n-bit input can be solved by a computation tree of depth 0(n),

that uses only the comparison operation. In addition, since the length of

numbers is not restricted in the computation, even the weaker uniform model,

that is, RAM without indirect addressing, can simulate any PSPACE-computa-

tion in polynomial time [3, 14, 17]. Moreover, it is known that hard problems,

for example, factoring, can be solved on such a RAM, in linear time [16].

For the model of algebraic computation trees (i.e., computation trees that

use only aigebraic operations, including +, –, *, and /), good lower bound

techniques are known when all the inputs are either real or rational numbers

[2, 21]. On the other hand, few results are known when the inputs are restricted

to be integers (as in our case). Paul and Simon prove an Q ( n log n) lower

bound for sorting n integers [13]. (See also [5].) Their result also applies to

RAMs with indirect addressing. They also show that the sorting can be done in

0(n) steps if boolean operations are allowed.

Stockmeyer [18] proves a ~(n) bound on the depth of any algebraic

computation tree with the operations { +, – , *, /}, that decides if a given n-bit

integer is odd. This implies a 0(n) bound on the depth of any algebraic

computation tree that decides if (i) a divides b, or (ii) gcd( a, b) = 1, and on

the depth of any algebraic computation tree [2, 19, 20] that computes

(i) gW a, b), (ii) a mod ~, (iii) La/ bj , or (iv) bitwise O of a and b, for
O e {and, or, exclusive-or} ; for all n-bit integers a and b.

The nature of the mod operation, which is the main object of study in this

paper, is examined in [1], [7] and [8]. Moran et al. [12] prove tight bounds on

the depth of decision trees with arbitrary queries (including queries involving

the mod operation). However, these bounds are nontrivial only when the

number of inputs is nonconstant.

The paper is organized as follows: Section 2 includes some preliminary

definitions. Sections 3 and 4 are devoted to the proof of the fl(log log n) lower

bound on the depth of any computation tree with operations { +, – , *, /, mod},

that decides if a and b are relatively prime for all pairs of n-bit integers

a > b >0. The proof is presented in two parts. First, in Section 3, we prove a

nonconstant lower bound on the depth of any computation tree that tests relative

primality, that is, no fixed, finite depth computation tree can solve the relative

primality problem for all pairs of integers. Then, the fl(log log n) bound is

obtained in Section 4 by a careful analysis of the proof in Section 3. Finally, in

Section 5 we summarize our results and list some open problems.

2. Preliminaries

In this section, we first recall the definition of the computation tree model.

Then, we define some properties of polynomials and rational expressions.
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Finally, we define a lexicographic order on the set of bivariate polynomials and

prove some of its properties.

2,1. THE COMPUTATION TREE MODEL. We assume that the reader is familiar

with the computation tree model. (See, e.g., [2] and [20]. ) Below, we briefly

recall this model, and define some additional terminology used throughout the

paper in relation to the model.

A computation tree T for a two input problem is a tree with labeled vertices.

The label of vertex v is denoted f,,. The tree T has four types of vertices:

(1) Input vertices. The input vertices are the vertices in the first two levels

of T. Each of these two levels has exactly one vertex. The two input

vertices are labeled by the input variables (i. e., for input a, b, we have

f, = a and f, = b, where r is the root and s is its only child).
(2) Computation vertices. Each computation vertex v is labeled with a

binary operation fy = go h, and has only one child. Throughout this

paper, g, h c c U { fy I w is an ancestor of v in T} and O e OP, where ‘<

is the set of available constants, and OP is the set of available operations.

In this paper, OP = { +, – , *, /, mod}. The set ‘i will be restricted to

either the set of rationals (2), or the set {O, 1}.

(3) Comparison vertices. Each comparison vertex v is labeled with g : h,

where, again, g, h e %’U { f& I ~ is an ancestor of v in T}. Each compari-

son vertex has two children.

(4) Output vertices. The output vertices are the leaves of T. Each leaf v of

T is labeled with an element from the set {O, 1}.

The computation for input (a. b) starts at the root of the tree T. When it

arrives at a computation vertex v, the function fV = g O h is evaluated at the

input (a, b) by computing g O h, and then the computation proceeds to the only

child of v. When the computation arrives at a comparison vertex labeled with

g : h, the functions g and h are evaluated. The computation proceeds to the left

child if g < h at the point ( a, b), and to the right child, otherwise. The

computation terminates at a leaf by producing the value of the label associated

with it as the output.

A computation tree is said to solve a decision problem, if it produces the

correct answer for each instance of the problem.

We remark that when OP = { +, – , *, /}, we can associate a rational

expression rz,(x, y ) = ~ (x, y), to each vertex v, which is either a computation

vertex or a leaf. This label will have the following interpretation: For all

inputs (a, b), if the computation on the tree T wit~l input (a. b) arri~~es at
the vertex v, then f, = rv(a, b),

2.2. POLYNOMIALS AND RATIONAL EXPRESSIONS. In the sequel, we consider

the degree and the height of polynomials and rational expressions.

The degree of a polynomial P( x, y) with respect to a variable x, denoted

deg.(P), is the maximum exponent of x appearing in any monomial of

P(x, y).
The degree of P, denoted deg( P), is max{ deg Y(P), deg Y( P)}. The height

of P, denoted hgt( P). is the maximum among the absolute values of the

coefficients of P.
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For a set A of polynomials, the degree of A, denoted deg(A), is defined by

deg(A) = max ~eAdeg( ~). Similarly, the height of A, denoted hgt(A), is
hgt(A) = maxP,Ahgt(P).

For a rational expression R( x, y) = P( x, y)/ Q( x, y), where P and Q are

bivariate polynomials, define the degree of R to be the larger of the degrees of

P and Q. Similarly, define the height of R to be the larger of the heights of P
and Q. Notice that in our definition of the degree and the height of rational

expressions cancellations are not allowed. For example, the degree of R( x, y)

= P( X, y) /P( x, y) will be the degree of P and not zero, and the height of R
will be the height of P and not one.

LEMMA 2.1. Let P( x, y) and Q( x, y) be two bivariate polynomials.

Then, for Oc {+,- }, deg(POQ) < max{deg(P), deg(Q)} and
hgt(POQ) s hgt(P) + hgt(Q); deg(POQ) s deg(P) + deg(Q) and
hgt(POQ) s (1 + deg(P))(l + deg(Q))hgt(P)hgt( Q).

PROOF. We only prove the bound on hgt( P . Q). Observe that when we

multiply two bivariate polynomials, each of the coefficients of the product is the

sum of at most (1 + deg( P))( 1 + deg( Q)) terms, each of them being the

product of a coefficient in P by a coefficient in Q. The bound on hgt( PO Q)
follows.

The other bounds are also straightforward. ❑

LEMMA 2.2. Let R(x, y) = PI(x, y)/Pz(x, Y) and S(X, Y) =

Q,( X, Y)/ Qz( X, Y) be two bivariate rational expressions. Then,
for Oc{+, - }, deg(ROS) s deg(R) + deg(S) and hgt(ROS) s 2(1 +

deg(R)) (1 + deg(S))hgt( R)hgt(S); deg(ROS) s deg(R) + deg(S) and
hgt(ROS) s (1 + deg(R))(l + deg(S))hgt(R)hgt( S).

PROOF. The bounds follow from Lemma 2.1 and from the fact that for
oc{+, – }, ROS = PIQ,OQ, P,/P, Q,. ❑

2.3. A LEXICOGRAPHIC ORDER ON THE BIVARIATE POLYNOMIALS. We define a

lexicographic order on the set of the bivariate polynomials. For this purpose,

we use the following lexicographic order on the set of bivariate monomials.

Definition 1. For two monomials Cx’yJ and dx~yl, cx’y~ > dx~y[ if

either (l)i>kor (2)i=kandj> lor(3)i =k, j=landlcl>ld\ .

We say that a polynomial is written in its normal form if it is written as a

minimal sum of monomials, and these monomials are sorted in descending

lexicographic order. Throughout this paper, we assume that all polynomials are

written in their normal form.

Definition 2. For two bivariate polynomials P( x, y) and Q( x, y),

P( x, y) > Q( x, y) if, when written in their normal forms, there exists some
i > 1, such that (the ith monomial in P) > (the ith monomial in Q), and all

the monomials preceding it are identical in both P and Q.

Given a polynomial P( x, y), let the leading monomial of P( x, y) be the
first monomial in the normal form of P( x, y). Let the leading coefficient of

P( x, y) be the coefficient of this monomial.

Below, we relate the lexicographic order defined on the polynomials, and the

order among their values at certain points.



458 Y. MANSOUR ET AL

LEMMA 2.3. For each bivariate polynomial P( x, y), there exist positive
integers TI(P) and Zz( P) such that for all (a, b) satisfying a > bin’(p) and
b > T,(P), the sign of P(a, b) is the same as the sign of the leading
coeffi~ient of P( x, y). Furthermore, TI(P) < degY(P) + 1, and ~c(P) s
2 M/L, where L is the leading coefficient of P and M is the height of P.

PROOF. Let P(x, y) = X~=OL~x’’y~’, where P(x, y) is written in its

normal form, and L ~ is the coefficient of the k th monomial (LO = L). Denote

tk(x, y) = x“y J’. Let TI(P) = 1 + nlaxO~k-_n_l{~~+, – ~A}. clearly,

ml(p) s deg,v(P) + 1. From the lexicographic order it follows that

t~+l(x, Y)/t~(-x, Y) = X’YJ, where either i <0 andj < ml(P) or i = O and
j <0. Thus, for all positive (a, b), if a > bw’(p) then tk+l(x,y)/tk(x, y) <
I/b, and hence, tk(x, Y)/tO(x, y) < l/bk. Suppose that L >0, we show
that for all (a, b) satisfying a > bwl(P) and b > mz(P), P(a, b) is also

positive. For all positive (a, b), such that a > b ~1(‘),

To complete the proof, we show that for b > 2M/L, (1 – x~=, I L~ I /Lb~)

>0 or, equivalently, Z ~=, I L~ I /Lb k < 1. This latter inequality follows from

Similarly, we can prove the Lemma for the case L <0. ❑

From Lemma 2.3, it follows that for any two polynomials Q( x, y) and

R( x, y) there exist positive integers m,( Q – R) and Tz( Q – R) such that for

all (a, b) satisfying a > b“’(Q-~) and b > Z-Z(Q – R) either always Q(a, b)
< R(a, b) or always Q(a, b) z R(a, b).

3. The U(1) Lower Bound for an Arbitrary Set of Constants

In this section, we prove a nonconstant lower bound on the depth of any

computation tree with OP = { +, – , *, /, mod}, that computes the gcd of all
pairs of n-bit integers. We assume that all constants explicitly involved in any

operation performed in the tree are rational numbers. In the next section, we

restrict the constants explicitly involved in any operation to be ‘‘ O‘’ and ‘‘ 1‘’,

and prove an fl (log log n) lower bound by a careful analysis of the proof given

below.

THEOREM 3.1. There is no (finite depth) computation tree with OP =
{+, -, *, /, mod), that decides if a and b are relatively prime, for all
pairs of integers a > b >0.

We begin with some notation and definitions.
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Definition 3. Let r, a ~, az, and CY~ be nonnegative integers. Let A =

(3,, 6*,..., 6,)and A=(h,, ~,..., h,) be r-dimensional vectors of positive

integers. For positive integers UO, and U,+l, the pair (uo, u]) is

(r, al ,~,, CY,, A, A)-generated by t$ pa~~’(ur, u,+,) if there exist positive
integers Uz, us, . . . , ur_, such that:

U. = Al(ul)a’ + zf2,

U1 = &(u2)a’ + U3,

(1)

u,= Az+,(u,+,)”+’ + U,+2>

u = hr(ur)a” + u,+,,r– 1

)
al

u,> (Ur+l 7 (2)
u r+l > ~27

Zfr=ur+, = 1 (mod a,). (3)

In this case, (u,, u ,+1) is the (r, al, a?, a,, A, A)-generator of (uO, Ul),
and U2, Uy, . . . , Ur+l is the (r, al, CY2,as, A, A)-generating sequence for

(u~, u,).
Notice that eqs. (1) and (2) imply that UO > U1 > Uz > us > “ “ c > u, >

u r+]”

Definition 4. Let S(r, CYl, 0!2, ci3, A, A) denote the following set of or-

dered pairs of positive integers:

{(u,, u): there exist integers u,, u,+ such that (uO, u,)

is(r, al, a2, ct3, A, A)-generated by (u,, u,+,)}. (4)

For convenience, we omit the null vectors A and A whenever r = O. In this

case, the set S(O, al, CYz, CYq)consists of all pairs (uo, u]) such that U. > (Ul)a’,

UI > U2, U. a u ~ a 1 (mod aq) (in accordance with the above definition).

Perhaps the most important characteristic of the above definitions is its

similarity to the Euclidean algorithm for solving the gcd problem. As an

immediate consequence of the definition, we get the two properties stated

below. These properties are the key to our proof strategy.

LEMMA 3.2. THE CORRESPONDENCE PROPERTY. There is an one-to-one cor-
respondence bet ween the elements of the sets S( r, a,, CYz, us, A, A) and
S(O, al, CYz, CY3). Specifically, each pair (uo, ul) c S(r, al, ~z, as, A, A)
corresponds to the unique pair (u,, UT+, ) ~ S(O, al, a2, as) such that

(~,, ~,+,) is the (r, CYl, a2, CY3,A, A)-generator of ( UO, Ul). Furthermore,
if (uO, Ul) corresponds to (u,, Ur+l), then gcd(uo, u,) = gcd(u,, U,+l).

PROOF. Let a2>a3> ““. >a,+l and b2Bb3> ““” >b,+l, be the

generating sequences for ( aO, al) and ( bO, b ~), respectively. It is easy to check
that if (al, ai+l) # (b,, bi+l) forsome O s i s r, then (aJ, ay+l) # (bJ, b,+l)
for any j, O s ~ s r. The assertion about the gcd’s follows from the Euclidean

algorithm. ❑

LEMMA 3.3. THE CONTAINMENT PROPERTY. Let A’ and A’ be (r + l)-

dimensional vectors of positive integers, obtained from r-dimensional
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vectors A and A by appending positive integers 6 and ~, respectively.
Then, S(r + 1, 1, az, a~, A’, A? G S(r, al, az, a~, A, A), provided
6> al and h= O (rnoda3).

PROOF. Suppose that (aO, al)e S(r+ 1, 1. CZz. as, A’, A’), and let az > as

> . . . > a,> a,+, > a,+z be its generating sequence. By definition, a, =
ha:+, + a,+z. Therefore, a, = 1 (mod a ~), and a, > a:~ ~. In addition. a,+,
> a;:z > az. Hence, (aO, al)e S(r, al, az, as, A, A). U

LEMMA 3.4. S(O, al, CKz, al) contains two pairs (aO, al) and ( bo, bl),

such that gcd(ao, al) # 1 andgcd(bO, bl) = 1.

PROOF. Let e be the least exponent such that (1 + as) e > az. Define

(ao, al) = ((1 + CY,)(e+’)a’, (1 + al)’), and (b{), b,) = (1 +

a3(l + O!l)
(e+ I)a, (1 + aq)’). Clearly, gcd(ao. al) = (1 + ~~)e # 1. and

gcd(bo, bl) = 1. ‘n

The proof of Theorem 3.1 is based on the following lemma:

LEMMA 3.5. Let T be a computation tree with the operations

{+, -, *, /, mod}, that decides if a and b are relatively prime, for all
integers a > b >0. Then, there is a path P from the root of T to a leaf,
and a subset Y of inputs, with the follo wing properties:

(1) Y= S(r, al. az$ CYq,A, A), forsorne r, al, az, as. A, and A; and
(2) For each input (a, b) ~ ~~. the computation follows the path Y.

Before proving Lemma 3.5. we show how it can be used to prove Theorem

3.1.

PROOF OF TmoREhf 3.1. Suppose that we are given a computation tree T

with the operations { +. – , *, /, mod}, that decides if a and b are relatively

prime, for all integers a > b >0. By Lemma 3.5, there is a path Y from the

root of T to a leaf, and a set of inputs ‘Y= S(r, CYl, a2, as, A, A), such that

for each input (a, b) c ~’ the computation follows the the path #. Let v be the

leaf at the end of the path Y. By the definition of a computation tree, the output

for each input whose computation terminates at the leaf v is the same as the

label of v. But this contradicts Lemma 3.4, which asserts that the set

S(O, a,, az, as), and hence (by the Correspondence Property) the set Y ,

consists of some pairs that are relatively prime, and some that are not. Hence,

the tree T does not decide the relative primality question for each pair of

integer inputs. ❑

The most involved part of this section 1s the proof of Lemma 3.5 given

below.

PROOF OF LEMMA 3.5. Let us denote the vertices on the path # by

U,, U2, .,., U[, in that order, where u, is the root of the tree T, v, is a child of

ul–l> and v, is a leaf of the tree T. We define the path P and the set $’

inductively, starting with the path v,, Uz, v~ (v, and Vz are the input vertices

and V3 is the only child of UC), and the set 7 ‘z) = S(O, 1, 0, 1) (which consists

of all pairs (a, b), where a > b > 0). As part of the induction hypothesis, we

maintain some additional properties of the path and set under consideration,

These properties are described below.
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Suppose that we have (a) selected a prefix of @. which starts at u ~, and

ends at a vertex vi+,, and (b) constructed the set $ (1) =

S(r(’), a~’), CY~),a!), A(’), A(’) ), with the following properties:

(1) For each input (a, b) ~ J“ “), the computation follows the path from the root

to u,+,.

(2) For each computation vertex v on the path from the root to the vertex U,+,,

excluding the vertex U[+,, there is a pair of bivariate polynomials

(~,’( x, Y), G;( X, Y)) with integer coefficients, such that for each input
(a, b) c 9(’), G;(u, u) # O, and fv(a, b) = FU’(U, u)/ Gj(u, u), where
(u, u) is the (r(z), a~’), CY~), a:), A(’), A(Z))-generator of (a, b).

We construct the set & “+1) G Y ‘z) such that Property 2 is satisfied also for
~‘ ~t+ l). We also select an outgoing edgethe vertex U,+, and each input (a, b) c ~

of Ul+l and prove that, for each input (a, b) e ~’”+’), the computation follows

this edge.

For the proof, we maintain two additional properties of the polynomials

(Fu’( x, y), G;( x, y)) and the input set Y “). These properties are:

(3) The leading coefficient of each of the polynomials G;( x, y) is positive.

(4) For each polynomial F;( x, y) and each (a, b) c ~”) the sign of ~~(u, U)

(where (u, U) is the (r(’), ~~’), CY~), ~~), A(’), A(’))-generatorof (a, b)) is

the same as the sign of the leading coefficient of F,’( x, y). This also holds

for all polynomials G;( x, y). (That is, G;(u, u) > O.)

By the definition of the tree T, either the value fL,,, = g oh is computed, or

the comparison g : h is resolved, at the vertex U,+,. ‘Here, g,he YU {fu, \uJ
is a computation vertex, j s i} and 0 ~ { +, – , *, /, mod}. We use the

following notation in the rest of this proof

(P,(X.Y)J’2(AY))

‘((numerator of g, denominator of g) if gE2~,

(~(x, y), Gj(x, y)) if g= f,,,

and

(Q,(x, Y)> Q,(x. Y))

[

(numerator of h, denominator of k) if h~l~
.—

(%(x, y), Gj(x, y)) if h=fV”

Finally, let

~(x, y) = P,(. x,y) Q2(x, y), Q(x. y) = ~2(x, y) Q,(x, y).

and

H(X, Y) =~z(x, Y) Qz(x> Y).

The proof is based on a case-by-case analysis. In each case, we will define

the next vertex u,+ ~ on the path .7, the parameters r(’+i), a~’+l), a~+i).

“+1), A(’+l), A(’+l), and the polynomials (Fu~+l(x, y), G~,+l(x, y)), for eacha3

computation vertex u, G { VI, u2, . . . , UI+ I }. Some of these parameters will be
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defined explicitly, while those not specified explicitly are assumed to take
the value of the corresponding parameter with superscript (i). After specify-

ing these parameters, the set Y (‘ + 1) will be defined to be S(r(’+ l’, CYI1+’),
~$+1) (1+1) A(l+l) A(J+l~)

“We ‘n~~e two things. First, our construction is such that the set ‘Y”+ 1) is a

subset of Y”). Second, the only case where r(’ + 1) # r(’); that is, the dimen-

sions of A(Z+ 1) and A(l + 1) are not the same as the dimensions of A(’) and A(Z), is

in case U,+ ~ is a mod vertex and some power of y appears in the leading

monomial of Q( x, y) (the last case of the proof).

Let us first resolve the case when v,+, is a comparison vertex. Let

B( x, y) = P( x, y) – Q( x, y) # O. Then, Lemma 2.3 guarantees the exis-
tence of two positive integers m I( B) and Tz( B), and o c { < , >}, such that

for all pairs (a, b), where

a > ~T,(m and b > T,(B),

P,(’a, b) Q,(a, b)

P2(a, b) ● Q2(a, b) “

Thus, for all pairs (a, b) with this property, that arrive at the vertex v,+ ~, the

next vertex U{+? is either left-child of U1+ ~ if . = < , or the right-child of U,+,

if . => . Define a~’+’) = max(a~’), n-l(n)) and ci~+’) = max(a~), TZ(B)).
Let Y7(’+1) = S(r(’+l), ~~’+1), ~~+1), ~~+1), A(’+ll, A(’+l)). Clearly, ~ (’+])

G Y’(i), and for each (a, b) ~ ~f~+’) and each (17~,+1(x, y). G~,+l(x, y)),

Properties 1-4 are satisfied.

Next, consider the case when u,+, is a computation vertex. In this case, the

only child of u,+ ~ is chosen as u,+ ~. However, the choice of the set V”+ 1)

strongly depends on the particular operation 0 performed at u,+ ~.

Suppose that O ~ { + , - }. This case is very similar to the case of a

comparison vertex discussed above. Following the argument in that case, let

B(x, Y) = P(x, Y) OQ(X, Y). Define U{’+l) = max(a~’), ~,(11)) and u~+l) =

IIMX(CY1), 7’L2(~)). Let ~%‘1+1) = ~(r(~+’), a~l+l) ~~+1) ~$+1), A(l+l), A~~+l)

‘+ ’(x, y)) = (B(x, y), fi(x, y)’). Clearly, Y’(’+’) g’and ~(~~~(x, Y), G“,+,

V(’), and for each (a, b) e ~(’+1) and each (FU;+l(X, y), G~,+l(x, y)), Prop-

erties 1–4 are satisfied.

Suppose that O = *. This is the simplest case. We just let (FU~~~( x, y),

G’+l(x, Y)) = (~~(x, Y) Ql(x, Y), H(x, y)). Define ~(’+” = Y(’). Clearly.
fo~+each (a, b) e 7’(’+ 1) and each (FU~+l(x, Y), G:,+ ‘(x, y)), Properties 1-4

are satisfied.

Next, suppose that 0 = /. Let P be the sign of the leading coefficient of

Q,(x, Y). Define (~~~,’(x, Y). G~,~~(x, Y)) = (PP(x, Y), pQ(x, y)), and
Y “+1) = Y(’). This is the only case where G~~~(.x, y) is not a product of
G’+l(x, y) ’s, for j s i. Nevertheless, G (u,’u) # O for any (u, v) that is

th~ (r(z+ l). a} ’+l), ~$), (1+1), A(l+l’), “~(1+1)a3 )-generator of some (a, b) e
Y” +‘’, because T is a-well-defined computation tree that does not contain any

division by zero. Clearly, for each (a, b) e ff (‘ + 1) and each ( ~~,+ 1( x, y),
G’+ 1(x, y)), Properties 1-4 are satisfied.,,

The only remaining case is when 0 = mod. The rest of this section is

devoted to this case.
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Before we continue, let us recall the definition of the mod operation. The

mod operation is defined in the terms of the f Ioor operation. For a real number

r, L r ] is the greatest integer s r. For two rational numbers a and b, where

b#O, amodb=a -l blLa/lb l]. Notethat O<(amodb)<lbl.

In the following discussion, we repeatedly use the fact that for polynomials

PI(x, y), Pz(x, y), Ql(x, y), and Qz(x, Y), a rational function R(x, Y),

and any two integers (u, v),

PI(U, v)

(

mod Ql(~~ V)
=R(u, u)

P2(U, u) )QZ(U, V) ‘

if an only if P(u, u) - l?(u, u)ll?(u, u) (mod Q(u. u)). (Recall that P(x, y)

= P,(x, Y) QZ(X, Y), Q(x, Y) = Pz(x, Y) Q1(x, Y), and If(x, Y) =
PZ(X, Y) Q*(x, Y).)

Recall that for each (a, b) c &”),

PI(U, u)
fUz+l(a, b) =

mod Q1(u>LJ)

P2(U, u) Q,(u, u)’

“) A(’), A(’)) -generator of (a, b). In viewwhere (u, u) is the (r(~~, a~t), a!), ~q ,
of the above definition, we may assume, without loss of generality, that both

the operands of any mod operation are nonnegative. Then, Properties 3 and 4

imply that the leading coefficients of P( x, y) and Q( x, y) are positive. We

now show a way to construct Y ‘1+ ] ) G Y ‘1) such that for each input (a, b) ~
Y’(’) the value of f,,,+, is given by FU’~,l(tl, fi)/Gj~~(il, 0), where the (L, ~) is

the (r(’+’), a[’+l), CY$), u~+l), &i+lJ, ‘A(Z+ ‘))-generator of (a, b) and

(F~~~( x, y), G~,~:( x, y~) is a pair of bivariate polynomials.

Let d, = deg ..( Q), dY = deg Y( Q), and let Lxd’ y{ be the leading monomial

of Q( x, y). We consider the following four cases in order: (1) P( x, y) <

Q(x, Y); (2) Q(x, Y) is a constant, that is, dY = d, = O; (3) No power of y
appears in the leading monomial of Q( x, y), that is, 1 = O; and (4) 1>0.

Case 1. P(x, y) < Q(x> y). Let B(x, y) = Q(x, y) – P(x, y), Since

B( x, y) >0, Lemma 2.3 guarantees the existence of two positive integers

TI(B), and mz(l?) such that for each (u, v) GS(O, T1(B), TZ(B), 1), B(u, U)
>0. Observe that B(u, u) >0 implies that Q(u, U) > P(u. u). Thus,

Q,(u, v) P,(u, u) >0

Q2(u, u) > P,(u, v) – “

We conclude that for each (u, u) 6S(0, ml(B), XZ(B), 1),

PI(U, v) mod Q1(u>v) PI(U, v)

P2(U, u) Q~(usv) = p,(u, u) “

Let a~z+ 1) = max( a~z), ml(B)) and a~+l) = max(a$),
~(z+l) = S(r(~+l), ~~1+1), ~~+1), ~~+1), A(l+l), A(iyl;),

~z(B)). Define

and (F~,~,l( x, y),

G’+’(x, Y)) = (pl(x, Y), Pz(x, y)). Clearly, Y(z+l) G Y’(2), and’ for each
V!+l

(a, b) e Y“+’) and each (Fj,+’ (x, y), G;,+’( x, y)), Properties 1-4 are

satisfied.

Case 2. Q( x, y) is the constant (and, therefore, the positive integer) L.
Recall that all coefficients of P( x, y) are integers. Let P( 1, 1) = CL + (3,
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where c is an integer and (3 is a nonnegative integer such that O s 6 < L. Let

“+1) = La!). Then, for each (u, U) cS(O, aj’), ci~), ci$+l)), P(u, u) =a3
nUUL + ~, where nUU is an integer that depends on the pair (u. u). (Recall that

u=v-l(moda~+[) ).) Dividing by H(u+ u)( = ~2(u, u) Q2(u, u)) we get

PI(U, u) L B

P2(U, U) = “’”H(U, U)
+

H(u, u) “

Substituting for L = Q(u, u)( = P2(u, U) QI(U, u)). we get

PI(U, u) =n Ql(u’”) 6

P*(u, u) ‘“Q2(u, v) + H(u> U) “

Since O <6< L, Property 3 implies that

@<L _ Q,(u. v)
()<

H(U, u) H(u, u) – QZ(U, V) “

We conclude that for each (Li, u) c S(O, a~”, OJ$), CI$+i)),

P,(u, u)
mod “(z””) ~

P2(U, U) Q~(IX,U) = H(u, u) “

Define
(y(l+l) _ S(r(’+l), u~’+i), a~+l), a$+i~, A(’+ll, A(’+l)), and

(~~~,’(x, y), G~~~(x, y)) = ((?, If(x, y)). Clearly, ,7’(’+1) q Y “), and for

each (a, b) e Y’ ‘Z+ 1) and each (Fv:+ 1(x, y), G;,+ ‘(x, y)), Properties 1-4 are

satisfied.

Case 3. The leading monomial of Q( x, -v) is Lxdt, that is, no power of y

appears in the leading monomial of Q( x, y). Divide P( x, y) by Q( x, y) as

polynomials in x. Corollary 4.5 of the following section implies that P( x, y)

= L-d(A(x, y)Q(x, y) + I?(x, y)), where (i) d = degl(P) – degl(Q) +

1. (ii) all the coefficients of A( x, y) and R( x. y) are integers. and (iii)

degl(l?) < deg,Y(Q). Thus, R < Q.
As in Case 2, let A(l. 1) = cLd + ~, where c is an integer and P is a

nonnegative integer such that O s ~ < Ld. Let a;+]) = Lda~ ). Then. for each

(u. u) =s(0, a(’), a:’, a;)),

A(u, u) -p (mod Ld)

Hence, for each such pair (u, u),

P(u, u) -L-d((3Q(u, u) +R(u, u)) (mod Q(u, .)).

Dividing by H(u, .)( = P2(u, V) Q2(U, u)), we get

P,(u, u) _ DQ(u. u) +R(u>u)

[

mod Q,[u V)

P2(U, U) = LdP2(u, v) Q2(u, u) 1QZ(U, U) “

We distinguish between two subcases:

Subcase 3.1. ~ >0. Consider the polynomial L ‘d( 13Q( x, -v) + R( .x, y)).
Since deg.(R) < deg.(Q) the leading coefficient of this polynomial is (3/Ld
times the leading coefficient of Q( x, y) (which equals L). Let B( x, y) =

Q(x, Y) – L-d(BQ(x, Y) + R(x, Y)). The leading coefficient of B(x, y) is
(1 – ~/Ld) L. Since O <0 /Ld < 1, the leading coefficient of II( x, y) is
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positive. Using Lemma 2.3, let ml = max{ rl(B), T,(6Q + R)}, Tz =

max{~2(B), mz((3Q + R)}. Then, O < L-d(~Q(u, U) + R(u. u)) < Q(u, u),
for all u > uT‘, and u > T2. This implies that

o< 6Q(u, u) +R(utu) < Q,(u, u)

L~Pz(u, u) Qz(u, u) Q2(u, u) “

We conclude that for each such (u, u),

P1(Z4, u) mod Q1(u, V) _ ~Q(~+u) +R(u, u)

P2(U, v) Q,(u, u) - L~P, (u, u) Q2(u, u) “

Let a\’+l) = “+1) = max(a~), 7r2).max(a~t), ml), and ~Z Define ~f~t l] =

S(r(’~l), CY\’+*), u~+l), a$+l), A(’+l), A(’+’)), and (F’+ ’(x, y), GZ+l(X, Y))

= (BQ(x, Y) + R(x, Y), Ldpz(x, Y) QZ(X, Y)). Clea~fi, 7(’+1) g“’~~(’), and
for each (a, b) ~ .9 “+1) and each (FU~+l (x, y), G~,+l(x, y)), Properties 1-4

are satisfied.

Subcase 3.2. 13 = O. Define ~ ( x, y) as follows:

F(x, y)

[

R(x, y) if the leading coefficient of R (x. y) >0,
——

L~Q(x, y) + R(x, y) otherwise.

The leading coefficients of the polynomials I( x, y) ~nd LdQ( x, y) ~ ~( x, Y)

are positi~e. Using LemmS 2.3, let ml = m-ax{ T,(R), ml(L~Q – R)}, zg =
max{Tz(R), Zz(L~Q – R)}. Then, O s R(u, U) < L~Q(u, u), for all u >

u”, and u > r?. This implies that

i(u, v) < Q~(uu)
()<

L~P,(u, u) Q,(u+ U) Q,(u, u) “

We conclude that for each such (u, u),

P,(u, u) mod Q,(~U) i(u, u)

P2(U, u) Q,(u, u) = L~Pz(u, u) Qa(u, u) “

“+1) = max(a~’), ml), and u~+l) = max(cy$), Tz). Define Y’(’+l) =Let a ~
~(r(z+l), ~~~+1), ~~+1~, ~~+1~, A(’+l), A(’+l)), and (~~,~~(x, Y), G~~~(~, Y))

= (fi(x, y), L~P,(x, Y) Q2(x, y)). Clearly, Y’[’+l) G Y’(’), and for each

(a, b) e ,Y’(’+l) and each (Fu:+ 1( x, y), G:,+ 1( x, y)), Properties 1–4 are

satisfied.

Case 4. The leading monomial of Q( x, y) is Lx~ Y1. Our goal is to

reduce this case to Case 3 where no powers of y appear in the leading

monomial. We introdu~~ a new indeterminate z and subs~itute x using it. W(e

substitute x by a$) y a’ + z. Consider the polynomial Q( y, z) = Q(CYY)Y”I
+ z, y). Observe that the leading monomial in Q( y, z) is a constant times a
power of y, that is, no power of z appears in the leading monomial of

Q( Y, Z). Thus, we have reduced this case to Case 3 with only two differences:
(a) instead of the set y”~ of inputs there, we have the set Y = S( r(’ + 1), 1,
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“) A(’+’), A(’+[)), where r([+l)= r(’)+ 1; A(’+l) and A(’+l) are thecl;), 0!3 ,

(r+ 1)-dimensional vectors obtained by appending a}’) and a!) to A(’) and

A(’), respectively; (b)instead of thepolynomials (~v’(x, y), G~(.x, y)), we have

the polynomials (Fu’(y, z), G;(Y, z)) = (FU’(CX~)Ya~” + z, Y), Gj(a~)YQ!” +

z> Y)).
By the Containment Property, ~~ Y’(’). Hence, by an argument similar to

that given in Case 3, we can define ~he parameters a;’+ 1), for j = 1, 2, 3 and

consequently the set Y”+ 1) G Y-’, and the polynomials ( FU~+1( y, z),
G’+l(y, z)), forj = 1, ..., i + 1, that satisfy Properties 1–4. ❑

UJ

4. The Q( log log n) Lower Bound for the Constants {O, 1}

In this section, we prove an fl(log log n) lower bound on the depth of any

computation tree with OP = { +, – , *, /, mod}, that computes the gcd of all

pairs of n-bit integers. We assume that “O” and ‘‘ 1‘’ are the only constants

explicitly involved in any operation performed in the tree (and that any other

constant must be computed). In the following proofs, we refer to the proofs in

the previous section.

In order to prove an fl(log log n) lower bound, we need a modified version

of Lemma 3.4 and upper bounds on the parameters in the proof of Lemma 3.5.

LEMMA 4.1. Let al, CYz, as, and t be positive integers such that al < t,
and al,a~ < 2t. Then the set S(O, al, CYz,aj) (l {(u, u) :0< u, u <
2zt(’+ 1)} contains two pairs (aO, al) and (bO, b,), such that gcd(aO, al) # 1

andgcd(bO, bl) = 1.

PROOF. In order to prove this lemma, it is sufficient to prove each of the

numbers aO, al, bO, and b, (constructed in the proof of Lemma 3.4), is less

than 2zt(t+l). If e is the least exponent such that (1 + as) e > az, then

(1 + a3)e <22’. The desired upper bounds are an immediate consequence of

this observation. ❑

LEMMA 4.2. Let T be a computation tree of depth h that decides if a and
b are relatively prime, for all integers 2 n > a > b >0. Then, there is a
path .P from the root of T to a leaf, and a subset 3 of inputs, with the
following properties:

(1) Y’= S(r, CY1,CY,, CY,,A,A) fl {(a, b): O<a, b< 2”}, for some posi-
tive integers r, al, az, as, 81, 6Z, . .. ,6,, Al, ~,. . . . AT, where
A = (81, 62,..., 6,), and A = (Al, h,. ... h,);

(2) For each input (a. b) ~ Y , the computation follows the path .9;
(3) For each computation vertex v on the path P, there is a pair of

bivariate polynomials (Fp( x. y), GU(x. y)) with integer coefficients,
such that for each input (a, b) ● 9, G,(u, u) # O, and fu(a, b) =
FV(U, LJ)/GV(U, u), where (u, v) is the (r, al, az, as, A, A)-generator of
(a, b); that is, the value computed at v on input (a, b) ~ 2, is the
value of the rational expression FP( x, y)/ G“( x, y) at (u, v); and

(4) Let Z = { FU(X, y), GU(X, y) I v c ~}. Define D and M to be the degree
and the height of ~, respectively. Then, r s h, max{ al, D} < 22’h,

and max{ CY2,CZ3,M} < 2224A.

Before proving Lemma 4.2, we show how it can be used to prove the main

theorem of this section.
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THEOREM 4.3. Any computation tree with OP = { +, – , *, /, mod},
that decides if a and b are relatively prime, for all integers 2 n > a > b >0,
must have depth Q( log log n).

PROOF. Suppose that we are given a computation tree T of depth h <

l/410glog(nl/5), with OP = { +, – , *, /, mod}, that decides if a and b are

relatively prime, for all for all integers 2” > a > b > 0. By Lemma 4.2, we

have the following: (i) there is a path W from the root of T to a leaf v, and a

set of inputs Y’= S(r, al, az, as, A, A) fl{(a, b): O<a, b< 2”}, such

that for each input (a, b) ~ 5“, the computation follows the path .P; (ii) each

pair in Y is relatively prime if the label 1 E {O, 1} of v is one; otherwise, none

of the pairs in Y’ is relatively prime; (iii) ~, < 224k = n115, ~2, as < 22” =
.4h

2n”5, hgt(~v(x, Y)/ Gu(x, Y)) < 2“”5, and deg(~u(x, Y)/ Gu(x, y)) < nl/5.
Our goal is to arrive at a contradiction using Lemma 4.1.

Towards this end, let t = n1J5 – 1. We claim that each pair (u, U) c
S(O, ~1, ~o, ~q) n {(u, U) :1 < U, v < z2t(t+lj} generatesa pair (a, b) ~ ,~=

~(rj al, ~2, ~3, A,A) = S(r, al, a2, a~, A, A)~{(a, b): O<u, u< 2”}.

Notice that the inputs a and b are “computed” by the first two vertices of the

tree. If (u, u) is the generator of (a, b), then, by Lemma 4.2, a and b are

polynomials in u and u of height and degree less than 2”] s and n‘ /5,
respectively. This implies that the number of monomials in each of these

polynomials is at most n215 and that the value of each monomial is at most
2n115(22n2/f Znl/,

). Therefore, a, b s n2152”’152zn’’5zn”5 = n~1524n”5 < 2“, for

large enough n.
But assertion (ii) in the first paragraph of this proof, together with the

Correspondence Property, contradict Lemma 4.1 which asserts that some pairs

in the set (u, u)c S(O, al, a2, a3) (1 {(u, U) :1 s u, v < 22t(f+ ’)} are rela-

tively prime, and some are not. ❑

PROOF OF LEMMA 4.2. As in the proof of Lemma 3.5, we denote the vertices
on the path @ by U1, U2, ..., U1, in that order, where u~ is the root of the tree
T, Ui is a child of U1_~, and U[ is a leaf of the tree T. In the proof of Lemma

3.5, the path @ and the set Y were defined inductively, starting with the path

VI, Uz, U3 and the set Y(2) = S(O, 1,0, 1) (which consists of all pairs (a, b),
where a > b > O). Following that proof, suppose that (a) we have selected a

prefix of Y, which starts at u ,, and ends a vertex u,+ ~, and (b) constructed the
(’) A(’) A(’)) with the following properties:set Y’(l) = S(r(l), a~t), ~~), ~3 , 7

(1) For each input (a, b) e 5 “), the computation follows the path from the root

to vi+,;

(2) For each computation vertex v on the path from the root to the vertex U,+ ~,

excluding the vertex u,+ ~, there is a pair of bivariate polynomials ( FV’( x, y),

G;( X, Y)) with integer coefficients, such that for each input (a, b) G Y (’l,

G;(u, U) # 0, and fv(a, b) = F.’(u, u)/ G~(u, u), where (u, u) is the (r(’),
(~) A(i) A(i))-generatorof (a, b); anda;~), a;), a3 ,

(3) The leading coeffie’ient of each of the polynomials G;( x, y) is positive.
(4) For each polynomial F;( x, y) and each (a, b) e ~”) the sign of F;( u, v)

(’) A(’), A(’)) -generator of (a, b)) is(where (u, v) is the (r(’), a~z), ax), a3 ,
the same as the sign of the leading coefficient of Fv’( x, y). This also holds

for all polynomials G;( x, y) (i.e., G:( x, u) > O).
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AS in the proof of Lemma 3.5, we construct the set ~ (’ + 11G Y f’) such that

Property 2 is satisfied also for the vertex u,+, and each input (a, b) e 7”+ l‘.
We also select an outgoing edge of u,+ ~ and prove that for each input
(a, b) c J’ “+’) the computation follows this edge. It is easy to check that
~t ~+ 1) z i + 1. Therefore, in order to complete this prOOf, it iS Sufficient to—

show that the following two inequalities hold:

(i) max{~~’+l), D,+l} < 2Z’’’+”,

(ii)
,. J(,+I)

max{a~+ l’, aJ+l), M,+l} < 2-- .

Now we follow the various cases in the proof of Lemma 3.5, and argue that

Inequalities (i) and (ii) hold in each of them. Note that these inequalities hold

for u, and U2 because u, and Uz are input vertices. (See the definition of a

computation tree in Section 2.) In our arguments we repeatedly use Lemmas 2.1

and 2.2.

Let us first resolve the case when u,+, is a comparison vertex. From the

proof of Lemma 3.5, D,+l = D,, ~1+[ = Ml, ~~’+11 = max(a~’~, ~l(p –

Q)), u~+l) = max(a~), mz(~ – Q)), and ci~+l) = a!). Recall that each of P
and Q is a product of two polynomials of degree less than D,, and height at

most M,. Therefore, deg( P), deg( Q) <2 D, and hgt( P), hgt( Q) s D~M1z.

NOW, Lemma 2.3 implies that ml(p – Q) < 2D1 < 22’’’+”, and ~z(p – Q)
~ z~12@ < z2~4’’+z’,

Clearly, inequalities (i) and (ii) hold in this case.

Next, consider the case when u,+, is a computation vertex. The following

possibilities may arise:
Suppose that O ~ { + , - }. The degree of POQ is less than 2D,, and its

height is bounded by 2 M,2D~. From the proof of Lemma 3.5, it is clear that

D ,+1 < 2D,, M,+l = 2MlzD~. a~’+l~ = max(af’), TI(POQ)), ~~+1~ =
max(a~), m2(P0 Q)), and ~~+1’ = a~). By an argument similar to t-he one
given in the previous case, inequalities (i) and (ii) also hold in this case.

Suppose that O = {*, /}. From the proof of Lemma 3.5, it follows that:

D ,+1 < 2D,, Ml+, = M,ZD;, ~$’+1’ = ~ “) for j = 1, 2, 3. Therefore, in-
equalities (i) and (ii) hold in this case.

J’

The only remaining case is when O = mod. The rest of this section is

devoted to this case.

Case 1. P(x. y) < Q(x, y). From the proof of Lemma 3.5, it follows that

D 1+1 = D,, M,+l = M,, ~~’+1) = max(af’), ~l(Q – p)), ~$+1) = max(a~),

7T2(Q – p)), and a$+l) = u:). By an argument similar to that in the case of

the comparison vertex, inequalities (i) and (ii) hold in this case.

Case 2. Q( x, Y) is the constant (and, therefore, the positive integer) L.

Since L is the product of two constants of height at most &fl, L s M,2. From

the proof of Lemma 3.5 ~{Z+lj = ~~’~, ~$+1) = ~~~, ~1+1 < 2D ~ <

A4,zll~, and a;+ 1) = L a$) s M,2a~). Th&efore, inequalities (i) a~~ (ii~+~ofi

in this case.
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Case 3. The leading monomial of Q( x, y) is Lxd’, that is, no power of y

appears @ the le~ding monomial of Q( x, y). In this case, we work with the

bounds D and &l instead of D, and ikf,, respectively. This is done in order to

sjmplify the arguments in Case 4. For now, it is convenient to assume that

D= Dland A4=ikf, ---

Observe that L s DM2, and degy(Q)( = dX), deg ,(Q) <2 b – 2. By

Corollary 4.5, deg(l?) < 4&, and hgt(l?) < (25)2b(52fiz)zD.

From -jhe proof of Lemma 3.5, it follows that a$+ ‘j = Ldta$j <

( fifi2)zDa~). Therefore, a:+ 1) satisfies inequality (ii) in this case.
In Subcase 3.1, ~\z+l) = max{a~’), TI(B), ~l(~Q + R)}, ~~+1) =

max{ a~), 7r2(B), ZZ(6Q + l?)}, and two new polynomials, 13Q(x, y) +

R(x, y) and LdPz(x, y) Q2(x, y) are added to the set 2,+ ~. The degree and

height of each of these polynomials can be bounded as follows:

(1) deg(/3Q + l?) <452, and hgt( /3Q + R) s Ldhgt(Q) + hgt( 1?) <

Ldfi2tiz + (25)2 D(fizfiz)2D.

(2) deg(LdP2Q,) <25, and hgt(LdP2Q2) = Ldhgt(P2 Q,) < Ld&fi2.
(3) Recall that LdB( x,-y) = LdQ( x, y) – ( 13Q( x, y) – R( x, Y)). Thep

fore, ~eg~LdB) -< 4D2, and hgt( LdB) s Ldhgt( Q) + hgt( l?) < Ld&A42
+ (2D)z~(fi2M2)z~. This implies that T,(B) = m,(LdB) <452, and

since LdB is a polynomial with integer coefficients also m2( B) s
2hgt( L~B) .

We conclude that inequalities (i) and (ii) hold in this case.

In Subcgse 3.2 cifz+’) = max(cy~’), Tl), ~~+1) = max(a~~, ~2), where ml =

max{ ml(l?), ml(LdQ – l?)}, m2 = max{ m2(~), ~z(LdQ-– ~)}, and two new

polynomials, X(x, y) and LdP2(x, Y) QZ(;, y) are added to the set E,+,.

Notice that deg(l?), deg(LdQ – ~) < 4D2, and hgt(ll), hgt(Q – R) <

Ld@fi2 + (2 b)zb( fizfi2)zb. Therefore, by an argument similar to that in

Subcase 3.1, inequalities (i) and (ii) hold in this case.

Case 4. The leading monomial of Q( x, y) is Lxd’ y 1. Recall that in order

to reduce this case to Case 3, we substitute x by a:) ya + z in all the

polynomials of the set Z,, where 8< D,. Let X be the set of polynomials (in

variables y and Z) obtained by this substitution. Let 5 = deg( ~) + 1, and

M = hgt(~). It is easy to check that b < D; and M < (U~))DI- ‘DIM,.
Then, the argument in Case 3 implies that the inequalities (i) and (ii) hold in

this case. ❑

In Case 3 of the above proof and in the previous section, we asserted bounds

on the degree and the height of the remainder polynomial R( x, y). For

completeness, we prove these well-known bounds in the following lemma.

LEMMA 4.4. Let P( x, y) and Q( x, y) be two bivariate polynomials with
integer coefficients bounded in absolute value by M and N, respectively. If
Lxd is the leading monomial of Q(x, y), then P(x, y) =
l/L5+lA(x, y)Q(x, y) + l/La+ lR(x, y), where A(x, y) and R(x, y) are

polynomials with integer coefficients, lzgt( R J s (2 + deg,( Q)) 8+ ‘MN6~’,

6 = max{ – 1, degX(P) – deg,(Q)}, degX(R) < deg.(Q){ = d}, @y(R)

s degy( P) + ddeg,( Q).

PROOF. The proof is by induction on 6. The hypothesis holds for the basis

case 6 = –1 with A(x, y) = O and R(x, y) = P(x9 y).
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For the induction step, assume that the hypothesis holds for all 6< k, for

some k > – 1. We prove it for k. Let P(.x, Y) = pl(Y)X’ + P2(Y)X’-1
. . . be such that k = e – d. Consider the polynomial S( x, y) =

&x, ‘Y) – X~Pl(y)Q(X, Y). hgt($ s (2 + deg.(Q))~~, deg,($ ~

degX(P) – 1, and degY(S) s deg},(~) + degY(Q1.

Applying the hypothesis to the pair S( x, Y) and Q( x, Y). yields S( X, Y) =

(1/L6)A(x, Y)Q(x, Y) + (1/L6)R(x, Y). Substituting for S(X. y), we get

P(x, y) = l/L8+’(A(x, y) + LaX~P,(y))Q(X, y) + l/Ld+’R(x, y). In ad-
dition, hgt(l?) s (2 + deg Y(Q))0((2 + deg Y(Q)) MN)lV* = (2 +

deg ~(Q)J a+1iMN3+1, degt(l?) < deg Y(Q){ = d}, and deg},(l?) s deg V(S) +

(8 - l)degy(Q) = degv(~) + 6 degY(Q). O

COROLLARY 4.5. Let P( x, y) and Q( x, y) be two bivariate polynomials
of degree less than an integer D, and integer coefficient ts bounded in
absolute value by M. If Lxd is the leading monomial of Q( x, y), then
P(x, y) = l/La+ ’A(x, Y)Q(x, y) + l/La+ ~R(x, y), where A(x, y) and
R( x, y) are polynomials with integer coefficients, hgt( R) s ( 1 +
D) DMD”, 6 = max{ – 1, degl(P) – degl(Q)}, degY(R) < degl(Q){ =

d}, degY(R) < D2.

5. Conclusion

We have proved an !J (log log n) lower bound on the depth of any computation

tree with operations from the set { +, – , *, /, mod}, that decides if a and b
are relatively prime, for all pairs of n-bit integers a, b. We do not believe this

bound to be tight, and a better lower bound for this problem would be

interesting.

In a companion paper [11], we prove other lower bounds for a large class of

problems using a similar technique. We also extend our technique to prove

similar lower bounds on the time complexity of Random Access Machines;

additional arguments are required to show that a RAM cannot use indirect

addressing to speed up computations in these cases. In [10], we use some

additional tools from approximation theory to prove lower bounds for approxi-

mating the square root.

Notice that the gcd problem can be written as an Integer Linear Program.

Therefore, one of the consequences of our results is that there is no algorithm

for the Integer Linear Programming problem, using operations only from the

set{+,—,*, /, mod}, whose running time depends only on the number of

variables and the number of constraints, and not on the absolute value of the

coefficients.
Finally, we do not know of any techniques that give nontrivial lower bounds

when the set of operations is extended to include all Boolean operations.

Finding such a technique would be very interesting.
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