
Methodological Support for Service-oriented Design
with ISDL

Dick Quartel
University of Twente

PO Box 217
7500 AE Enschede

+31 53 4893765

d.a.c.quartel@utwente.nl

Remco Dijkman
University of Twente

PO Box 217
7500 AE Enschede

+31 53 4894454

r.m.dijkman@utwente.nl

Marten van Sinderen
University of Twente

PO Box 217
7500 AE Enschede

+31 53 4893677

m.j.vansinderen@utwente.nl

ABSTRACT
Currently, service-oriented computing is mainly technology-driven.
Most developments focus on the technology that enables enterprises
to describe, publish and compose application services, and to
communicate with applications of other enterprises according to
their service descriptions. In this paper, we argue that this
technology should be complemented with modelling languages,
design methods and techniques supporting service-oriented design.
We consider service-oriented design as the process of designing
application support for business processes, using the service-
oriented paradigm. We assume that service-oriented computing
technology is used to implement application support. The paper
presents two main contributions to the area of service-oriented
design. First, a systematic service-oriented design approach is
presented, identifying generic design milestones and a method for
assessing the conformance between application designs at related
abstraction levels. Second, a conceptual model for service-oriented
design is presented that provides a common and precise
understanding of the terminology used in service-oriented design.
The ISDL modelling language is introduced to express service-
oriented designs, based on this conceptual model. The paper
includes an elaborate example to illustrate our ideas.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
Methodologies; H.1.1 [Models and Principles]: Systems and
Information theory – General systems theory.

General Terms
Design, Languages, Verification.

Keywords
Service-oriented design, service-oriented computing, ISDL, service
modelling, service composition.

1. INTRODUCTION
Enterprises form and change business partnerships during their
lifetime. For example, a business process may be out-sourced for
efficiency reasons, or different processes may be integrated to
provide a new product. In addition, enterprises increasingly use
software applications to support their business processes. One can
conclude from these observations that there is a growing need for
linking software applications to support business partnerships.

Service-oriented computing promises to deliver the methods and
technologies to help business partners to link their software
applications. This should facilitate the introduction of richer and
more advanced applications, thereby offering new business
opportunities. Other foreseen benefits are the shortening of
application development time by reusing available applications, and
the creation of a service market, where enterprises make it their
business to offer generic and reusable services that can be used as
application building blocks.

Informally the service-oriented paradigm is characterized by the
explicit identification and description of the externally observable
behaviour, or service, of an application. Applications can then be
linked, based on the description of their externally observable
behaviour. According to this paradigm, developers do in principle
not need to have any knowledge about the internal functioning of
the applications being linked.

Currently, service-oriented computing is mainly technology-driven.
Most developments focus on the technology that enables enterprises
to describe the services they offer in a textual, mostly XML-based,
form (e.g.: [29], [30]), to publish these descriptions on-line and find
services of other enterprises according to these descriptions (e.g.:
[26]), to compose services into new services (e.g.: [5], [7]), and to
communicate with applications of other enterprises according to
their service descriptions (e.g.: [28]). We argue that, as in other
areas of computing, this technology should be complemented with
modelling languages and methods supporting service-oriented
design. We consider service-oriented design as the process of
designing application support for one or more business processes,
using the service-oriented paradigm.

The contribution of this paper is twofold. First, a service-oriented
design approach is presented. This approach identifies generic
milestones in the process of designing application support for
business processes that can be implemented using service-oriented
computing technology. In addition, the approach describes a method
to assess the conformance between designs defined at different, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSOC’04, November 15–18, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011…$5.00.

related, abstraction levels. Second, the paper presents a conceptual
model that provides a common and precise understanding of the
terminology that is used in service-oriented design (and computing).
The Interaction System Design Language (ISDL) is introduced to
express the concepts from this conceptual model. This modelling
language supports our service-oriented design approach, by
allowing one to express the milestones and assess the conformance
between them.

This paper is further structured as follows. Section 2 provides an
overview of service description and composition techniques being
used in service-oriented computing. Section 3 explains our service-
oriented design approach. Section 4 presents a conceptual model for
service-oriented design, and introduces ISDL to express service-
oriented designs based on this conceptual model. Section 5
illustrates the application of ISDL in our service-oriented design
approach with an example. And section 6 concludes this paper.

2. SERVICE-ORIENTED COMPUTING
In this section we look at service description and composition
languages in more detail. Service description languages are used to
represent relevant properties of services, and service composition
languages provide techniques to compose a service from other
services. These languages are relevant from a design perspective,
because in the end a service-oriented design has to be mapped onto
the description and composition languages offered by service-
oriented computing technology.

2.1 Service description
A service description specifies the externally observable behaviour
of an application. This defines the way in which an application can
be used by another application. We distinguish two levels of service
description in service-oriented computing: interface description and
interface behaviour description.

An interface description specifies the individual interactions that a
service can have with its environment. Different description
techniques imply different mechanisms for interaction, such as
request-response and one-way message passing. However, all
description techniques agree that the basic mechanism for
interaction is one-way message passing and define their more
complex interaction mechanisms as one-way message passing
patterns [14]. Hence, an interface description implicitly defines the
messages that a service is ready to receive and the messages that it
may send. The description languages define the relation between an
interface description and the concrete syntax of the messages that
can be exchanged by the service. Hence, the interface description is
sufficient to allow users to interact with the service. In addition,
interface description techniques allow for logical grouping of
message send and receive events, in terms of messaging patterns
such as the ones described above and in terms of groupings of these
patterns.

An interface behaviour description specifies the possible orders in
which messages can be sent and received by a service. Examples of
interface behaviour description languages are BPEL4WS abstract
processes [7] and WSCI [29]. Interface behaviour descriptions
provide service users with more information about how to use the
service. These behaviour descriptions can also be used to verify at
run-time whether the service behaves according to its behaviour
description. Interface behaviour description techniques draw on
description techniques for business processes and use many of the

patterns these description techniques use [1], [32]. Like business
process description techniques they distinguish (business) tasks that
can, for example, be composed in sequence, parallel or choice. They
consider sending and receiving messages as special forms of tasks.

2.2 Service composition
Service composition descriptions describe the way in which
application services use each other. We distinguish between two
forms of service composition description: choreography and
orchestration description (also see [8], [22]).

A choreography describes the interactions that two or more
applications have with each other to achieve a common goal, and
the relations between these interactions. Therefore, the logic that
executes a choreography must be distributed over the application
service providers. A typical example of a choreography description
language is the web-services choreography model [31].
Choreography descriptions can serve different purposes. They can
be used as standard business processes in which application service
providers can indicate the parts that they can fulfil. Then, the
providers can use these descriptions as a basis to start implementing
their services. Alternatively, choreography descriptions can be
executed by choreography engines, such as [10], [18], which
manage the interactions between the right providers and in the
correct order.

An orchestration describes the interactions that a single application
service provider has with other providers to provide its own service.
Hence, unlike in a choreography, the interactions in an orchestration
focus on a single provider. Therefore, these interactions can be
directly executed by that provider. Typical examples of orchestration
description languages are BPEL4WS executable process [7] and
BPML [5]. Orchestrations can be executed by a so-called
orchestration engine, much like business processes can be executed
in workflow engines.

Like interface behaviour description languages, service composition
description languages draw on languages for business process
description to describe the relations between their interactions.

3. SERVICE-ORIENTED DESIGN
The purpose of service-oriented design is to systematically design
application support for business processes, which is being
implemented using service-oriented computing technology. For
example, multiple design steps producing multiple related designs
may be required to translate business requirements into the facilities
provided by some service-oriented computing technology.
Furthermore, service-oriented design is required to distinguish
between technology independent and technology dependent service
models, as being advocated by the model-driven architecture
approach of OMG [20].

We claim that our service-oriented design approach is generally
applicable to distributed information systems. Therefore, we also use
the term system instead of enterprise or application in the sequel.
Furthermore the principles of service-oriented design are not new
[27]. The emergence of service-oriented computing, however,
facilitates the mapping of service-oriented designs onto service-
oriented computing technology, thereby allowing one to follow the
service-oriented paradigm throughout the entire development
process.

3.1 The role of service in system design
The Merriam-Webster dictionary defines a system as

a regularly interacting or interdependent group of items
forming a unified whole.

This definition is of interest because it distinguishes two different
system perspectives: an internal perspective, which is referred to as
the "interacting or interdependent group of items", and an external
perspective, which is referred to as the "unified whole".

The external system perspective corresponds to the perspective of
the system users. These users are only interested in the functionality,
or behaviour, provided by the system as a whole, and not in how the
system is internally constructed. The system is considered as a black
box, and the externally observable behaviour of the system is called
the system's service. This service can be defined as the set of
possible interactions between the system and its environment (the
service users) that the system is capable of supporting, including the
possible relationships between these interactions.

The internal system perspective corresponds to the perspective of
the system designers. The definition expresses that the unified
whole, as seen and experienced by the users, actually does not exist
as a single, monolithic entity, but is formed by a group of
interdependent items, or system parts. The internal perspective
shows how the system is internally structured as a composition of
parts. These parts have to interact amongst each other to fulfil the
purpose of the system as a whole.

Service SSystem S

System
part S1 Service S1

Service S3

Service S2

Service
S3.2

Service
S3.3

Service
S3.1

Service
S3.4

System
part S2

System
part S3

Sub-part
S3.1

Sub-part
S3.2

Sub-part
S3.3

Sub-part
S3.4

(de)composition of S

(de)composition of S3

conformance relation

Figure 1. External and internal system perspectives

By considering each part as a system, the external and internal
perspectives can be applied again to the system parts. This results in
a process of repeated or recursive decomposition, yielding several
levels of decomposition, also called levels of abstraction. Figure 1
depicts this process. The process of recursive decomposition shows
that the system concept can represent various kinds of entities, such
as applications, collections of communicating applications,
enterprises or value chains. Consequently, the service concept as it
is used in service-oriented design can represent the service provided
by various kinds of concrete entities. However, the service concept
as it is used in service-oriented computing always represents an
application service. Therefore, the first is more generic than the
latter. As a consequence, it can be used to represent a service that is
not (only) implemented in service-oriented technology, but (also) in
other technologies or by manual interactions. For example, at an
enterprise level an interaction can be implemented by sending a
letter or making a phone call. Also, an interaction in a generic

service can represent a more abstract interaction that is implemented
by a complex pattern of interactions at a lower level of
decomposition. For example, at an enterprise level the interaction
‘buy item’ can exist that is implemented by the interactions ‘get item
list’, ‘select item’ and ‘give customer details’ at a lower level of
decomposition. The process of recursive decomposition stops when
existing system parts are found, e.g., available application services.

Although the term decomposition may suggest a top-down
approach, bottom-up design knowledge is necessary to arrive at
compositions of available system parts. Typically, one may
distinguish the following design activities, or steps, in a
decomposition: (i) the definition of the required service, (ii) the
proposal of a composition of (available) sub-services, and (iii)
checking whether the composition conforms to the required service.
In practice, (ii) is largely a bottom-up activity and may precede (i) to
quickly obtain a prototype, based on an imprecise idea of the desired
service. Such a prototype helps to make up one's mind about the
precise characteristics of the desired service, and its
implementability.

The trial and error nature of activities (ii) and (iii) imply that
alternative compositions may have to be proposed during a design
step. Furthermore, in later design steps one may decide to adjust
some (composition of) service(s) proposed in an earlier design step,
guided by acquired design experience. This gives service-oriented
design a cyclic or iterative character.

3.2 Conformance assessment
In a systematic service-oriented design process, we assume that for
each design step both the behaviour of the required service and the
behaviour of its design in terms of a composition of sub-services,
are defined completely. This allows one to assess the conformance
between the service specification and its design.

In general, conformance can be obtained in two principally different
ways: (i) by following so-called correctness (i.e., conformance)
preserving refinement or transformation rules, or (ii) by assessing
the conformance of a design afterwards by abstracting from the
added design information (see Figure 2). The first approach assumes
a strictly top-down approach, and has as advantage that no explicit
conformance assessment step is necessary. A disadvantage is
however that the applied rules have to be rather specific, prescribing
specific (pre-defined) types of compositions for specific types of
required services, thereby limiting design freedom.

Service
Specification

Service
Design

Refinement

Abstraction of
service design

Abstraction

Comparison

(adding design
information) (removing design

information)

(equivalent?)

Figure 2. Conformance assessment

The second approach does not prescribe any rules or give any
guidance on how the composition is obtained. However, it does
allow one to assess the conformance of any proposed service design.
This works as follows (see Figure 2). The service design adds design
information to the service specification: the interactions between the
constituent sub-services, and possibly the refinement of the original
service interactions. Hence, to assess conformance, we can abstract
from the added design information. After abstracting from this
information, the obtained abstraction should be equivalent to the

original service specification. The particular notion of equivalence
being applied, determines the type of service refinements
(decompositions) that are considered correct. This approach also
allows one to derive the service specification from a proposed
composition of sub-services, when following a bottom-up design
approach.

3.3 Design milestones
A design milestone is the result of one or more design steps,
representing a design or specification that satisfies certain design
objectives. We consider the following generic design milestones
relevant for service-oriented design: business process specification,
application service specification, application service design and
application service implementation.

3.3.1 Business process specification
The objective of this milestone is to specify the business process that
requires application support. This milestone forces a designer to
model, analyse and, possibly, redesign the context in which the
application must be embedded. Furthermore, the business process
defines (indirectly) the business requirements on the desired
application support.

In general, different actors may contribute to the activities or tasks
performed in a business process, such as clients, administrative
workers or software applications. For example, the activity of
requesting a hotel reservation via the Web involves the contribution
from a client, who provides the reservation information, and a Web
application, which validates the information and confirms the
request.

In this milestone, we consider each business process activity as a
whole, and abstract from the contributions that each of the involved
actors may have in this activity. The reason for this is that we want
to focus on what the business process should do, and not on how
this can be done or by whom. Consequently, this milestone defines
the role of a single (virtual) actor that provides the business process
as a whole.

3.3.2 Application service specification
The objective of this milestone is to specify the service of the
application that must support the business process. This milestone is
motivated by the need to specify precisely what functionality is
required from the application.

In this milestone the business process is decomposed into a part that
is to be supported by the application and a remaining part, called the
application environment, which may consist of other applications or
human users. This is done by identifying the activities from the
business process model in which both the application and its
environment are involved. In this way a boundary is determined
between the application and its environment, at which they interact
through the identified activities, also called interaction activities.
This boundary is specified by the application service, which defines
the interaction activities to be supported by the application, and their
relationships.

In addition, activities may be identified that must be completely
supported by the application. From a service perspective, these
activities can in principle be ignored since they may unnecessarily
constrain the service design. Alternatively, in case the activities are
considered relevant, they could be maintained as internal activities
and defined as additional requirements on the design.

Figure 3 illustrates the decomposition of a business process into the
application and its environment.

b

c

a

e

d

f

a

a

b

b

c

c

f

f

e

d
Business process Environment

Application

Legend: (internal) activity interaction activity

Figure 3. Business process decomposition

3.3.3 Application service design
The objective of this milestone is to design the application service in
terms of a composition of sub-services that can be provided by
application building blocks. This milestone is needed when no
building block is available that completely provides the application
service.

Depending on the complexity of the application and the availability
of building blocks, multiple design steps as described in section 3.1
may be needed, until one reaches building blocks that are available
or can be implemented directly. Observe that this milestone relates
the notions of choreography and orchestration: each sub-service
defines the orchestration of a single application building block,
while the composition of the interactions between the sub-services
defines the choreography of the involved building blocks.

This milestone also aims at a service design that is defined
independently of any service-oriented computing technology or
platform. For this purpose, we assume the existence of an abstract
service platform supporting abstract interactions between
application building blocks, which can be mapped onto the concrete
interactions or interaction patterns supported by middleware
technology [3].

3.3.4 Application service implementation
The objective of this milestone is to implement the service design of
the previous milestone using a specific service computing
technology or platform. This requires one to transform the platform-
independent design into a platform-dependent design, using the
description and composition techniques provided by the specific
service platform. This transformation falls outside the scope of this
paper.

4. SERVICE MODELLING
From the analysis of description languages in section 2 and from
observations about the service-oriented design process in section 3,
we derive a set of concepts that can be used for service-oriented
design. This section explains these concepts as well as their
graphical representation in the Interaction Systems Design Language
(ISDL). It also explains how these concepts can be used for design
from the perspective of the milestones from section 3.3.

4.1 Concepts for service-oriented design
The first three milestones from section 3.3 cover both business
process design and application service design. Therefore, our
concepts, shown in Figure 4, are generalizations of concepts from
these domains. Furthermore, according to the fourth milestone, a
service-oriented design should eventually be mapped onto
implementation related concepts. Therefore, we partly derived the

concepts in Figure 4 from the concepts used in description
languages in service-oriented computing. We published earlier
versions of the conceptual model in Figure 4 in [8] and [14].

Entity

+identifier : Object

Provider behaviour

Activity

+name : String

Behaviour

+name : String

Provider composition behaviour

Relation

Information type

Internal activity Interaction activity

Interaction contribution activity

Send event

-dst : Entity

Receive event

-src : Entity

Communication activity

+pattern : String

*

2..*

2..*

*

*

0..1

**

0..1

Interface behaviour
*

+grouping

+between

* *+performs

1

*

+contains

+contains

Figure 4. Concepts for service-oriented design

An entity represents a system or system part, e.g., a business partner,
application or human user. It has a unique identifier, such that it can
be addressed. An entity performs some behaviour. In general, a
behaviour is defined in terms of a collection of related activities. An
activity represents a logical unit of functionality, e.g., a business task
or application function. One may associate one or more information
types with an activity, representing the type of the result that is
established in the activity. We leave it to the particular modelling
language how information types and their operations are specified.
Therefore, the information type concept is declared abstract.

Relations between activities determine the possible orders in which
they can be performed and how the information established by some
activity is related to the information established by other activities.
Depending on which properties of relations one considers relevant,
e.g., only temporal order or also causality, one may use different
modelling languages. Therefore, we leave it to a modelling language
to define how relations can be specified, and declare the relation
concept as abstract. [2] defines a set of relations that are commonly
used to specify the possible orders in which activities can be
performed.

We distinguish between three types of activities: internal activities,
interaction contribution activities and interaction activities. An
internal activity represents an activity that an entity performs
internally. An interaction activity represents an activity that is
performed by multiple entities in cooperation. The contribution of
some entity to an interaction activity is represented by an interaction
contribution activity. For example, requesting a hotel reservation
(section 3.3.1) can be modelled as an interaction activity, which
consists of two interaction contribution activities: the contribution of
the client entering information regarding the desired reservation, and
the contribution of the Web application validating the client input.
The processing of this request by the Web application, such as
storing the reservation in a database, can be modelled as an internal
activity of the Web application.

A provider behaviour represents a behaviour that is provided by an
entity to its environment. For example, an application service is a
provider behaviour, representing the functionality provided by the
application to its environment, which consists of the application
users. Consequently, a provider behaviour consists of a collection of
related interaction contribution activities, and possibly internal
activities, since it is associated with a single entity. In case of a pure
service definition, only interaction contribution activities are
defined. Internal activities are often added to a service definition,
however, to represent activities that are considered relevant in
understanding and later on designing the relationship between
interaction contribution activities. Interaction contribution activities
are grouped into interface behaviours. For example, different
interfaces may be defined to distinguish between interactions with
different types of users.

Interaction activities are used to define provider composition
behaviours that are performed by compositions of entities. An
interaction activity is defined by two (or more) interaction
contribution activities, representing the interaction or cooperation
between the involved provider behaviours. At an abstract level an
interaction activity may represent a complex function, e.g., the
establishment of a sale. At a concrete level an interaction activity
typically represents communication to which entities contribute by
performing communication activities, which can be as simple as a
send or receive event, representing the sending or receiving of a
message, or consist of some pattern of related send and receive
events. Since this concrete level is assumed by service-oriented
computing technology, these specific types of interaction
contribution activities are incorporated in the conceptual model.
During service-oriented design, abstract interactions as mentioned
above are refined into patterns of paired send and receive events that
can be supported by service-oriented computing platforms.

4.2 Representing the concepts in ISDL
The Interaction Systems Design Language (ISDL) [23, 24] is a
design language aimed at modelling distributed systems at higher
abstraction levels. We used ISDL before for business process and
distributed application design [16, 25]. Figure 5 shows how the
service-oriented design concepts from Figure 4 can be graphically
represented in ISDL. A tutorial on ISDL can be found at [23].

Internal
activity
(action)

ISDL
Notation

SOD
Concept

Send
event

Receive
event

a a a
Information i; Time t;
Location l
“[“ constraints “]” B

Information type Behaviour

a a

Interaction
(contribution)

activity

B1

Behaviour
instantiation

B2 b

Figure 5. Representation of SO-design concepts in ISDL

ISDL represents internal activities, which it also calls actions, as
circles (or ellipses) with the action’s name inside it. It represents
interaction activities as segments of a circle (or ellipse) that are
connected by lines. These segments represent the interaction
contribution activities of an interaction activity. ISDL interaction
activities are atomic, which means that they either happen for all
involved behaviours at the same time, establishing the same result
for each behaviour, or that they do not happen at all, in which case
no result is established. Consequently, ISDL adopts a synchronous
interaction model, requiring entities to be involved in an interaction
simultaneously. Although a synchronous interaction can be used to
represent one-way message passing from an abstract perspective, it
does not consider the passing of time between the moment at which
the send event occurs and the moment at which the receive event

occurs. If we want to consider the passing of time, one-way message
passing has to be modelled by a synchronous send interaction
followed by a synchronous receive interaction. Figure 6 illustrates
this, and introduces a shorthand to represent one-way message
passing directly in ISDL.

receiversender middleware

send send receive receive

receiversender

send receive

(i) one-way message passing, modelling
role of middleware explicitly

(ii) shorthand for one-way message passing,
abstracting from the role of middleware

Figure 6. One-way message passing in ISDL

ISDL represents the type of result of an activity inside a box that is
attached to the activity. ISDL does not only consider the result of an
activity, but also the time moment at which the result is established,
and the location at which the result is available. It refers to the
result, the time at which the result is established and the location at
which it is available as the information, time and location attribute
of an activity, respectively. Constraints can be defined on possible
values for these attributes. These constraints also specify the relation
between attribute values established in different activities. ISDL
does not prescribe a language for defining attribute types and
constraints, but provides bindings to existing languages that can be
used for that purpose. Currently, bindings to the formal description
technique Z, to Java and to the functional programming language Q
exist.

ISDL uses causality relations to represent the relations between
activities. A causality relation defines for the associated activity, say
a, the causality condition that must be satisfied to enable this activity
to happen (occur). This causality condition is defined in terms of
three elementary conditions: (i) the start condition represents that
activity a is enabled from the beginning of some behaviour and
independent of any other activity, (ii) enabling condition b
represents that activity b must have occurred before a can occur, and
(ii) disabling condition ¬b represents that activity b must not have
occurred before nor simultaneously with a to enable the occurrence
of a. These elementary conditions can be combined using the and-
and or-operator to represent more complex conditions. Figure 7
depicts some simple examples. In Figure 7(iv) activities b and c are
enabled from the beginning (and independent of each other), while
action a can only happen after b and c have happened. In Figure
7(v) activity a can happen after activity b or activity c has happened.
Figure 7(vi) defines a choice relation between activity a and b, for
which a convenient shorthand notation is introduced in Figure
7(vii).

a

a

ab ab

(i) start condition of a (ii) enabling condition b of a (iii) disabling condition b of a

b

c

a

b

c

a

a

b

c

a

b

c

action a and-operator or-operator choice relationLegend:

(iv) a depends on the
occurrences of b and c

(v) a depends on the
occurrence of b or c

(vi) choice between a and b: a
depends on the occurrence of c
and the non-occurrence of b

(vii) shorthand for choice
 relation between a and b

Figure 7. Causality relations in ISDL

In ISDL a behaviour is represented as a rounded rectangle.
Containment of one behaviour by another, such as a provider
behaviour containing one or more interfaces and a provider
composition behaviour containing multiple provider behaviours, is
represented by behaviour instantiation. A behaviour instantiation
represents that a particular kind of behaviour is created in the

context of the behaviour that contains the instantiation. We refer to
the created behaviour as a behaviour instance. The instantiation
identifies the kind of behaviour by its name and assigns an instance
name to the created behaviour as well; e.g., in Figure 5, behaviour
B2 instantiates behaviour B1, such that an instance of B2 contains
an instance of B1, called b. The benefit of using behaviour
instantiation in this way is that multiple instances of the same
behaviour can be created. The relation between behaviour and
behaviour instance is similar as the relation between class and
object.

Behaviours in a composite behaviour can be related using: (i)
interaction activities that relate the interaction contribution activities
of the component behaviours; and/or (ii) entry and exit points that
represent a causality condition entering a behaviour or a causality
condition exiting a behaviour, respectively. Entry and exit points are
represented by triangles that point into or out of a behaviour,
respectively. Interaction contributions of a component behaviour
can contribute to interactions of their composite behaviour. This is
represented by drawing a line between the interaction contributions
of the component and interaction contributions of the composite.
Figure 8 depicts a composite behaviour in ISDL. It shows two
behaviours that are related by interactions. The provider behaviour
is a composite of two interface behaviours. These interface
behaviours contribute to the interaction contributions of the provider
behaviour (represented by the circle segments in gray), and are
related by an enabling condition that exits one behaviour and enters
the other. Normally, we represent a behaviour and its instantiation
separately (so in Figure 8 there would be a behaviour OrderInterface
and an instantiation o). However, for brevity, we represent them as
one.

Client ShopServiceProvider

OrderInterface o

receive
Order i

PaymentInterface p
receive

Payment i

send

send

Figure 8. Representation of composite behaviour in ISDL

4.3 Milestone design with the concepts
For design from the perspective of a particular milestone, we often
need only a selection of the concepts from Figure 4.

4.3.1 Business process concepts
A business process is a set of related business tasks that are
performed to achieve a certain goal. A business process may assign
tasks to roles and specify which business partners are authorized to
perform which roles. To represent processes, tasks, roles and
business partners we use (composite) behaviours, internal activities,
behaviours and entities, respectively. Optionally, behaviour
instantiation can be used in a business process to represent phases in
the execution of the process. Also, information types can be used to
represent the structure of information that is established in tasks.
Interaction related concepts from Figure 4 are not needed for
business process design and neither are the provider composition
and interface behaviour concepts. Figure 9 shows an example of a
business process in ISDL. This example also shows that entry and

exit points can be parameterized to pass information between
behaviours.

ApplicationProcess

FrontOffice f BackOffice b

FillOutFrom

RespondToClient e

CreditInfo i

Response i
[i = e.v]

e

x

AssessForm

CreditInfo i
CreditInfo v
[v = FillOutForm.i]

x

CreditInfo v
[v = f.x.v]

Response v
[v = b.x.v]

Response v
[v = functionOf(AssessForm.i]

Figure 9. Example business process in ISDL

4.3.2 Application service specification concepts
Current service description techniques describe an application
service as a set of related send and receive events that a service
provider uses to send messages to and receive messages from a
client. Services can be provided at different ports (also called
interfaces). We can use the corresponding service-oriented design
concepts to represent service specifications. We can use information
types to represent the structure of messages that are sent or received.
The provider composition behaviour and interaction concepts are
not needed for service specification. The ShopServiceProvider
behaviour in Figure 8 is an example of a service specification in
ISDL.

4.3.3 Application service design concepts
An application service design consist of a composition of services,
message exchanges between these services and send and receive
events that the composite service makes available to its
environment. Hence, an application service design can be
represented using the composition behaviour, interaction activity,
provider behaviour and send and receive event concepts. We can
use information types to represent the structure of messages that are
exchanged. Figure 10 shows an example of the internal design of a
sales service as a composition of the interacting services provided by
a seller and a shipper.

SalesService

SellerService s

receive
Order i

ShipperService i
send

ShippingNotice i

send

ShippingOrder i

receive

ShippingOrder i

Figure 10. Example service design in ISDL

5. EXAMPLE
This section presents the design of a context-aware "call-a-cab"
application, which uses position information to inform a cab about
the location of a client, and vice-versa. The aim of this example is to
illustrate our service-oriented design approach, the use of the
proposed milestones to structure the design process, and the
application of ISDL for service modelling.

5.1 Business process
Behaviour CAB_process in Figure 11 defines the "call-a-cab"
business process model, representing the tasks that have to be
performed, and their relationships. This behaviour definition
consists of four behaviour instantiations, which are represented by a
behaviour block describing the name of the resulting behaviour
instance, its entry, exit and interaction contributions (if any).

Figure 11. 'Call-a-cab' business process

Behaviour instantiation CAB_order o defines the creation of an
instance, called o, of behaviour CAB_order, which handles the
ordering of a cab. Action OrderReq models the activity of requesting
a cab in which the destination and location of the client are
established. The request is followed by the selection of a cab, which
is identified by some id, as modelled by action Select. Operation
selectOf() represents the algorithm used to determine a (free) cab in
the vicinity of the client. An id value of 0 represents no cab is
available. Action OrderInd models that the driver is informed about
the new order, in case a cab is selected. Subsequently, the client is
informed that the order has been accepted, which is modelled by
action OrderAcc. Observe that in ISDL, attribute constraints may
also be linked to causality relations. In case no cab is available, the
order is rejected. Action OrderRej models the notification of this to
the client.

Both in case of an accept and a reject, behaviour CAB_process is
instantiated recursively, modelling the handling of a new cab
request. Only in case of an accept, an instance of behaviour
CAB_deliver and an instance of the recursive behaviour CAB_arrival
are created. CAB_deliver models the delivery of the client to the
destination and the payment. CAB_arrival enables the client to
monitor the arrival of the cab. Action OrderInfo models the
presentation of a map to the client, showing the current location of
herself and the cab. This action is repeated every period time units,
until the cab has arrived. Behaviour CAB_deliver and CAB_arrival
are made independent, since the core task of delivering the client
should not depend on the nice feature of showing the arrival of the
cab.

5.2 Application service
This milestone defines which tasks of the "call-a-cab" business
process require application support, and which do not. We assume
that all tasks as modelled by CAB_order and CAB_arrival have to be
supported by a single application. Furthermore, we decide that
clients and cab drivers are the application users, i.e., form the
environment of the application. This implies that each task is
considered as an interaction activity between the application and one
of its users, except for the task of selecting a cab, which is
considered an internal activity. The tasks modelled by CAB_deliver
are considered interactions between the client and the cab driver,
and therefore internal to the application’s environment.

Figure 12. 'Call-a-cab' application service

Behaviour AService in Figure 12 represents the application service.
The application service defines the contribution of the application to
each of the interaction activities identified above. The constraints on
these contributions are defined by behaviours AS_order and
AS_arrival. The definition of these behaviours is similar to the ones
of the previous milestones, except with actions being replaced by
interaction contributions (except for action Select). In this way, the
application is made responsible for implementing all constraints on
the actions identified in the business process. For brevity, only
behaviour AS_order is shown.

5.3 Application service design
This milestone produces an initial design of the application service.
We assume that the application functionality is distributed over the
mobile phones of the client and cab driver, and a central server,
which are connected via a mobile network. Figure 13 depicts the
application service design (ADesign) modelled as the composition of
the services provided by the application entities on the mobile
phones of the client and cab driver (AClient and ADriver, resp.), and
the application server entity (AServer). Interactions ClientReq,
ClientRsp, ClientInfo, DriverInd and DriverRsp have been introduced
to model the interaction between the application entities. For
brevity, action attributes have been omitted.

Conformance assessment

In order to assess the conformance of the application design to the
application service, we use the second technique mentioned in
section 3.2. This means we have to abstract from the design
information that has been added in this milestone, and subsequently
compare the obtained abstraction to the application service. To

illustrate this process, the following simplifications are made: we
consider a single client, ignore action attributes and assume a client
is informed only once about the arrival of the cab (no recursion).
Figure 14 depicts the resulting behaviours of the application service
and the application design.

The design information added in this milestone consists of
interactions ClientReq, ClientRsp, ClientInfo, DriverInd and
DriverRsp. A method has been defined for ISDL to abstract from
these interactions [24]. The first step in this method consists of
replacing the interactions by actions, which must integrate all
constraints defined by the contributions of the interactions. The next
step consists of abstracting from, i.e. removing, these actions, which
are called inserted actions (in grey), since they have been inserted
during the refinement steps towards this milestone. The other
actions are called reference actions, since they provide the reference
points in the application service and design for assessing
conformance. To perform the abstraction, rules have been defined
which obey the following conformance criteria:
1. an indirect relation between reference actions defined via an

inserted action in the application design must be replaced by an
equivalent relation defined directly between the corresponding
reference actions in the application service;

2. similarly, indirect relations between attributes should be
replaced by direct relations.

In case of this example, it is straightforward to see that when
following these rules, the obtained abstraction of the application
design is equivalent (even identical) to the application service.

Figure 13. Application service design

Figure 14. Conformance assessment

5.4 Refined application service design
This milestone decomposes the application server into:
• a locater, which allows one to request the geographical

location of a mobile phone;
• a selector, which selects a cab and asks the driver for

confirmation. Selection involves obtaining cab location
information, determining availability and choosing the cab
closest to the client;

• a map provider, which provides a picture of a route map
showing the position of the client and the arriving cab;

• an updater, which updates the client with aforementioned route
maps. For this purpose cab location information is obtained;
and

• a controller, which coordinates the handling of a cab request,
and the updating of arrival information, using the services
provided by aforementioned entities.

Figure 15 depicts the services provided by the entities identified
above. For brevity, the behaviour defining the composition of the
services, similar to Figure 13, has been omitted.

Figure 15. Application server design

Conformance assessment

The conformance of the application server design to the application
server service can be assessed analogously to section 5.3. It is left to
the reader to show that they do not conform, because interaction
contribution ClientInfo may happen independently of interaction
contribution ClientRsp. This can be solved by making interaction
contribution InfoReq dependent on contribution ClientRsp in
behaviour Controller. Although this example is rather simple, our
conformance assessment method can be applied to any refined ISDL
behaviour.

5.5 Application service implementation
Figure 16 gives an overview of the specifications and designs made
so far and their conformance relations.

Map
Provider

Locator

Controller

SelectorUpdaterApplication
service

AServer

AClient ADriver

Application design Application Server design

Figure 16. Overview of the design process

The design process ends when services can be provided by available
software components or their implementation requires no further
design steps. For example, the Locator and MapProvider services in
Figure 15 are provided by web-services of the WASP platform [15]
on top of which we are currently implementing the 'call-a-cab'
application. For this we assume that abstract interactions between
application entities are refined into generic communication activities
such as one-way and two-way message passing. Furthermore, we
work on the development of a tool to transform such communication
activities as specified in ISDL, onto BPEL language elements, such
as 'invoke', 'receive' and 'reply'. This allows for the generation of
skeleton-code, thereby facilitating the implementation of service
designs.

6. CONCLUSIONS
This paper identifies service-oriented design as the process of
designing an application service such that it can be implemented
using service-oriented computing technology. Service-oriented
design is needed when the mapping of business process tasks onto
available application services is complicated and can not be
obtained using predefined decomposition rules. As such, it
complements existing techniques for on-line, automated service
composition (e.g., [21], [19]), which often assume a close
correspondence between business tasks and available application
services. Furthermore, service-oriented design advocates the use of
platform independent modelling of services.

A systematic and generic service-oriented design approach is
presented, characterized by considering recursively the external and
internal perspective of an application (part). Design milestones are
identified and methods for conformance assessment are described.
In addition, a conceptual model for service-oriented design is
defined, providing abstract and generic concepts supporting the
modelling of business processes, application services and their
designs. These concepts have been inspired by existing service
description and composition techniques, in order to facilitate their
mapping onto the more concrete concepts supported by service-
oriented computing platforms. The suitability of ISDL to express the
service-oriented design concepts is shown.

Service-oriented design originated from the area of component-
based design (for an overview see e.g. [13]). It elaborates on this
area by incorporating the principle of distinguishing between
externally observable behaviour and internal realization of that
behaviour and the principle of integrating applications with business
processes. Although these principles are not new, they have special
status in service-oriented design methods, our method reflects that.
Various research groups have proposed languages for service-
oriented design [9], [10], [11], [18]. [18] also supports a form of
conformance verification. Our work extends this work, because we
describe the role of a modelling language in the design process in
more detail and because we consider modelling at higher levels of
abstraction. Our work complements the work on design processes
for service-oriented design [4], [12], because we take a more precise
(formal) approach to modelling and conformance verification.
Finally, design languages have been proposed to graphically
represent (XML-based) service descriptions (see e.g. [6], [17]). Our
work contributes to this area, because we also consider higher
abstraction levels. We refer to [14] for a more detailed overview of
related work.

We propose ISDL as a language for service-oriented design. From
the beginning of its development, we have concentrated on the
definition of the design concepts underlying ISDL, aiming at a
limited set of generic and elementary concepts. Based on these
concepts, a method for assessing the conformance between services
and their designs has been defined, thereby providing full support
for the service-oriented design approach presented in this paper.
Recently, our focus has shifted to the definition of a graphical
notation to express the concepts and the development of tool
support. An editor is now available and a simulator is almost ready
[23]. Tools have and are being developed to partially automate
conformance assessment. Furthermore, we work on tools
transforming platform independent service designs in ISDL into
platform dependent service descriptions, in particular WSDL and
BPEL specifications.

7. ACKNOWLEDGEMENTS
This work is part of the Freeband A-MUSE project. Freeband
(http://www.freeband.nl) is sponsored by the Dutch government
under contract BSIK 03025.

8. REFERENCES
[1] W. van der Aalst. Don’t go with the flow: Web services

composition standards exposed. IEEE Intelligent Systems, 18,
Jan/Feb. 2003.

[2] W. van der Aalst, et al. Workflow patterns. Distributed and
Parallel Databases, 14(3):5–51, July 2003.

[3] J.P.A. Almeida, et al. On the notion of abstract platform in
MDA development. In Proc. of the 8th IEEE Intl. Conference
on Enterprise Distributed Object Computing (EDOC 2004),
Monterey, California, USA, Sept 2004.

[4] G. Alonso, et al. Web Services: Concepts, Architectures and
Applications. Springer, 2003.

[5] BPMI. Business process modeling language (BPML) version
1.0. http://www.bpmi.org/bpml-spec.esp, Nov. 2002.

[6] BPMI. Business process modeling notation (BPMN) 1.0.
http://www.bpmn.org/Documents/BPMN%201-0.pdf, 2004.

[7] BEA Systems, Microsoft, IBM, and SAP. Business process
execution language for web services (BPEL4WS) version 1.1.
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/, May 2003.

[8] B. Benatallah, et al. Service-Oriented Software System
Engineering: Challenges and Practices, chapter Service
Composition: Concepts, Techniques, Tools and Trends (to
appear). Idea Group, Inc., 2004.

[9] B. Benattallah, et al. Conceptual modeling of web service
conversations. In Proc. of the 15th Int. Conf. on Advanced
Information Systems (CAiSE), Klagenfurt, Austria, 2003.
Springer.

[10] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv
environment for web services composition. IEEE Internet
Computing, 7(1):40–48, Jan/Feb. 2003.

[11] T. Bultan, et al. Conversation specification: A new approach to
design and analysis of e-service composition. In Proc. of the
Int. Conf. on the World Wide Web (WWW), Budapest,
Hungary, May 2003. ACM Press.

[12] C. Bussler. B2B integration - concepts and architecture.
Springer, 2003.

[13] J. Chessman and J. Daniels. UML Components: A Simple
Process for Specifying Component-based Software. Addison-
Wesley, 2001.

[14] R. Dijkman and M. Dumas. Service-oriented design: A multi-
viewpoint approach. Technical Report 04-09, Centre for
Telematics and Information Technology (CTIT), University of
Twente, Enschede, The Netherlands, 2004.

[15] P. Dockhorn Costa, et al. Towards a Services Platform for
Mobile Context-Aware Applications. In Proc. of the 1st Int.
Workshop on Ubiquitous Computing (IWUC), Porto, Portugal,
2004.

[16] H. Eertink, et al. A business process design language. In Proc.
of the World Congress on Formal Methods, 1999.

[17] K. Mantell. From UML to BPEL. http://www-
106.ibm.com/developerworks/webservices/library/ws-
uml2bpel/, 2003.

[18] M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling e-
service orchestration through Petri nets. In Proc. of the 3rd
Intl. Workshop on Technologies for E-Services (TES), pp. 38–
47. Springer Verlag, Sept. 2002.

[19] B. Medjahed, A. Bouguettaya, A. K. Elmagarmid. Composing
Web services on the Semantic Web. In The VLDB Journal,
12:333-351, 2003.

[20] OMG. Model driven architecture (MDA). Technical Report
ormsc/02-07-01, Object Management Group, July 2001.

[21] B. Orriëns, Jian Yang, and M. P. Papazoglou. A Framework
for Business Rule Driven Service Composition. In Service-
Oriented Computing – ICSOC 2003, LCNS 2910, pp. 75-90,
Springer 2003.

[22] C. Pelz. Web services orchestration and choreography. IEEE
Computer, 36(8):46–52, Oct 2003.

[23] ISDL home. http://isdl.ctit.utwente.nl/, n.d.
[24] D. Quartel, L. Ferreira Pires, and M. van Sinderen. On

architectural support for behavior refinement in distributed
systems design. Journal of Integrated Design and Process
Science, 6(1), March 2002.

[25] D. Quartel, et al. On the role of basic design concepts in
behaviour structuring. Computer Networks and ISDN Systems,
29:413–436, 1997.

[26] UDDI. Universal description, discovery and integration
(UDDI) version 3.0. Technical report, OASIS UDDI
Specification TC, 2003. http://uddi.org/pubs/uddi_v3.htm.

[27] C.A. Vissers and L. Logrippo. The importance of the service
concept in the design of data communication protocols. In
Proc. of the IFIP WG6.1 5th Int. Conference on Protocol
Specification, Testing and Verification V, pp. 3-17, 1985.

[28] W3C. Simple object access protocol (SOAP) version 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, May
2002.

[29] W3C. Web services choreography interface (WSCI) version
1.0. http://www.w3.org/TR/2002/NOTE-wsci-20020808,
August 2002.

[30] W3C. Web services description language (WSDL): Part 1:
Core language version 1.2. http://www.w3.org/TR/2003/ WD-
wsdl20-20031110, Nov. 2003.

[31] W3C. WS choreography model overview. http://www.w3.
org/TR/2004/WD-ws-chor-model-20040324/, March 2004.

[32] P. Wohed, et al. Analysis of web services composition
languages: The case of BPEL4WS. In Proc. of the 22nd Intl.
Conf. on Conceptual Modelling (ER), Chicago IL, USA, Oct.
2003. Springer.

