Methodological Support for Service-oriented Design
with ISDL

Dick Quartel Remco Dijkman Marten van Sinderen
University of Twente University of Twente University of Twente
PO Box 217 PO Box 217 PO Box 217
7500 AE Enschede 7500 AE Enschede 7500 AE Enschede
+31 53 4893765 +31 53 4894454 +31 53 4893677

d.a.c.quartel@utwente.nl

ABSTRACT

Currently, service-oriented computing is mainlyhieclogy-driven.
Most developments focus on the technology thatleeamterprises
to describe, publish and compose application sesyiand to
communicate with applications of other enterpriaesording to
their service descriptions. In this paper, we ardhat this
technology should be complemented with modellinggleages,
design methods and techniques suppomienyice-oriented design
We consider service-oriented design as the prosgskesigning
application support for business processes, udirg Service-
oriented paradigm. We assume that service-oriestadputing
technology is used to implement application supp®rte paper
presents two main contributions to the area of isemriented
design. First, a systematic service-oriented desigproach is
presented, identifying generic design milestones @ammethod for
assessing the conformance between application rdesig related
abstraction levels. Second, a conceptual modeddorice-oriented
design is presented that provides a common andisprec
understanding of the terminology used in servicented design.
The ISDL modelling language is introduced to expresrvice-
oriented designs, based on this conceptual modet gaper
includes an elaborate example to illustrate ouassde

Categories and Subject Descriptors

D.2.1 [Software Engineerind: Requirements/Specifications —
Methodologies H.1.1 Models and Principleg: Systems and
Information theory -General systems theory

General Terms
Design, Languages, Verification.

Keywords
Service-oriented design, service-oriented computiBBL, service
modelling, service composition.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commerciavatage and that copies
bear this notice and the full citation on the figage. To copy otherwise, or
republish, to post on servers or to redistributeligts, requires prior
specific permission and/or a fee.

ICSOC’'04 November 15-18, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011...$5.00.

r.m.dijkman@utwente.nl

m.j.vansinderen@utwente.nl

1. INTRODUCTION

Enterprises form and change business partnershigagdtheir
lifetime. For example, a business process may lesauced for
efficiency reasons, or different processes may riegiated to
provide a new product. In addition, enterprisegdasingly use
software applications to support their businessgsses. One can
conclude from these observations that there isowigg need for
linking software applications to support businesdnerships.

Service-oriented computing promises to deliver ithethods and
technologies to help business partners to linkr thssiftware

applications. This should facilitate the introdaatiof richer and

more advanced applications, thereby offering newsiness

opportunities. Other foreseen benefits are the teshiog of

application development time by reusing availalplpliaations, and

the creation of a service market, where enterpnisake it their

business to offer generic and reusable servicesc#timbe used as
application building blocks.

Informally the service-oriented paradigm is chaazed by the
explicit identification and description of the extally observable
behaviour, orservice of an application. Applications can then be
linked, based on the description of their exteynabservable
behaviour. According to this paradigm, developersird principle
not need to have any knowledge about the inteuradtibning of
the applications being linked.

Currently, service-oriented computing is mainlyhiealogy-driven.
Most developments focus on the technology thatlesamterprises
to describe the services they offer in a textualsttiy XML-based,
form (e.g.: [29], [30]), to publish these desciops on-line and find
services of other enterprises according to theserigéons (e.g.:
[26]), to compose services into new services (€5§.:[7]), and to
communicate with applications of other enterprisesording to
their service descriptions (e.g.: [28]). We arghbaet,tas in other
areas of computing, this technology should be cemphted with
modelling languages and methods supportsegvice-oriented
design We consider service-oriented design as the psooés
designing application support for one or more bessnprocesses,
using the service-oriented paradigm.

The contribution of this paper is twofold. Firatservice-oriented
design approach is presented. This approach idsntgdeneric
milestones in the process of designing applicasopport for
business processes that can be implemented usivigeseriented
computing technology. In addition, the approactcdiess a method
to assess the conformance between designs defimtitesent, but

related, abstraction levels. Second, the papeemtes conceptual
model that provides a common and precise undeisgraf the

terminology that is used in service-oriented degagm computing).
The Interaction System Design Language (ISDL) teoduced to
express the concepts from this conceptual modes fiodelling

language supports our service-oriented design apbro by

allowing one to express the milestones and assessohformance
between them.

This paper is further structured as follows. Sectoprovides an
overview of service description and compositiorhtegues being
used in service-oriented computing. Section 3 éxplaur service-
oriented design approach. Section 4 presents &ptra model for
service-oriented design, and introduces ISDL toresg service-
oriented designs based on this conceptual modeitioBe5

illustrates the application of ISDL in our servizgented design
approach with an example. And section 6 concludegptaper.

2. SERVICE-ORIENTED COMPUTING

In this section we look at service description amnposition

languages in more detail. Service description laggs are used to
represent relevant properties of services, andcgenomposition

languages provide techniques to compose a service 6ther

services. These languages are relevant from andesigpective,

because in the end a service-oriented design Haes neapped onto
the description and composition languages offergdsérvice-

oriented computing technology.

2.1 Service description
A service description specifies the externally obegle behaviour
of an application. This defines the way in whichagplication can
be used by another application. We distinguishlavels of service
description in service-oriented computing: integfatescription and
interface behaviour description.

An interface description specifies the individuateractions that a
service can have with its environment. Differentsatigption
techniques imply different mechanisms for intexagti such as
request-response and one-way message passing. éfowal
description techniques agree that the basic mesinanior
interaction is one-way message passing and defieg tore
complex interaction mechanisms as one-way messagsing
patterns [14]. Hence, an interface description iicityl defines the
messages that a service is ready to receive antidbgages that it
may send. The description languages define thearlbetween an
interface description and the concrete syntax efrtiessages that
can be exchanged by the service. Hence, the iotedescription is
sufficient to allow users to interact with the seev In addition,
interface description techniques allow for logiagdouping of
message send and receive events, in terms of rivepgaaterns
such as the ones described above and in termswgbiggs of these
patterns.

An interface behaviour description specifies thesile orders in
which messages can be sent and received by aesefxiamples of
interface behaviour description languages are BRERAbstract
processes [7] and WSCI [29]. Interface behaviouscdptions
provide service users with more information aboatvho use the
service. These behaviour descriptions can alscské to verify at
run-time whether the service behaves accordingstdoeéhaviour
description. Interface behaviour description teghes draw on
description techniques for business processes sadnany of the

patterns these description techniques use [1],. [BRE business
process description techniques they distinguiskiiess) tasks that
can, for example, be composed in sequence, pavaktloice. They
consider sending and receiving messages as sfuaial of tasks.

2.2 Service composition

Service composition descriptions describe the way wihich
application services use each other. We distingbiiveen two
forms of service composition description: chorepbsa and
orchestration description (also see [8], [22]).

A choreography describes the interactions that twomore
applications have with each other to achieve a comgoal, and
the relations between these interactions. Therefbee logic that
executes a choreography must be distributed oeerlfiplication
service providers. A typical example of a chorephyadescription
language is the web-services choreography model]. [31
Choreography descriptions can serve different mepoThey can
be used as standard business processes in whiatatipp service
providers can indicate the parts that they canil.fufhen, the
providers can use these descriptions as a basiartamplementing
their services. Alternatively, choreography dedmis can be
executed by choreography engines, such as [10], MAich
manage the interactions between the right provided in the
correct order.

An orchestration describes the interactions theihgle application
service provider has with other providers to previid own service.
Hence, unlike in a choreography, the interactioren orchestration
focus on a single provider. Therefore, these iotemas can be
directly executed by that provider. Typical exarsméorchestration
description languages are BPEL4AWS executable moddsand

BPML [5]. Orchestrations can be executed by a $leda
orchestration engine, much like business processede executed
in workflow engines.

Like interface behaviour description languages/isercomposition
description languages draw on languages for busimpescess
description to describe the relations between thigractions.

3. SERVICE-ORIENTED DESIGN

The purpose of service-oriented design is to syatieatly design
application support for business processes, whigsh béing
implemented using service-oriented computing teldgyo For
example, multiple design steps producing multigiated designs
may be required to translate business requirent@otshe facilities
provided by some service-oriented computing techmol
Furthermore, service-oriented design is requireddistinguish
between technology independent and technology deptrservice
models, as being advocated by the model-driven itacthre
approach of OMG [20].

We claim that our service-oriented design approachenerally

applicable to distributed information systems. Efae, we also use
the term system instead of enterprise or applicatiothe sequel.
Furthermore the principles of service-oriented glesire not new
[27]. The emergence of service-oriented computihgyever,

facilitates the mapping of service-oriented designgo service-
oriented computing technology, thereby allowing tméollow the

service-oriented paradigm throughout the entire eligment

process.

3.1 The role of service in system design
The Merriam-Webster dictionary defines a system as

a regularly interacting or interdependent group @éms
forming a unified whole

This definition is of interest because it distirghes two different
system perspectives: an internal perspective, wkickferred to as
the "interacting or interdependent group of itenasig an external
perspective, which is referred to as the "unifigwis".

The external system perspectieerresponds to the perspective of
the system users. These users are only interestld functionality,

or behaviour, provided by the system as a whole nan in how the
system is internally constructed. The system isiciemed as a black
box, and the externally observable behaviour otstem is called

the system'sservice This service can be defined as the set of

possible interactions between the system and itscgment (the
service users) that the system is capable of stipgoincluding the
possible relationships between these interactions.

The internal system perspectivarresponds to the perspective of
the system designers. The definition expresses thetunified
whole, as seen and experienced by the users, lgaloak not exist
as a single, monolithic entity, but is formed bygeoup of
interdependent items, or system parts. The intepeabpective
shows how the system is internally structured asraposition of
parts. These parts have to interact amongst eaen t fulfil the
purpose of the system as a whole.

System S

System System
part Slpart S2
System
part S3

Sub-part
S3.1
Sub-part Sub-part
S3.2 S3.3

Sub-part
S3.4

——— conformance relation

Figure 1. External and internal system perspectives

By considering each part as a system, the extemdl internal
perspectives can be applied again to the systeis géis results in
a process of repeated or recursive decompositielding several
levels of decomposition, also called levels of iusion. Figure 1
depicts this process. The process of recursivendgasition shows
that the system concept can represent various kihelstities, such
as applications, collections of communicating agions,
enterprises or value chains. Consequently, thécseconcept as it
is used in service-orientetbsigncan represent the service provided
by various kinds of concrete entities. However, $aevice concept
as it is used in service-orient@dmputingalways represents an
application service. Therefore, the first is moeneyic than the
latter. As a consequence, it can be used to refraservice that is
not (only) implemented in service-oriented techgg|dout (also) in
other technologies or by manual interactions. Bamnple, at an
enterprise level an interaction can be implemertgdsending a
letter or making a phone call. Also, an interactiona generic

service can represent a more abstract interadtairis implemented
by a complex pattern of interactions at a lowerelewf

decomposition. For example, at an enterprise lthelinteraction
‘buy item’ can exist that is implemented by theemattions ‘get item
list, ‘select item’ and ‘give customer details’ atlower level of
decomposition. The process of recursive decompasitiops when
existing system parts are found, e.g., availabpicgiion services.

Although the term decomposition may suggest a toprd
approach, bottom-up design knowledge is necessamrrtve at

compositions of available system parts. Typicalbne may
distinguish the following design activities, or e in a

decomposition: (i) the definition of the requirednsce, (ii) the

proposal of a composition of (available) sub-s&wjcand (iii)

checking whether the composition conforms to tlogired service.
In practice, (ii) is largely a bottom-up activitgchmay precede (i) to
quickly obtain a prototype, based on an impredsa bf the desired
service. Such a prototype helps to make up oneid @ibout the
precise characteristics of the desired service, aitsl

implementability.

The trial and error nature of activities (ii) anii) (imply that

alternative compositions may have to be proposethgla design
step. Furthermore, in later design steps one maig&ld¢o adjust
some (composition of) service(s) proposed in alieeatesign step,
guided by acquired design experience. This givegicgeoriented
design a cyclic or iterative character.

3.2 Conformance assessment

In a systematic service-oriented design processasseme that for
each design step both the behaviour of the reqseedce and the
behaviour of its design in terms of a compositidrsab-services,
are defined completely. This allows one to asdessdnformance
between the service specification and its design.

In general, conformance can be obtained in twocjpatly different
ways: (i) by following so-called correctness (i.eqgnformance)
preserving refinement or transformation rules, igrby assessing
the conformance of a design afterwards by abstgadtiom the
added design information (see Figure 2). The dipgtroach assumes
a strictly top-down approach, and has as advartegeno explicit
conformance assessment step is necessary. A disageais
however that the applied rules have to be rathesifip prescribing
specific (pre-defined) types of compositions foedafic types of
required services, thereby limiting design freedom.

Service Abstraction of
Specification service design

Refinement
(adding design Abstraction
(removing design

information l
Service information)
Design

Figure 2. Conformance assessment

Comparison

(equivalent?)

The second approach does not prescribe any rulegverany
guidance on how the composition is obtained. Howeitedoes
allow one to assess the conformance of any propseseite design.
This works as follows (see Figure 2). The serviesigh adds design
information to the service specification: the iatdions between the
constituent sub-services, and possibly the refimerokthe original
service interactions. Hence, to assess conformaveean abstract
from the added design information. After abstrartinom this
information, the obtained abstraction should beivedgnt to the

original service specification. The particular patiof equivalence
being applied, determines the type of service eefients
(decompositions) that are considered correct. @pisroach also
allows one to derive the service specification frarmrproposed
composition of sub-services, when following a botop design
approach.

3.3 Design milestones

A design milestone is the result of one or moreigesteps,
representing a design or specification that sasisfiertain design
objectives. We consider the following generic desigilestones
relevant for service-oriented design: businessqa®specification,
application service specification, application sm¥vdesign and
application service implementation.

3.3.1 Business process specification

The objective of this milestone is to specify tlusibess process that
requires application support. This milestone foreedesigner to
model, analyse and, possibly, redesign the coritexthich the
application must be embedded. Furthermore, thenesssiprocess
defines (indirectly) the business requirements be tlesired
application support.

In general, different actors may contribute to dletivities or tasks
performed in a business process, such as cliedtsjnstrative
workers or software applications. For example, #utivity of

requesting a hotel reservation via the Web invotliescontribution
from a client, who provides the reservation infaiog and a Web
application, which validates the information andnfamns the

request.

In this milestone, we consider each business psoaetvity as a
whole, and abstract from the contributions thahezfche involved
actors may have in this activity. The reason f@s i that we want
to focus on what the business process should dbnanhon how
this can be done or by whom. Consequently, thisstohe defines
the role of a single (virtual) actor that providle business process
as a whole.

3.3.2 Application service specification

The objective of this milestone is to specify thevie of the
application that must support the business prodéss.milestone is
motivated by the need to specify precisely whatctionality is
required from the application.

In this milestone the business process is decordpot®a part that
is to be supported by the application and a remgipart, called the
application environment, which may consist of othyeplications or
human users. This is done by identifying the aitisifrom the
business process model in which both the applitatiad its
environment are involved. In this way a boundarydétermined
between the application and its environment, atlwlihey interact
through the identified activities, also called mafgion activities.
This boundary is specified by the application sErvivhich defines
the interaction activities to be supported by thgliaation, and their
relationships.

In addition, activities may be identified that mums completely
supported by the application. From a service pets@e these
activities can in principle be ignored since thegynunnecessarily
constrain the service design. Alternatively, inectie activities are
considered relevant, they could be maintained tesnal activities
and defined as additional requirements on the desig

Figure 3 illustrates the decomposition of a busir@scess into the
application and its environment.

Business process Environment

Application
Legend: O (internal) activity % interaction activity

Figure 3. Business process decomposition

3.3.3 Application service design

The objective of this milestone is to design theliaption service in
terms of a composition of sub-services that carptowided by
application building blocks. This milestone is negdwhen no
building block is available that completely prosdiae application
service.

Depending on the complexity of the application el availability
of building blocks, multiple design steps as désatiin section 3.1
may be needed, until one reaches building blocksate available
or can be implemented directly. Observe that thiestone relates
the notions of choreography and orchestration: eadhservice
defines the orchestration of a single applicatieiding block,
while the composition of the interactions betwelss sub-services
defines the choreography of the involved builditarks.

This milestone also aims at a service design thadefined
independently of any service-oriented computinghtetogy or
platform. For this purpose, we assume the existeh@n abstract
service platform supporting abstract interactiongtwien
application building blocks, which can be mappetbdhe concrete
interactions or interaction patterns supported biddieware
technology [3].

3.3.4 Application service implementation

The objective of this milestone is to implement skevice design of
the previous milestone using a specific service pmdmng

technology or platform. This requires one to tranmsfthe platform-
independent design into a platform-dependent desiging the
description and composition techniques providedtt®y specific
service platform. This transformation falls outstte scope of this
paper.

4. SERVICE MODELLING

From the analysis of description languages in @ec and from
observations about the service-oriented designepsoin section 3,
we derive a set of concepts that can be used foicseriented
design. This section explains these concepts a$ aeeltheir
graphical representation in the Interaction Syst@ssign Language
(ISDL). It also explains how these concepts camidesl for design
from the perspective of the milestones from seci@n

4.1 Concepts for service-oriented design

The first three milestones from section 3.3 covethbbusiness
process design and application service design. efdrer our
concepts, shown in Figure 4, are generalizationsontepts from
these domains. Furthermore, according to the fomnitestone, a
service-oriented design should eventually be mappmetdo
implementation related concepts. Therefore, welypddrived the

concepts in Figure 4 from the concepts used in rigéisn
languages in service-oriented computing. We puétiskearlier
versions of the conceptual model in Figure 4 ingi8dl [14].

Entity
+identifier : Object

1

+performs | » (5
Behaviour Provider
+name : String

7 .l

Interface behaviour

+contains ‘ .

Provider behaviour

+grouping

Internal activity| e Activity

+name : String

2.* | +between ?

Interaction contribution activity
Information type

TmEa

Communication activity
[+pattern : String

0.1 0.1
Send event Receive event
-dst : Entity i-src : Entity

Figure 4. Concepts for service-oriented design

An entity represents a system or system part, e.g., a lsagiaetner,
application or human user. It has a unique idemfiuch that it can
be addressed. An entity performs sob@haviour In general, a
behaviour is defined in terms of a collection déted activities. An
activity represents a logical unit of functionality, eaghusiness task
or application function. One may associate one aeinformation
typeswith an activity, representing the type of theuteshat is
established in the activity. We leave it to thetipatar modelling
language how information types and their operatemesspecified.
Therefore, the information type concept is decladestract.

Interaction activity

Relation

Relationsbetween activities determine the possible ordershich
they can be performed and how the information éstedal by some
activity is related to the information establisti®dother activities.
Depending on which properties of relations one iclems relevant,
e.g., only temporal order or also causality, ong nmse different
modelling languages. Therefore, we leave it to detlimg language
to define how relations can be specified, and dedle relation
concept as abstract. [2] defines a set of relatioaisare commonly
used to specify the possible orders in which a®iican be
performed.

We distinguish between three types of activitieternal activities
interaction contribution activitiesand interaction activities An
internal activity represents an activity that antitgnperforms
internally. An interaction activity represents aatiaty that is
performed by multiple entities in cooperation. Tdwntribution of
some entity to an interaction activity is repreedrity an interaction
contribution activity. For example, requesting aehaeservation
(section 3.3.1) can be modelled as an interactiivity, which
consists of two interaction contribution activitiise contribution of
the client entering information regarding the dasireservation, and
the contribution of the Web application validatithg client input.
The processing of this request by the Web applicatsuch as
storing the reservation in a database, can be tedded an internal
activity of the Web application.

A provider behaviourepresents a behaviour that is provided by an
entity to its environment. For example, an applicaservice is a
provider behaviour, representing the functiongtitpvided by the
application to its environment, which consists lo¢ tapplication
users. Consequently, a provider behaviour consigtollection of
related interaction contribution activities, andsgibly internal
activities, since it is associated with a singlgtgnn case of a pure
service definition, only interaction contributionctizities are
defined. Internal activities are often added toeevise definition,
however, to represent activities that are consitlemdevant in
understanding and later on designing the relatipndfetween
interaction contribution activities. Interactionntebution activities
are grouped intointerface behaviours For example, different
interfaces may be defined to distinguish betweé¢eraations with
different types of users.

Interaction activities are used to defimovider composition
behavioursthat are performed by compositions of entities. An
interaction activity is defined by two (or more)tdéraction
contribution activities, representing the interaatior cooperation
between the involved provider behaviours. At artrabslevel an
interaction activity may represent a complex fumttie.g., the
establishment of a sale. At a concrete level agraation activity
typically represents communication to which ergit@ntribute by
performingcommunication activitieswhich can be as simple as a
sendor receive eventrepresenting the sending or receiving of a
message, or consist of some pattern of related aed receive
events. Since this concrete level is assumed byiceesriented
computing technology, these specific types of adgon
contribution activities are incorporated in the agptual model.
During service-oriented design, abstract interastias mentioned
above are refined into patterns of paired sendecelve events that
can be supported by service-oriented computindopias.

4.2 Representing the concepts in ISDL

The Interaction Systems Design Language (ISDL) [24, is a
design language aimed at modelling distributedesystat higher
abstraction levels. We used ISDL before for busir@®cess and
distributed application design [16, 25]. Figure fows how the
service-oriented design concepts from Figure 4 lmagraphically
represented in ISDL. A tutorial on ISDL can be fduat [23].

-

Behaviour
instantiation

|SDL Information i; Time t;
S O ¢ D [
otation “[* constraints ‘]’

sob Internal Interaction Send Receive

Concept 2ctvity (contribution) oot event
(action) activity

Information type Behaviour

Figure 5. Representation of SO-design concepts iSDL

ISDL represents internal activities, which it alsalls actions, as
circles (or ellipses) with the action’s name insitlelt represents
interaction activities as segments of a circle €lipse) that are
connected by lines. These segments represent tieeadtion

contribution activities of an interaction activit}sDL interaction

activities are atomic, which means that they eithegopen for all
involved behaviours at the same time, establisttiegsame result
for each behaviour, or that they do not happerl,ahavhich case
no result is established. Consequently, ISDL adaggnchronous
interaction model, requiring entities to be invalvia an interaction
simultaneously. Although a synchronous interactian be used to
represent one-way message passing from an abstiagtective, it
does not consider the passing of time between tmeemt at which
the send event occurs and the moment at whichetteive event

occurs. If we want to consider the passing of tiome-way message
passing has to be modelled by a synchronous seedagtion

followed by a synchronous receive interaction. Féga illustrates
this, and introduces a shorthand to represent @yemessage

passing directly in ISDL.
[sender middleware receiver ’ sender receiver]
(i) shorthand for one-way message passing,

(i) one-way message passing, modelling
role of middleware explicitly abstracting from the role of middleware

Figure 6. One-way message passing in ISDL

ISDL represents the type of result of an activityide a box that is
attached to the activity. ISDL does not only coasithe result of an
activity, but also the time moment at which thautess established,
and the location at which the result is availaierefers to the
result, the time at which the result is establisaed the location at
which it is available as the information, time dodation attribute
of an activity, respectively. Constraints can bénge on possible
values for these attributes. These constraintsspleoify the relation
between attribute values established in differastiviies. ISDL
does not prescribe a language for defining ateiblypes and
constraints, but provides bindings to existing leages that can be
used for that purpose. Currently, bindings to threnfil description
technique Z, to Java and to the functional programgrianguage Q
exist.

ISDL uses causality relations to represent thetioels. between
activities. Acausality relationdefines for the associated activity, say
a, the causality condition that must be satisfiedrtable this activity
to happen (occur). This causality condition is miedi in terms of
three elementary conditions: (i) tiseart conditionrepresents that
activity a is enabled from the beginning of some behaviowt an
independent of any other activity, (iignabling conditionb
represents that activitymust have occurred befaiean occur, and
(i) disabling condition™b represents that activity must not have
occurred before nor simultaneously withio enable the occurrence
of a. These elementary conditions can be combineduksgand
and or-operator to represent more complex conditionsurigr
depicts some simple examples. In Figure 7(iv) detsb andc are
enabled from the beginning (and independent of e#uér), while
actiona can only happen aftér andc have happened. In Figure
7(v) activitya can happen after activityor activityc has happened.
Figure 7(vi) defines a choice relation betweenvigta andb, for
which a convenient shorthand notation is introdugedrigure

7(vii).
—-©

(i) start condition of a (ii) enabling condition b of a (iii) disabling condition b of a

S0 o o

(iv) a depends on the (vii) shorthand for choice
occurrences of b and ¢ relation between a and b

(v) a depends on the
occurrence of b or ¢

(vi) choice between a and b: a
depends on the occurrence of ¢
and the non-occurrence of b

@ action a

Figure 7. Causality relations in ISDL

Legend: B and-operator O or-operator <> choice relation

In ISDL a behaviour is represented as a roundedarrgle.
Containment of one behaviour by another, such gwosider
behaviour containing one or more interfaces and raviger
composition behaviour containing multiple provideshaviours, is
represented by behaviour instantiation.b@haviour instantiation
represents that a particular kind of behaviour rsated in the

context of the behaviour that contains the instioti. We refer to
the created behaviour asbehaviour instanceThe instantiation
identifies the kind of behaviour by its name ansigiss an instance
name to the created behaviour as well; e.g., inrEi§, behaviour
B2 instantiates behaviour B1, such that an instafid? contains
an instance of B1, called b. The benefit of usirghaviour

instantiation in this way is that multiple instascef the same
behaviour can be created. The relation betweenvimiraand

behaviour instance is similar as the relation betwelass and
object.

Behaviours in a composite behaviour can be relasdg: (i)
interaction activities that relate the interactcamtribution activities
of the component behaviours; and/or (ii) entry ari points that
represent a causality condition entering a behawowa causality
condition exiting a behaviour, respectively. Ergnd exit points are
represented by triangles that point into or outaobehaviour,
respectively. Interaction contributions of a compainbehaviour
can contribute to interactions of their composigddviour. This is
represented by drawing a line between the interaatontributions
of the component and interaction contributions tef tomposite.
Figure 8 depicts a composite behaviour in ISDLsHbws two
behaviours that are related by interactions. Tiowiger behaviour
is a composite of two interface behaviours. Thesterface
behaviours contribute to the interaction contritwsi of the provider
behaviour (represented by the circle segments a&y)gand are
related by an enabling condition that exits oneabiglur and enters
the other. Normally, we represent a behaviour #&héhstantiation
separately (so in Figure 8 there would be a bebaddalerinterface
and an instantiation). However, for brevity, we represent them as
one.

Orderinterface o

Paymentinterface p

ShopServiceProvider

_ Client)

Figure 8. Representation of composite behaviour ilfSDL

4.3 Milestone design with the concepts
For design from the perspective of a particulaestdne, we often
need only a selection of the concepts from Figure 4

4.3.1 Business process concepts

A business process is a set of related businegés that are
performed to achieve a certain goal. A businessga®may assign
tasks to roles and specify which business pararersauthorized to
perform which roles. To represent processes, tasdes and
business partners we use (composite) behaviotesnah activities,
behaviours and entities, respectively. Optionallyehaviour
instantiation can be used in a business procesptesent phases in
the execution of the process. Also, informatioret/pan be used to
represent the structure of information that is disfaed in tasks.
Interaction related concepts from Figure 4 are metded for
business process design and neither are the proxdseposition
and interface behaviour concepts. Figure 9 showsxample of a
business process in ISDL. This example also shbaisentry and

exit points can be parameterized to pass informabetween
behaviours.

s ~
ApplicationProcess
N P

-

Creditinfo i

Creditinfo v
[v = FillOutForm.i]

Creditinfo v
[v="fxVv]

Creditinfo i

Response v
[v=b.x.v]

Response v
[v = functionOf(AssessForm.i]

BackOffice b

LFrontOffice f

J

\

Figure 9. Example business process in ISDL

4.3.2 Application service specification concepts
Current service description techniques describe application
service as a set of related send and receive ettt service
provider uses to send messages to and receive gaesbam a
client. Services can be provided at different pdetlso called
interfaces). We can use the corresponding servieated design
concepts to represent service specifications. Weuse information
types to represent the structure of messagesrthaeat or received.
The provider composition behaviour and interactiomcepts are
not needed for service specification. The ShopSeRrovider
behaviour in Figure 8 is an example of a servicecifipation in
ISDL.

4.3.3 Application service design concepts

An application service design consist of a compwsibf services,
message exchanges between these services and rebmdcaive
events that the composite service makes available its
environment. Hence, an application service desigm de
represented using the composition behaviour, ictiera activity,
provider behaviour and send and receive event ptsic#/e can
use information types to represent the structumaesfsages that are
exchanged. Figure 10 shows an example of the altelesign of a
sales service as a composition of the interacéngees provided by
a seller and a shipper.

SalesService

\ J

Figure 10. Example service design in ISDL

5. EXAMPLE

This section presents the design of a context-aieat-a-cab”
application, which uses position information tooimh a cab about
the location of a client, and vice-versa. The afrthis example is to
illustrate our service-oriented design approacte tise of the
proposed milestones to structure the design procass the
application of ISDL for service modelling.

5.1 Business process

Behaviour CAB_process in Figure 11 defines the "call-a-cab"
business process model, representing the taskshéha to be
performed, and their relationships. This behavialefinition
consists of four behaviour instantiations, which @presented by a
behaviour block describing the name of the resltiehaviour
instance, its entry, exit and interaction contiidmsg (if any).

CAB_delivery 4
LCAB_prDcess CAB_process p
[Location. locationDHid) 1= e.xy;
Wy =gy id = eid; t = Orderlnfot]

CAB_arival CAB_delivery

Location
[y == Location. valueO (e, dst]]

tring dst

Orderlnfo > CAB_arrival a

Map m, Time t
[m = map(e.»y, Location locationDf{e.id]);

L b == et + period]

———

2

[+ = OrderReq.xu:| [| oeati
id = Select.id; cUaEaidIU?i:ﬁé t
t=0] =

CAE_order

String dst, Location =y

Stiing fram, String to, Location sy
[from = OrderReq xp.toStringl);

to = OrderReq dat;

#y = Location. locationD (5 elect.id]]

Cabid
[id = selectOrderR eqg.xy]]

[Select.id == 0]

Figure 11. 'Call-a-cab' business process

Behaviour instantiationCAB_order o defines the creation of an
instance, calletb, of behaviourCAB order, which handles the
ordering of a cab. ActioBrderReq models the activity of requesting
a cab in which the destination and location of tient are
established. The request is followed by the seleaf a cab, which
is identified by soméd, as modelled by actioBelect. Operation
selectOf() represents the algorithm used to determine a) (@ede in
the vicinity of the client. Anid value of O represents no cab is
available. ActionOrderind models that the driver is informed about
the new order, in case a cab is selected. Subsqube client is
informed that the order has been accepted, whichodelled by
action OrderAcc. Observe that in ISDL, attribute constraints may
also be linked to causality relations. In case alo is available, the
order is rejected. ActiodrderRej models the notification of this to
the client.

Both in case of an accept and a reject, behavi@@_process is
instantiated recursively, modelling the handling @fnew cab
request. Only in case of an accept, an instancédeb@viour
CAB_deliver and an instance of the recursive behavioaB_arrival
are createdCAB_deliver models the delivery of the client to the
destination and the paymentCAB_arrival enables the client to
monitor the arrival of the cab. Actio@rderinfo models the
presentation of a map to the client, showing theeat location of
herself and the cab. This action is repeated gweigd time units,
until the cab has arrived. BehavioDAB_deliver and CAB_arrival
are made independent, since the core task of dalivéhe client
should not depend on the nice feature of showirgattival of the
cab.

5.2 Application service

This milestone defines which tasks of the "calbé“c business
process require application support, and which ao We assume
that all tasks as modelled B_order andCAB_arrival have to be
supported by a single application. Furthermore, deeide that
clients and cab drivers are the application usees, form the
environment of the application. This implies thatcle task is
considered as an interaction activity between gipfication and one
of its users, except for the task of selecting b, amhich is
considered an internal activity. The tasks moddiigdAB_deliver

are considered interactions between the clienttaadcab driver,
and therefore internal to the application’s envinent.

rderRes Orderlr _\.Qd‘errA}/ —\\@EW

!
rderRe W"\@W rderlnf
AS_arrival a

AS_ordera

AService

‘v
b String dst,

Location sy

String from, String to, Location sy

S5 G5 2
AService 5
OrderFe) S ————
Laocation sy,
Cab id, Time t
[from = OrderReq.sy.toSting();
to = OrderFeq.dst;

#y = Location locationDf{S electid)] | |[#¢ = OrderReg.ay:
Cab id id = Selectid: t=0]
[id = selectOfOrderReq.=y]]

A
AS_order [Select.id == 0]
Orderfieg] ™\ — .

Figure 12. 'Call-a-cab' application service

BehaviourAService in Figure 12 represents the application service.
The application service defines the contributiothefapplication to
each of the interaction activities identified abolee constraints on
these contributions are defined by behavio&S order and
AS_arrival. The definition of these behaviours is similatiie ones

of the previous milestones, except with actionsdgpeplaced by
interaction contributions (except for actigalect). In this way, the
application is made responsible for implementingahstraints on
the actions identified in the business process. fevity, only
behaviouAS_order is shown.

5.3 Application service design

This milestone produces an initial design of thgligption service.
We assume that the application functionality idritisted over the
mobile phones of the client and cab driver, ancemtral server,
which are connected via a mobile network. Figured&Bicts the
application service desigADesign) modelled as the composition of
the services provided by the application entities tbe mobile
phones of the client and cab drivacC(ient andADriver, resp.), and
the application server entityAgerver). Interactions ClientReq,
ClientRsp, Clientinfo, Driverind andDriverRsp have been introduced
to model the interaction between the applicationities. For
brevity, action attributes have been omitted.

Conformance assessment

In order to assess the conformance of the appuiicatesign to the
application service, we use the second techniquetioned in
section 3.2. This means we have to abstract froen disign
information that has been added in this milestand, subsequently
compare the obtained abstraction to the applicaservice. To

illustrate this process, the following simplificatis are made: we
consider a single client, ignore action attribieed assume a client
is informed only once about the arrival of the €¢ab recursion).
Figure 14 depicts the resulting behaviours of hgieation service
and the application design.

The design information added in this milestone ist&sof
interactions ClientReq, ClientRsp, Clientinfo, Driverind and
DriverRsp. A method has been defined for ISDL to abstraainfro
these interactions [24]. The first step in this hoet consists of
replacing the interactions by actions, which mustegrate all
constraints defined by the contributions of therattions. The next
step consists of abstracting from, i.e. removihgsé actions, which
are callednserted actiongin grey), since they have been inserted
during the refinement steps towards this milestofiee other
actions are calleteference actionssince they provide the reference
points in the application service and design foisessing
conformance. To perform the abstraction, rules Hzaen defined
which obey the following conformance criteria:

1. an indirect relation between reference actionsnddfivia an
inserted action in the application design mustepéaced by an
equivalent relation defined directly between theesponding
reference actions in the application service;

2. similarly, indirect relations between attributesosld be
replaced by direct relations.

In case of this example, it is straightforward e ghat when
following these rules, the obtained abstractionthaf application
design is equivalent (even identical) to the ajpgilin service.

OrderRe] C’_.

Orded,
Tientinfo @
Orderlnfg Orderlnfo AClient c J L AServers

Orderlnd [Drderlnd

ADriver g J

%

ADriver d g

AClient2 5

AClignt2 K AServer2
Orderlnig Clentinfo w [aserverz.
[} ¥ actient2

Figure 13. Application service design

@ Oiderind

ok = tue]

Clientinfo Orderlnfo

AService_simplified ADesign_simplified

— _J

Figure 14. Conformance assessment

5.4 Refined application service design
This milestone decomposes the application sert@r in

e a locater, which allows one to request the geographical

location of a mobile phone;

* a selector which selects a cab and asks the driver for

confirmation. Selection involves obtaining cab lmma
information, determining availability and choositige cab
closest to the client;

e« a map provider which provides a picture of a route map
showing the position of the client and the arriviradp;

e anupdater which updates the client with aforementionedeout
maps. For this purpose cab location informatiolobtained;
and

e acontroller, which coordinates the handling of a cab request,
and the updating of arrival information, using thervices
provided by aforementioned entities.

Figure 15 depicts the services provided by thetiestidentified

above. For brevity, the behaviour defining the cosiipn of the

services, similar to Figure 13, has been omitted.

Contraller

<]
G@
ocReqr{LocReq

LODHSD LocF\sp
apHsp apReq ™=
Updater
apF\eq apHsp

MapProvider |

MapProvider

Figure 15. Application server design

Conformance assessment

The conformance of the application server desigiheocapplication
server service can be assessed analogously torsBi It is left to
the reader to show that they do not conform, becanteraction
contribution Clientinfo may happen independently of interaction
contribution ClientRsp. This can be solved by making interaction
contribution InfoReq dependent on contributiorClientRsp in
behaviourController. Although this example is rather simple, our
conformance assessment method can be applied tefargd ISDL
behaviour.

5.5 Application service implementation
Figure 16 gives an overview of the specificationd designs made
so far and their conformance relations.

Application design

Application Server design

Figure 16. Overview of the design process

The design process ends when services can be edavidavailable
software components or their implementation reguine further
design steps. For example, theator andMapProvider services in
Figure 15 are provided by web-services of the WAS#Eorm [15]

on top of which we are currently implementing tleall-a-cab’
application. For this we assume that abstractdotems between
application entities are refined into generic comiwation activities
such as one-way and two-way message passing. Fodie we
work on the development of a tool to transform stmmmunication
activities as specified in ISDL, onto BPEL languajements, such
as 'invoke', 'receive' and 'reply'. This allows floe generation of
skeleton-code, thereby facilitating the implemeatatof service
designs.

6. CONCLUSIONS

This paper identifies service-oriented design as phocess of
designing an application service such that it caninbplemented
using service-oriented computing technology. Seraidented

design is needed when the mapping of business gzdasks onto
available application services is complicated armh ¢ot be
obtained using predefined decomposition rules. Aghs it

complements existing techniques for on-line, autethaservice
composition (e.g., [21], [19]), which often assunae close

correspondence between business tasks and avadppleation

services. Furthermore, service-oriented design Gades the use of
platform independent modelling of services.

A systematic and generic service-oriented desigprogeh is
presented, characterized by considering recurstielyexternal and
internal perspective of an application (part). Desmilestones are
identified and methods for conformance assessnrentiescribed.
In addition, a conceptual model for service-oridniesign is
defined, providing abstract and generic concepfgpating the
modelling of business processes, application ssviand their
designs. These concepts have been inspired byingxiservice
description and composition techniques, in ordefatiitate their
mapping onto the more concrete concepts supporesetvice-
oriented computing platforms. The suitability oDiSto express the
service-oriented design concepts is shown.

Service-oriented design originated from the areacahponent-
based design (for an overview see e.g. [13]).db@lates on this
area by incorporating the principle of distinguighi between
externally observable behaviour and internal radbn of that
behaviour and the principle of integrating applaas with business
processes. Although these principles are not rtesy, have special
status in service-oriented design methods, our adetéflects that.
Various research groups have proposed languagesefwice-
oriented design [9], [10], [11], [18]. [18] alsoports a form of
conformance verification. Our work extends this kydrecause we
describe the role of a modelling language in theigheprocess in
more detail and because we consider modellinggitenilevels of
abstraction. Our work complements the work on degigpcesses
for service-oriented design [4], [12], because aketa more precise
(formal) approach to modelling and conformance fization.
Finally, design languages have been proposed tphigaly
represent (XML-based) service descriptions (se€@.g[17]). Our
work contributes to this area, because we alsoidensigher
abstraction levels. We refer to [14] for a moreadetl overview of
related work.

We propose ISDL as a language for service-oriede=ign. From
the beginning of its development, we have concttran the
definition of the design concepts underlying ISQliming at a
limited set of generic and elementary concepts.e@asn these
concepts, a method for assessing the conformarnwedre services
and their designs has been defined, thereby prayiflill support
for the service-oriented design approach preseintettis paper.
Recently, our focus has shifted to the definitidnaographical
notation to express the concepts and the develdpuiertool

support. An editor is now available and a simulé&asimost ready
[23]. Tools have and are being developed to pbrtalitomate
conformance assessment.
transforming platform independent service designdSDL into
platform dependent service descriptions, in pdeicMVSDL and
BPEL specifications.

7. ACKNOWLEDGEMENTS

This work is part of the Freeband A-MUSE projectedband
(http://ww.freeband.nl) is sponsored by the Dutgtvernment
under contract BSIK 03025.

8. REFERENCES

[1] W. van der Aalst. Don't go with the flow: Web sems
composition standards exposHeEE Intelligent System48,
Jan/Feb. 2003.

[2] W. van der Aalst, et al. Workflow patterfBistributed and
Parallel Databasesl4(3):5-51, July 2003.

[3] J.P.A. Almeida, et al. On the notion of abstraatfptm in
MDA development. IfProc. of the 8 IEEE Intl. Conference
on Enterprise Distributed Object Computing (EDO®@2))
Monterey, California, USA, Sept 2004.

[4] G. Alonso, et alWeb Services: Concepts, Architectures and
Applications Springer, 2003.

[5] BPMI. Business process modeling language (BPML) version

1.0 http://mww.bpmi.org/bpml-spec.esp, Nov. 2002.

[6] BPMI. Business process modeling notation (BPMN) 1.0
http://mww.bpmn.org/Documents/BPMN%201-0.pdf, 2004.

[7] BEA Systems, Microsoft, IBM, and SABusiness process
execution language for web services (BPEL4WS)orefsil
http://mmww-106.ibm.com/developerworks/webservices/
library/ws-bpel/, May 2003.

[8] B. Benatallah, et aService-Oriented Software System
Engineering: Challenges and Practicehapter Service
Composition: Concepts, Techniques, Tools and Tréods
appear). Idea Group, Inc., 2004.

[9] B. Benattallah, et al. Conceptual modeling of wetvise
conversations. IRroc. of the 15th Int. Conf. on Advanced
Information Systems (CAiSHElagenfurt, Austria, 2003.
Springer.

[10] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Ser
environment for web services composititBEE Internet
Computing 7(1):40-48, Jan/Feb. 2003.

[11] T. Bultan, et al. Conversation specification: A repproach to
design and analysis of e-service compositiorivt. of the
Int. Conf. on the World Wide Web (WWWBidapest,
Hungary, May 2003. ACM Press.

[12] C. BusslerB2B integration - concepts and architecture
Springer, 2003.

[13] J. Chessman and J. DaniéidL Components: A Simple
Process for Specifying Component-based Softweatdison-
Wesley, 2001.

Furthermore, we work ons too

[14] R. Dijkman and M. Dumaservice-oriented design: A multi-
viewpoint approachTechnical Report 04-09, Centre for
Telematics and Information Technology (CTIT), Umarg of
Twente, Enschede, The Netherlands, 2004.

[15] P. Dockhorn Costa, et al. Towards a Services Piatfor
Mobile Context-Aware Applications. IRroc. of the 1st Int.
Workshop on Ubiquitous Computing (IWUe@hrto, Portugal,
2004.

[16] H. Eertink, et al. A business process design lagguaProc.
of the World Congress on Formal Methp#i899.

[17] K. Mantell. From UML to BPEL http://mwww-
106.ibm.com/developerworks/webservices/library/ws-
umi2bpel/, 2003.

[18] M. Mecella, F. Parisi-Presicce, and B. Pernici. klod e-
service orchestration through Petri netPtac. of the 3rd
Intl. Workshop on Technologies for E-Services (TR$)38—
47. Springer Verlag, Sept. 2002.

[19] B. Medjahed, A. Bouguettaya, A. K. Elmagarmid. Cosipg
Web services on the Semantic WebThe VLDB Journal
12:333-351, 2003.

[20] OMG. Model driven architecture (MDAYechnical Report
ormsc/02-07-01, Object Management Group, July 2001.

[21] B. Orriéns, Jian Yang, and M. P. Papazoglou. A Exaonk
for Business Rule Driven Service CompositionSkrvice-
Oriented Computing — ICSOC 2QQ3CNS 2910, pp. 75-90,
Springer 2003.

[22] C. Pelz. Web services orchestration and choreogrd#pBEE
Computer36(8):46-52, Oct 2003.

[23] ISDL homehttp://isdl.ctit.utwente.nl/, n.d.

[24] D. Quartel, L. Ferreira Pires, and M. van Sindem.
architectural support for behavior refinement istrdbuted
systems desigdournal of Integrated Design and Process
Science6(1), March 2002.

[25] D. Quartel, et al. On the role of basic design eptein
behaviour structuringComputer Networks and ISDN Systems
29:413-436, 1997.

[26] UDDI. Universal description, discovery and integration
(UDDI) version 3.0 Technical report, OASIS UDDI
Specification TC, 2003. http://uddi.org/pubs/udd.htm.

[27] C.A. Vissers and L. Logrippo. The importance ofsbevice
concept in the design of data communication prdsoto
Proc. of the IFIP WG6.1'5Int. Conference on Protocol
Specification, Testing and Verification pp. 3-17, 1985.

[28] W3C. Simple object access protocol (SOAP) version 1.1
http:/Aww.w3.0rg/TR/2000/NOTE-SOAP-20000508, May
2002.

[29] W3C.Web services choreography interface (WSCI) version
1.0. http://mww.w3.0rg/TR/2002/NOTE-wsci-20020808,
August 2002.

[30] W3C.Web services description language (WSDL): Part 1:
Core language version 1.Bttp://mwww.w3.0rg/TR/2003/ WD-
wsdl20-20031110, Nov. 2003.

[31] W3C.WS choreography model overvidwitp://mww.w3.
org/TR/2004/WD-ws-chor-model-20040324/, March 2004.

[32] P. Wohed, et al. Analysis of web services compmsiti
languages: The case of BPEL4WSPhoc. of the 22nd Intl.
Conf. on Conceptual Modelling (ERJhicago IL, USA, Oct.
20083. Springer.

