
SPECIFICATION AND VERIFICATION OF AN HDLC PROTOCO L

WITH ARM CONNECTION MANAGEMENT AND FULL-DUPLEX DATA TRANSFER *

A. Udaya Shankar and Simon S . Lam

Department of Computer Science s
University of Texas at Austi n

Austin, TX 7871 2

ABSTRACT

We use an event-driven process model t o
specify a version of the High-level Data Link Con-
trol (HDLC) protocol between two communicatin g

protocol entities . The HDLC protocol is based upo n
the Asynchronous Response Mode (ARM) of operation ,
and uses the basic repertoire of HDLC commands an d
responses (with the exception of the CMDR

response) . It includes the features of poll/fina l

cycles for connection management and checkpointing ,

sliding windows for data transfer, and ready/no t
ready messages for flow control . HDLC has thre e
distinguishable functions : connection management ,
and one-way data transfers in opposite direction s
between the protocol entities . Various logical

safety properties of the HDLC protocol concernin g
these functions have been verified using the metho d
of projections .

1 . INTRODUCTIO N

The High-Level Data Link Control (HDLC)

protocol corresponds to a layer 2 protocol within

the OSI reference model [ISO 79a, ISO 79b, IS O

80, ZIMM 80] . It is intended to provide reliable

full-duplex data transfer between layer 3 protoco l

entities, using error-prone physical communication

channels of layer 1 . The specification of HDLC in

the ISO documents defines precisely low-leve l

protocol functions, such as error detection an d

frame synchronization . Formats of three types of

frames specifying the encoding of control and dat a

messages are also clearly defined . Aside fro m

these basic definitions, however, the HDLC docu-
ments leave many options to be decided by th e

protocol implementor . In particular, one can choos e

from a variety of data link configurations and

three operational modes that specify balanced or

unequal relationships between the communicatin g

*This work was supported by National Science Foun-
dation Grant No . ECS78-0180 3

Permission to copy without fee all or part of this material is grante d

provided that the copies are not made or distributed for direc t

commercial advantage, the ACM copyright notice and the title of th e

publication and its date appear, and notice is given that copying is b y

permission of the Association for Computing Machinery . To cop y

otherwise, or to republish, requires a fee and/or specific permission .

© 1983 ACM 0 .89791 . 089-383/0300-0038 800 .75

entities . Also, various subsets of the messages ca n
be used, instead of the entire set defined . Fur-

ther, some aspects of HDLC are described informally
in English and are not rigorously specified .

In this paper, we use an event-driven proces s
model [SHAN 82a] to specify a version of the HDL C

protocol .

	

(Refer to Figure 1 .)

C
2

Figure 1 . The protocol system mode l

Let P I denote the primary HDLC entity and P 2 th e
secondary HDLC entity operating in the Asynchronou s

Response Mode (ARM) . CI and C 2 are (unreliable)
communication channels . Our protocol uses the basi c

repertoire of HDLC commands and responses (with the
exception of the CMDR response) . It includes th e
use of poll/final cycles for checkpointing and con-
nection management, timers for timeouts, sliding
windows of size N for data transfers, and ready/no t

ready messages for flow control [ISO 79b] . Ou r
protocol incorporates all of the principal HDL C
functions .

HDLC has at least three distinguishable
functions : connection management, and one-way dat a
transfers in opposite directions . We state asser-
tions that specify logical safety properties of the
HDLC protocol concerning each function . Thes e
assertions have been verified to hold for the HDL C
protocol specified herein [SHAN 82a, SHAN 82b] .

1 .1 The Method of Projections

A multi-function protocol such as HDLC is ver y

complex and cannot be easily analyzed . Our
analysis of the HDLC protocol has been achieved
through an application of the method of
projections [LAM 81, LAM 82a, LAM 82b, SHAN 82a]
which breaks up the protocol analysis problem into
smaller problems .

	

The method of projections is
described in detail in [LAM 82b, SHAN 82a] .
Briefly, it constructs from a given multi-function
protocol an image protocol for each of the func-

tions that are of interest to us . An image
protocol is specified just like any real protocol ,
and is obtained by retaining only those aspects o f

the multi-function protocol that are "relevant " t o

7
P 2

38

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1024840.1035249&domain=pdf&date_stamp=1983-04-01

the function being projected . Single-function
image protocols are smaller than the origina l
multi-function protocol and are thus easier t o

analyze . For example, the image protocol for HDL C
connection management is similar to a handshak e
protocol [BOCH 78] . The image protocol for HDL C
one-way data transfer is similar to other one-wa y

data transfer protocols based on a sliding window
mechanism [STUN 76], but augmented with initializa-

tion and checkpointing features .

An image protocol obtained by our constructio n
procedure satisfies the following : any safet y

property that holds for the image protocol als o
holds for the original protocol . Additionally, if
an image protocol satisfies a well-formed property

then it is faithful . Informally, an image protoco l

is faithful if the following is true : any logical
property, safety or liveness, concerning th e

projected function holds in the image protocol i f
and only if it also holds in the original protoco l
(see [LAM 82b, SHAN 82a] for a precise definition) .

The construction of well-formed image protocols in-
volves an examination of protocol entitie s
individually . There is no need to examine th e

global reachability space of the protocol inter -
action . Herein lies a significant advantage of th e
method of projections .

1 .2 Summary of our Result s

In Section 2 of this paper, we first describ e
an event-driven process model of a protocol system .
Each component (entity or channel) of the protoco l
system is modeled as an event-driven process tha t

manipulates a set of variables local to itself an d
interacts with adjacent components by message pass-
ing. The model includes several realistic protoco l

features such as as multi-field messages and th e

use of timers . This model is then used to specif y
the HDLC protocol .

In Section 3 of this paper, we state invarian t
safety assertions concerning the logical behavio r

of each of the functions . These assertions have
been verified to hold for the HDLC protoco l
specified herein [SHAN 82a, SHAN 82b] . Due to lack

of space, we have not included their proofs in this
paper .

Proofs of the assertions as well as an exposi-

tion of the work presented in this paper can b e
found in [SHAN 82b] . Image protocols for the three
HDLC functions are also presented there . In ad-

dition, inductively complete assertions stating the
logical safety properties are shown and proved fo r
each of the image protocols . (Assertions are in-
ductively complete if (a) they are true at in-
itialization of the protocol system, and (b) for
each event in the protocol system, given that th e
assertions hold before the event occurrence, the
specification of the event is sufficient to sho w
that

	

the

	

assertions

	

hold

	

after

	

the

	

event
occurrence .) From the properties of image
protocols, it follows that these safety propertie s
proved for the image protocols are also satisfied
by the HDLC protocol .

Of the three image protocols presented

in [SHAN 82b], only the image protocol for connec-
tion management is well-formed (hence faithful t o
the HDLC protocol for all safety and livenes s

properties concerning connection management), while
the image protocols for the one-way data transfer s
are not well-formed (hence may not be faithful t o
the HDLC protocol for all safety and livenes s

properties concerning data transfer) . In order fo r
the data transfer image protocols to be well -

formed, they have to be made substantially large r

to account for dependencies in the HDLC protoco l
between the two one-way data transfer functions .
For this reason, the HDLC protocol cannot be con-
sidered as well-structured . We then suggest a

minor modification to HDLC that makes it well -
structured, i .e ., small well-formed image protocol s
can be constructed for each of its three functions .

The reader is referred to [LAM 82b, SHAN 82a]
for a detailed treatment of the theory of projec-
tions and the method to construct image protocols .

2 . AN HDLC/ARM PROTOCO L

In this section, we describe the HDLC/ARM
protocol for two protocol entities . ARM denotes the
Asynchronous Response Mode of operation . Let P 1 b e
the primary HDLC entity, and let P 2 be the secon-
dary HDLC entity . P 1 sends messages to P 2 using
channel C 1 , and P 2 sends messages to P 1 using chan-
nel C 2 (see Figure 1) . There is a user at entit y
P 1 and a user at entity P 2 . The HDLC protocol sys-
tem offers to the users a reliable connection tha t
(a) can be opened/closed by the user at P 1 , and (b)
when open, allows each user to send data blocks t o
the other user in sequence (without loss, duplica-
tion or reordering) . The HDLC protocol system of-
fers three functions to the users : connectio n

management, and one-way data transfers in tw o
directions .

2 .1 Assumptions about the Environmen t

To obtain assertions about the logical be-
havior of the protocol system, a few assumption s

are needed about the environment in which HDL C
operates . At any time, channel C i contains a

(possibly empty) sequence of messages sent by P i ,
for i=1 and 2 . Messages in the channels may be cor -

rupted by noise, but not reordered or duplicated .
When Pi sends a message, that message is appende d
to the tail of the message sequence in C i . When the
channel C i is not empty, the first message (at th e

head of the message sequence) can be removed an d
passed on to Pj (jai), provided that the message i s
not corrupted . If the message is corrupted, it i s
deleted and not passed on to P . (we assume a per-
fect error-detection mechanism). The frame-level

functions of HDLC [ISO 79a] such as the frame for -
matting of HDLC messages, bit insertion/deletion to
make flags unique, error detection, etc ., are not
considered as part of the entities P 1 and P2 , but
have been included in the channel model . Finally ,
messages in the channels have a bounded lifetime .

The first message in channel C i is deleted if i t
has been in the channel for a specified time ,
denoted by MaxDelay i .

39

2 .2 Event-driven Process Mode l

Each component of the protocol system (i .e . ,
protocol entity or channel) is modeled as an event -

driven process that manipulates a set of variable s

local to itself and interacts with adjacent com-

ponents by message passing . An event-driven

process consists of events . The events of an en-
tity consist of message sends, message reception s

and changes internal to the entity . The events o f

a channel correspond to transformations on th e
channel message sequence . An event can occur only

if variables of the protocol system satisfy certai n

conditions, referred to as the enabling condition

of the event . When an enabled event occurs, vari-
ables of the protocol system are affected . When -

ever an event-driven process has enabled events ,

any one of them can occur . We assume fairness i n

the choice of the event to occur .

2 .2 .1 Time variables and time event s

For HDLC to function correctly, it is necces-
sary that each HDLG protocol entity guarantees cer-

tain constraints on the time intervals between oc-
currences of events involving that entity . Also ,

recall that messages in channels have bounde d

lifetimes . Because (physical) time elapses at th e

same rate everywhere, these time constraints giv e
rise to precedence relations between remote event s

in different components . Furthermore, thes e
precedence relations are vital to the prope r
functioning of the HDLC protocol . We cannot ade-

quately model such a time-dependent system by usin g
only entity and channel events [SHAN 82c, SHAN
82a] . It is neccessary to relate the elapsed time s
measured at different components . We do this by
introducing time variables in the components to
measure elapsed time in integer ticks, and time

events to age the time variables .

Each time variable takes its values from N t =
{Off,0,1,2, . . .} . A time variable is termed inactive

if its value is Off, else it is termed active . Th e
value of a time variable can be changed in only tw o

ways . First, it can be aged by a time event . When
an active time variable is aged, its value is in-

cremented by 1 ; when an inactive time variable is

aged, its value is not affected. Second, a time
variable in a component can be reset to any value
in N t by a system event involving that component .

Thus, for an active time variable, the difference
between its current value and the value it was las t

reset to, indicates the time elapsed since the las t

reset .

We will use two types of time variables in ou r

model : global time variables and local time

variables . All global time variables in a syste m
model are aged by the same time event, referred t o

as the global time event . Thus, all active global

time variables are coupled . The global time even t
models the elapse of physical time in the protoco l

system model . Global time variables are typically

used to model time constraints that are satisfied
by components without the use of timers .

Local time variables are used to model the

timers that are implemented in system components .
To each local time variable t there is a unique

local time event that ages t (and t alone) . Thus ,

t is not directly coupled to any other time vari-
able . To specify its accuracy, we associate with t
a global time variable t* and a reset value to .
Whenever t is reset, both t* and to are reset t o
the same value . t* is affected by the global time

event just like any other global time variable .
The accuracy of local time variable t is specifie d

by its accuracy axiom which bounds t-t* at any
time . For example, the accuracy axio m

It-t*l < 1 i- a(t*- t0) can specify a timer with max-
imum relative error a in its clock frequency (Off -

Off is treated as 0) .

In this model, neither the local time event o f
t nor the global time event can occur, if such a n

occurrence would violate the accuracy axiom . By

placing additional constraints on the set of al -
lowed values for time variables, other types o f

time constraints satisfied by a component can b e

modeled .

	

For example, let t be a time variable

that is reset to 0 by event e1 and reset to Off b y

event e 9 . Let D be a specified delay . Then, to
model the time constraint that e2 occurs no late r
than D time units since the occurrence of e l , we
include (t<D) in the enabling condition of the time

event of t . Such constraints on time events ar e

known as time axioms . (For a more detailed presen-
tation, the reader is referred to [SHAN 82c, SHA N

82a] .)

2 .2 .2 Messages of the protocol mode l

The messages of the protocol system have mul-

tiple fields, and are specified in terms of message

types . A message type M is specified by a tuple of

the form (M,F1,F2, . . .,Fn), where TOO. The firs t
component contains the name of the message type and

is a constant . The other components (if any) are

the fields of the message type. Each field is a

parameter that can take values from a specifie d

set . We shall refer to (M,F1,F2, . . .,Fn) as the
format of message type M . The messages sent by each

entity are specified by a list of such message

types .

2 .2 .3 Variables of the entities and channel s

Each protocol entity has a set of variables ,

each with a specified domain of values . Some o f
these variables can be auxiliary variables that are

not implemented, but which are useful in th e
specification/verification of the protocol system .
Also, some of these variables can be time variable s

used in modeling time constraints satisfied by th e

entity .

In channel Ci , we associate with every message

in transit a global time value that indicates th e
time spent by that message in the channel . Thi s
time value is referred to as the age of the mes-

sage . For channel C i , we define Channel i as the

variable that represents, at any time, the sequence
of (message,age) pairs in C i .

2 .2 .4 Events of the protocol mode l

The events of the protocol system model can b e

categorized into entity events, channel events, an d

40

time events . We will describe them in that order .

There are three types of entity events . We

describe these events for entity P i .

1. For each message type M with format

(M,F1, . . .,Fn) sent by Pi , there is a Send _ M

event . This event is enabled if the values o f

the variables of P i satisfy a specified ena-

bling condition predicate . Its occurrence ap-

pends an M-type message (M,f1, . . .,fn) to the
tail of Channeli , and updates the values o f

variables of P i (fk is an allowed value o f

Fk) .

2. For

	

each message

	

type M with forma t

(Pi,F1, . . .,Fn) sent by P j (j#i), there is a

Rec M event . This event is enabled if the en-
tity variables of P i satisfy a specifie d

predicate, and the first message in Channe l
is any M-type message (M,f1, . . .,fn) . Its oc-

currence removes the message (M,f1, . . .,fn)
from Channel

1
, and updates the values o f

variables of P i .

3. An internal event of P i involves no mes-

sages . It is enabled if the entity variable s

of Pi satisfy a specified predicate . Its oc-

currence updates the values of the entit y

variables. Internal events are used to mode l
interactions of the entity with its loca l

user, channel controller, as well as timeout s

and other internal transitions of the entity .

Note that both send and receive events affect th e
state of a channel, as well as the state of the en -

tity .

We now describe the channel events . For i=1

and 2, the channel loss event for channel C i is en-

abled whenever Channel i is not empty . Its occur-

rence deletes the first (message,age) pair i n

Channel i . (Recall that the channel behavior i n
Section 2 .1 assumes that only the first message i n
each channel may be lost .)

We now define the local time events and th e

global time event for the protocol model . For each
local time variable t in Pi , there is a local time
event whose occurrence ages t ; this event is en-
abled if its occurrence does not cause t to violate

its accuracy axiom or any time axiom involving

t . There is one global time event whose occurrenc e

ages all global time variables, including the ag e
values in Channel i and Channel 2 . This time even t
is enabled if its action does not cause any of th e
time or accuracy axioms to be violated, or resul t
in an age value in Channe l i that exceeds MaxDelayi
for i=1 and 2 .

For each entity, it is assumed that its im-

plementation enforces mutual exclusion between th e
occurrences of events of that entity . Furthermore ,
we assume that simultaneous occurrences of event s

in different components of the protocol system ca n

be represented as an arbitrary sequence of occur-
rences of the same events . This latter assumption
is reasonable because events in communicatio n
protocol systems can usually be defined in such a
way that their occurrences are instantaneous .

2 .3 HDLC Message s

We shall now describe the HDLC messages tha t

are sent by P1 and P 2 . Recall that messages ar e

specified in terms of message types, and that th e

format of each message type is a tuple in which th e
first component is the name, and the other com-

ponents are the fields . The interested reade r

should compare our message types with the thre e

HDLC frame formats in [ISO 79a] and note th e

similarities .

Messages sent by Pi

We now list the message types sent by P 1 . Each
of these message types has a Poll_bit fiel d

(abbreviated as P field) that can take the value 0
or 1 . Any message with the P field set to 1 i s

referred to as a Poll .

1. (U,P,Command) This U message type represent s

the Unnumbered frames sent by P 1 for connec-

tion management . The Command field can tak e

the value SARM or DISC . SARM stands for Se t
Asynchronous Response Mode, and requests P 2

to go on-line . DISC stands for Disconnect ,

and requests 22 to go off-line .

2. (I,P,Data,NS,NR) This I message type

represents the Information frames sent by P 1
for transporting data blocks to P 2 . Let
DATABLOCKS denote the set of data blocks tha t

can be transported by the HDLC protocol . The
Data field contains a user data block, and
can take any value from DATABLOCKS . NS and NR
are sequence numbers that take values from

{O,I, . . .,N-1} . (N is 8 for normal HDLC opera-
tion and 128 for extended HDLC operation .)
NS is referred to as the send sequence
number, and is used to identify the positio n
of the data block in the sequence of user
data blocks . Successive user data blocks ar e
sent with increasing send sequence number s

(modulo N) . NR is referred to as the receive
sequence number, and indicates the send se-
quence number of the I frame from P 2 next ex-

pected at P 1 . NR is an acknowledgement fo r

data flowing in the reverse direction (i .e . ,

from P2 to P 1), and acknowledges all dat a

blocks with send sequence numbers up to NR-1 .
Finally, an I frame with P field set to 1 in-
dicates that P1 is ready to receive data from
P2 .

3. (S,P,RStatus,NR) This S message typ e

represents the Supervisory frames sent by P 1
for flow control and acknowledgement . Th e

RStatus field can take the value RR or RNR ,

indicating that P 1 is respectively Ready o r

Not Ready to receive data from P 2 . The NR
field is the receive sequence number and ha s

been described above .

Messages sent by P 2

We now list the message types sent by P2 . Each

of these message types has a Final-bit fiel d

(abbreviated as F field) that can take the value 0

41

or 1 . Any message with the F field set to 1 i s

referred to as a Final . P 2 responds to a received

Poll by sending a Final at the earliest oppor -

tunity .

1. (U,F,Response) This U message typ e

represents the Unnumbered frames sent by P2 .

The Response field can take the value UA o r

DM . UA stands for Unnumbered Acknowledgement ,
and is sent to acknowledge reception of, an d
compliance with a U command received from P l .

DM stands for Disconnected Mode, and is sen t
when P2 is off-line as a response to any mes-
sage (except for SARM) received from P l .

2. (i,F,Data,NS,NR) This I message type

represents Information frames sent by P2 . The
Data . NS and NR fields are similar to thos e
in the I frames sent by P I (except that th e
roles of P1 and P2 are interchanged) . Also ,

an I frame with the F field set to 1 in-
dicates that P 2 is ready to receive data fro m
P1 .

3. (S,F,RStatus,NR) This S message type
represents Supervisory frames sent by P2 . The
RStatus and NR fields are similar to those i n
the S frames sent by P I (except that th e

roles of P 1 and P2 are interchanged) .

Note that message types sent by P I and P 2 have

similar names . This should however cause no
confusion . (The P and F fields actually occupy the

same bit position in HDLC frames . That bit i s

referred to as the P/F bit [ISO 79a] .)

2 .4 Variables of the HDLC Protocol Entitie s

We now list the variables of the protocol en-
tities .

Variables of P 1

P I , the primary HDLC entity, has the followin g
variables (the domain of each variable is als o
listed using a Pascal-like notation) :

{The following variables are primarily use d
in the Poll/Final cycle }

Poll_bit

	

: (0,1) ;
Poll_Timer

		

: (Off,0,1,2, . . .,PollTimeoutValue) ;

{local time variable }
$Poll_Timer

	

: (Off,0,1,2,) ;

{global time variabl e
associated with Poll Timer }

Poll Retry Count : (0,1, . . .,MaxRetryCount) ;

{The following variable is primarily use d
in connection management }

Mode

	

: (Open, Opening, Closed ,
Closing, LinkFailure) ;

{The following variables are primarily use d
in sending data blocks to P 2 }

Source : array[0 . .] of DATABLOCKS ;
{history variable of data blocks }

User in, S, A, : 0 . . ;

	

{pointers to Source }

VS, VA, VCS : 0 . .N-l ;
{pointer variables modulo N}

Checkpoint_Cycle : Boolean ;

Remote RStatus : (RR,RNR) ;

{The following variables are primarily use d

in receiving data blocks from P 2 }

Sink : array[0 . .] of DATABLOCKS ;
{history variable of data blocks }

User_out, R : 0 . . ; {pointers to Sink }
VR : 0 . .N-1 ; {pointer variable modulo N }
Local RStatus : (RR,RNR) ;

Variables of P 2

P2 , the secondary HDLC entity, has the follow -
ing variables (along with their domains) :

{The following variables are primarily use d
in the Poll/Final cycle }

Final_bit : (0,1) ;
$Response Time : (Off,0,1,2, . . .,MaxResponseTime) ;

{auxiliary global time variable }

{The following variables are primarily use d
in connection management }

Mode

	

: (Open, Opening, Closed, Closing) ;
U _Response : (UA, DM, None) ;

{The following variables are primarily use d
in sending data blocks to P I }

Source : array[0 . .] of DATABLOCKS ;

{history variable of data blocks }
User_in, S, A : 0 . . ;

	

{pointers to Source }

VS, VA, VCS : 0 . .N-1 ;
{pointer variables modulo N }

Checkpoint Cycle : Boolean ;
Remote RStatus : (RR,RNR) ;

{The following variables are primarily used i n
receiving data blocks from P 1 }

Sink : array[0 . .] of DATABLOCKS ;
{history variable of data blocks }

Userout, R : 0 . . ;

	

{pointers to sink }
VR : 0 . .N-1 ; {pointer variable modulo N }

Local_RStatus : (RR,RNR) ;

(Note that many variables in P I and P2 have
the same names . Whenever this can cause ambiguity ,
we will qualify the variable names with 1 or 2 ;
e .g ., Mode l , Mode 2 .)

2 .5 Events of the HDLC Protoco l

The events of the HDLC protocol system ar e
formally specified in Tables 1-4 . An informa l
description follows in the succeeding subsections .
The events of the entities are shown in Tables 1
and 2 .

	

The program statements in upper cas e
(POLL_SENT, FINAL_ RECEIVED ,
INITIALIZE SEND VARIABLES, etc .) stand for code
segments that are shown in Table 3 . When used in a n
entity event, the variables they refer to are the
variables of that entity . We use the notation e and
0 to refer to addition modulo N and subtraction
modulo N respectively . The time events of the HDL C
protocol are specified in Table 4 .

	

The initial

42

state of this protocol is given by the followin g
value assignments to the protocol system variables :
Poll bit=0,

	

Poll Timer=$Poll Timer=Off ,
Pall Retry_Count=O and Mode=Closed in P I ;

Final_bit=0, $Response_Time=Off, Mode=Closed and
U_Response=None in P2 ; both Channel l and Channel 2
are empty .

	

We now describe the operation of th e

HDLC protocol informally .

2 .5 .1 Poll/Final cycle event s

We first describe the P/F cycle involving the
Poll and Final messages . Recall that P 2 responds t o
a received Poll by sending a Final at the earlies t
opportunity . A Poll is said to be outstanding (a t
P 1) if it has been sent and its acknowledging Final
is being awaited . At any time, at most one Poll ma y

be outstanding . Poll bit set to 1 indicates tha t
the next message sent by P I must be a Poll message .
Final_bit set to 1 indicates that the next message
sent by P 2 must be a Final message . Poll Timer i s
used to measure the time elapsed since the las t
Poll was sent . When Poll_Timer is Off, there is no

Poll that is outstanding and P I can send a Poll .
Poll_Timer is started (reset to 0) when the Poll i s

sent . Poll Timer is stopped (reset to Off) either
when the acknowledging Final is received, or when a
time duration PollTimeoutValue has elapsed . In the

latter case, referred to as a Timeout event (se e
Table 1), P I presumes that either the Poll or th e
Final was lost .

Poll Timer is treated as a local time vari-
able, and $Poll_Timer is its associated global time

variable . We shall consider its accuracy axiom t o
be IPoll_Timer - $Poll Timer] < 1 + a($Poll_Timer) ,

where a is the maximum relative error i n
Poll Timer's clock frequency . (Since any reset t o
Poll_Timer leaves it either Off or 0, there is n o
need to specify an associated reset value fo r

Poll_Timer .)

$Response Time is an auxiliary global tim e
variable that is active if (and only if) a Poll has
been received and its Final has not yet been sent ;
it then indicates the (global) time elapsed sinc e
the reception of the Poll . MaxResponseTime denotes
the maximum time needed by P2 to respond to a Poll .
This time constraint is modeled by assuming that P2
satisfies

	

the

	

following

	

local

	

time

	

axiom :

$Response Time < MaxResponseTime . By having
PollTimeoutValue > (1+a)(MaxDelay l + PollRespon-
seTime + MaxDelay 2), PI ensures that the followin g
P/F cycle properties hold :

(i) A Final received at P I is the response t o

the last Poll sent by P I .

(ii) A Poll received at P 2 was sent after th e
last Final sent by P 2 left channel C2 (the
Final may not have been received by P I) .

Poll_Retry_Count indicates the number of Timeout s
that have occurred since the last Final wa s
received . If this exceeds MaxRetryCount, P I assumes

that the data link (either C i , P 2 or C 2) has broken
down, and enters a LinkFailure mode, which can be
exited only by user intervention .

2 .5 .2 Connection management event s

Mode in entity P I indicates the status of th e
data link as perceived by P l . Open/Closed are st -
able states indicating that P I is on-line/off-line .

The user sets Mode to Opening/Closing to request P I
to open/close the data link with the remote user .
P I then polls P 2 with appropriate U commands
(SARM/DISC), and upon receiving acknowledgement
sets Mode to Open/Closed . LinkFailure indicate s
that P I perceives the data link to have broken dow n

(in our model, this is due to Poll _ Retry_ Count ex -
ceeding MaxRetryCount) .

Mode in entity P2 is similar to that in P I ,
except that LinkFailure is not one of its allowe d
values. Open/Closed are stable states .
Opening/Closing indicate that P 2 has received a

SARM/DISC command and has not yet sent the UA ack-
nowledgement . Once the acknowledgement is sent ,
Mode is set to Open/Closed . U_Response indicates
the kind of U message to be sent by P 2 .

2 .5 .3 Data transfer and flow control event s

Next we describe the data transfer variable s
at P 1 . Source is a history variable that record s
the data blocks given by the local user to P I to
send to the remote user . User_in, S and A are thre e

pointers to Source. User_in points to the locatio n
in Source into which the local user places his next

data block . S points to the data block in Source t o
be next sent to P I . A points to the data block i n
Source to be next acknowledged by P 2 . (See Figure
2(a)) . VS is referred to as the send state
variable, and indicates the send sequence number o f
the next data block to be sent . VA is referred t o
as the acknowledgement state variable, and in-
dicates the send sequence number of the data bloc k
to be next acknowledged . VS (VA) points to the sam e
data block in Source as S (A) . Checkpoint_Cycle an d
VCS are explained later . Remote RStatus is RR (RNR)

if the latest flow control information from P 2 in-
dicates that P 2 is Ready (not Ready) to receiv e
data . Note that data blocks Source[A], Source[A+1] ,

Source[User_in-1] have to be saved in a loca l
send buffer of PI . Let SBuffSize be the size o f
this buffer .

Sink is a history variable that records th e
data blocks received from P2 , and accepted fo r
delivery to the local user . R and User_out ar e
pointers to Sink . R points to the location in Sin k
in which to place the next data block received i n
sequence from P2 . User_out points to the data block
in Sink to he next delivered to the local user . VR
is referred to as the receive state variable, and
indicates the sequence number of the data block
next expected . (See Figure 2(b) .) VR points to th e
same data block as R . Local_RStatus is RR (RNR) i f
PI is Ready (Not Ready) to receive data blocks fro m
P2 . Note that data blocks Sink[User_out] ,
Sink[User out+l], . . .,Sink[R-1] have to be saved i n

a local receive buffer . Let RBuffSize denote th e
size of this buffer . Local RStatus reflects whethe r
this buffer is full or not .

The data transfer variables of P 2 are simila r
to those of P I (except that the roles of P I and P 2
are interchanged) .

43

At each entity, data can be sent and receive d
only when Mode is Open. At each entity, each tim e
that Mode is set to Open, the data transfer vari-
ables are initialized as follows : User in=S=A=O ,

VS=VA=VCS =O,

	

Checkpoint_ Cycle=False ,
Remote_RStatus=RR,

	

User_out =R=O,

	

VR=O,

	

and
Local RStatus=RR .

We will now describe informally the data
transfer from PI to P2 . (Let Figure 2(a) represen t
the Source in P I , and Figure 2(b) represent th e
Sink in P 2 .) When the user at P I wants to send a
data block, he places it in Source[User_in], an d

increments User in by 1 . When PI sends an I frame ,
the Data field contains Source[S], the NS and N R
fields contain the current values of VS and VR . S

is incremented by 1 and VS by 1 (modulo N) . When an

I frame arrives at P2 , if its NS equals the curren t
value of VR, and Local RStatus equals RR, then P2
accepts the data block in the data field and place s

it in Sink[R] . R is then incremented by 1, and V R
by 1 (modulo N) . When the user at P 2 extracts the
data block from Sink[User out], User out is incre-

mented by 1 . When PI receives an NR, that NR point s
to some data block in Source[A] ,
Source[A+1], . . .,Source[S] . VA is updated to equa l
NR, and A is updated to point to the data block now

outstanding .

Because the sequence numbers are cyclic, th e

number of outstanding blocks must never exceed N- 1
(i .e ., S-A should always equal (VS-VA) mod N) ;
otherwise, a received sequence number will no t
point to a unique outstanding data block . Wheneve r

a Poll is sent when data blocks are outstanding,

Checkpoint_Cycle is set to True, and VCS is set t o
(VS-1 mod N) the NS of the most recently sent dat a
block . Checkpoint_Cycle is set to False either whe n

an NR equalling or exceeding VCS is received, o r

when a Final is received . In the latter case, i f
the NR with the Final does not acknowledge VCS, P I
concludes that I frames were lost (because of th e
P/F cycle properties) . VS and VA are then set t o
equal the received NR . S and A are adjusted accord-
ingly . This method of checking data transfe r

progress (and initiating retransmission i f
necessary) is referred to as checkpointing .

In addition, P2 sends flow control informatio n
indicating its current Local_RStatus to P i . This
information is sent in S frames, as well as in I

frames that have their P field set to 1 .

The data transfer from P2 to P I , and its flow
control is similar, except that the roles of th e
Polls and Finals are interchanged in checkpointing .
However, note that P I can initiate a
Checkpoint_Cycle whereas P2 cannot .

2 .5 .4 Time event s

The time events of the protocol system ar e

s hown in Table 4 .

	

Poll Timer Tick is the loca l
time event for Poll Timer. Global Tick is the
global time event of the system . The procedure Ag e

(in the actions of the time events) ages all it s
argument time variables by one tick . Note that the
global time event cannot age $Response_Time beyon d
MaxResponseTime, nor can it cause a message to stay

in Channel i for longer than MaxDelayi , nor can i t
cause Poll Timer to be more inaccurate than as
specified by its accuracy axiom . Similarly

Poll Timer Tick cannot cause Poll Timer to be mor e
inaccurate than as specified by its accuracy axiom .

3 . SAFETY PROPERTIES OF THE HDLC PROTOCO L

The HDLC protocol described has three distin-
guishable functions offered to its users : connec-
tion management, and one-way data transfers in op-

posite directions . We will now state assertion s
that specify logical safety behavior of the HDL C

protocol concerning each of these functions . Our
analysis of the HDLC protocol was done through th e
use of protocol projections . An image protocol wa s
constructed from the HDLC protocol for each of th e
three functions of interest . These image protocol s

were then verified to satisfy the safety propertie s
described below . From the properties of imag e
protocols, these assertions also hold for the HDL C

protocol [LAM 82b, SHAN 82a] . It was easier to ob-
tain the assertions from the image protocols tha n
from the HDLC protocol, because each image protoco l
is smaller, both in the number of variables and i n

the complexity of event descriptions . The image
protocols and proofs are given in [SHAN 82a, SHAN
82b] .

We note that the Poll/Final cycle displays a
time-dependent behavior . The essence of this time -
dependent behavior is captured by the followin g
assertion :

Poll Timer = Off => No Poll in Channe l i
and Final bit = 0
and no Final in Channel 2

This says that when Poll Timer is Off (e .g ., im-
mediately after a Poll_Timeout occurrence), suf-

ficient time has elapsed since the last Poll wa s
sent so that the following hold : (a) the Poll is
no longer in Channe l i , (b) if the Poll was receive d
by P2 , then the acknowledging Final has alread y
been sent, and (c) the acknowledging Final is n o

longer in Channel 2 . This assertion allows us t o
deduce the P/F cycle properties described in Sec-
tion 2 .5 .1 . The HDLC protocol has been verified t o

satisfy the above assertion [SHAN 82b] . (We not e
that our event-driven process model include s
measures of time which have been incorporated ex-

pressly for verifying assertions of time-dependen t

behavior .)

We will now state the logical safet y
properties satisfied by the HDLC protocol concern-
ing each of the three functions .

3 .1 Safety Properties for Connection Managemen t

For this HDLC protocol, the following asser-

tions concerning connection management is invarian t
(proof in [SHAN 82b]) :

1 . Model = Open => Mode2 = Ope n
and no U frame in Channe l i
and no U frame in Channe l 2

and U _Response = None

44

2 . Model = Closed => Mode 2 = Closed
and Channel l is empt y
and Channell is empt y
and U _Response = None

These assertions specify that the offline/onlin e
states of PI and P 2 are synchronized, and that the

channels are not utilized when the two entities ar e

offline .

3 .2 Safety Properties for P I to P 2 Data Transfe r

For the function of one-way data transfer fro m

P I to P2 , the following two desirable propertie s
have been verified to hold for the HDLC protoco l
(proof in [SHAN 82b]) :

If Mode l = Mode2 = Open the n

1. Sink2 [i] = Source l [i] for 0 < i < User out 2
2. 0 < A I < SI < AI + N

The first says that while the data link is open ,

data is transferred in sequence from P 1 to P2 . The
second says that the maximum number of outstandin g

data blocks (hence the minimum storage requirement)
at P I is N-1 .

3 .3 Safety Properties for P 2 to P I Data Transfe r

For the function of one-way data transfer fro m
P2 to P

1
the following two desirable propertie s

have been verified for the HDLC protocol (proo f
in [SHAN 82b]) :

If Mode 2 = Mode 1 = Open then
1. Sinkl [i] = Source2 [i] for 0<i<User out '

2. 0 < A 2 < S 2 < A2 + N

The first says that while the data link is open ,

data is transferred in sequence from P 2 to P l . The
second says that the maximum number of outstandin g
data blocks (hence the minimum storage requirement)
at P2 is N-1 .

4 . CONCLUSIO N

We have used an event-driven process model t o
specify and verify a version of the HDLC protoco l
between two communicating protocol entities . The

HDLC protocol specified is based upon the
Asynchronous Response Mode (ARM) of operation, an d
includes all of its important features . It uses the
basic repertoire of HDLC commands and responses
(with the exception of the CMDR response), and in-
cludes the use of poll/final messages for check-
pointing and connection management, timers for

timeouts, sliding windows of size N for data
transfers, and ready/not ready messages for flo w
control .

The IIDLC protocol has three distinguishabl e

functions : connection management, and one-way data
transfers between the two protocol entities . We
stated assertions that specify desired logica l
safety properties of the HDLC protocol concernin g

the three functions . These assertions have been
verified to hold for the HDLC protocol specified .
The verification was done through an application of

the method of projections . The image protocols o f
HDLC and proofs of the assertions can be found
in [SHAN 82b] . The theory of projections and th e
method to construct image protocols are presente d
in [LAM 82b, SHAN 82a] .

REFERENCE S

[BOCH 78]

	

Bochmann, G . V ., "Finite State Descrip -
tion

	

of

	

Communication

	

Protocols, "

Computer Networks, Vol . 2, 1978 .
[ISO 79a] International Standards Organization ,

"Data Communications--HDLC Procedures- -
Frame Structure," Ref . No . ISO 3309 ,

1979 .
[ISO 79b] International Standards Organization ,

Data Communications--HDLC Procedures--
Elements of Procedures," Ref . No . ISO
4335, 1979 .

[ISO 80] International Standards Organization ,
Data Communications--HDLC Unbalance d

Classes of Procedures," Ref . No . ISO
6159, 1980 .

[LAM 81] Lam, S . S . and A . U . Shankar, "Protoco l

Projections : A Method for Analyzin g

Communication Protocols," Conf . Rec .
Nat . Telecomm . Conf ., November 1981 ,
New Orleans .

[LAM 82a]

	

Lam,

	

S . S .

	

and

	

A . U .

	

Shankar ,
"Verification of Communicatio n
Protocols via Protocol Projections, "
Proc INFOCOM 82, April 1982, Las Vegas .

[LAM 82b] Lam, S . S . and A . U . Shankar, "Protoco l
Verification via Projections," Tech .
Rep . 207, Dept . of Computer Sciences ,
Univ. of Texas at Austin, August 1982 .

[SHAN 82a] Shankar, A. U ., "Analysis of Communica -
tion

	

Protocols

	

via

	

Protocol
Projections," PhD thesis, Dept . o f
Elec . Eng ., Univ. of Texas at Austin ,

December 1982 .
[SHAN 82b] Shankar, A . U . and S . S . Lam, "An HDLC

Protocol Specification and it s
Verification using Image Protocols, "

Tech . Rep . 212, Dept . of Compute r
Sciences, Univ . of Texas at Austin ,
September 1982 .

[SHAN 82c] Shankar, A . U . and S . S . Lam, "On Time -
Dependent Communication Protocols an d
their Projections," Proc . 2nd Int .
Workshop on Protocol Spec., Test . and

Verif ., May 1982, Idyllwild, CA .
[STEN 76] Stenning, N . V ., "A Data Transfe r

Protocol," Computer Networks, September

1976 .
[ZIMM 80] Zimmermann, H ., "OSI Reference Model--

The ISO Model of Architecture for Ope n

Systems Interconnection," IEEE Trans .
on Commun . COM-28(4), April 1980 .

45

TABLE 1 . EVENTS OF PRIMARY HDLC ENTITY P 1

Event Name

1. User req conn

2. User req disc

Enabling Condition

	

Actio n

Mode j Opening or Closing

	

Mode := Opening

Mode = Open

	

Mode := Closing

3. User puts_data

	

Mode = Open

	

{User places data in Source[User_in] }

and (User in-A<SbuffSize)

	

User in := User in + 1

4. User_gets_data

	

Mode = Open

	

{User extracts data block from Sink[User_out] }

and (R-User_out > 0)

	

User out := User out + 1 ;
if Local RStatus = RNR then Local RStatus := RR

5. Send_U

	

Mode = Opening

	

if Mode = Opening then Command :=SARM ;
or Mode = Closing

	

if Mode = Closing then Command := DISC ;
and Poll_bit = 1

	

put(Channel l , (U,1,Command)) ;
POLL_SENT

6. Rec U

	

first(Channel2) = U

	

get(Channel2 , (U,F,Response)) ;
if Response = DM then Mode := Closed ;

if (Response = UA) and (Mode = Closing)
then Mode := Closed ;

if (Response = UA) and (Mode = Opening)
then begin Mode := Open ;

INITIALIZE SEND VARIABLES ;
INITIALIZE REC VARIABLE S

end ;

if F = 1 then FINAL RECEIVE D

7. Poll_Timeout

	

Poll Timer>PollTimeoutValue Reset(Poll_Timer, Off) ;

if Poll_Retry_Count < MaxRetryCoun t
then Poll_Retry_Count := Poll_Retry_Count + 1
else Mode := LinkFailur e

8. Request Poll

	

Poll Timer = Off

	

Poll_bit := 1

9. Send_I

	

Mode = Open

	

put(Channel l , (I,Poll bit,Source[S],VS,VR)) ;
and VS®VA < N-1

	

VS := VS A 1 ; S := S + 1 ;
and S < User_in

	

if Poll_bit = 1
and Remote_RStatus = RR

	

then begin CHECKPOINT_ SENT ;
and not(Poll_bit = 1

	

POLL_SENT
and Local RStatus = RNR)

	

end

10. Send _S

	

Mode = Open

11 . Rec_1

	

Mode = Open
and first(Channel 2) = I

12 . Rec_S

	

Mode = Open

and first(Channel 2) = S

put(Channel l , (S,Poll_bit,Local_RStatus,VR)) ;
if Poll_bit = 1

then begin CHECKPOINT SENT ; POLL_SENT en d

get(Channel2 , (I,F,Data,NS,NR)) ;
DATANS_RECEIVED ; NR_RECEIVED ;
if F--= 1 then begin CHECKPOINT_ RECEIVED ;

FINAL RECEIVED ;
Remote RStatus := RR

end

get(Channel2 ,(S,F,RStatus,NR)) ;
Remote RStatus := RStatus ; NR RECEIVED ;
if F = 1 then begin CHECKPOINT_ RECEIVED ;

FINAL _ RECEIVED ;
end

46

TABLE 2 . EVENTS OF SECONDARY HDLC ENTITY P 2

Event Name

	

Enabling Condition

1 . User_puts_data

	

Mode = Open
and (User in-A<SbuffSize)

2 . User_gets_data

	

Mode = Ope n
and (R - User out > 0)

3. Rec_U

	

first(Channel l) = U
and U_Response

	

UA

4 . Send _U

	

U_Response

	

None

5 . Send_I

	

Mode = Open
and VSd3VA < N- 1

and S < User_in
and Remote RStatus = RR
and not(Final bit = 1

and Local RSTATUS = RNR)

Action

{User places data block in Source[User in] }
User_in := User_in + 1

{User extracts data block from Sink[User_out] }
User out := User out + 1 ;
if Local RStatus = RNR then Local RStatus := RR

get(Channell , (U,P,Command)) ;
if command = SARM begin Mode := Opening ;

U_Response := UA
end ;

if (Command = DISC) and (Mode = Open)
then begin Mode := Closing ;

U_Response := UA
end ;

if (Command = DISC) and (Mode = Closed)
then U Response := DM ;

if P = 1 then POLL RECEIVED

put(Channel2 , (U,Final_bit,U_Response)) ;
U_Response := None ;
if Mode = Closing then Mode := Closed ;
if Mode = Opening

then begin Mode := Open ;
INITIALIZE SEND VARIABLES ;
INITIALIZE REC VARIABLE S

end

if Final bit = 1 then FINAL SENT

put(Channel2 , (I,Finalbit,Source[S],VS,VR)) ;
VS := VS 0 1 ; S := S + 1 ;

if Final bit = 1
then begin CHECKPOINT SENT ;

FINAL SENT ;
end

put(Channel2, (S,Final_bit,Local_RStatus,VR)) ;
if Final bit = 1

then begin CHECKPOINT SENT; FINAL SENT end

get(Channel l , (I,P,Data,NS,NR)) ;
if Mode = Closed then U_Response := DM ;

if Mode = Open
then begi n

DATA NS RECEIVED ; NR RECEIVED ;
if P = 1

then begin CHECKPOINT_RECEIVED ;
POLL_RECEIVED ;

end
end

get(Channell , (S,P,RStatus, NR)) ;
if Mode = Closed then U_Response := DM ;
if Mode = Open then begin

Remote RStatus := RStatus ;
NR RECEIVED ;
if—P = 1

then begi n
CHECKPOINT RECEIVED ;
POLL RECEIVED
end

_

end

6. Send _ S

7. Rec_I

Mode = Open

first(Channell) = I
and U_Response UA

8. Rec_S first(Channell) = S
and U_Response UA

47

TABLE 3 . DETAILS OF CODE SEGMENTS USED IN TABLES 1- 2

POLL SENT : :

Reset(Poll Timer, 0) ; Poll_bit := 0 ;

FINAL_ RECEIVED : :

Reset(Poll Timer, Off) ; Poll _ Retry_ Count := 0 ;

POLL_ RECEIVED : :
Final bit := 1 ; Reset($Response Time, 0) ;

FINAL SENT : :

Final bit := 0 ; Reset($Response Time, Off) ;

INITIALIZE _ SEND_ VARIABLES : :
User_in := 0 ; S := 0 ; A := 0 ; VS := 0 ; VA := 0 ;
Checkpoint_Cycle := False ;
Remote RStatus := RR ;

INITIALIZE_REC_VARIABLES : :
User_out := 0; R := 0; VR := 0 ;
Local RStatus := RR ;

DATA NS_RECEIVED : :
if VR = VS and Local_RStatus = R R

then begin Sink[R] := Data ;
R := R + 1 ; VR := VR 0 1 ;
if (R - User_out) = Rbuffsiz e

then Local RStatus := RNR ;
end ;

CHECKPOINT _SENT : :
if VS i A S

then begin Checkpoint_Cycle := True ;
VCS := VS ® 1

end ;

NR_RECEIVED : :

if Checkpoint_Cycle and NR e VA > VCS e VA
then Checkpoint_Cycle := False ;

A := A + (NR ® VA) ; VA := NR ;

CHECKPOINT_RECEIVED : :

if Checkpoint_Cycl e
then begin Checkpoint_Cycle := False ;

VS := VA ; S := A
end ;

TABLE 4 . TIME EVENTS FOR THE PROTOCOL SYSTEM

Event Name

	

Enabling Conditio n

1. Poll_Timer Tick

	

(Poll_Timer - $Poll Timer) < a($Poll Tinier)

2. Global_Tick

	

($Poll_Timer - Poll_Timer) < a($Poll_Timer)

	

Age($Poll_Timer) ;
and ($Response Time < MaxResponseTime)

	

Age($Response Time) ;
and (all ages in Channel l < MaxDelayl)

	

Age(all ages in Channe l l) ;
and (all ages in Channel 2 < MaxDelay2)

	

Age(all ages in Channe l 2) ;

Actio n

Age(Poll Timer)

User_in

(VS) S

(VA) A

data block s
awaiting

transmission

data blocks

sent but not yet

acknowledge d

data block s

sent and

acknowledged

data blocks
in send

buffer

empt y

received data

blocks await-
ing delivery

to user

received data

blocks deliv-
ered to user

empty

(a) source array

	

(b) sink array

Figure 2 . Pictorial representation of pointer positions fo r
source and sink history array s

48

