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Abstract — Random access protocols allow large numbers of lo w
duty cycle stations to exchange messages over a shared communi-
cations channel under distributed control. Recently, a new clas s
of random access protocols called `tree algorithms' has emerged .
Tree algorithms offer several performance advantages over othe r
random access protocols (e .g . ALOHA and CSMA), namely
higher capacity and inherently stable operation . However, only
synchronous (slotted) tree algorithms have so far been defined .
Any practical implementation of a synchronous protocol is com-
plicated by the need for stations to perform the steps of the algo-
rithm synchronously . Thus asynchronous (unslotted) protocols
are of greater practical importance, especially for local networks .
Here we show how to construct asynchronous versions of severa l
well-known tree algorithms, and describe some of the perfor-
mance limitations that result from asynchronous operation .

I . Introductio n

Computer networks allow a set of intelligent devices (hen-
ceforth called stations) to communicate by exchanging messages
over some communications channel(s) . A 'channel' may be a
point-to-point connection between two stations, or .broadcast con-
nection that more than two stations can access . With a broadcas t
channel, any station connected to the channel can transmit a mes-
sage that will be received by all other stations connected to the
channel . However, the channel can only successfully deliver one
message at a time . Whenever several transmissions overlap on th e
channel we say that a collision has occurred and assume that none o f
the affected messages will be received correctly . Thus successfu l
operation of a broadcast channel depends on using some algorith m
(with one copy running in each station) for 'serializing' th e
transmissions on the channel . Such algorithms are called multipl e
access protocols .

The operation of a multiple access protocol can be deter-
ministic (i .e ., round-robin scheduling like Time Division Multipl e
Access [11, MSAP [21, or BRAM [31), or random (i .e ., on-demand
scheduling with some method of collision resolution, such as
ALOHA [41, various 'tree' and 'stack' algorithms [5, 6, 7], o r
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Carrier Sense Multiple Access [8, 9]) . When a network is to suppor t
large numbers of low duty cycle stations, random access protocol s
offer several advantages over deterministic protocols, notably th e
lack of any requirement to encode the number (anti perhaps th e
addresses) of all stations into the protocol, and throughput—delay
performance that is insensitive to the number of stations in the net -
work . We shall thus focus our attention on random access proto-
cols below .

The most well-known examples of random access protocols
are ALOHA and CSMA, an extension of ALOHA for local are a
networks . The main feature of these protocols is their simplicity .
In ALOHA, for example, stations are allowed to transmit at will .
Should this cause a collision, the stations that were involved ar e
simply forbidden from retransmitting for a random time . More
recently, a new class of protocols called tree algorithms has appeare d
in the literature — see [10) for a brief survey . These algorithm s
gather information by monitoring channel activity (i .e ., the out-
come of each slot) . This information allows tree algorithms t o
make inferences about the current state of the network, and thus t o
improve their scheduling efficiency . Thus tree algorithms can attai n
higher channel utilizations than can 'inference avoiding' protocol s
like ALOHA, and their operation can be shown to be stable withou t
the imposition of any external controls .

The operation of a multiple access protocol can either b e
synchronous (slotted) or asynchronous (unslotted) . In a synchro-
nous protocol, the all stations execute the algorithm in lock-step :
opportunities to transmit occur only at the beginning of a slot of
duration equal to a transmission time .' Both synchronous and asyn-
chronous versions of ALOHA (and the various CSMA protocols )
have been defined . However, to date only synchronous tree algo-
rithms have been proposed, possibly because it is easier to mak e
inferences when the channel history information is identical for al l
stations .

Here we introduce the notion of asynchronous tree algo-
rithms and show how certain well-known synchronous tree algo-
rithms can be modified to operate asynchronously . This construc-
tion appears as a natural extension of the synchronous protocol s
when we describe the operation of the algorithms in terms of a 'vir-
tual clock ' instead of the commonly-used 'sliding window ' abstrac-
tion (see below) . As an example, asynchronous versions of well -
known tree and stack algorithms developed by Capetanakis [5,11 1
and Tsybakov [7], respectively, are found .

In local networks, stations monitor the state of the channel and thus ar c
able to shorten unused slots through carrier sensing, and possibly are able
to shorten slots where collisions occur through collision detection .
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Asynchronous algorithms simplify network implementatio n
since there is no need to maintain a global time base . However ,
this simplification has its price . It is well known that the capacity o f
a protocol — its maximum attainable channel throughput — is les s
in the asynchronous case . In addition, we show that the FCFS pro-
perty of certain synchronous sliding window tree algorithms (i .e. ,
the delivery of messages in order of their generation times) is no t
preserved in the asynchronous versions .

II . The Virtual Clock Representation of Protocol Operatio n

An important contribution of the virtual time CSMA proto-
col was the ' virtual clock' representation of protocol operation [9] .
In the virtual clock model, a message is transmitted whenever th e
virtual clock reading passes its arrival time . Many well-known mul-
tiple access protocols can be represented in this manner : if th e
transmission time for a message is some function of its arrival tim e
(and possibly of the state of the channel), then that function can b e
used to control the motion of the virtual clock . For example, Fig-
ures la — lb give a graphical representation of ALOHA . In 'pure '
(unslotted) ALOHA — Figure la — each message is transmitte d
when it arrives . Thus the protocol may be represented by a virtua l
clock that runs continuously at constant speed, tracing out a straigh t
fine of unit slope on the Arrival time vs . Transmission time plane .
In slotted ALOHA -- Figure lb -- each message is transmitted in
the first complete slot following its ar r ival . Here the virtual clock
ticks (i .e ., advances instantaneously) once at the beginning of each
slot so that its reading forms regular `staircase' along the diagonal .

The reason for introducing the virtual clock representatio n
becomes evident when we consider 'sliding window' protocols [6] .
In the synchronous case, the operation of a sliding window protoco l
is straightforward . At the beginning of each slot, the protoco l
chooses some time interval (the window) and enables all message s
whose arrival times fall within the interval to be transmitted . From
the outcome of that slot (i .e ., whether it is idle, a success, or a col-
lision) the protocol learns something about the distribution of mes-
sages in that window, which could affect the choice of subsequen t
windows . Slotted ALOHA is perhaps the simplest possible slidin g
window protocol ; the choice of windows and duration of the
corresponding slots is fixed a priori. If the normalized transmission

time for a message is unity, then the window for the K f1st slot i s
simply the interval (K, K 1 11 . Minislotted virtual time CSMA [9 1
operates in a similar manner except for some complications neces-
sary for it to choose constant-size windows (whenever the algorith m
is far enough behind real time for this to be possible) even though
the slot duration depends on the state of the channel . (Thus win-
dowing is used as a means of flow control so that the channel wil l
not become overloaded after a periods of activity — during whic h
carrier sensing prevents stations from transmitting. )

The sliding window representation of protocol operation i s
clearly equivalent to the virtual clock representation for the case o f
synchronous protocols . However, the sliding window does not
seem well suited to describing asynchronous protocols . Here th e
virtual clock representation suggests a natural generalization b y
allowing the motion of the virtual clocks at each station to occu r
continuously rather than in discrete ticks, depending on the algo-
rithm and observed state of the channel . We note that the virtua l
clocks at different stations will no longer remain completely syn-
chronized . However, for local networks (where the maximum pro-
pagation delay is small compared to the message transmission time )
variations in virtual clock readings at different stations can b e
accounted for well enough to allow asynchronous versions of man y
algorithms to operate successfully .

III . The Stack Algorithm of Tsybakov and Vvedenskay a

The stack algorithm of Tsybakov and Vvedenskaya [71 pro-
vides a simple example of a tree algorithm . It is assumed in th e
model that all slots are of constant length and that feedback of th e
outcome of each slot is provided to all stations at the end of tha t
slot . Here a vector of random length (i .e .,the 'stack') defines th e
state of the protocol . The actions of the protocol in each slot sim-
ply consist of enabling all messages assigned to the top element of
the stack to be transmitted . Messages are assigned to an element o f
the stack in the following way . When new messages enter the sys-
tem, they are assigned to the (current) top of the stack, and thu s
will be transmitted in the next slot . Following each slot where a
collision does not occur, the stack is popped, possibly enablin g
some old message(s) to be retransmitted in the next slot . (If a
message had been at the top of the stack, it must have bee n
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transmitted successfully and so leaves the network .) Following each
slot where a collision does occur, the stack is pushed down by one .
To prevent a recurrence of this collision in a later slot, a coin toss i s
used to spread out the messages that were on top of the stack .
Those that toss '1' are reassigned to the top of the stack while th e
others remain at the second stack element .' Note that stations nee d
not know the complete state of the stack to participate in the algo-
rithm .

It is easy to find a virtual clock representation for this syn-
chronous stack algorithm . For now let us continue the assumption s
of constant slot length and that both positive and negative ack-
nowledgements are provided (at no cost) at the end of eac h
transmission . Each message is provided with a virtual clock tha t
ticks once per slot, thereby advancing by one unit of virtual time .
The reading of each clock is initialized to the arrival time of th e
message . 'Thereafter, each virtual clock will advance by one tim e
unit at the beginning of each slot . In addition, whenever a collision
occurs, the virtual clocks for all messages (except new arrivals) ar e
set back before the start of the next slot . If the message wa s
involved in the collision, its virtual clock is set back by a rando m
amount chosen uniformly in the range (0, 2) units ; otherwise it s
virtual clock is set back by exactly two units .

For asynchronous operation, we let each virtual clock run
continuously at constant speed towards the corresponding messag e
arrival time . In addition, we must choose a larger set-back valu e
following collisions . It is easy to show that the probability that tw o
points chosen uniformly over an interval of length X are separated
by at least (X is given by (1 — 1) 2 , 0 I. Thus, to insure tha t
the retransmissions of two colliding messages do not collide agai n
does not exceed .5 (as was the case in the synchronous version), i t
is sufficient to choose a set-back value no smaller than I/I`- 3 .4 ,
where 0 < ( * < 1 solves (1 — ( *) 2

	

.5 .

IV . The Tree Algorithm of Capetanaki s

The tree algorithm of Capetanakis [5, 11] operates similarly
to the stack algorithm described above with the following
modification . Here new messages are not permitted immediat e
access to the channel . Instead, they must wait for the start of th e
next service epoch . All messages that arrive during one service
epoch will be transmitted during the folio, •: ing service epoch . A
service epoch ends when it becomes known to all stations that al l
these messages have been transmitted successfully. Otherwise, th e
same 'recursive binary splitting' algorithm is used to resolve colli-
sions within the epoch . (Indeed, the stack algorithm was conceived
as an extension of this tree algorithm to overcome the need for sta-
tions to track service epochs . )

To model the operation of the basic Capetanakis algorithm ,
we proceed as follows . Since time is only used to assign messages
to service epochs in this algorithm, let us simplify the discussion b y
assuming that clocks run towards zero (at which point messages ar e
enabled), but are set back whenever collisions occur on the chan-
nel . One virtual clock is used for tracking the service epochs . Thi s
clock advances at a constant rate, but is set back by the maximum
amount following each collision . Whenever the service epoch clock
reaches zero, a new service epoch begins and all new messages ar e
transmitted . If a collision occurs when a message is first transmit-
ted, the message is provided with a separate virtual clock tha t
operates exactly as described above for the stack algorithm : follow-
ing collisions it is set back by a random amount if the message was

For illustrative purposes, we are ignoring the following improvement t o
the algorithm that was treated in [7] . If the slot following a collision is
idle, then all messages from the collision must have tossed '0' so that a
collision among these same messages is certain to occur in the next slot .
This predictable collision can be avoided by treating idle slots where th e
nearest previous busy slot was a collision as a special case . Here the stac k
is neither pushed down nor popped, but some messages from the secon d
stack element are probabilistically reassigned to the top of the stack .

involved in the collision and by the maximum amount otherwise .
Each time a message clock reaches zero, the corresponding messag e
is transmitted.

There is also an optimized version of the Capetanakis algo-
rithm where the first-level splitting is into k parts, k>2 [11, 12] .
However, we find it useful to consider a slightly different optimiza-
tion based on a sliding window . Here the messages selected fo r
transmission during a service epoch must have arrived during a
window (of constant size when possible) immediately following th e
window serviced during the previous service epoch . This window-
ing offers a slight performance advantage by avoiding some intege r
rounding in the epoch splitting . (Note that time is more significan t
for this algorithm, since the `window' is now independent of th e
previous service epoch .) Once the set of messages has been
selected, the same recursive binary splitting algorithm is used dur-
ing the service epoch . In the virtual clock representation, one cloc k
is used for tracking service epochs . As before, it runs forward a t
constant rate but is set back by the maximum amount for each col-
lision . A message is first transmitted when this service epoch cloc k
passes its arrival time . Should a collision occur, the message is pro-
vided with its own virtual clock, initialized to a random set-bac k
value, which thereafter runs as described above for the stack algo-
rithm .

V . Extension to Local Network s

Although the definitions of these protocols originall y
assumed that all slots were of constant length (and that feedback o f
the outcome in each slot was provided at the end of the slot), th e
extension to local networks is straightforward [10, l3] .

In a local network, all stations monitor the state of th e
channel so that the length of a slot can be a function of the out -
come (i .e ., idle, success, or collision) in that slot . Let us assum e
that the average message transmission time is unity, that the end-
to-end propagation time across the network is a, and that collisio n
detection can be modelled by assuming that stations transmit mes-
sage fragments of length b, when a collision occurs . Thus ,
for synchronous protocols, the length of a slot will be a if it is idle ,
11-a if it contains a successful transmission, and b 1-a if it contain s
a collision .

It is worth noting that in some local networks, such a s
packet radio networks, the ratio of the collision- to idle-detect time s
is large . It can be shown [10] that the performance of standard tree
algorithms is significantly worse than algorithms specificall y
designed to take advantage of the much-lower 'cost' of schedulin g
an idle period on the channel rather than a collision .

In this light, consider the recursive binary splitting strategy
used by the tree and stack algorithms discussed above . Since the
strategy does not apply sophisticated inferences to the channel feed -
back, the cost of idle slots and collisions was assumed to be equal ,
and (hopefully) the 'multiplicity' of collisions was usually two ,
binary splitting worked well in the original model . However, whe n
b/a»I, a protocol should be conservative, tolerating more
(short) idle slots to avoid some (long) collisions . Thus we shoul d
consider a recursive kary splitting strategy for such an environ-
ment, k>2 . Here the stack is pushed down by k—1 following eac h
collision, so that the colliding messages at the top of the stack ma y
be reassigned to k stack elements at random . It remains to fin d
how k should depend on the ratio b/a ,

If we wish to optimize the (generalized) Capetanakis algo-
rithm, we must find how the expected length of a service epoch
where j messages are transmitted, ©wj , depends on j . (Recall that
in the Capetanakis algorithm, all messages that are ever allowed t o
be transmitted within an epoch must be transmitted successfull y
before the epoch ends .) It is not difficult to find recursive equations
defining wj in terms of wi , 0 s i < j, with binary splitting for th e
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case of fixed length slots [12] or for local networks [10] . Unfor-
tunately, the corresponding results for the stack algorithm ar e
surprisingly difficult to obtain because new messages can enter a t
any time and hence wi depends on w 1 for all i=0,1, . . [7, 14] .
Thus our optimization below will be directly applicable only to th e
tree algorithm .

For the case of local networks with kary splitting, the com-
binatorics of the random reassignment becomes tedious for large j .
However, the j =2 case is by far the most important since we wil l
be using a conservative strategy . When two messages must b e
assigned to k stack elements at random, then for any assignment o f
one message, another collision can occur only if the other messag e
is assigned to the same stack element, which occurs with probabilit y
Ilk . Thus, it is easy to see that

	

w 2 =bi-- a I- ~-[w 2
	 	 k
1 (k— MI] 1

kl
-[21-ka ]

= 2 i- a S --[b F ka] .
k

	

1

If we treat k as a continuous rather than integer valued variable, w e
can optimize Eq . (I) by differentiating with respect to k assumin g
b/a is fixed . Thus

k* = 1 t- 3 l I--b/a ,

	

(2 )

which is never less than two and grows as the square root of th e
ratio of collision- to idle-detect times . For example, if a= .01 an d
6=1 [8] then k * = 11 ; here 1r 2 decreases from 4 .05 to 3 .23 as k
increases from 2 to 11 .

We are now ready to describe 'optimized ' local networ k
versions of the stack and tree algorithms described above . The
stack algorithm acts like virtual time CSMA where the 'recursiv e
kary splitting ' strategy is used as the retransmission strategy . Th e
tree algorithm acts like virtual time CSMA with head-of-the-lin e
priority classes [10] . All new messages are generated in the lowes t
priority class and thereafter, following each collision, the message s
involved join the next higher priority class .

(I)
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FIGURE 2 : UNSLOTTED LOCAL NETWOR K
TREE ALGORITH M

In the stack algorithm, one virtual clock is used to enabl e
new messages to be transmitted . In the synchronous case, thi s
clock advances at the beginning of each slot by the minimum of it s
current set-hack from real time and the (constant) window size . I n
the asynchronous case, this clock advances at a constant rate when -
ever the channel is sensed idle . This rate is 77 times faster than rea l
time if it is behind real time, and equal to real time otherwise .
Messages that are not successfully transmitted on their first attemp t
are subsequently controlled by separate virtual clocks . Thes e
separate clocks are initialized to a set-back value chosen at rando m
in the range (0, T), an interval over which the virtual clocks ca n
advance in k* ticks in the synchronous case, and in time k* a/* in
the asynchronous case . Thereafter these clocks advance towards th e
message arrival time whenever the channel is sensed idle but ar e
set back by T following collisions where the message is no t
involved, and by a random value <a T following collisions where th e
message is involved .

The operation of the tree algorithm in a two-station loca l
network with carrier sensing and collision detection is shown in Fig-
ure 2 . As in the stack algorithm, one virtual clock per station (th e
`epoch clock ' ) is used to enable new messages to be transmitted .
The epoch clock advances as described above, ticking once per slot
in the synchronous case and advancing at a constant rate when th e
channel is sensed idle in the asynchronous case . However, unlik e
the stack algorithm, in the tree algorithm all messages from on e
epoch are supposed to be transmitted before another epoch i s
begun . Thus, to implement the tree algorithm, the epoch clock i s
set back by T following each collision rather than being allowed t o
run ahead . Messages that have suffered a collision are controlle d
by separate virtual clocks as described for the stack algorith m
above .

VI . Conclusion s

We have shown how to modify existing synchronous stac k
and tree algorithms to obtain asynchronous algorithms that could b e
used on local networks . Such asynchronous algorithms overcom e
one apparent disadvantage of tree algorithms over simpler random
access protocols like ALOHA and CSMA, namely the need t o
maintain a global time base . In our choice of algorithms, we wer e
also careful to avoid algorithms that use inferences that may be s o
`clever' as to be troublesome in practice where the channel i s
unreliable and hence the channel state information could be incon-
sistent or incorrect [12 . 15] . Thus, the algorithms described abov e
seem to be good candidates for use in real single-hop random mul-
tiple access networks .

We must point out, however, that asynchronous operatio n
can have surprising effects on the behaviour of some tree algo-
rithrns . In particular, some algorithms such as the synchronou s
Gallager-Tsybakov algorithm [6, 16, 17] guarantee that message s
will be successfully transmitted in first-come first-served order . In
general, this is not possible in the asynchronous version becaus e
there is no global time base for comparing message arrival times .
Indeed, every station involved in a collision was the first to begi n
transmitting during a collision according to its own view of th e
channel history! When there is collision detection, however, ther e
are some cases where the first-come first-served property can b e
preserved . For example, in a collision of multiplicity two, only th e
first station transmits longer than it detects interference . Thus i f
two colliding stations were to monitor the durations of both of thei r
transmissions, both could agree on which station should retransmi t
first .
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Finally, it must be pointed out that proper operation of a n
asynchronous tree or stack algorithm in a local network require s
there to be a minimum length for messages (or message fragment s

if there is collision detection) . Otherwise, it can be shown [18] tha t
if transmissions of duration less than 2a were allowed, then i t

would be possible for stations to have an inconsistent count of th e
number of idle and busy periods on the channel .
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