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Abstract — Random access protocols allow large numbers of low
duty cycle stations to exchange messages over a shared communi-
cations channel under distributed control. Recently, a new class
of random access protocols called ‘tree algorithms’ has emerged.
Tree algorithms offer several performance advantages over other
random access protocols (e.g. ALOHA and CSMA), namely
higher capacity and inherently stable operation. However, only
synchronous (slotted) tree algorithms have so far been defined.
Any practical implementation of a synchronous protocol is com-
plicated by the need for stations to perform the steps of the algo-
rithm synchronously. Thus asynchronous (unslotted) protocols
are of greater practical importance, especially for local networks.
Here we show how to construct asynchronous versions of several
well-known tree algorithms, and describe some of the perfor-
mance limitations that result from asynchronous operation.

I. Introduction

Computer networks allow a set of intelligent devices (hen-
ceforth called stations) to communicate by exchanging messages
over some communications channel(s). A ‘channel’ may be a
point-to-point connection between two stations, or .broadcast con-
nection that more than two stations can access. With a broadcast
channel, any station connected to the channel can transmit a mes-
sage that will be received by all other stations connected to the
channel. However, the channel can only successfully deliver one
message at a time. Whenever several transmissions overlap on the
channel we say that a collision has occurred and assume that none of
the affected messages will be received correctly. Thus successful
operation of a broadcast channel depends on using some algorithm
(with one copy running in each station) for ‘serializing’ the
transmissions on the channel. Such algorithms are calied multiple
access protocols.

The operation of a multiple access protocol can be deter-
ministic (i.e., round-robin scheduling like Time Division Multiple
Access [1], MSAP [2], or BRAM [3]), or random (i.e., on-demand
scheduling with some method of collision resolution, such as
ALOHA [4], various ‘tree’ and ‘stack’ algorithms [5,6,7], or
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Carrier Sense Multiple Access (8, 9]). When a network is to support
large numbers of low duty cycle stations, random access protocols
offer several advantages over deterministic protocols, notably the
lack of any requirement to encode the number (and perhaps the
addresses) of all stations into the protocol, and throughput —delay
performance that is insensitive to the number of stations in the net-
work. We shall thus focus our attention on random access proto-
cols below.

The most well-known examples of random access protocols
are ALOHA and CSMA, an extension of ALOHA for local area
networks. The main feature of these protocols is their simplicity.
In ALOHA, for example, stations are allowed to transmit at will.
Should this cause a collision, the stations that were involved are
simply forbidden from retransmitting for a random time. More
recently, a new class of protocols called tree algorithms has appeared
in the literature — see [10] for a brief survey. These algorithms
gather information by monitoring channel activity (i.e., the out-
come of each slot). This information allows tree algorithms to
make inferences about the current state of the network, and thus to
improve their scheduling efficiency. Thus tree algorithms can attain
higher channel utilizations than can ‘inference avoiding’ protocols
like ALOHA, and their operation can be shown to be stable without
the imposition of any external controls.

The operation of a multiple access protocol can either be
synchronous (slotted) or asynchronous (unslotted). In a synchro-
nous protocol, the all stations execute the algorithm in lock-step:
opportunities to transmit occur only at the beginning of a slot of
duration equal to a transmission time.! Both synchronous and asyn-
chronous versions of ALOHA (and the various CSMA protocols)
have been defined. However, to date only synchronous tree algo-
rithms have been proposed, possibly because it is easier to make
inferences when the channel history information is identical for ali
stations.

Here we introduce the notion of asynchronous tree algo-
rithms and show how certain well-known synchronous tree algo-
rithms can be modified to operate asynchronously. This construc-
tion appears as a natural extension of the synchronous protocols
when we describe the operation of the algorithms in terms of a ‘vir-
tual clock’ instead of the commonly-used ‘sliding window’ abstrac-
tion (see below). As an example, asynchronous versions of well-
known tree and stack algorithms developed by Capetanakis [S, 11]
and Tsybakov {7], respectively, are found.

UIn local networks, stations monitor the state of the channel and thus are

able to shorten unused slots through carrier sensing, and possibly are able
to shorten slots where collisions occur through collision detection.
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FIGURE fta:
OPERATION OF UNSLOTTED ALOHA

Asynchronous algorithms simplify network implementation
since there is no need to maintain a global time base. However,
this simplification has its price. It is well known that the capacity of
a protocol — its maximum attainable channel throughput — is less
in the asynchronous case. In addition, we show that the FCFS pro-
perty of certain synchronous sliding window tree algorithms (i.e.,
the delivery of messages in order of their generation times) is not
preserved in the asynchronous versions.

I1. The Virtual Clock Representation of Protocol Operation

An important contribution of the virtual time CSMA proto-
col was the ‘virtual clock’ representation of protocol operation [9].
In the virtual clock model, a message is transmitted whenever the
virtual clock reading passes its arrival time. Many well-known mul-
tiple access protocols can be represented in this manner: if the
transmission time for a message is some function of its arrival time
(and possibly of the state of the channel), then that function can be
used to control the motion of the virtual clock. For example, Fig-
ures la — b give a graphical representation of ALOHA. In ‘pure’
(unslotted) ALOHA -- Figure la ~ each message is transmitted
when it arrives. Thus the protocol may be represented by a virtual
clock that runs continuously at constant speed, tracing out a straight
line of unit slope on the Arrival time vs. Transmission time plane.
In slotted ALOHA - Figure 1b — each message is transmitted in
the first complete slot following its arrival. Here the virtual clock
ticks (i.e., advances instantaneously) once at the beginning of each
slot so that its reading forms regular ‘staircase’ along the diagonal.

The reason for introducing the virtual clock representation
becomes evident when we consider ‘sliding window’ protocols [6).
In the synchronous case, the operation of a sliding window protocol
is straightforward. At the beginning of each slot, the protocol
chooses some time interval (the window) and enables all messages
whose arrival times fall within the interval to be transmitted. From
the outcome of that siot (i.e., whether it is idle, a success, or a col-
lision) the protocol learns something about the distribution of mes-
sages in that window, which could affect the choice of subsequent
windows. Slotted ALOHA is perhaps the simplest possible sliding
window protocol; the choice of windows and duration of the
corresponding slots is fixed a priori. If the normalized transmission
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FIGURE 1b:
OPERATION OF SLOTTED ALOHA

time for a message is unity, then the window for the K + st slot is
simply the interval (K, X +1]. Minislotted virtual time CSMA [9]
operates in a similar manner except for some complications neces-
sary for it to choose constant-size windows (whenever the algorithm
is far enough behind real time for this to be possible) even though
the slot duration depends on the state of the channel. (Thus win-
dowing is used as a means of flow control so that the channel will
not become overloaded after a periods of activity — during which
carrier sensing prevents stations from transmitting.)

The sliding window representation of protocol operation is
clearly equivalent to the virtual clock representation for the case of
synchronous protocols. However, the sliding window does not
seem well suited to describing asynchronous protocols. Here the
virtual clock representation suggests a natural generalization by
allowing the motion of the virtual clocks at each station to occur
continuously rather than in discrete ticks, depending on the algo-
rithm and observed state of the channel. We note that the virtual
clocks at different stations will no longer remain completely syn-
chronized. However, for local networks (where the maximum pro-
pagation delay is small compared to the message transmission time)
variations in virtual clock readings at different stations can be
accounted for well enough to allow asynchronous versions of many
algorithms to operate successfully.

III. The Stack Algorithm of Tsybakov and Vvedenskaya

The stack algorithm of Tsybakov and Vvedenskaya [7] pro-
vides a simple example of a tree algorithm. [t is assumed in the
model that all slots are of constant Iength and that feedback of the
outcome of each slot is provided to all stations at the end of that
slot. Here a vector of random length (i.e.,the ‘stack’) defines the
state of the protocol. The actions of the protocol in each slot sim-
ply consist of enabling all messages assigned to the top element of
the stack to be transmitted. Messages are assigned to an element of
the stack in the following way. When new messages enter the sys-
tem, they are assigned to the (current) top of the stack, and thus
will be transmitted in the next slot. Following each slot where a
collision does not occur, the stack is popped, possibly enabling
some old message(s) to be retransmitted in the next slot. (If a
message had been at the top of the stack, it must have been



transmitted successfully and so leaves the network.) Foliowing each
slot where a collision does occur, the stack is pushed down by one.
To prevent a recurrence of this collision in a later slot, a coin toss is
used to spread out the messages that were on top of the stack.
Those that toss ‘1’ are reassigned to the top of the stack while the
others remain at the second stack element.! Note that stations need
not know the complete state of the stack to participate in the algo-
rithm.

It is easy to find a virtual clock representation for this syn-
chronous stack algorithm. For now let us continue the assumptions
of constant slot length and that both positive and negative ack-
nowledgements are provided (at no cost) at the end of each
transmission. Each message is provided with a virtual clock that
ticks once per slot, thereby advancing by one unit of virtual time.
The reading of each clock is initialized to the arrival time of the
message. Thereafter, each virtual clock will advance by one time
unit at the beginning of each slot. In addition, whenever a collision
occurs, the virtual clocks for all messages (except new arrivals) are
set back before the start of the next slot. If the message was
involved in the collision, its virtual clock is set back by a random
amount chosen uniformly in the range (0, 2) units; otherwise its
virtual clock is set back by exactly two units.

For asynchronous operation, we let each virtual clock run
continuously at constant speed towards the corresponding message
arrival time. In addition, we must choose a larger set-back value
following collisions. [t is easy to show that the probability that two
points chosen uniformly over an interval of length X are separated
by at least {X is given by (1 — 02, 0< £ < 1. Thus, to insure that
the retransmissions of two colliding messages do not collide again
does not exceed .5 (as was the case in the synchronous version), it
is sufficient to choose a set-back value no smalier than 1/{*=3.4,
where 0 < {* < 1 solves (1 — 2= 5.

IV. The Tree Algorithm of Capetanskis

The tree algorithm of Capetanakis [$, 11] operates similarly
to the stack algorithm described above with the following
modification. Here new messages are not permifted immediate
access to the channel. Instead, they must wait for the start of the
next service epoch. All messages that arrive during one service
epoch will be transmitted during the following service epoch. A
service epoch ends when it becomes known to all stations that all
these messages have been transmitted successfully. Otherwise, the
same ‘recursive binary splitting’ algorithm is used to resolve colli-
sions within the epoch. (Indeed, the stack algorithm was conceived
as an extension of this tree algorithm to overcome the need for sta-
tions to track service epochs.)

To model the operation of the basic Capetanakis algorithm,
we proceed as follows. Since time is only used to assign messages
to service epochs in this algorithm, let us simplify the discussion by
assuming that clocks run towards zero (at which point messages are
enabled), but are set back whenever collisions occur on the chan-
nel. One virtual clock is used for tracking the service epochs. This
clock advances at a constant rate, but is set back by the maximum
amount following each collision. Whenever the setvice epoch clock
reaches zero, a new service epoch begins and all new messages are
transmitted. If a collision occurs when a message is first transmit-
ted, thc message is provided with a separate virtual clock that
operates exactly as described above for the stack algorithm: fotlow-
ing collisions it is set back by a random amount if the message was

! For illustrative purposes, we are ignoring the following improvement to
the algorithm that was treated in [7]. If the slot following a collision is
idle, then all messages from the collision must have tossed ‘0’ so that a
collision among these same messages is certain to occur in the next slot.
This predictable collision can be avoided by treating idle slots where the
nearest previous busy slot was a collision as a special case. Here the stack
is neither pushed down nor popped, but some messages from the second
stack element are probabilistically reassigned to the top of the stack.
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involved in the collision and by the maximum amount otherwise.
Each time a message clock reaches zero, the corresponding message
is transmitted.

There is also an optimized version of the Capetanakis algo-
rithm where the first-level splitting is into & parts, k22 [11,12].
However, we find it useful to consider a slightly different optimiza-
tion based on a sliding window. Here the messages selected for
transmission during a service epoch must have arrived during a
window (of constant size when possible) immediately following the
window serviced during the previous service epoch. This window-
ing offers a slight performance advantage by avoiding some integer
rounding in the epoch splitting. (Note that time is more significant
for this algorithm, since the ‘window’ is now independent of the
previous service epoch.) Once the set of messages has been
selected, the same recursive binary splitting algorithm is used dur-
ing the service epoch. In the virtual clock representation, one clock
is used for tracking service epochs. As before, it runs forward at
constant rate but is set back by the maximum amount for each col-
lision. A message is first transmitted when this service epoch clock
passes its arrival time. Should a collision occur, the message is pro-
vided with its own virtual clock, initialized to a random set-back
value, which thereafter runs as described above for the stack algo-
rithm.

Y. Extension to Local Networks

Although the definitions of these protocols originally
assumed that all slots were of constant length (and that feedback of
the outcome in each slot was provided at the end of the slot), the
extension to local networks is straightforward [10, 13].

In a local network, all stations monitor the state of the
channel so that the length of a slot can be a function of the out-
come (i.e., idle, success, or collision) in that slot. Let us assume
that the average message transmission time is unity, that the end-
to-end propagation time across the network is @, and that collision
detection can be modelled by assuming that stations transmit mes-
sage fragments of length &, b1, when a collision occurs. Thus,
for synchronous protocols, the length of a slot will be a if it is idle,
1 +a if it contains a successful transmission, and b +a if it contains
a collision.

It is worth noting that in some local networks, such as
packet radio networks, the ratio of the collision- to idle-detect times
is large. It can be shown [10] that the performance of standard tree
algorithms is significantly worse than algorithms specifically
designed to take advantage of the much-lower ‘cost’ of scheduling
an idle period on the channel rather than a collision.

In this light, consider the recursive binary splitting strategy
used by the tree and stack algorithms discussed above. Since the
strategy does not apply sophisticated inferences to the channel feed-
back, the cost of idle slots and collisions was assumed to be equal,
and (hopefully) the ‘multiplicity’ of collisions was usually two,
binary splitting worked well in the original model. However, when
b/a>>1, a protocol should be conservative, tolerating more
(shorf) idle slots to avoid some (long) collisions. Thus we should
consider a recursive kary splitting strategy for such an environ-
ment, k22. Here the stack is pushed down by k—1 following each
collision, so that the colliding messages at the top of the stack may
be reassigned to k stack elements at random. It remains to find
how k should depend on the ratio b/a.

If we wish to optimize the (generalized) Capetanakis algo-
rithm, we must find how the expected length of a service epoch
where j messages are transmitted, éwj, depends on j. (Recall that
in the Capetanakis algorithm, all messages that are ever allowed to
be transmitted within an epoch must be transmitted successfully
before the epoch ends.) It is not difficult to find recursive equations
defining w; in terms of w;, 0< i</, with binary splitting for the



case of fixed length slots [12] or for local networks {10]. Unfor-
tunately, the corresponding results for the stack algorithm are
surprisingly difficult to obtain because new messages can enter at
any time and hence w; depends on w; for all i=0,1, - -+ [7,14].
Thus our optimization below will be directly applicable only to the
tree algorithm.

For the case of local networks with kary splitting, the com-
binatorics of the random reassignment becomes tedious for large ;.
However, the j=2 case is by far the most important since we will
be using a conservative strategy. When two messages must be
assigned to k stack clements at random, then for any assignment of
one message, another collision can occur only if the other message
is assigned to the same stack element, which occurs with probability
1/k. Thus, it is easy to sce thal
k—1

02 + kul

wy=btat 71\;(11'2 F(k—Dal 1 P

=2+a+ -ﬁ/‘:—l[b F kal. (1)
If we treat & as a continuous rather than integer valued variable, we
can optimize Eq. (1) by differentiating with respect to k& assuming
b/a is fixed. Thus

k*=1+J1+b/a, )

which is never less than two and grows as the square root of the
ratio of collision- to idle-detect times. For example, if a=.01 and
b==1 [8] then k*=11; here w; decreases from 4.05 1o 3.23 as k
increases from 2 to 11.

We are now ready to describe ‘optimized’ local network
versions of the stack and tree algotithms described above. The
stack algorithm acts like virtual time CSMA where the ‘recursive
kary splitting” strategy is used as the retransmission strategy. The
tree algorithm acts like virtual time CSMA with head-of-the-line
priority classes [10). All new messages are generated in the lowest
priority class and thereafter, following each coliision, the messages
involved join the next higher priority class.

In the stack algorithin, one virtual clock is used to enable
new messages to be transmitied. In the synchronous case, this
clock advances at the beginning of each slot by the minimum of its
current set-back from real time and the (constant) window size. In
the asynchronous case, this clock advances at a constant rate when-
ever the channel is sensed idle. This rate is » times faster than real
time if it is behind real time, and ¢qual to real time otherwise.
Messages that are not successfully transmitted on their first attempt
are subsequently controlled by separate virtual clocks. These
separate clocks are initialized to a set-back value chosen at random
in the range (0,7), an interval over which the virtual clocks can
advance in k* licks in the synchronous case, and in time k* a/{* in
the asynchronous case. Thereafter these clocks advance towards the
message arrival time whenever the channel is sensed idle but are
set back by T following coilisions where the message is not
involved, and by a random value < 7' following collisions where the
message is involved.

The operation of the tree algorithm in a two-station local
network with carrier sensing and collision detection is shown in Fig-
ure 2. As in the stack algorithm, one virtual clock per station (the
‘epoch clock’) is used to enable new messages to be transmitted.
The epoch clock advances as described above, ticking once per slot
in the synchronous case and advancing at a constant rate when the
channcl is sensed idle in the asynchronous case. However, unlike
the stack algorithm, in the tree algorithm all messages from one
epoch are supposed to be transmitted before another epoch is
begun. Thus, to implement the tree algorithm, the epoch clock is
set back by 7 following each collision rather than being allowed to
run ahead. Messages that have suffered a collision are controlled
by separate virtual clocks as described for the stack algorithm
above.
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Y1, Conclusions

We have shown how to modify existing synchronous stack
and tree algorithms to obtain asynchronous algorithms that could be
used on local networks. Such asynchronous algorithms overcome
one apparent disadvantage of tree algorithms over simpler random
access protocols like ALOHA and CSMA, namely the need to
maintain a global time base. In our choice of algorithms, we were
also careful ta avoid algorithms that use inferences that may be so
‘clever’ as to be troublesome in practice where the channel is
unreliable and hence the channel state information could be incon-
sistent or incorrect {12.15]. Thus, the algorithms described above
seem to be good candidates for use in real single-hop random mul-
tiple access networks.

We must point out, however, that asynchronous operation
can have surprising effects on the behaviour of some tree algo-
rithms. In particular, some aigorithms such as the synchronous
Gallager-Tsybakov algorithm [6,16,17] guarantee that messages
will be successfully transmitted in first-come first-served order. In
general, this is not possible in the asynchronous version because
there is no global time base for comparing message arrival times.
Indeed, every station involved in a collision was the first to begin
transmitting during a collision according to its own view of the
channel history! When there is collision detection, however, there
are some- cases where the first-come first-served property can be
preserved. For example, in a collision of multiplicity two, only the
first station transmits longer than it detects interference. Thus if
two colliding stations were to monitor the durations of both of their
transmissions, both could agree on which station should retransmit
first.



Finally, it must be pointed out that proper operation of an

asynchronous tree or stack algorithm in a local network requires
there to be a minimum length for messages (or message fragments
if there is collision detection). Otherwise, it can be shown [18] that
if transmissions of duration less than 2a were allowed, then it
would be possible for stations to have an inconsistent count of the
number of idle and busy periods on the channel.
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