Check for
Updates

A Distributed Approach to the Interconnection of
Heterogeneous Computer HNetworks

R. Braden*, R. Cole, P. Higginson, P. Lloyd

Department of Computer Science,
London.

Gower Street,

ABSTRACT
This paper describes a distributed
architecture for the flexible
interconnection of heterogeneous networks
with a number of mwmini- and micro-
computers, in a research environment. The
interconnected networks include the DARPA
Internet, which uses the DoD protocols,

and the X25-based networks PSS and

SERCNET.

The approach described here distributes
the network access into a set of
microcomputers acting as network front-
ends ("network access machines"), with a
local area network (Cambridge Ring) as a
common bus. Communication between the
hosts and the network access machines uses
an interprocessor communication mechanism
with a standard transport-level virtual-
call interface, which is described. This
arrangement provides local hosts with
flexible access to any of the networks,
and supports a relay system which allows
users on one network to access hosts and
facilities on any of the other networks.

1. A Distributed Network Access Facility

The INDRA research
Department of Computer Science,

group of the
University

College London (ucLy , is involved in
research with computer communication
networks of wvarious types. As part of
this work we require inter-computer

communication with hosts on a variety of

*Present address: R. Braden, Office of
Academic Computing, UCLA, Los Angeles
aG;a24 .

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-089-3/83/0300-0254 $00.75

254

University College London,
WC1E 6BT, UK

computer networks, The communication 1is
needed both for research and for service
utilities such as file transfer, mail, and
terminal access.

UCL currently has one or more
connections to each of the following
wide-area networks:

1. PSS, the X25 public data network
provided by British Telecom
[Medcrag8g].

2. SERCNET, a private X25 network of the
UK Science and Engineering Research
Council.

3. DARPA Internet, a concatenation of

networks DoD cecmmunication

protocols

using the
[Postel82].

The UCL research
computing resource

group's major
is a set UNIX systems

running on DEC PDP/11 computers. Other
UNIX systems in the Computer Science
Department are used for teaching. Local

terminal access 1is
machines via
microprocessors
[Wilkes75].

provided to all these
terminal multiplexor
across a Cambridge Ring

The UNIX operating system is ideal for
the development of system and application
software. However, like most general-
purpose operating systems, standard UNIX
does not provide a suitable environment
for the implementation of computer network
protocols (Clark82]. There are serious
problems of reliability, flexibility, and
kernel address space. To operate the two
(or more) network protocols needed at UCL
within UNIX would have required an
unacceptable share of the UNIX system
resources, even if it were feasible,

A common solution to our problem of
adding network support to a general-
purpose system 1s to place the network
software in a small "front-end" machine,
linked to the mainframe by a high speed
hardware interface. Our problem was,
however, somewhat more complex than simply
providing access to just a few UNIX

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1035237.1035286&domain=pdf&date_stamp=1983-04-01

systems from multiple networks. The range
of service and research activities of the
group currently require network access
‘from all of the networks listed above to:

1. Two or more different UNIX systems,
providing not only time-sharing
services but also file transfer and
electronic mail.

2., A "Terminal Gateway" which provides
terminal protocol conversion between
the X25 networks and the DARPA
Internet,

3. A real-time network

facility.

monitoring

4. A variety of experiments in network
interconnection and in higher-level
protocols for messages, facsimile, and
multi-media mail.

This range of problems led us to
generalise the front-end concept to create
a distributed network access facility.
Instead of a single high~-speed interface
between a mainframe and front-end, a
high-speed local network 1is used to link

multiple front-end machines and hosts.
The local area network, which is a
Cambridge Ring, 1is used as a common
hardware "bus" linking the following

machines:

i. a number of PDP-11 machines (currently
5) running UNIX;

LSI-11
running

ii. a 1large number of dedicated
computers (currently twelve)
network software; and

iii. a set of local terminal multiplexors
based on Z8@s.

Figure 1 shows the components of this
distributed architecture discussed here.

Particular LSI-11ls are used as front-
end machines, dedicated to interfacing to
individual networks; we <call these the
"network access machines". The rest of
the machines are wusers of the network
services provided by the network access
machines, We will describe the two
classes of machines later.

The network access machines use the
special purpose real-time operating system
MOS ([Cole8l]. In principle, each network
access machine handles the network and
link-level protocols appropriate to its
network. The higher level protocol
implementations reside on the user hosts,
which are running either UNIX or MOS.

255

Simple interfaces to them.

2. The Network Access Interface

An important simplification in the
implementation of this distributed system
was achieved with the design of a
standardised interface between user
processes and the network software. The
interface design was named (somewhat
coyly) 'Clean and Simple' [Bennet8g].

other hosts
monitor .
UNIX hosts
teletex
. terminal
facsimie gateway
X25
SERCNET‘R\ DARPA,
PSS Catenet
Figure 1. Interconnection Components

2.1 Clean and Simple

The Clean and Simple specification
defines a simple transport-level
connection-oriented interface between a
user process and a network. The use of a
standardised interface means that user
processes can be implemented to use any
available network protocol rather than a
particular protocol. In this sense, the
interface creates an 1dealised network
service. For example, Clean and Simple
defines data transfer as a simple byte
stream with records optionally marked with
“push" bits; as a result, the sender and
receiver need have no knowledge of packet
sizes or boundaries.

Figure 2 lists the request types which
the Clean and Simple interface provides to
a user process,

In practice, of course, there are
unavoidable minor differences between
networks, and hence between the Clean and
A user process
that uses special features of a particular
network must take account of these
differences; however, the fact that all
networks are nearly the same introduces

GETCID Get Call Identifier (id used
in all subsequent requests
for this call).

OPEN Open a call to a destination

LISTEN Wait for an incoming call

READ Get data

WRITE Send data

CONTROL READ Accept asynchronous signals

CLOSE Close call (and release
identifier)

ABORT Abort call (and release
identifier)

Figure 2. Clean and Simple Request Types

great simplifications into the development

of user processes.

the CLOSE function in the
interface is defined as a

For example,
Clean and Simple

full-duplex function (that is, a
connection c¢an be "half-closed"). The
user processes at both ends must issue

CLOSE requests before the network process
will release resources. This definition
is required to handle the semantics of the

DARPA Internet protocol TCP. The half-
duplex CLOSE of X25 has to be mapped into
the CLOSE of the interface, and the fact

that X25 may lose data during the close is
considered a network-specific feature.
The Clean and Simple interface has a
second form of <close primitive (called
ABORT, see Figure 2) which is requested to
complete as soon as possible, losing data
if necessary. An ABORT maps into a RST in
TCP, but is identical to a CLOSE for X25.

The Clean and Simple interface provides
a request/response interface for the user
process. Under UNIX, this is a set -of
subroutine calls. Under MOS, it is
implemented by interprocess signals using
structures wvery similar to those for
device I/0., To date, we have implemented
Clean and Simple interfaces for X25, for
TCP, and for the Cambridge Ring (using the
BB/BSP protocols [Needha82])

We can easily extend the idealised
network concept of the Clean and Simple
interface to encompass a broader class of
connection-oriented services. At one end
of the range, a full transport service
interface such as the Network Independent
Transport Service (NITS) [PSS8H] is
possible. At the other end, a Clean and
Simple subset (only the OPEN, CLOSE, READ,
and WRITE primitives) has been implemented
as an interface to a MOS file system.

256

2.2 Remote Clean and Simple

The Clean and Simple specification
defines the interface between a user
process and a network process. In most

cases, these processes will in fact be in
different machines - the network process
in a network access machine, and the user
process in another MOS system or a UNIX
system. This led to the <c¢reation of
remote network service interfaces, with a
set of routines known as "Interprocessor
Clean and Simple" or IPCS. A user process
that wishes to access a network uses a
Clean and Simple interface to a local IPCS
module, which passes the requests across
the Cambridge Ring to 1its corresponding
IPCS module in the network access machine;
see Figure 3. The responses are passed
back over the same path to the user.

aplication
<

IPCS il

ring

rPCSs
<

network

Figure 3. IPCS Model

The IPCS modules thus provide an
interprocess communication mechanism which
extends the Clean and Simple network
interface transparently from the network
access machines into all the user
machines, With the use of IPCS, a user
program can be moved to any machine (even
into a network access machine) and
function without <¢hange (except wvariation
in delay). IPCS avoids the insertion of
an additional network (or transport) level
protocol, with the attendant gateways and
addressing problems.

The IPCS implementation uses a private
protocol which in effect envelopes the
user process's requests and data, and
transmits them over the Cambridge Ring.
The enveloping is necessary in order to
correctly vreflect all of the network
facilities to the |user. For example,

interrupt messages and X25 Q-bits can be
used by user processes without any such
facilities in the Cambridge Ring
protocols.

distributed architecture makes it
to share scarce network interfaces
between service uses and experimental
work, since ©problems with experimental
software are kept at arms length from the

The
easier

network access machines. Finally, 1IPCS
can also be used over other transmission
methods (or ring protocols), and it

minimises the amount of code required in
the over-committed LSI-11 MOS systems.

The main disadvantage of the IPCS
approach is that it does not decouple the
user process from the buffering
requirements and flow control of the
network process. For example, the wuser
must supply sufficient buffers for the
anticipated total network delay. While
X25 connections are local to the UK and
experience only modest delays, the TCP
connections may be half-way round the

world and <can show delays of several
seconds.
3. Metwork Access Machines

A typical network access machine

contains the MOS processes to implement
the network access protocols as well as an
IPCS process, It also contains the MOS
real-time operating system with hardware
drivers for the network and a ring
interface. Finally, each machine contains
status display and control processes.

Much of the basic network software in
the network access machines was derived
from previous research projects at UCL or
the DARPA research community. In each
case, it was necessary to add a Clean and
Simple interface "on top" of the existing
user interface of the network code. In
most cases this has proven to be a small
programming task, and resulted in an
efficient implementation.

3.1 X25 networks

Each of the physical 1links to an X25
network may have only one network (DTE)
address, and X25 is strictly a wvirtual-
call protocol., This means that all
multiplexing has to be carried out using
higher level addresses, and that there can
be at most one network access machine for
each X25 network. IPCS is essential as a
mechanism for obtaining X25 access from
the application machines; the only
alternative would be a network-level

gateway.
On the other hand, a single LSI-11
network access machine can support

multiple X25 1lines. PSS and SERCNET are
almost exactly compatible, so one copy of
the network code can be shared.

A wide range of user-level protocols is
employed over X25; these include: X29 and
an older SERCNET terminal protocol called
ITP; experiments with Teletex protocols
which wuse the §5.70 [CCITT8®] transport
service protocol; and the NIFTP and Mail
services which wuse the NITS transport
protocol,

257

3.2 DARPA Internet Access

The DARPA Internet uses an end-to-end
virtual call protocol (Transmission
Control Protocol or TCP) above a datagram
protocol (Internet Protocol or iPp)
[Postel8l]. The datagram basis and
addressing structure of IP allow a great
deal of flexibility in the use of multiple
network access machines, even though there
is only a single physical connection to
the Internet.

To exploit the flexibility of IP, UCL
has implemented a local IP datagram switch
called the SATNET Access Machine (SAM)
[Lloyd82]. The SAM connects on one side
to the Cambridge Ring and on the other to
the UCL/SATNET Gateway, a full Internet
Gateway within the DARPA Internet
structure. In effect, the SAM does the
logical packet switching, using the Ring
as the physical bus for packets, IP
datagrams are sent across the Ring using
the datagram-level of the Ring Protocol.

Thus, any host at UCL that wishes to
interchange IP datagrams with the Internet
will send and receive IP datagrams across
the Ring from the SAM. [For example, there
is an LS8I-11 TCP access machine used for
some of the virtual calls to the Internet.
Application machines use IPCS (across the
Ring) to open wvirtual TCP calls through
this machine, which in turn exchanges 1IP
packets with the BSAM (again, across the
Ring) .

In addition to performing 1its basic
function as datagram switch, the SAM can
operate as a complete network access
machine. Thus, it contains an IPCS module
and TCP/IP implementations, so it can
accept IPCS requests and act as the
endpoint for the DARPA communication
protocols. The choice of an integral or a
separate network access machine depends
upon considerations such as delay and
available buffering.

4, Applications

We will now describe three different
applications of the distributed
architecture, to illustrate the
flexibility and diversity of the system.

4.1 Terminal Gateway

ucL operates a terminal protocol
converter, or "Terminal Gateway" (TG) ,
which allows terminal access between the
DARPA Internet and the X25 networks PSS
and SERCNET in the UK [Braden82].

The TG 1is a good example of the
application of the distributed
architecture. As shown in Figure 4, the TG

terminal
TG protocols
-
Clean and
Simple
< <> O
network
TCR BSP X.25 protocols
Figure 4. Terminal Gateway Operation
uses IPCS to communicate with the network
access machines for the DARPA Internet,
PSS, and SERCNET. The TG also provides
access to server ports on the various UNIX
systems, over the Cambridge Ring. This
only required implementing in the TG the
terminal access protocol used between
these UNIX systems and the multiplexors,

and using the Clean and Simple interface
to the ring protocol BSP. As a result, a
user on any of the networks supported by

the TG can obtain terminal access to UNIX.

The TG 1is implemented in an LSI-11
under MOS. It makes much use of the
uniformity and simplicity allowed by the
Clean and Simple 1interface to all these
networks., In addition to the basic
network interface driver, there are
terminal-protocol-specific modules to
implement:

1. Telnet, the terminal access protocol
used in the Internet;

2. X29, the Public Data Network terminal
protocol, and its UK variant TS29;

3. ITP, a private terminal protocol used
in SERCNET;

4. The UNIX terminal access protocol
mentioned above.

Each of these modules translates
between its terminal protocol and a
canonical internal format; this is to
avoid the "n squared" problem of all
possible inter-protocol translations.

The TG also contains a user command

interpreter. A user must log into the TG,
to implement access control to the various
networks. The user may then enter a TG
"open" command to select a target network
and host. There are also commands for
closing calls, for displaying status, and
for initiating control signals appropriate
to the host's terminal protocol.

258

4.2 NIFTP and Computer Mail

The UCL file transfer and electronic
mail applications are handled using the UK

file transfer protocol NIFTP [PSS88al. As
a complex, file-oriented, application
program, the service NIFTP [Higgin82) is
implemented under UNIX. It executes using
background jobs, on several of the UNIX
systems. Each NIFTP process accesses a
network by calling Clean and Simple
subroutines in the UNIX IPCS package.

These routines communicate across the Ring
with the IPCS routine in the MOS network
access machine, as described earlier.

Mail 1is exchanged with other systems
using the NIFTP, so the main task of the
mail programs is the sorting and queueing

of mail. In addition, mail can be relayed
and redistributed to other sites, and of
course there are separate programs to

examine and prepare mail.

4.3 Network Monitor

This application does not use transport
level protocols, but does require the use
of a real time system communicating with a
UNIX system. Code in a dedicated LSI-11
MOS system periodically sends IP datagrams
to the SAM; these datagrams contain echo
request packets to probe various
components of the DARPA Internet. The
same probe system collects the replies (if
any) to determine the status of the
destination and 1f possible the round-trip
time. When the status of a destination
changes or the round-trip time varies, the
probe system reports its statistics
(across the Ring) to a server program
running on a PDP/11 under UNIX.

The 1information thus collected on the
UNIX system 1is used to create a real time
status display, giving the latest
information on those components of the
Internet which have Dbeen probed. This
information is available on any UNIX
terminal throughout the building and also
to any network user accessing a UNIX. In
addition, the status reports are logged
into a file which is later processed to
produced a history of Internet
availability.

5. Discussion and Conclusion

The distributed architecture described
in this paper arose from the need to
communicate using a number of
heterogeneous computer networks, with
maximum flexibility for future research.
The two most important aspects of this
architecture are:

1. The use of a local area network as a
switch, both between the networks and
between the end-to-end applications.

interface
protocol
end-to-end

2. The use of a standard
between the network
implementations and the
applications.

The distributed approach has separated
the network-dependent protocols from the
end-to-end protocols. This has relieved
our bigger, timesharing, hosts from the
burden of running several real time
protocol implementations. In addition,
where an end-to-end protocol can be used
over Several networks, such as the NIFTP,
we are able to use the same implementation
for all those networks.

Nearly all of the research projects in
the UCL Computer Science Department now
depend upon this distributed architecture;
applications 1include: Teletex, facsimile
transmission, terminal access, file
transfer, mail transfer, and research into
network interconnection. It will be very
easy to add further types of networks and
protocols into this system, and to extend
the end-to-end applications.

6. Acknowledgements

The UCL network interconnection design
was the result of a series of discussions
involving many members of the research

group. We would ©particularly 1like to
acknowledge the contribution of some
former members of the group: Steve
Treadwell, Chris Bennett, David Frost and
Colin Bradbury. The design and
implementation of the software has

involved almost the entire research group
over the past two years; we are pleased to
acknowledge their contributions. Finally,
we are grateful to SRI International for
the original MOS and TCP/IP software, and
to the Royal Signals and Radar
Establishment (RSRE) for the basic X25
software and interface hardware.

The work described in this paper was
supported by the Ministry of Defence under
grant 2047/84, and the Science and
Engineering Research Council under grants
A/75695 and N2BIR{£188.,

References

[Bennet8§] Bennett c., "Clean and
Simple", INDRA Note 98¢, University
College London, September 1984¢.

[Braden82] Braden, R., Cole, R., "Some
problems in the Interconnection of
Computer Networks", Proc ICCC '82,
969-974, North Holland, September

1982.
[CCITT8P] ccIiTT, "Network-Independent
Basic Transport Service for

Teletex", Draft Recommendation S.79,
Geneva, 1984.

[Clark82]) Clark, D., "Modularity and
Efficiency in Protocol
Implementation", RFC 817, in
Internet Protocol Implementation
Guide, SRI International, Menlo
Park, July 1982.

[Cole81]) Cole, R., Treadwell, S., "MOS
User Guide", University College
London, INDRA Note 1942, January
1981.

[Higgin82] Higginson, P., Moulton, R.,

"Experiences with the use of the UK
Network Independent File Transfer
Protocol", Proc ICCC '82, 913-918,
North Holland, September 1982.

[Lloyd82] Lloyd, P., "The SATNET Access
Machine: Current Design and
Operation", INDRA Note 1326,
University College London, September
1982.

(Medcra8g) Medcraft, D., "Development of

the UK Packet Switched Services",
Proc. Conf. on Data Networks,
ONLINE, 173, 1988.

[Needha82] Needham, R. M., Herbert, A.
Gy "The Cambridge Distributed
Computing System", Addison Wesley,
1982.

[P5S80] PSS User Forum , S5G3, A
Network Independent Transport
Service", SG3/Cp(8@)2, February
19849,

[PSS8Fa] PSS High Level Protocol

Group, "A Network Independent File
Transfer Protocol", DCPU, February

19849,

[Postel8l] Postel, J., Sunshine, C. A.,
Cohen, D., "The ARPA Internet
Protocol", Computer Networks, 261-

271, July 1981.

[Postel82]) Postel, J. B., Sunshine, C.
A., Cohen, D., "Recent developments
in the DARPA Internet Program", Proc
ICCC '82, 975-986, North Hollang,
September 1982,

{Wilkes75] Wilkes, M., "Communication
using a Digital Ring", Proc. PACNET
Conf. Sendai, Japan, 47-55, August
1975,

