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ABSTRACT 

A method for the characterization of 
computer workload at the task level is 
presented. After having divided the work- 
load into different classes using a 
cluster technique, each cluster is further 
analysed by state dependent transition 
matrices. Thus it is possible to derive 
the most probable task sequences in each 
cluster. This information can be used to 
construct synthetic scripts at the task 
level rather than the usual description 
at the hardware resource level. 

I. INTRODUCTION 

Computer based information processing can 
be viewed as a communication between a 
data processing system and its environ- 
ment. In this context the term workload 
comprises the sum of all information 
processing requirements offered from the 
environment to the system during a given 
time interval. These requirements con- 
sist of programs, data, commands, etc. 
/I/. As the performance of a computer 
system depends on the work loaded on the 
system, the characterization and modeling 
of the workload play a central role in 
all performance-orientated questions of 
computer system management, such as per- 
formance improvement, selection and de- 
sign of computer systems, capacity 
planning, etc. /2/. 
The workload of a system can be described 
at different levels: functional specifi- 
cation level, logical resources level or 
hardware resources level; these can be 
further subdivided, if necessary. The 
selection of the right level for the 
characterization depends on the goal of 
investigation. For example, to replace a 
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complete system the hardware level would 
not be the right one, the characteriza- 
tion must rather be done at the program 
level. The difficult problem in workload 
characterization is , that usually there 
are not enough data available at the 
right level - if at all /3/. As a con- 
sequence workload is very often charac- 
terized at the wrong level, using values 
of hardware resource consumption, which 
are available on nearly all systems. 
Whereas there are a lot of papers dealing 
with workload characterization on the 
hardware level (/4/ - /11/), there are 
only few contributions that consider 
higher-level characterization using 
quantitative methods (/11/ - /13/). 
Workload characterization, used for com- 
puter system procurement or for the eva- 
luation and assessment of different time 
sharing services, should be system in- 
dependent (/14/ - /19/). This is not the 
case, if the level of characterization 
is related to hardware resources of the 
existing system. A consideration of 
higher levels Js especially important if 
a synthetic script must be derived from 
the workload characterization to eva- 
luate different systems. Within such a 
script a sequence of tasks must be con- 
structed and included, which will then 
be executed on the systems to be tested. 
The hierarchical structure of a script 
is shown in fig. 1 in Jackson-like termi- 
nology. The script consists of a sequence 
of tasks, and each task in turn consists 
of a sequence of statements, which must 
be specified in detail. This structure 
leads to a stepwise development of the 
script. The construction of a script at 
the task level is the background of this 
paper. At this point one should notice 
that usually there is enough information 
available for a characterization at the 
higher level. On the contrary, there is 
no adequate information available at the 
lower level, i.e. to complete the work- 
load characterization, one needs infor- 
mation on the logical resources within a 
task, such as the special edit commands 
used, the execution frequencies of state- 
ments in higher programming languages and 
the access patterns and execution 
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sequences, etc. Usually, this information 
is not available, except within special, 
selfmade instrumentation packages (e.g. 
/22/, /23/). Therefore the lower level is 
very often inadequately replaced by the 
task dependent values of hardware resource 
consumptions. 

I J 
I 1 T A S K  

Fi~.l Hierarchical structure 

of a synthetic script 

Serazzi used in /11/ a functionally - 
oriented approach at a low level of de- 
tail, which produces classes of workload 
components. He subdivided all of the pro- 
gram-steps of the workload into 9 cate- 
gories depending upon the programming 
language used and the two types of work 
performed, i.e. compilations and execu- 
tions. His goal was to show the equivalence 
between this functionally-oriented approach 
and the hardware resource-oriented approach, 
according to hardware resource utilizations 
of the distinct job steps, i.e. to show 
that the program-steps of each functional 
category have a typical hardware resource 
utilization pattern, though the resource 
utilization patterns corresponding to the 
various functional categories are not com- 
pletely separate. 
Agrawala and Mohr used a markovian model 
of a job in /13/. This model can be used 
to characterize a sequence of states, i.e. 
the sequence of job steps of a job. The 
transition probabilities in the model are 
homogeneous. Before applying this modeling 
technique, the jobs of their workload were 
classified by a cluster algorithm based on 
hardware resource consumptions. 
In section 2 our approach to workload 
characterization using software resources 
is described. The workload classes which 
result from this characterization, using 
cluster analysis techniques, are further 
analysed using state dependent transition 
matrices in section 3. 
Different from the approaches in /11/ and 
/13/ we did not use hardware resource con- 
sumptions for the preclassification of the 
jobs. Instead we used the frequencies with 
which functional components, like editors, 
compilers etc. are called by the jobs, in 
our cluster analysis. Similar to the 
approach in /13/ we represent each job as 
a sequence of job steps. Furtheron we 
assumed - as an essential extension to /13/ 
- nonhomogeneous transitions between the 

states (job steps) of a job. 
Each run is represented as a sequence of 
tasks which must be executed in that 
order. The next task executed could de- 
pend not only on the current task but 
also on some prior tasks and on the step 
index. The execution of a run corresponds 
to the transition between distinct states 
of the run. A state corresponds to a soft- 
ware resource used by the run, like 
editor, compiler, etc. The results of 
this investigation are discussed in 
section 4 with some further remarks and 
notes on further research in section 5. 

2. CHARACTERIZATION AT THE TASK LEVEL 

A first attempt to characterize workloads 
on a level higher than that of hardware 
requirements is done by describing this 
workload by the software resources which 
are used by the jobs, like compilers, 
editor, linker, etc. In a first step the 
interactive workload should be subdivided 
into classes according to their con- 
sumption of software resources which then 
allows the derivation of characteristic 
terminal sessions, like those for data 
input, program development, production 
runs, etc. This partitioning can be 
achieved by using quantitative methods 
like cluster analysis. Notice that this 
method of description reflects some 
aspects of user's behaviour - e.g. se- 
quence of tasks in a session - which is 
normally not considered in workload 
characterization if it is done on the 
hardware level. But these user aspects 
have an essential influence on the load 
and the performance of a system. 
The data used in this investigation are 
from the interactive workload on a 
UNIVAC 11OO/81 computer system used by 
the two universities at Graz. During a 
period of about three weeks 3830 runs 
were executed. The logfile of the system 
contains an entry both for each call of a 
software processor or a program and its 
termination. In our case the following 
types of software resources (functional 
categories) were identified: 

I. FOR 

2. EDIT 

3. ~P 

4. FILE 

5. SUSRES 

6. PRSP 

7. XQT 

... including all Fortran 
compilers 

... including all edit and 
data processors 

... link and load functions 

... file operations 

... directing the output from 
a terminal to a printer 

... including all other 
programming language 
processors except those 
for Fortran 

... program execution 

There are several methods available to 
subdivide the total workload into classes 
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with different usage of software resources. 
The most practical solution seems to be 
the use of clustering techniques based on 
the distribution of calls for software re- 
sources per run, expressed as percentages. 
For the clustering procedure the well 
known KMEANS algorithm /24/ can be used, 
giving spherical clusters on scaled data. 
One should note that there is no problem 
with scaling of the data or the treatment 
of outliers - usually two critical points 
in cluster analysis when applied to work- 
load characterization on the hardware 
level. Applying this method to our data - 
as described in /21/ - results in a sub- 
division of the total workload into seven 
clusters, which allow a very clear and 
simple interpretation. The average number 
of calls of the distinct software re- 
sources in the clusters and the transition 
matrices within each cluster give an in- 
formation which is valid for a high per- 
centage of the runs belonging to the 
cluster. The software processors and 
programs within a run can be seen as 
states of the run. A transition from one 
state to another corresponds to the ter- 
mination of one processor (e.g. Fortran 
compiler) and a call of the next one in 
the task sequence of this run (e.g.editor). 
The state before the run starts corres- 
ponds to a fictitious state START. Simi- 
larly, a fictitious, absorbing state FIN 
is entered upon the termination of the 
last task in the run. The elements 
of this transition matrix represent qij 
the number or frequency of transitions 
from state i to state j. 
As an appropriate method of display a 
transition diagram can be introduced, 
which is derived from the transition 
matrix of the cluster. This diagram shows 
the most probable run structure in each 
cluster. The states are shown by rect- 
angles, the most frequent transitions by 
thick lines and frequent transitions by 
thin lines. 
To illustrate the results we take cluster 
3 which comprises 10.67 % of all runs. 
With about 93.1 % calls of the editor 
and 4.4 % file operations, this cluster 
represents runs that perform primarily 
data preparations. The transition dia- 
gram is given in fig.2, the percentage 
of the calls of the distinct software re- 
sources and the transition matrix is given 
in tab.1. 
In the first part of table I the average 
percentage of calls of the distinct soft- 
ware resources by a job belonging to 
cluster 3 is given. For example, on the 
average 93,1 % of the calls for software 
resources in a job of cluster 3 are re- 
quests for the editor. For the distinct 
values also the standard deviation, the 
coefficient of variation and the minimum 
and maximum within a job are given. 
In the second half of table I the transi- 
tion matrix of jobs belonging to cluster 
3 is given. The entry q in the i-th row 
and j-th column denotes 13 the total number 

of transitions from state i to state j 
summarized over all jobs of cluster 3. 

Average Standard 
D:~vJ ation 

FOR 0.4 3.5 

EDIT 93.1 13.5 

~;~-',/) O. 1 1 . 7  

FII~:] 4.4 IO. 9 

SUS ~'~S O. 2 2.4 

PRqP 0.1 1.2 

xQ/f 1.8 6.8 

Co~ffJ cient 
of VarJ ation 

8.533 OO.O - 33.3 

.145 57.1 I00.O 

16.917 00.O - 40.O 

2.502 00.O - 41.2 

9.574 Ob.O - 33.3" 

23.359 00.O - 3J'~ 3" 

3. 878 CO. O 36.4' 

STAY<f 

FOR 

{DIT 

~kP 

?II/'] 

SUSI~Iq i 
PRSP 

X~r 

FIN FOR El]IT ] ~P FILE SUSRES PRSP XQT 

0 0 896 0 

1 0 15 1 

887 21 974 3 

0 0 4 1 

33 0 i 170 5 

4 0 16 0 

0 0 2 0 

17 0 96 0 

33 2 O 11 

4 O 0 0 

177 15 2 94 

O O O 5 

37 16 O 11 

12 4 O 6 

O 0 0 O 

9 ~ o 6 

Tab. I Perce~tage of calls and transition matrix for 
clt~te-~ 3 

START 

I H , ] 
F i g . 2 .  T r , ~ n s J t J . o n  d i a g r a m  fo1" c ] u s t e r  

Similarly the other clusters can easily be 
interpreted in the following way: 

Cluster I: Runs with control commands 
to control the work during 
night hours 

Cluster 2: Development of Fortran programs 

Cluster 3: Data preparation 

Cluster 4: Administrative tasks like 
saving and organising activi- 
ties for data and program files 

Cluster 5: Production runs and preparation 
of data for the execution 
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Cluster 6: Generation and inspection of 
printouts together with program 
development 

Cluster 7: Preparation of programs and 
data in other languages 

Thus the application of a well known quan- 
titative method leads to a very useful 
partitioning of the workload, which can be 
further analysed using state dependent 
transition matrices. 

4. STATE DEPENDENT CHARACTERIZATION 

The transition diagram which we used in 
the previous section does not explicitly 
depict transition steps. Therefore the so 
called trellis diagram is introduced. In 
the trellis diagram /25/ the transition 
step parameter k is explicitly shown. Each 
node in the diagram corresponds to a unique 
pair of state and transition step (fig.3). 
Any run of the workload determines a path 
in the trellis diagram. 

START 

FOR 

EDIT 

MAP 

FILE 

SUSRES 

PRSP 

XQT 

FIN 

k=O k : l  k=2  ... 

® 
® 

@ ® 

® 

Fig.3. Trellis diagram 

Till now we assumed that the transition 
matrix is homogeneous, i.e. independent 
of the transition step; this is not true 
in practice. On the contrary the tran- 
sition matrix shows a strong dependence 
on the step level. Therefore the entries 
of the transition matrix will be noted 
by q.. (k). We define the system state 
by a 13 vector n =~n (k), i : I(I)9, 

-- 1 
k = O,1,2 .... } , w~ere n (k) represents 

• l . 

the number of runs whlch are in the state 
i (I = START, 2 = FOR, 3 = EDIT, 4 = MAP, 
5 = FILE, 6 = SUSRES, 7 = PRSP, 8 = XQT, 
9 = FIN) at step k. If the probability 
that a run is in state i at step k is de- 
noted by p (k), the probabilities can be 

1 a . 
calculated accorozng to the following 
equation 9 

(I) Pi (k+1) = __Z pj(k).qji(k)~ ~ k => O 

j:1 

with Pl (O) = I, Pi!O) = O for i = 2 (I) 9, 
since each run is initially in the 
START state. Note also that q ~ (k) = O for 
j = I (I)9 and all k { O. Stat~'9 (= FIN) 
is an absorbing state; therefore q9i(k) = O 

for all i = I (I)9 and all k -~ O. Calcu- 
lating the probabilities according to 
equation (1) yields p~(k) , the probability 
that the run will finish after step k. The 
total probability, that the "system" is in 
the state FIN after step k is equal to 

k 

~-- p9(j). j=O 

5. DISCUSSION 

This technique of state dependent charac- 
terization can be applied to each of the 
clusters in section 2 and can help to 
identify the "right" sequence of tasks 
for each script. 
E.g. cluster 3 shows the following trellis 
diagram (fig.4), where each entry in the 
table gives p~ (k). The last line shows the 
total probability for the state FIN. About 
two thirds of the runs have only one edit 
task. Three quarters of the runs have two 
tasks at the most, with a high probability 
that both are edit tasks. 86 % of the runs 
have thr{~e consecutive tasks at the most, 
with a high probability, that all of these 
three tasks are edit activities. If the 
second task is not an editor call, it will 
comprise file operations or a program 
execution. But the probability for these 
two is rather small. 
Fi.5 shows the percentage of jobs fini- 
shing after k transitions. 

SUSRES 

k 0 1 2 3 ;t . . . .  

START ~.00~ 0.o0 0.30 C.O0 0.00 

FOR O.00 ~ ? , O O  O.O] O.OO, O.OO 

o o o  EDIT , .2 .2 O.11 
-,., ~" ~.~ 

MAP 0.00 0.00 O.00 0.OO 0.00 

FILE 0.GO 0 .0  L 0 . 0 8 \  0 ° 0 3 \  0 . 0 2  

0.00 o.00 \0.0o'~ \ c . 0 0  \ o 00 

PRSI-" O.OO O.OO ~.OO __\O'OO. \~, 00 

XQT 0 .00  O.01 0 03 0 .09  0 .01 

Fin 0 . 0 0  0 . 0 0  f O.O7~lO.t 12 \ 
'k o . 7 t , i  ' x¢o .8c , ,  I 

Ff i l ; . l t .  T r e l l i s  4 i a E r a m  f o r  c l t t . t t e r  3 

?, 

7 5  

5 0  ! 

23' 

_ _  [ I I 
2 3 '~ 5 (, 7 step k 

l " : i ~ . 5 .  P e l ' c c n l ~ K , .  ~1" r~lilS | j n ] s b i 1 ; ~  
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Similar conclusions can be drawn in a more 
complex cluster like that for program de- 
velopment (cluster 2). The normal transi- 
tion diagram is shown in fig.6. Primarily 
editors and Fortran compilers are involved 
in this class together with some occurren- 
ces of MAP, XQT and FILE. 

Fig.7 show~ the trellis diagram for that 
cluster with the path of a very probable 
run, i.e. START-EDIT-FOR-EDIT-FOR-EDIT- 
EDIT (FOR)-EDIT-FIN. About one quarter of 
the runs have finished after eight tran- 
sition steps or less. Fig.8 presents the 
percentage of jobs finishing after k tran- 
sitions with quite another distribution 
compared to fig.5. 

[---TTT-] ~ ~FI LE~ 
T4TTC  

F i g . 6 .  T r a n s i t i o n  d i a g r a m  o f  c l u s t e r  2 

k 0 1 2 3 b~ 5 6 7 

i.~ 0.00 O.OC~ 0.00 O.00 0 . 0 0  0.00 0.00 

8 .... 

SUSRES 

START 0 • CO 

FOR O. 17 

EDIT O. !8 

MAP 0.O0 (1.01 O.03 0.11 O.iti 0.11 0.11 0.08 O.OZ 
t 

FILE 0.(I0 O.19 0.16 0.20 0.12 O.15 0.12 O.1! X C.~] 
1 

O.OO 0.02 0.03 0.03 o.otL O.03 0 . 0 5  0.06\0.05 

PRSP O.OD 0 . 0 0  ¢) .01 O.c~O 0 . 0 1  0 . 0 1  0 . 0 0  0 . 0 0 / 0 . 0 1  

XQT 0 . 0 9  0 . 0 7  O . 0 B  0 . O B  0 . 1 1  O , l ' l  0 .1 !1  0 . 1 t l  ~ ' } . l ]  

F I N  0 . 0 0  0 .{}0  0 , 0 1  O.  ,2 0 . 0 ! t  (}. 0It 0 .Oi l  0 .O i l  [ / 0 .  {} 7;] 
| . !  

0.03 ; 9 . 0 7  0 . 1 1  O.15 0 . 1 9  ~.2~/ 

F i g . 7 .  T ' , '{!I]J~;  d J a d P . a l  f o r  e l m  " t ry  2 

iI 
10 

Ill/ rl 
15 20 25 step k 

Fig.8. Percentage of runs finishing 
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The difference between trellis diagram and 
the general transition diagram for cluster 
2 results from the fact that usually a run 
in this cluster (program development) con- 
sists of a sequence of calls to editors 
and Fortran compilers alternatively at the 
beginning, to FILE-, MAP-, XQT-phases in 
the middle and toward the end of the run. 
Whereas this characteristic can not be 
seen very well in the general transition 
diagram, it becomes obvious inspecting the 
trellis diagram over a longer period of 
steps. This shows the clear advantage of 
state dependent characterization. 
Whereas the programs in cluster 2 (program 
development) show rather long task se- 
quences, the runs in cluster 5, which con- 
tains the production runs, have short se- 
quences; about half of the jobs have 
finished in five steps or less. All the 
steps are primarily executions of user 
programs (fig 9 - 11) 

F,N 

Fig.9. Transition diagram of c]ustfr 5 

20 

5 10 15 20 step k 

Fig.11. PercentaKe of runs finishing 

One should notice, that the state proba- 
bility vector ~ can be used together with 
a generator for uniformly distributed 
(O,1)-random numbers for automatic selec- 
tion of tasks in the synthetic script 
/ 2 6 / .  

6. CONCLUSION 

This paper presented a method for work- 
load characterization at the task level. 
With rather simple and well known methods 
like cluster analysis and state dependent 
description a good and expressive charac- 
terization can be found. This information 
can be used to construct synthetic scripts 
at the task level. 
Further investigations should consider 
transition matrices of higher order and 
include sojourn times within the tasks. 
The resource usage of different tasks at 
distinct steps should be tested for sig- 
nificant differences like in CPU-time, 
i/o-activity, etc. 

START 

FOR 

EDIT 

MAP 

FILE 

SUSRES 

PRSP 

XQT 

FIN 

0 I 2 3 4 5 

0.00 0.00 0.00 0.00 0.00 

.01 0.0L 0.03 0.02 0.01 0.01 

0 . 0 0 \  0 . 2 8  0 . 1 3  0 . 1 6  0 . 1 4  0 . 1 2  
/ 

0 . 0 0  \ 0 . 0 ~  0 . 0 2  0 . 0 3  0 . 0 2  0 . 0 2  
/ 

0 . 0 0  \ 0 . 1 3  0 . 1 1  0 . 0 7  0 . 0 6  0 . 0 4  
| 

0 . 0 0  0 . 0 2  0 .02  0 . 0 2  0 . 0 2  0 . 0 2  

O.00 O.00 0.00 O.OO 0.0'3 0.00 

0.00 

O.00 0.OO 0.15 0.17 

0.32 

Fig. t0. Tre].lis cliagl-am of cluster 5 
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