
On State-Dependent Workload Characterization

by Software Resources

G0nter Haring

Institute for Information Processing
Technical University
A 8010 Graz - Austria

ABSTRACT

A method for the characterization of
computer workload at the task level is
presented. After having divided the work-
load into different classes using a
cluster technique, each cluster is further
analysed by state dependent transition
matrices. Thus it is possible to derive
the most probable task sequences in each
cluster. This information can be used to
construct synthetic scripts at the task
level rather than the usual description
at the hardware resource level.

I. INTRODUCTION

Computer based information processing can
be viewed as a communication between a
data processing system and its environ-
ment. In this context the term workload
comprises the sum of all information
processing requirements offered from the
environment to the system during a given
time interval. These requirements con-
sist of programs, data, commands, etc.
/I/. As the performance of a computer
system depends on the work loaded on the
system, the characterization and modeling
of the workload play a central role in
all performance-orientated questions of
computer system management, such as per-
formance improvement, selection and de-
sign of computer systems, capacity
planning, etc. /2/.
The workload of a system can be described
at different levels: functional specifi-
cation level, logical resources level or
hardware resources level; these can be
further subdivided, if necessary. The
selection of the right level for the
characterization depends on the goal of
investigation. For example, to replace a

Permission to copy without fee all or part of this materia l is
granted provided that the copies are not made or distributed
for direct commerc ia l advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permiss ion of the Association for Com-
puting Machinery. To copy otherwise, or to republish, requires
a fee a n d / o r specific permission.

© 1982 ACM 0-89791-079-6/82/008/0051 $00.75

complete system the hardware level would
not be the right one, the characteriza-
tion must rather be done at the program
level. The difficult problem in workload
characterization is , that usually there
are not enough data available at the
right level - if at all /3/. As a con-
sequence workload is very often charac-
terized at the wrong level, using values
of hardware resource consumption, which
are available on nearly all systems.
Whereas there are a lot of papers dealing
with workload characterization on the
hardware level (/4/ - /11/), there are
only few contributions that consider
higher-level characterization using
quantitative methods (/11/ - /13/).
Workload characterization, used for com-
puter system procurement or for the eva-
luation and assessment of different time
sharing services, should be system in-
dependent (/14/ - /19/). This is not the
case, if the level of characterization
is related to hardware resources of the
existing system. A consideration of
higher levels Js especially important if
a synthetic script must be derived from
the workload characterization to eva-
luate different systems. Within such a
script a sequence of tasks must be con-
structed and included, which will then
be executed on the systems to be tested.
The hierarchical structure of a script
is shown in fig. 1 in Jackson-like termi-
nology. The script consists of a sequence
of tasks, and each task in turn consists
of a sequence of statements, which must
be specified in detail. This structure
leads to a stepwise development of the
script. The construction of a script at
the task level is the background of this
paper. At this point one should notice
that usually there is enough information
available for a characterization at the
higher level. On the contrary, there is
no adequate information available at the
lower level, i.e. to complete the work-
load characterization, one needs infor-
mation on the logical resources within a
task, such as the special edit commands
used, the execution frequencies of state-
ments in higher programming languages and
the access patterns and execution

51

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1035332.1035302&domain=pdf&date_stamp=1982-08-30

sequences, etc. Usually, this information
is not available, except within special,
selfmade instrumentation packages (e.g.
/22/, /23/). Therefore the lower level is
very often inadequately replaced by the
task dependent values of hardware resource
consumptions.

I J
I 1 T A S K

Fi~.l Hierarchical structure

of a synthetic script

Serazzi used in /11/ a functionally -
oriented approach at a low level of de-
tail, which produces classes of workload
components. He subdivided all of the pro-
gram-steps of the workload into 9 cate-
gories depending upon the programming
language used and the two types of work
performed, i.e. compilations and execu-
tions. His goal was to show the equivalence
between this functionally-oriented approach
and the hardware resource-oriented approach,
according to hardware resource utilizations
of the distinct job steps, i.e. to show
that the program-steps of each functional
category have a typical hardware resource
utilization pattern, though the resource
utilization patterns corresponding to the
various functional categories are not com-
pletely separate.
Agrawala and Mohr used a markovian model
of a job in /13/. This model can be used
to characterize a sequence of states, i.e.
the sequence of job steps of a job. The
transition probabilities in the model are
homogeneous. Before applying this modeling
technique, the jobs of their workload were
classified by a cluster algorithm based on
hardware resource consumptions.
In section 2 our approach to workload
characterization using software resources
is described. The workload classes which
result from this characterization, using
cluster analysis techniques, are further
analysed using state dependent transition
matrices in section 3.
Different from the approaches in /11/ and
/13/ we did not use hardware resource con-
sumptions for the preclassification of the
jobs. Instead we used the frequencies with
which functional components, like editors,
compilers etc. are called by the jobs, in
our cluster analysis. Similar to the
approach in /13/ we represent each job as
a sequence of job steps. Furtheron we
assumed - as an essential extension to /13/
- nonhomogeneous transitions between the

states (job steps) of a job.
Each run is represented as a sequence of
tasks which must be executed in that
order. The next task executed could de-
pend not only on the current task but
also on some prior tasks and on the step
index. The execution of a run corresponds
to the transition between distinct states
of the run. A state corresponds to a soft-
ware resource used by the run, like
editor, compiler, etc. The results of
this investigation are discussed in
section 4 with some further remarks and
notes on further research in section 5.

2. CHARACTERIZATION AT THE TASK LEVEL

A first attempt to characterize workloads
on a level higher than that of hardware
requirements is done by describing this
workload by the software resources which
are used by the jobs, like compilers,
editor, linker, etc. In a first step the
interactive workload should be subdivided
into classes according to their con-
sumption of software resources which then
allows the derivation of characteristic
terminal sessions, like those for data
input, program development, production
runs, etc. This partitioning can be
achieved by using quantitative methods
like cluster analysis. Notice that this
method of description reflects some
aspects of user's behaviour - e.g. se-
quence of tasks in a session - which is
normally not considered in workload
characterization if it is done on the
hardware level. But these user aspects
have an essential influence on the load
and the performance of a system.
The data used in this investigation are
from the interactive workload on a
UNIVAC 11OO/81 computer system used by
the two universities at Graz. During a
period of about three weeks 3830 runs
were executed. The logfile of the system
contains an entry both for each call of a
software processor or a program and its
termination. In our case the following
types of software resources (functional
categories) were identified:

I. FOR

2. EDIT

3. ~P

4. FILE

5. SUSRES

6. PRSP

7. XQT

... including all Fortran
compilers

... including all edit and
data processors

... link and load functions

... file operations

... directing the output from
a terminal to a printer

... including all other
programming language
processors except those
for Fortran

... program execution

There are several methods available to
subdivide the total workload into classes

52

with different usage of software resources.
The most practical solution seems to be
the use of clustering techniques based on
the distribution of calls for software re-
sources per run, expressed as percentages.
For the clustering procedure the well
known KMEANS algorithm /24/ can be used,
giving spherical clusters on scaled data.
One should note that there is no problem
with scaling of the data or the treatment
of outliers - usually two critical points
in cluster analysis when applied to work-
load characterization on the hardware
level. Applying this method to our data -
as described in /21/ - results in a sub-
division of the total workload into seven
clusters, which allow a very clear and
simple interpretation. The average number
of calls of the distinct software re-
sources in the clusters and the transition
matrices within each cluster give an in-
formation which is valid for a high per-
centage of the runs belonging to the
cluster. The software processors and
programs within a run can be seen as
states of the run. A transition from one
state to another corresponds to the ter-
mination of one processor (e.g. Fortran
compiler) and a call of the next one in
the task sequence of this run (e.g.editor).
The state before the run starts corres-
ponds to a fictitious state START. Simi-
larly, a fictitious, absorbing state FIN
is entered upon the termination of the
last task in the run. The elements
of this transition matrix represent qij
the number or frequency of transitions
from state i to state j.
As an appropriate method of display a
transition diagram can be introduced,
which is derived from the transition
matrix of the cluster. This diagram shows
the most probable run structure in each
cluster. The states are shown by rect-
angles, the most frequent transitions by
thick lines and frequent transitions by
thin lines.
To illustrate the results we take cluster
3 which comprises 10.67 % of all runs.
With about 93.1 % calls of the editor
and 4.4 % file operations, this cluster
represents runs that perform primarily
data preparations. The transition dia-
gram is given in fig.2, the percentage
of the calls of the distinct software re-
sources and the transition matrix is given
in tab.1.
In the first part of table I the average
percentage of calls of the distinct soft-
ware resources by a job belonging to
cluster 3 is given. For example, on the
average 93,1 % of the calls for software
resources in a job of cluster 3 are re-
quests for the editor. For the distinct
values also the standard deviation, the
coefficient of variation and the minimum
and maximum within a job are given.
In the second half of table I the transi-
tion matrix of jobs belonging to cluster
3 is given. The entry q in the i-th row
and j-th column denotes 13 the total number

of transitions from state i to state j
summarized over all jobs of cluster 3.

Average Standard
D:~vJ ation

FOR 0.4 3.5

EDIT 93.1 13.5

~;~-',/) O. 1 1 . 7

FII~:] 4.4 IO. 9

SUS ~'~S O. 2 2.4

PRqP 0.1 1.2

xQ/f 1.8 6.8

Co~ffJ cient
of VarJ ation

8.533 OO.O - 33.3

.145 57.1 I00.O

16.917 00.O - 40.O

2.502 00.O - 41.2

9.574 Ob.O - 33.3"

23.359 00.O - 3J'~ 3"

3. 878 CO. O 36.4'

STAY<f

FOR

{DIT

~kP

?II/']

SUSI~Iq i
PRSP

X~r

FIN FOR El]IT] ~P FILE SUSRES PRSP XQT

0 0 896 0

1 0 15 1

887 21 974 3

0 0 4 1

33 0 i 170 5

4 0 16 0

0 0 2 0

17 0 96 0

33 2 O 11

4 O 0 0

177 15 2 94

O O O 5

37 16 O 11

12 4 O 6

O 0 0 O

9 ~ o 6

Tab. I Perce~tage of calls and transition matrix for
clt~te-~ 3

START

I H ,]
F i g . 2 . T r , ~ n s J t J . o n d i a g r a m fo1" c] u s t e r

Similarly the other clusters can easily be
interpreted in the following way:

Cluster I: Runs with control commands
to control the work during
night hours

Cluster 2: Development of Fortran programs

Cluster 3: Data preparation

Cluster 4: Administrative tasks like
saving and organising activi-
ties for data and program files

Cluster 5: Production runs and preparation
of data for the execution

53

Cluster 6: Generation and inspection of
printouts together with program
development

Cluster 7: Preparation of programs and
data in other languages

Thus the application of a well known quan-
titative method leads to a very useful
partitioning of the workload, which can be
further analysed using state dependent
transition matrices.

4. STATE DEPENDENT CHARACTERIZATION

The transition diagram which we used in
the previous section does not explicitly
depict transition steps. Therefore the so
called trellis diagram is introduced. In
the trellis diagram /25/ the transition
step parameter k is explicitly shown. Each
node in the diagram corresponds to a unique
pair of state and transition step (fig.3).
Any run of the workload determines a path
in the trellis diagram.

START

FOR

EDIT

MAP

FILE

SUSRES

PRSP

XQT

FIN

k=O k : l k=2 ...

®
®

@ ®

®

Fig.3. Trellis diagram

Till now we assumed that the transition
matrix is homogeneous, i.e. independent
of the transition step; this is not true
in practice. On the contrary the tran-
sition matrix shows a strong dependence
on the step level. Therefore the entries
of the transition matrix will be noted
by q.. (k). We define the system state
by a 13 vector n =~n (k), i : I(I)9,

-- 1
k = O,1,2 } , w~ere n (k) represents

• l .

the number of runs whlch are in the state
i (I = START, 2 = FOR, 3 = EDIT, 4 = MAP,
5 = FILE, 6 = SUSRES, 7 = PRSP, 8 = XQT,
9 = FIN) at step k. If the probability
that a run is in state i at step k is de-
noted by p (k), the probabilities can be

1 a .
calculated accorozng to the following
equation 9

(I) Pi (k+1) = __Z pj(k).qji(k)~ ~ k => O

j:1

with Pl (O) = I, Pi!O) = O for i = 2 (I) 9,
since each run is initially in the
START state. Note also that q ~ (k) = O for
j = I (I)9 and all k { O. Stat~'9 (= FIN)
is an absorbing state; therefore q9i(k) = O

for all i = I (I)9 and all k -~ O. Calcu-
lating the probabilities according to
equation (1) yields p~(k) , the probability
that the run will finish after step k. The
total probability, that the "system" is in
the state FIN after step k is equal to

k

~-- p9(j). j=O

5. DISCUSSION

This technique of state dependent charac-
terization can be applied to each of the
clusters in section 2 and can help to
identify the "right" sequence of tasks
for each script.
E.g. cluster 3 shows the following trellis
diagram (fig.4), where each entry in the
table gives p~ (k). The last line shows the
total probability for the state FIN. About
two thirds of the runs have only one edit
task. Three quarters of the runs have two
tasks at the most, with a high probability
that both are edit tasks. 86 % of the runs
have thr{~e consecutive tasks at the most,
with a high probability, that all of these
three tasks are edit activities. If the
second task is not an editor call, it will
comprise file operations or a program
execution. But the probability for these
two is rather small.
Fi.5 shows the percentage of jobs fini-
shing after k transitions.

SUSRES

k 0 1 2 3 ;t

START ~.00~ 0.o0 0.30 C.O0 0.00

FOR O.00 ~ ? , O O O.O] O.OO, O.OO

o o o EDIT , .2 .2 O.11
-,., ~" ~.~

MAP 0.00 0.00 O.00 0.OO 0.00

FILE 0.GO 0 .0 L 0 . 0 8 \ 0 ° 0 3 \ 0 . 0 2

0.00 o.00 \0.0o'~ \ c . 0 0 \ o 00

PRSI-" O.OO O.OO ~.OO __\O'OO. \~, 00

XQT 0 .00 O.01 0 03 0 .09 0 .01

Fin 0 . 0 0 0 . 0 0 f O.O7~lO.t 12 \
'k o . 7 t , i ' x¢o .8c , , I

Ff i l ; . l t . T r e l l i s 4 i a E r a m f o r c l t t . t t e r 3

?,

7 5

5 0 !

23'

_ _ [I I
2 3 '~ 5 (, 7 step k

l " : i ~ . 5 . P e l ' c c n l ~ K , . ~1" r~lilS | j n] s b i 1 ; ~

54

Similar conclusions can be drawn in a more
complex cluster like that for program de-
velopment (cluster 2). The normal transi-
tion diagram is shown in fig.6. Primarily
editors and Fortran compilers are involved
in this class together with some occurren-
ces of MAP, XQT and FILE.

Fig.7 show~ the trellis diagram for that
cluster with the path of a very probable
run, i.e. START-EDIT-FOR-EDIT-FOR-EDIT-
EDIT (FOR)-EDIT-FIN. About one quarter of
the runs have finished after eight tran-
sition steps or less. Fig.8 presents the
percentage of jobs finishing after k tran-
sitions with quite another distribution
compared to fig.5.

[---TTT-] ~ ~FI LE~
T4TTC

F i g . 6 . T r a n s i t i o n d i a g r a m o f c l u s t e r 2

k 0 1 2 3 b~ 5 6 7

i.~ 0.00 O.OC~ 0.00 O.00 0 . 0 0 0.00 0.00

8

SUSRES

START 0 • CO

FOR O. 17

EDIT O. !8

MAP 0.O0 (1.01 O.03 0.11 O.iti 0.11 0.11 0.08 O.OZ
t

FILE 0.(I0 O.19 0.16 0.20 0.12 O.15 0.12 O.1! X C.~]
1

O.OO 0.02 0.03 0.03 o.otL O.03 0 . 0 5 0.06\0.05

PRSP O.OD 0 . 0 0 ¢) .01 O.c~O 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 0 / 0 . 0 1

XQT 0 . 0 9 0 . 0 7 O . 0 B 0 . O B 0 . 1 1 O , l ' l 0 .1 !1 0 . 1 t l ~ ' } . l]

F I N 0 . 0 0 0 .{}0 0 , 0 1 O. ,2 0 . 0 ! t (}. 0It 0 .Oi l 0 .O i l [/ 0 . {} 7;]
| . !

0.03 ; 9 . 0 7 0 . 1 1 O.15 0 . 1 9 ~.2~/

F i g . 7 . T ' , '{!I]J~; d J a d P . a l f o r e l m " t ry 2

iI
10

Ill/ rl
15 20 25 step k

Fig.8. Percentage of runs finishing

55

The difference between trellis diagram and
the general transition diagram for cluster
2 results from the fact that usually a run
in this cluster (program development) con-
sists of a sequence of calls to editors
and Fortran compilers alternatively at the
beginning, to FILE-, MAP-, XQT-phases in
the middle and toward the end of the run.
Whereas this characteristic can not be
seen very well in the general transition
diagram, it becomes obvious inspecting the
trellis diagram over a longer period of
steps. This shows the clear advantage of
state dependent characterization.
Whereas the programs in cluster 2 (program
development) show rather long task se-
quences, the runs in cluster 5, which con-
tains the production runs, have short se-
quences; about half of the jobs have
finished in five steps or less. All the
steps are primarily executions of user
programs (fig 9 - 11)

F,N

Fig.9. Transition diagram of c]ustfr 5

20

5 10 15 20 step k

Fig.11. PercentaKe of runs finishing

One should notice, that the state proba-
bility vector ~ can be used together with
a generator for uniformly distributed
(O,1)-random numbers for automatic selec-
tion of tasks in the synthetic script
/ 2 6 / .

6. CONCLUSION

This paper presented a method for work-
load characterization at the task level.
With rather simple and well known methods
like cluster analysis and state dependent
description a good and expressive charac-
terization can be found. This information
can be used to construct synthetic scripts
at the task level.
Further investigations should consider
transition matrices of higher order and
include sojourn times within the tasks.
The resource usage of different tasks at
distinct steps should be tested for sig-
nificant differences like in CPU-time,
i/o-activity, etc.

START

FOR

EDIT

MAP

FILE

SUSRES

PRSP

XQT

FIN

0 I 2 3 4 5

0.00 0.00 0.00 0.00 0.00

.01 0.0L 0.03 0.02 0.01 0.01

0 . 0 0 \ 0 . 2 8 0 . 1 3 0 . 1 6 0 . 1 4 0 . 1 2
/

0 . 0 0 \ 0 . 0 ~ 0 . 0 2 0 . 0 3 0 . 0 2 0 . 0 2
/

0 . 0 0 \ 0 . 1 3 0 . 1 1 0 . 0 7 0 . 0 6 0 . 0 4
|

0 . 0 0 0 . 0 2 0 .02 0 . 0 2 0 . 0 2 0 . 0 2

O.00 O.00 0.00 O.OO 0.0'3 0.00

0.00

O.00 0.OO 0.15 0.17

0.32

Fig. t0. Tre].lis cliagl-am of cluster 5

7. REFERENCES

/ I/ D.Ferrari: "Computer system per-
formance evaluation",
Prentice Hall 1978

/ 2/ H.D.Schwetman: "Workload characteri-
zation: Why? What? How?",
Proc.EUROCOMP on Comp. Perf. Eval.
1976, p.457-471

/ 3/ D.M.Conti: "Benchmarking: an im-
perfect science",
Proc.ECOMA-9 Conf.1981, p.88-93

/ 4/ A.K.Agrawala, J.M.Mohr: "A compari-
son of the workload on several
computer systems",
Proc. CMG IX Conf.1978,
p.177-183

/ 5/ A.K.Agrawala, J.M.Mohr: "A model for
workload characterization",
Proc. of Symp. on Simul. of Comp.
Syst. 1975, p.8 - 18

56

/ 6/ M.L.Bolzoni, P.Mapelli, G.S~razzi:
"A methodology for the classifi-
cation of batch and interactive
workload components",
Proc. ECOMA-9 Conf. 1981,
p.190-199

/ 7/ K.Terplan: "Workload representation
in mixed environment",
Proc. EUROCOMP on Comp. Perf.
Eval. 1976, p.389-403

/ 8/ C.G.Crothers: "Workload determination
and representation for on-line
computer systems",
MITRE-CorD.,F19628-73-C-OOOI,1973

/ 9/ J.A.Lockett:"Computer performance
analysis: evaluation with mixed
online-batch workloads",
The Rand Corporation, Santa
Monica, Rep. No. R-1275-PR, 1974

/10/ R.L.Mead, H.D.Schwetman: "Jobscripts
- a workload description based
on system event data",
Proc. NCC 1978, p.457-464

/11/ G.Serazzi: "A functional and resource-
oriented procedure for workload-
modeling",
Proc. Performance 81 Conf. 1981,
p. 345-362

/12/ A.K.Agrawala, J.M.Mohr, R.M.Bryant:
"An approach to the workload
characterization problem",
IEEE Comp. Magazine, June 1976,
p. I~-32

/13/ A.K.Agrawala, J.M.Mohr: "A Markovian
model of a 3ob",
Proc. 14th CP~UG Meeting, 1978,
p. 119-126

/14/ J.S.Cameron: "An approach to bench-
marking terminal oriented sys-
tems",
Proc. ACM Ann. Conf.1976,
p.208-212

/15/ D.M.Conti: "Use of synthetic bench-
marks for estimating sercice
bureau processing charges"
NBS Techn. Note 920, July ~976

/16/ D.M.Conti: "A method for estimating
service bureau processing char-
ges", Proc. 7th Int. Conf.of the
CMG 1976, p.34-60

/~'7/ D.Ferrari: "Characterizing a work-
load for the comparison of
interactive services",
Proc. NCC 1979, p.789-796

/13/ S.A.Mamrak, M.D.Abrams: "A taxonomy
for valid test workload genera-
tion",
IEEE Comp.Magazine, Dec.1979,
p. 60-65

/19/ L.E.Nolan, J.C.Strauss: "Workload
characterization for timesharing
system selection",
Software-Pract.&Exp., Vol.4
(1974), p. 25-39

/20/ M.Jackson: "Principles of Program
Design",
Academic Press 1975

/21/ G.Haring: "Workload characterization
at task level",
to appear in Comp. Perf., vol.3,
no.2 (June 1982)

/22/ L.D.Fosdick: "BRNANL, a Fortran
program to identify basic blocks
in Fortran programs",
Univ.of Colorado at Boulder 1974

/23/ R.L°Sites: "Programming tools:
statement counts and procedure
timings",
ACM SIGPLAN Notices, voi.13,
no.12 (Dec.1978), p. 98-101

/24/ M.Anderberg: "Cluster analysis for
applications",
Academic Press 1973

/25/ H.Kobayashi, M.Reiser: "On generali-
zation of job routing behaviour
in a queueing network model",
IBM Res. Rep. RC 5679, Oct.1975

/26/ Ch.R.Spooner: "Benchmarking inter-
active systems: producing the
software",
1979 Conf. on Simul., Meas. and
Modeling of Comp. Syst.,
p. 249-257

57

