
Multiple Class Memory Constrained Queueing Networks

Eclvaard D. Lazovgstca and John Zahovjan

Department of Computer Science
University of Washington

Seattle, WA 98195

ABSTRACT

Most c o m p u t e r s y s t e m s have a m e m o r y cons t ra in t : a l imit on the n u m b e r of
r e q u e s t s t ha t can actively compe t e for process ing r e sources , imposed by finite
m e m o r y resources . This cha rac t e r i s t i c violates the condit ions requ i red for queue-
ing ne twork p e r f o r m a n c e models to be separable, i.e., amenab le to efficient ana lys is
by s t a n d a r d a lgor i thms. Useful a lgor i thms for analyzing models of m e m o r y con-
s t r a ined s y s t e m s have been devised only for models with a single c u s t o m e r class.

In th is pape r we cons ider the mul t ip le class case. We in t roduce and evaluate
an a lgor i thm for analyzing mult iple class queuein~ ne tworks in which the c l a s ses
have i n d e p e n d e n t m e m o r y cons t ra in t s . We ex tend this a lgor i thm to s i tua t ions in
which severa l c lasses sha re a m e m o r y const ra int . We s k e t c h a genera l iza t ion to
s i tua t ions in which a s u b s y s t e m within an overall s y s t e m model has a popula t ion
cons t ra in t .

Our a lgor i thm is compat ib le with the e x t r e me ly t ime- and space-eff ic ient i tera-
tive approx ima te solut ion t echn iques [or separable queueing networks. This level of
efficiency is m a n d a t o r y for modell ing large sys t ems .

CR Categor ies a n d b-Mb]ect Descr iptors : C.4 [Pe r fo rmance of Sys tems] : Modeling techniques; D.4.8
[Operating Systems] : P e r f o r m a n c e -- Idodelin 9 and predict ion.
General Te rms : P e r f o r m a n c e

Additional Key Words a n d Phrases : c o m p u t e r s y s t e m p e r f o r m a n c e evaluation, queueing network
model, approx ima te solut ion technique , m e m o r y cons t ra in t , popula t ion cons t ra in t .

1. Introduction

Queueing ne twork models , in pa r t i cu la r sepczrable
queueing network models [Basket t e t al. 1975], are
i m p o r t a n t tools in the design and analysis of c o m p u t e r
sys t ems . This is the case because , for many applica-
tions, separab le queueing ne tworks s t r ike an appropr ia te
co m p ro m ise be tween accu racy and efficiency. Predic-
t ions accurate to within 5 to i0 percent for utilizations
and throughput rates and to within 25 to 50 percent for
response times are typical from these models. The
existence of efficient solution techniques means that
these predictions can be obtained in a matter of
seconds. As a result, a large number of design

Lazowska's research is supported in part by the National Science
Foundation under Grant No. MCS-8003244. Zahorjan's research is
supported in part by the National Science Foundation under Grant
No, MCS-8104879.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to republish, requires
a fee and/or specific permission.

© 1982 ACM 0-89791-079-6/82/008/0130 $00.75

alternatives may be investigated in a short period of
time.

Although the class of separable queueing networks
is fairly rich, certain structural characteristics of com-
puter systems are difficult to represent within it. The
existence of a wzerf~o~%j constTaint is one of these. Most
systems have a memory constraint: a limit on the
number of requests that. can actively compete for pro-
cessing resources, imposed by finite memory resources.
In such a system, an arriving request for which memory
is unavailable will be queued pending availability of
memory. As an example, IBM's MArS operating system
associates one or more "performance groups" (job
classes) with each of several "domains" for which "target
multiprogramming levels" are specified. A queueing net-
work performance model of such a system may need to
represent the effect of the memory constraint in order
to achieve a useful level of accuracy. The alternatives
for representing memory constraints within the class of
separable queueing networks are limited:

The population of a class of customers may be fixed.
This accurately models a situation in which the sys-
tem is always operating at memory saturation:
there is a large external backlog of requests, and
upon completion a request is immediately replaced
in the system.

- The population of a class of customers may be
unconstrained. This accurately models a situation
in which the system never reaches memory satura-
tion:

130

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1035332.1035313&domain=pdf&date_stamp=1982-08-30

tion: there is always sufficient memory to aceomo-
date an arriving request.

Arrivals may be "lost" or "triggered" as a function of
population [Lam 1977]. This accurately models a
situation in which requests that arrive when
memory is unavailable are discarded rather than
queue d.

Figure i . i illustrates an extremely common
memory constraint phenomenon that violates the condi-
tions required for separability, This computer system
has a single customer class comprising M interactive
users, at most C of which can simultaneously occupy
memory. A request that arrives when there are already
C active requests (C or more ready requests) is queued
pending availability of memory. (In this example we
ignore the details of swapping, and also assume that all
requests have the same memory requirement.)

One alternative in analyzing this system is to ignore
the memory constraint, yielding a separable queueing
network model that can be analyzed efficiently. The
resulting error may be unacceptably large. Another
alternative is to simulate. The resulting cost may be
unacceptably high. A third alternative, the most attrac-
tive in tl~is ease, is to use the well-known approximate
analytic solution technique that we motivate and
describe in the following paragraphs.

1.1. The Single Class Case

Separable queueing networks can include load-
dependent servers: servers whose throughput ra te varies
as a function of their queue length. Chandy, Herzog and
Woo [1975] showed tha t in single class separable net-
works, an exact solution resul ts when an arbi t rary sub-
sys tem is replaced by a single load-dependent server
with throughput ra tes de te rmined as follows:

consider the subsys tem in isolation by "shorting" its
pa ths to the r emainder of the queueing network;

- for each possible cus tomer population, n , analyze
the subsystem, obtaining its throughput ra te with
r e spec t to the remainder of the queueing network,
~(n);

- create a load-dependent server whose throughput
rate with queue length re, #(n), is equal to W(n).

Although it is perhaps surprising that results obtained in

memory queue'-.~ i
- - ' I

/9x \&/

at most C memory resldent users

this man n e r are exact, the p rocedure is intuitively rea-
sonable, since the queue length at the load-dependent
server in the high-level model cor responds to the custo-
m e r populat ion of the subsys tem in the original queueing
network. Since the load-dependent server looks like the
original subsys tem to the r emainder of the queueir~ net-
work, it is called aflo~ equivalent server.

Nearly identical techniques can be used to define
load-dependent servers that are "approximately" flow
equivalent to subsystems in non-separable queueing net-
works. An approach that can be used to approximately
analyze our example interactive system is described
below and i l lustrated in Figure 1.2:

consider the cent ra l subsys tem in isolation by
"shorting" its connect ion to the terminals;

for each feasible cus tomer population n=l..C,
analyze the subsystem, obtaining its throughput
ra te with r e spec t to the terminals, ~(n);
c rea te a load-dependent server whose throughput
ra te with queue length n , N(n), is defined by:

~(n) n = l . . C

~(n) = ~(c) n > c

solve a high-level model consisting of the full custo-
mer population, the terminals, and this load-
dependent server.

Intuitively, this load-dependent server is flow equivalent
to the original subsystem because the queue length at
this server corresponds to the number of ready custo-
mers, and the throughput rate of the central subsystem
is determined by the number of active customers, which
is equal to the lesser of the memory capacity and the
number of ready customers. The equivalence is approxi-
mate because the Chandy, Herzog and Woo theorem
holds only for separable queueing networks. The approx-
imation will yield excellent results because the terminals
and the cent ra l subsys tem are nearly completely decom-
posable in a formal sense [Courtois 1977].

Brandwajn [1974] first suggested this general
approach to analyzing memory const ra ined systems.
Keller [1976] extensively validated the technique in the
form we have descr ibed it. This technique is successfully
used with grea t regularity, and has been ex tended to sin-
gle class models in which reques ts have dist inct memory
requ i rements [Brown et al. 1977, Bryant 1982]. Its utility
arises both from its accuracy and from its efficiency. Its
efficiency, in turn, depends on two factors:

/ M terminals

%

]O

]O
central subsystem

Figure 1.1 - A S imple Memory Constrained S y s t e m

131

]©

/Q.\
\ o /

]©

]©

Figure 1.2 - An Approach Based On Approximate Flow Equivalence

The load-dependent throughput rates used in
defining the flow equivalent server can be obtained
efficiently. In this case, the queueing network
model of the central subsystem is a single class
separable model. Exact analysis of this model
requires time proportional to KC (K is the number
of service centers and C is the maximum central
subsystem population) and space proportional to C.
The necessary rates can be obtained from a single
analysis, since the computational algorithms calcu-
late performance measures for populations from 1
to ~ - I as a byproduct of calculating performance
measures for population n.
The resulting high-level queueing network model can
be analyzed efficiently. In this case it is a single
class separable model.

1. p-. The Multiple Class Case

Now, consider a system with /{ customer classes,
7"=I..R, having independent memory constraints C r.
There is an obvious generalization of the above flow
equivalence technique to this case:

consider the central subsystem in isolation;
analyze an 17 class separable queueing network for
each feasible population vector ~=(n,,n2,..,~R) (a
vector with an entry for each class indicating the
population of that class), obtaining the throughput
rate of each class r, ~r(~l);
use these rates to define a "population-vector-
dependent" server with class-dependent throughput
rates]/r (~);

solve a high-level model consisting of the full custo-
mer population, the terminals, and this server.

Recent experiments by Sauer [198i] have convinc-
ingly validated the accuracy of this generalized tech-
nique. Unfortunately, though, it violates both of the
efficiency criteria set forth above:

Although the requisite load-dependent throughput
rates could be obtained by analyzing a single l%'

class separable queueing network with population
vector ~=(CI,C2,..,CR), the time and space required
for this analysis each grow exponentially with the
number of classes:

RKI~ (C~ + i)
r :]

for time; less by a factor of R for space.
The resulting high-level model is not separable, so
can be solved exactly only by the extremely expen-
sive global balance technique, the time and space
requirements of which grow exponentially with the
number of classes, customers, and service centers.

In t h i s p a p e r we p r e s e n t a n a l g o r i t h m for a n a ly z in g
m u l t i p l e c l a s s m e m o r y c o n s t r a i n e d q u e u e i n g n e t w o r k s
t h a t , l ike t h e h igh ly d e t a i l e d a p p r o a c h e v a l u a t e d by
Saue r , is b a s e d o n t h e c o n c e p t of a p p r o x i m a t e flow
equ iva l ence . In d e s i g n i n g ou r a l g o r i t h m , we h a v e co n s -
c ious ly t r a d e d s o m e of t h e a c c u r a c y of th i s h i g h l y
d e t a i l e d a p p r o a c h for a s i gn i f i can t g a i n in ef f ic iency: o u r
a l g o r i t h m r u n s in t i m e p r o p o r t i o n a l to K R ~ a n d in s p a c e
p r o p o r t i o n a l to K R 2 + m a x I Cr~ . S u c h a c o m p r o m i s e is

T

n e c e s s a r y if e v e n m o d e r a t e l y l a rge p r o b l e m s a r e to b e
tractable; it is an important difference between our
approach and the one recently proposed by Menasce and
Almeida [1981].

In Section 2 we motivate and describe our basic
technique, analyze its computational requirements, and
evaluate it on the set of example queueing networks con-
sidered by Sauer. In Section 8 we extend our technique
to situations in which several classes share a memory
constraint, again evaluating it using data from Sauer's
paper. In Section 4 we sketch a generalization to situa-
tions in which a subsystem within an overall system
model has a population constraint.]n Section 5 we sum-
marize.

2. The Basic Technique: Independent Memory Con-
straint8

In this section we present an algorithm for analyzing
multiple class queueing networks with K' customer

132

classes, r=1..R, which may be of three types: in terac t ive
(a fixed number of users cycling between terminals and
the central subsystem), t ransac t ion (a s t r eam of
reques ts tha t arrive, obtain service, and depart) , or
batch (a fixed number of jobs). Classes of the interactive
and t ransact ion types may have independent memory
const ra ints Cr.

Our algori thm was devised in the context of a larger
effort to design a queueing network solution package
suitable for use on very large problems. The core com-
putational algorithms in this package, those used to
analyze separable queueing networks, are the ext remely
time- and space-efficient i terative approximations based
on Mean Value Analysis in t roduced by Bard [1979] and
improved by Chandy and Neuse [1982], These techniques
can analyze an R class separable queueing network in
space and in t ime per i terat ion proport ional to KR ~ ;
although the number of i terat ions required is somewhat
sensitive to problem size, it is typically ex t remely small,

Our technique, like the detailed approach descr ibed
in the previous section, is based on the concept of
approximate flow equivalence. To achieve adequate
efficiency we mus t avoid calculating load-dependent
throughput ra tes ~r(r~) for each of the feasible popula-
tion vectors, because the number of such vectors grows
exponentially with the number of classes. We must also
ensure that the high-level model can be solved
efficiently. To accomplish these two objectives we have
made two homogene i ty assumpt ions:

tha t the throughput ra te of class r with population
w¢ is dependen t only on the mean populations of the
other classes, conditioned on the class r population
being rLr;
tha t each class sees the o ther classes as though
the i r centra l subsys tem populations were indepen-
dent of one another, obviating the above condition-
ing.

The former assumpt ion accomplishes the first objective
by allowing us to de termine the load-dependent
throughput ra tes of any class by analyzing an R class
queueing network in which the populations of the other
classes are fixed at their average values. These average
values are de te rmined from the high-level model; the
high- and low-level models are solved iteratively, ter-
minating when successive es t imates are sufficiently
close. The la t ter assumpt ion accomplishes the second
objective by allowing us to define a separa te load-
dependent server for each class. In essence, we analyze
R separable single class high-level models, r a the r than a
single non-separable R class high-level model.

2.1. The Algorithm

For ease in expressing the algorithm we denote the
number of memory constrained classes by /~--:R and
order the classes so that the constrained classes have
indices V =I../~.

Algorithm 1 -- Independent Memory Constraints

1, Obtain initial es t imates of the average central sub-
sys tem cus tomer populations for the memory con-
s t ra ined classes, ~r for r = l . . ~ . To do this, ignore
all memory constraints , yielding a separable queue-
ing network that can be efficiently analyzed. Set nr
to the minimum of Cr and the average class r cen-
tral subsys tem population observed in the uncon-
s t ra ined model.

2. In p repara t ion for the iteration, change each of the
/~ memory const ra ined classes into a ba tch class
with population equal to ~a r. The non-integer custo-

mer populations that arise are naturally suited to
the core computat ional algorithm.

8. For each memory const ra ined class r = 1../~:
3.1. For each feasible population of the designated

class, nr=l . .Cr , solve the queueing network
obtaining the throughput ra te of class r ,

3.2. Create a single class load-dependent server
whose throughput ra te with queue length n ,
pc(n) , is defined by:

{ ~,(n) ~=l,.G
p c (n) = ~,(c ,) n > c ,

9.8. Solve a single class high-level model consisting
of this load-dependent server and the "external
environment" of class r (terminals or an arrival
process) . Obtain the queue length dis tr ibut ion
at the load-dependent server, p (n) , and use
this to calculate a new es t imate for the average
centra l subsys tem population of class r :

c c,
c~ = ~ . i p (i) + (1 - E p (i)) c ,

t = l i=O

Repeat Step 3 until successive estimates of the
for each class are sufficiently close.

4. Obtain performance measures for the memory con-
strained classes from the/~ high-level models solved
during the final iteration. Obtain performance
measures for the remaining classes by solving the
queueing network defined in Step 2 using the final
estimates for the r,¢.

2. 2. Computational Requirements

Step 1 requires solving a single R class queueing
network. Each execut ion of Step 3.1 requires solving Cr
R class networks (the MVA-based approximations do not
compute per formance measures for sub-populations),
each requiring t ime proport ional to K R ! Step 3.8
requires solving one single class network. A full execu-
tion of Step 3 requires looping /~ times. The number of
i terat ions (full executions of Step 3) required is, in our
experience, very small (typically less than 6), and is rela-
tively insensitive to the size of the problem. Step 4
requires one additional solution of an R class network.
The overall running t ime of our algori thm is thus propor-
tional to KRa:

~ C~ KR e
r = l

Its space requ i rements are proport ional to
KR ~ + max I Crl .

r

Z.3. Evaluat.ton

Because useful analytic error bounds for approxi-
mate queueing network solution techniques are notori-
ously difficult to obtain, it is necessary to empirically
evaluate such techniques. In this subsection we compare
our approximation to simulations conducted by Sauer
[1981] using IBM's Research Queueing Package (RESQ).

The basic queueir~ network simulated by Sauer is
shown in Figure 2.1.]t has a CPU, four equally-loaded
disks, and two interactive cus tomer classes with
independent memory constraints . The number of users
in each class, Mr, and the memory const ra in t for each
class, Cr, differ in the various simulation runs. The
remaining pa rame te r s are held constant , and are shown
in Table 2.1.

133

Class 1
memory queue~

O M 1 Class 1 terminals O M2 Class

Class 2 ~ O ~

memory queue|

at most C i memory resident
users in Class 1

at most C 2 memory resident
users in Class 2

2 terminals

0 ']] 0 -
O-

F i g u r e 2 .1 - T h e Example queue ing N e t w o r k

parameter Class 1 Class 2

average think time, seconds:
(exponentially distributed)

5 10

average number of CPU-I/O cycles:
(geometrically distr ibuted)

10 20

average CPU service t ime per visit, msec.:
(exponentially distr ibuted,
processor sharing discipline)

10 100

average disk service t ime per visit, msec.:
(exponentially distr ibuted, FCFS disci-
pline, equal disk select ion probability)

35 35

Table 2. I - Parameters of the Example Queueing Network

Sauer chose th ree pairs of values for the popula-
tions of the two classes: (20,2), (90,3) and (40,4). For
each of these pairs he experimental ly se lec ted th ree
pairs of values for the memory const ra ints of the two
classes: one providing low memory content ion (i.e., little
queueing for memory), one providing modera te memory
contention, and one providing high memory contention.
RESQ was used to simulate the sys tem for each of these
nine sets of p a r a m e t e r values. Each simulation was ter-
mina ted when the relative width of the 90% confidence
interval for c lass- independent mean response t ime (time
from memory reques t to memory release) was 5Z. Table
2.2 compares the resul ts obtained by our approximate
solution technique to the 90% confidence interval of the
simulation for th ree pe r fo rmance measures : total CPU
utilization, and average response t ime (in seconds) for
Class I and for Class 2 users.

As Sauer notes, the simulation point estimates are
not exact and the confidence intervals do not necessarily
contain the corresponding true values. For these rea-
sons it is difficult to judge the accuracy of the approxi-
mation. Given this caveat, the results are very
encouraging:

all but two of the approximate values for CPU utili-
zation fall within the 90Z confidence intervals; these
two fall 1% and 4% outside;

all but two of the approximate values for Class 1
response time fall within the 90% confidence inter-
vals; these two each fall i% outside;

although half of the approximate values for Class 2
response time fall outside the 90% confidence inter-
vals, the average distance is 3% and the worst case
is 15%.

The greater errors for Class 2 are not surprising: the
small population of this class stresses the accuracy both
of our own algorithIn (a small absolute error in the
number of memory resident users will result in a large
relative error in throughput rate) and of the underlying
MVA-based approximations. Still, the accuracy of our
technique is comparable to that of the highly detailed
approach, at potentially great savings in space and time.
In Section S we will discuss sources of error in greater
detail,

An interesting aspect of Table 2.2 that deserves
mention is the apparently anomolous behavior of Class 2,
whose response time occasionally improves as the

134

M,

20

80

40

/ M2

2

3

4

I Cl

4
3
1
7
5
2

14
9
5

I C2

2
1
1
2
1
1
4
3
1

CPU utilization

approx. } s imul .
.61 (.60, .63)
.60 (.59,.61)
.49 (.48,.50)
.83 (.83,.85)
.79 (.79, 81)
.7o (.69.71)
.92 (.96,.~7)
.95 (.95,.96)
.88 687.88)

Cl. 1 r e s p o n s e t i m e

approx. I s imul .
.81 (.77,.80)"
.93 (.90,,95)

4.89 (4.68,4.93)
1.o7 (1.o3,1.o8)
1.18 (1.13,1.19)
4.13 (3.97,4.17)
1.56 (L47,1~4)
1.71 (1.67,1.74)
2.35 (2.30,2.42)

Table 2.2 -- I n d e p e n d e n t Memory Cons tra in t s

CI. 2 r e s p o n s e t i m e

approx= s i m u l .
5.01 (4.49,5.09)
5.01 (4.71,5.31)
3.80 (3.86,4.3!)
8.00 (6.70,7.64)
9.76 (8,42,9.69)
6.04 (6.08,6.95)

16.2 (12.2,14.1)
12.9 (12.0,I3.3)
15.5 (13.5,15.2)

m e m o r y cons t r a in t b e c o m e s more severe. When such a
change in the m e m o r y cons t r a in t occurs , queueing delay
due to m e m o r y con ten t ion will increase , bu t queueing
delay within the cen t ra l s u b s y s t e m will decrease . For
each job class, the ne t effect m a y be e i ther beneficial or
deleter ious. In the example , Class 2 is heavily CPU
bound and the CPU is relat ively heavily utilized. As the
m e m o r y cons t r a in t b e c o m e s more severe, the inc reased
t ime tha t Class 2 u se r s spend queueing due to m e m o r y
con ten t ion is s o m e t i m e s more t han offset by the
d e c r e a s e d t ime t ha t t hey spend queueing for the CPU
once they b ecome active.

Finally, a brief c o m m e n t on execut ion t imes.
Sauer ' s nine s imula t ions requ i red an average of 578
seconds of CPU t ime each on an]BM S y s t e m / 3 7 0 Model
168. Using Sauer ' s i m p l e m e n t a t i o n of the detai led ana-
lytic approach, t hese examples requi red "less t ha n 1/2
second each" on the s ame CPU. Our solut ions requi red
an average of 0.2 s econds each on a Digital VAX-11/780
without floating point acce lera tor , a mach ine roughly
25% the speed of a 168. More i m p o r t a n t t h a n this com-
par i son is the fact t ha t these nine examples were rela-
tively small, while the computa t iona l advantage of our
t echnique can be expec ted to inc rease dramat ica l ly with
p rob lem size.

3. Shared Memory Cons tra in t s

In Section 2 we assumed that each class was subject
to a memory constraint that was independent of the
behavior of the other classes.]n this section we extend
our algorithm to shared memory constraints: con-
straints on the total number of jobs in memory, rather
than on the populations of individual classes.

Let there be D domains, or shared regions of
memory. Let Cd be the capacity of domain d, i.e., the
number of jobs that can reside in that domain. Each
memory constrained job class is assigned to a domain.
Let D(r) be a function that gives the domain number of
class r if class T is memory constrained, and 0 other-

wise. M(cl) is the inverse function, whose result is the
set of classes belonging to domain d. To simplify the dis-
cussion we will assume that more than one class is
assigned to each domain (i.e., that D(z)=D(r') for some
classes r~r ') ; dedicated domains are, of course, a spe-
cial case of shared domains. We will consider both FCFS
and priority (by class) scheduling for access to memory
within domains.

Perhaps the simplest approach to this problem is a
straightforward generalization of the algorithm in Sec-
tion 2, with the only change being the calculation of the
pc(n) in Step 3.2. This is replaced by

pc(z) = ~ , (c ~ - ~ ,) ~ > c ~ - ~ ,

where d =- D (r) , and 6~ --- ~ ~s. Thus, we view a
8 E J[l (d).S ~ r

domain shared by M classes as M smaller domains, each
used by only a single class.

We have tried this simple approach on a set of
examples related to those of the previous section, with
mixed results. Because of the unreliability of this tech-
nique, we propose a slightly more complex algorithm for
the shared memory constraint case. We develop this
algorithm as the natural extension of a very general view
of the problem, which we present next. Details of the
algorithm follow this discussion.

3,1. A General F r a m e w o r k

We can view the solution of an R class memory con-
strained model as the solution of ,7 distinct single class
birth-death models. The behavior of each of these
models can be visualized as shown in Figure 3.1. For
each class r, the states of its model correspond to the
number of class r customers competing for memory.
Thus, for an open class the state space is infinite, while
for a closed class the state space is finite, with individual
states labeled from 0 to N r, the number of customers in
the class.

~,r(O) ~), (2) ~ (3)

Pr (i) Pr (2) U r (3) ~r (4) ~r (5)

F ~ u ~ 3.1 - Birth-Death In terpre taUon for an Open Class

135

The m o d e l c h a n g e s f r o m s t a t e n to s t a t e s n + l a n d
n - 1 wi th r a t e s k r (n) a n d p c (n) , r e spec t i ve l y . In tu i -
t ively, t h e s e p a r a m e t e r s r e p r e s e n t t h e r a t e s a t w h i c h
c l a s s v c u s t o m e r s r e q u e s t m e m o r y a n d a t w h i c h c l a s s r
c u s t o m e r s c o m p l e t e se rv ice , r e s p e c t i v e l y . We def ine a
solution of the model to be the set of equilibrium state
probabilities that satisfy the flow balance constraints', in
equilibrium, the rate at which the network flows into any
state must equal the rate at which it flows out of that
state. In other words, the state probabilities for class r,
Pr(n), must satisfy the balance equations:

Xr(~) P,(n) = pc(n+1) PA~+O, v

E Pr(n) = 1
I%

The solution of models of this sort c a n easily be shown to
be:

Pr(n) = Pr(O) j~-~i At(j)
~U+l)

Performance measures such as throughput and mean
response time can be computed from the Pr (n).

It is important to note that for any set of positive
At(n) and Pr(n) there exists a set of positive pc(n) such
that the flow balance equations are satisfied. Thus, this
view of the problem is always sufficient, in that it is pos-
sible to obtain exact solutions in all cases, if one could
somehow deduce the kr(n) and pc(~.).

The computational efficiency of any solution tech-
nique based on this view of the problem depends upon
the efficiency with which these state transition rates can
be computed. Thus, we find it convenient to let the
Ar (Tz) be the state dependent arrival rates to the system,
since these are readily available from the input parame-
ters of the model l, Given these values for the kr(n), the
pc(n) must be given by:

pc(n) = ~ ~r(~ I n) pr(~ I '~)

w h e r e ~ ~ (n~,n2 nR) is a v e c t o r r e p r e s e n t i n g t h e
n u m b e r of c u s t o m e r s of e a c h c l a s s c u r r e n t l y in m e m o r y ,
P r (~l I n) is t h e p r o b a b i l i t y t h a t s t a t e ~ ex i s t s g i ven t h a t
t h e r e a r e n c u s t o m e r s of c l a s s r d e s i r i n g m e m o r y , a n d
~r (¢~ I n) is t h e m e a n r a t e a t w h i c h c l a s s r c u s t o m e r s
c o m p l e t e s e r v i c e w h e n t h e s t a t e is ~ a n d t h e r e a r e n
c u s t o m e r s of c l a s s r c o m p e t i n g for m e m o r y .

By c l a s s i c a l d e c o m p o s i t i o n t h e o r y [Cour to i s 1977],
t h e or ig ina l R c l a s s m o d e l ts n e a r l y c o m p l e t e l y d e c o m -
p o s a b l e in to a g g r e g a t e s de f i ned by t h o s e s t a t e s
c o r r e s p o n d i n g to t h e s a m e v e c t o r of c u s t o m e r s c o m p e t -
ing for m e m o r y , s i nce t h e r a t e a t w h i c h c u s t o m e r s leave
t h e t e r m i n a l s is m u c h s m a l l e r t h a n t h e r a t e a t w h i c h
c u s t o m e r s c i r c u l a t e a m o n g t h e s e rv i ce c e n t e r s of t h e
c e n t r a l s u b s y s t e m . Thus , ~ r (~ [n) d i f fe rs only
in s ign i f i can t ly f r o m the u n c o n d i t i o n e d r a t e (pr(~). ~ This
g ives

pc('~) ~ E ~"(~)Pr(~ [~')
tt

~=o ,tt s.~. "%=i

w h e r e q,(~ I n) is t h e p r o b a b i l i t y t h a t $ c u s t o m e r s of
c l a s s r a r e in m e m o r y g i ven t h a t n a r e c o m p e t i n g , a n d
pr(Vl] n , j) is t h e p robab i l i t y of s t a t e ~t c o n d i t i o n e d on n
c u s t o m e r s of c l a s s r c o m p e t i n g for m e m o r y , j of w h i c h
a r e r e s i d e n t

I We note that because of the assumptions of the models with which
we are dealing (specifies]]y, Poisson external arrivals and exponen-
tially distributed service times at terminal service centers), this in-
~%rpretation of the kr(n) is justified.

s observation explains Sauer's success in applying the detailed
decomposition technique directly to the R class model.

We note that any technique for calculating the pc(n)
that requires an enumeration over all possible ~ is
inherently unacceptable from a computational point of
view, since the number of distinct ¢f is of the order

f i (Ns+l). A critics/ simplification in our approach,
8=I
then, is to replace the inner summation in equation (3. i)
with a single quantity representing class r ' s completion
rate observed for a particular customer population.
Define customer population
~)r,j(J) -= (V7[(]) ~/~-,(J),3 ~(j)), where T7~(j) is the
average number of class s customers in memory condi-
tioned on there being j class r customers loaded. The
inner summation of equation (3.1) is then replaced by
Wr(~rj(])), class r's completion rate with population
~)rj (2) in the subsystem.

This simplification would be exact if the completion
rates of class r were linear in the number of customers
of the other classes:

~r(~) = ~r(0j) i- ,~e~ (3.2)

l , ~ r J

for some set of positive constants s~, where Oj denotes
the state with 2" class r customers, and 0 customers of
the other classes. This condition then gives:

ft 8.t. nr =,/"

L t ~ r I

= ~,(~r,j(J))

rile have examined the behavior of a number of
queueing networks to test the validity of the linearity
assumption expressed by equation (3.2). We have
observed that the completion rates of a designated class
are surprisingly close to linear in the populations of
other classes. Table 3.1 shows the completion rates of
Class ~ as a function of the number of Class 1 customers
for the central subsystem of the example used in Section
2. These rates are fairly linear over a wide range of
values. It is important to also note that the pr(~ I n , j)
typically have low variance, that is, they are significantly
greater than zero only for a few "adjacent" r~. Thus, for
the approximation to be reasonable in practice, the ~r
must be linear over only a small subspace of the /~, a
much weaker condition.

NI

1 2 3
0 .370 .473 .495
1 .305 .400 ,429
2 .258 .346 .378
3 .223 .304 .336
4 .196 .271 .303
5 ,174 .243 .275
6 .156 .220 .251
7 .141 .201 .231
8 .128 .184 .231

T a b l e 3 . 1 -- Cl. 2 C o m p l e t i o n R a t e s v s . C1. 1 P o p u l a t i o n

136

The introduction of the above assumption results in
a great reduction in the time and space requirements
for calculating the/~.(rt), and leaves us with~

~r=o

Evaluating equation (3.3) requires only n operations,
given the ~. and the ~r.

3.2. The Algorithm

Specification of the algorithm requires tha t we first
identify usefu l approxirnatione for the quanti t ies in equa-
tion (3.3), The calculation of the ~r(@rJ~)) is difficult
because of the conditioning of ~,.j on J. We therefore
in t roduce two homogenei ty assumptions:

tha t the ~ r j ~) are independent of i , giving:

where @rj is the population vector with the mean
population observed by class r for all classes but r,
and with3 for ~-;

that the mean number of customers in other classes
seen by a class r customer is the equilibrium mean,
which resul ts tinnily In:

where ~rJ is the population vector with the equili-
blrum mean population for all classes but r. and
wlth ~ for r:

While these assumptions are clearly not true in practice,
we have found that the results obtained using them are
quite good. Thus, we trade some potential increase in
accuracy for computational efficiency.

The remaining problem is to approximate the
qr(i [~t) eff.toiently. Let ~.~ [~t) be the probability
that ~ customers from "competitor" classes are loaded
into domain d ~ D(r) given tha t the re are n cus tomers
of class r present . A compet i to r class is any class in the
same domain for t'ct~S scheduling, an.d any class in the
same domain with equal or greater priority for priority
scheduling. Then:

[E ~.(~ I,~)
#ffiO

Our problem new is to approximate the Q,.(3 [~z). To do
so we make two assumptions:

that ~.~ [n) is independent of ~;

that the Q. behave as they would In a separable
queueing network;

Using these assumptions, the Q. can be calculated easily
from information obtained during the solution of the R
single class models.

The detailed statement of the algorithm, which fob
lows, should serve to clarify matters. Throughout this
description we will use d to denote D(r), the domain to
which class r belongs.

Algorithm g -- Mm"ed Memory Commt.rainta

Let t r m (Lr(1),tr(~) /r(~)) be a probability vec-
tor, where//r~) represents an estimate for the pro-
bability that i customers of class ~- are loaded in
memory at equilibrium. For all memory con-
s t ra ined classes r , initialize:

I j = 0
/ ~) = 0 a U z e r ~ . ~ B

E. Create a separable queuelng network f rom the origi-
nal memo ry cons t ra ined model by replacing all
m e m o r y cons t ra ined c lasses with b a t c h classes,
The multiprogrRmrning level of cons t ra ined class l-

is taken to be ~b- ~ ~J */r(J), the current estimate
yfn

for the mean class r multtprogrammin£ level.
3. For each memory constrained class r :

3. i. Solve the multiple class model of Step 2 with
populations]~rj for j varying over all feasible
values from I to C~. s Observe the system
throughput rate ~r(Nrj) of class r for each
value of y.

3.2. Compute Q.~) as the j t h component of the
vector obtained by conwlving toge ther the ~ of
all classes s tha t compete with class r for
memory. For domains with FCFS scheduling,
these are all other classes sharing the domaJ.n~
for domains with priority scheduling, these are
all other classes with equal or greater priority
sharing the domain.

3.3. Solve a single class hlgh-level model consisting
of class r's external environment and a single
load-dependent service center. The service
rates/~.(n) of this center are computed using
equations (3.3), (3.4). and (3.5). This solution
yields a vector of probabil i t ies br(vz) for the
number n of class r cus tomers competing for
memory.

3.4. Use the br(zL) to compute a new estimate for ~:

-4

3.5. Calculate a new es t imate for ~,. f rom ~..
Repeat Step 3 until successive es t imates of the ~ .
for each class are sufficiently close.

4. Obtain per formance measures for each memory
const ra ined class from the mos t r ecen t solution of
the appropr ia te high-level model. Obtain perfor-
mance measures for the uncons t ra ined classes by
solvir~g the queueing network defined in Step 2 using
the final es t imates for the fir of the cons t ra ined
classes.

3.3. Computat ional ~ u i r e m e n t s

The space requ i rement of this a tgo~thm is dom-
inated by the space required to hold the tr and to com-
pute the solutions oF the R class closed model. Thus, the
space requ i rement is proport ional to:

The time requirement is also dominated by these two
steps, and thus is approximately:

~ffil ItEI

Note tha t these requ i rements are sufficiently small tha t
queuelng networks of any reasonable size may be solved.
In constras t , any solution technique tha t requires the

S Note that it is a simple n~ttm" to model disttn~L memm'y requtre-
rrmnts for each d ~ s b 7 specff~in8 domM~ capacities Cdx ind.toat-

the num'bcr of clam r jobs that can 'be ~'m]d in domain d.

137

exact solut ion of even a single R class separab le ne twork
is severly l imi ted in its applicability. S t anda rd decompo-
s i t ion t echn iques are the re fo re not p rac t i cab le in gen-
eral.

3.4. Evaluation

As in Sect ion 2, we p r e s e n t the resu l t s of applying
our a lgor i thm to a n u m b e r of networks solved by Sauer
using RESQ. The basic p a r a m e t e r se t t ings of these
models are the same as those given in Table 2.1. How-
ever, in all cases t h e r e is a single domain s h a r e d by b o t h
classes. Tables 3.2, 3.3 and 3.4 show the resu l t s of apply-
ing our t echn ique to the model with FCFS, pr ior i ty to
Class 1, and pr ior i ty to Class 2 m e m o r y scheduling,
respect ively. Within each table, we explore various
n u m b e r s of use r s pe r class, and various domain capaci-
ties.

Al though the tab les (especial ly 3.3) indica te a few
discrepancies , in genera l the a c c u r a c y of our t echn ique
is good. This is especial ly the case when one cons iders
i ts small compu ta t iona l expense and the inaccuracy
i n h e r e n t in some of the assumpt ions t h a t it makes.

For these examples, Sauer r epo r t s S y s t e m / 3 7 0
Model 168 CPU t imes of up to 1623 seconds using RESQ,
and up to 28 seconds using the deta i led analytic
approach. Our t echn ique r equ i r ed at mos t 5 seconds of
VAX-1t/780 CPU time; as in the case of i n d e p e n d e n t
m e m o r y cons t ra in ts , the computa t iona l advantage of our
t echn ique can be expec ted to inc rease dramat ica l ly with
p rob lem size.

The exist ing e r ro r c an be attributed to mis-
estimates of the ~A.(~) due to various simplications used
to increase efficiency. Some of these are:

An approximation has b e e n used to compute the
~(~.i)' The approximate technique is preferable
to exact techniques because of the considerably
greater computational expense of the latter. Addi-
tionally, the calculation of the ~r(/grf) in general
requires the solution of a model with 'a non-integer
number of customers in closed classes, since the
average multiprogramming level is typical[y not an
integer, If it were possible to obtain the ~r(A~rj)
more accurately without greatly increasing the
computational expense of the algorithm, i t s accu-
racy would undoubtedly be improved somewhat.

,,,]
2O

3O

4O

CPU uti l izat ion
/J2 C1 J

a p p r o ~ I s imul .
6 .62 (.6o,.63)

2 4 .61 (.60 , .62)
2 .58 .. (.5%.54)
9 .83 (.82,.64)

3 6 .81 (.83,.85)
3 .79 (.69,71)

ls .94 (. 9 5 . 9 6)
4 12 .93 (.95,.96)

6 ,89 . (.90,.90)

Table 3.g

CI. 1 r e sponse t ime

approx. I
,74
.85

1,55
1.06
1.24
2.05
1.52
1.61
2.16

-- Shared Memory Constraint.

-',[muL.
(.73,.76)
(,91,.95)

(8_,35,3.47)

(1.oo,1.o4)
(1.2o,1.26)
(&44,&62~
(1.47,1.54)
(1.68,1.71)
(3.19,3.35)

Ci. 2 response t ime

,. approx. I, , simul,
4.76 (4,34,4.93)
4.73 (4.46,4.88)
4.38 (4.85,5.12)
8,14 (6.95,7.92)
8,13 (6.87,7.47)
7,02 (6.69,7.01)

14,33 (12.41,i4.00)
14.85 (11,6&i~.74)
13.89 (9.23,9.8..1.)

FUF~ Memory Schedu l ing

l CPU u t i l i za t ion CI. 1 r e sponse t ime
MI M2 C1 " -

~pprox. I simuL approx. I simuL
6' ,6Z (.60,.63) .73 (.74,.77)

20 2 4 .62 (.60,.62) .76 (.89,.93)
.60 (.49,.50) 1.~8 (1.86,1.95)

9 .83 (.82,.84) 1.01 (1.04,1.09)
30 3 6 .84 (.81 , .82) 1.o3 (1.29,1.35)

3 J .8i (.59,.60) 1.68 (2.32,2.43)
18 .94 (.95,96) 1.51 (1.47,1.53)

40 4 iZ ,95 (.95,.96) 1,42 (1.59,1,67)
6 .97 (.8!~82) 1.56 (2.19,2,28)

CI. 2 r e sponse t i m e

approx. I s imul .
4.76 (4.39,5.02)
4.72 (4.39,4,81)
4.37 (9.35,10.23)
8.12 (6.78,7.61)
7.90 (7.27,7.92)
6.75 ~_ (24.o7,27.~o)

14.42 (12.64,14.15)
14.70 (12.17,13.59)
12..45 (17.84,22.13)

Table 3.3 - Shared Memory Constraint. Priority to Class 1

20 2

30 3

40 4

CPU uti l izat ion
Cl -

approx~ I s imul .
6 .62 (.62, .65)
4 .61 (.60,.62)
2. .55 (.54 , .55)
9 .83 (.84,.86)
6 .82 (.81,.82)
8 .69 (.73,.74)

18 .94 (.9fi,.96)
12 .95 (.95,.96)
6 .88 (.91~.92)

Table 3.4

CI. 1 r e sponse t ime

.approx. I s imul.
,75 (.75,,78)
.92 (.91.95)

2.78 (2.62,2.76)
1,08 (I.06,1.11)
1.47 (1.41,1.48)
5.32 (4.19,4.40)
1.52 (1.45,1.51)
1.69 (1.64,1.72)
4.g2 (3.58,3.77)

CI. 2 response t ime

approx. [~ul.

4.70 (4.56,5.11)
4.55 (4.16,4.53)
3.~ (3.60,&75)
7.81 (7.24,8.1 i)
7.03 (6.22,6.67)
4.91 (4..74,4.98)
14.19 (12.06,13.78)
lZ.95 (11.68,12.9v)
8.11 (7.72,8.181

-- Shared Memory Constraint. Priority to Class

138

The computa t ion of the qr(J [n) is in error, since
we have assumed that the queue length distribu-
tions l'r behave as they would in a separable net-
work, while the models we are considering are not
separable. Unfortunately, the approximat ion is
quite sensitive to e r rors in the ~/(j [n). This sensi-
tivity exists because the output ra te of the cent ra l
subsys tem can be near ly linear in the numb er of
cus tomers res ident in it, par t icular ly if the subsys-
t em is lightly used. In such cases, the express ion
for the approximate p r (n) given by equation (3.S)
can be considerably in error, result ing in even
larger er rors in response times. This effect is most
pronounced for models in which the centra l subsys-
t em is lightly utilized, which occurs whenever the
domain size is small, The ill effects of this can be
seen easily by comparing the examples in this sec-
tion: the smaller the domain size, the less accura te
the result.
@r,j(j) is not independent of j . This simplification
probably is the cause of much of the e r ro r in the
examples. Unfortunately, it appears to be difficult
to find a computat ional ly feasible al ternative tha t is
more accurate .
There are d iscrepancies in the way our algori thm
(specifically, equation (3.5)) r ep re sen t s the details
of domain scheduling. Specifically:

We do not, in facL model FCFS scheduling, but
r a the r "processor sharing".
We model preempt ive priori ty scheduling,
whereas Sauer simulates non-preemptive prior-
ity.

4. Subsys tems With Populat ion Constraints

Memory is not the only resource to impose a popula-
tion cons t ra in t in compu te r systems. Rather, it is one
specific ins tance of s i n z u l t a n e o u s r e s o u r c e p o s s e s s i o n , a
general phenomenon that violates the separabil i ty condi-
tions of queueing network models. In single class queue-
in~ networks, flow equivalent servers have been used to
obtain approximate solutions for a number of simultane-
ous resource possession problems; for example, Chandy
and Sauer [1978] use this approach to analyze a CDC
batch system in which the number of "peripheral proces-
sors" (indistinguishable I/0 controllers) places a limit on
the number of disks that can be active simultaneously,
and Jacobson and Lazowska [1982] use this approach to
analyze a fairly general class of simultaneous resource
possession problems.

The difference between modelling a memory con-
straint and modelling a more general population con-
straint arises in the high-level model: in the former case
customers do not share resources outside of the popula-
tion constrained subsystem (the "external environment"
consists of terminals or an arrival process), while in the
latter case they do (for example, jobs share the CPU
when they are not contendinR for service at the
population constrained]/0 subsystem). Although the
algorithm presented in Section ~ does not admit such
sharing, it can be generalized to do so. The essence of
this generalization is the replacement of the population
constrained subsystem with R flow-equivalent servers,
one for each class, whose load-dependent throughput
rates are determined iteratively.

We require that the subsystem of interest impose an
independent population constraint C r on each of the
classes r=l.,R . The algorithm follows:

Algorithm 3 - Subsys tems With Population Constraints

i. Obtain initial estimates of the average subsystem
customer populations for all classes, nr for T=I..R.
To do this, ignore the population constraints, yield-
ing a separable queueing network that can be
efficiently analyzed. Set ~r to the minimum of Cr
and the average class r subsystem population ob-
served in the unconstrained model.

~. in preparation for the iteration, construct two
queueing network models, a low-level model and a
high-level model, each of which is easily analyzed:

The low-level model includes on ly those
resources belonging to the population con-
strained subsystem. Each class r is
represented as a batch class with population

The high-level model includes those resources
in the remainder of the system (the portion
external to the population constrained subsys-
tem) plus R load-dependent servers. Each
class r visits its own load-dependent server,
which represents the population constrained
subsystem, plus appropriate other resources.

8. Iterate as follows:

8.I. Consider the low-level model. For each class
r = l . . R :

For each feasible population of the desig-
na ted class, nr=l . .Cr , solve this model
obtaining the throughput ra te of class r ,

Create a single class load-dependent
server whose throughput ra te with queue
length n , / z (n) , is defined by:

~('~)= ~,(c,) ~>c,

3,2. Consider the high-level model. Using the R
load-dependent servers defined in Step 3.1,
solve this model, obtaining the queue length
distr ibution of each class r at its load-
dependen t server, p r (n) . Use this distr ibution
to calculate a new es t imate for the average
subsys tem population of class r :

c c

Repeat Step S until successive estimates of the
average subsystem population for each class are
sufficiently close.

4, Obtain performance measures directly from the
high-level model.

This algori thm has been p rogrammed and used with
good results . Although it has not been extensively
evaluated, there is every reason to believe that its
behavior will be comparable to that of the algorithm in
Section 2. In the manner of Section S, it can be
extended to situations in which several classes share a
population constraint. Classes without population con-
straints can be handled by imposing artificial constraints
that are (almost) never reached; appropriate values can
be determined from the queue length distributions at
the appropriate load-dependent servers.

139

5. Summary

Separable queueing network models are important
tools in the design and analysis of computer systems
because, for many applications, they strike an appropri-
ate compromise between accuracy and efficiency.
Although the class of separable queueing networks is
fairly rich, certain characteristics of computer systems
that can have significant impact on system performance,
such as simultaneous resource possession in general and
memory constraints in particular, cannot be modelled
by separable networks. Specialized solution techniques
must be devised to represent the effects of these charac-
teristics.

In this paper we have introduced a technique for
analyzing multiple class queueing networks in which the
classes have independent memory constraints. We have
extended our technique to situations in which several
classes share a memory constraint. We have sketched a
generalization to situations in which a subsystem within
an overall system model has a population constraint.

Our technique was devised within the context of a
larger effort to design a queueing network solution pack-
age suitable for use on very large problems. Our algo-
rithm is compatible with the extremely time- and space-
efficient iterative approximate solution techniques for
separable networks. This level of efficiency is manda-
tory; achieving it has cost very little in terms of overall
accuracy.

Acknowledgements

Pat Jacobson suggested the generalization to popu-
lation constrained subsystems described in Section 4.
Charlie Sauer assisted us in interpreting his simulation
results.

References

[Bard 1979]
Yonathan Bard; "Some Extensions to Multiclass
Queueing Network Analysis"; Proe. IFIP W.G.7.3
International Symposium on Computer Performance
Modelling, Measurement and Evaluation, Vienna,
February 1979.

[Baskett et al. 1975]
Forest Baskett, K. Mani Chandy, Richard R. Muntz
and Fernando G. Paiaeios; "Open, Closed and Mixed
Networks of Queues with Different Classes of Custo-
mers"; JACM g2, 2, April 1975, pp. 248-280.

[Brandwajn 1974]
Alexandre Brandwajn; "A Model of a Time-Sharing
System Solved Using Equivalence and Decomposi-
tion Methods"; Acta I~zforrrzatica 4, i, 1974, pp. 11-
47.

[Brown et al. 1975]
RM. Brown, J.C. Browne and K.M. Chandy; "Memory
Management and Response Time"; CACM 20, 3,
March 1977, pp. 153-185.

[Bryant 1982]
R.M. Bryant; "Maximum Processing Rates of Memory
Bound Systems"; JACM 29, 2, April 1982, pp. 461-
477.

[Chandy c ta l . 1975]
K.M. Chandy, U. Herzog and L. Woo; "Parametr ic
Analysis of Queueing Networks"; IBM J. Res.
Develop. 19, i, January 1975, pp. 36-42.

[Chandy & Neuse 1982]
K.M. Chandy and D. Neuse; "Fast Accurate Heuristic
Algorithms for Queueing Network Models of Comput-
ing Systems"; CACM 25, 2, February 1982.

[Chandy & Sauer 1978]
K. Mani Chandy and Charles]-]. Sauer; "Approximate
Methods for Analyzing Queueing Network Models of
Computing Systems"; Computing Surveys 10, 3,
September 1978, pp. 281-317.

[Courtois 1977]
P.J. Courtois; Decomposability: Queueing and Corn-
puter System Applications; Academic Press, 1977.

[Jacobson & Lazowska 1982]
Patr ic ia A. Jaeobson and Edward D. Lazowska; "The
Method of Surrogates: Simultaneous Resource Pos-
session in Queueing Network Models of Computer
Systems"; CACM 25, 2, February 1982.

[Keller 1976]
T.W. Keller; "Computer System Models with Passive
Resources"; Ph.D. Thesis, University of Texas at Aus-
tin, 1978.

[Lam 1977]
S.S. Lam; "Queuing Networks with Population Size
Constraints"; IBM J, Res. Develop. 21, 4, July 1977,
pp. 370-378.

[Menasce & Almeida 1981]
Daniel A. Menasce and Virtilio A.F. Almeida; "Com-
puting Performance Measures of Computer Systems
with Variable Degree of Multiprogramming"; Proc.
CMG XII, pp. 97-106.

[Sauer 1981]
Charles H. Sauer; "Approximate Solution of Queue-
ing Networks with Simultaneous Resource Posses-
sion"; IBM J. Res. Develop. gS, 6, November 1981,
pp, 894-903,

140

