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ABSTRACT 

Most c o m p u t e r  s y s t e m s  have a m e m o r y  cons t ra in t :  a l imit on the  n u m b e r  of 
r e q u e s t s  t ha t  can  actively compe t e  for process ing  r e sources ,  imposed  by finite 
m e m o r y  resources .  This cha rac t e r i s t i c  violates the  condit ions requ i red  for queue-  
ing ne twork  p e r f o r m a n c e  models  to be separable, i.e., amenab le  to efficient ana lys is  
by s t a n d a r d  a lgor i thms.  Useful a lgor i thms  for analyzing models  of m e m o r y  con- 
s t r a ined  s y s t e m s  have been  devised only for models  with a single c u s t o m e r  class.  

In th is  pape r  we cons ider  the  mul t ip le  class case.  We in t roduce  and  evaluate  
an  a lgor i thm for analyzing mult iple  class  queuein~ ne tworks  in which the  c l a s ses  
have i n d e p e n d e n t  m e m o r y  cons t ra in t s .  We ex tend  this  a lgor i thm to s i tua t ions  in 
which severa l  c lasses  sha re  a m e m o r y  const ra int .  We s k e t c h  a genera l iza t ion  to 
s i tua t ions  in which a s u b s y s t e m  within an overall s y s t e m  model  has  a popula t ion  
cons t ra in t .  

Our a lgor i thm is compat ib le  with the  e x t r e me ly  t ime-  and  space-eff ic ient  i tera-  
tive approx ima te  solut ion t echn iques  [or separable  queueing  networks.  This level of 
efficiency is m a n d a t o r y  for modell ing large sys t ems .  

CR Categor ies  a n d  b-Mb]ect Descr iptors :  C.4 [Pe r fo rmance  of Sys tems] :  Modeling techniques;  D.4.8 
[Operating Systems] :  P e r f o r m a n c e  -- Idodelin 9 and predict ion.  
General  Te rms :  P e r f o r m a n c e  

Additional Key Words a n d  Phrases :  c o m p u t e r  s y s t e m  p e r f o r m a n c e  evaluation,  queueing network 
model,  approx ima te  solut ion technique ,  m e m o r y  cons t ra in t ,  popula t ion  cons t ra in t .  

1. Introduction 

Queueing ne twork  models ,  in pa r t i cu la r  sepczrable 
queueing network models  [Basket t  e t  al. 1975], are 
i m p o r t a n t  tools in the  design and analysis  of c o m p u t e r  
sys t ems .  This is the  case  because ,  for many  applica- 
tions, separab le  queueing ne tworks  s t r ike  an appropr ia te  
co m p ro m ise  be tween  accu racy  and  efficiency. Predic-  
t ions accurate to within 5 to i0 percent for utilizations 
and throughput rates and to within 25 to 50 percent for 
response times are typical from these models. The 
existence of efficient solution techniques means that 
these predictions can be obtained in a matter of 
seconds. As a result, a large number of design 
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alternatives may be investigated in a short period of 
time. 

Although the class of separable queueing networks 
is fairly rich, certain structural characteristics of com- 
puter systems are difficult to represent within it. The 
existence of a wzerf~o~%j constTaint is one of these. Most 
systems have a memory constraint: a limit on the 
number of requests that. can actively compete for pro- 
cessing resources, imposed by finite memory resources. 
In such a system, an arriving request for which memory 
is unavailable will be queued pending availability of 
memory. As an example, IBM's MArS operating system 
associates one or more "performance groups" (job 
classes) with each of several "domains" for which "target 
multiprogramming levels" are specified. A queueing net- 
work performance model of such a system may need to 
represent the effect of the memory constraint in order 
to achieve a useful level of accuracy. The alternatives 
for representing memory constraints within the class of 
separable queueing networks are limited: 

The population of a class of customers may be fixed. 
This accurately models a situation in which the sys- 
tem is always operating at memory saturation: 
there is a large external backlog of requests, and 
upon completion a request is immediately replaced 
in the system. 

- The population of a class of customers may be 
unconstrained. This accurately models a situation 
in which the system never reaches memory satura- 
tion: 
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tion: there is always sufficient memory to aceomo- 
date an arriving request. 

Arrivals may be "lost" or "triggered" as a function of 
population [Lam 1977]. This accurately models a 
situation in which requests that arrive when 
memory is unavailable are discarded rather than 
queue d. 

Figure i . i  illustrates an extremely common 
memory constraint phenomenon that violates the condi- 
tions required for separability, This computer system 
has a single customer class comprising M interactive 
users, at most C of which can simultaneously occupy 
memory. A request that arrives when there are already 
C active requests ( C or more ready requests) is queued 
pending availability of memory. (In this example we 
ignore the details of swapping, and also assume that all 
requests have the same memory requirement.) 

One alternative in analyzing this system is to ignore 
the memory constraint, yielding a separable queueing 
network model that can be analyzed efficiently. The 
resulting error may be unacceptably large. Another 
alternative is to simulate. The resulting cost may be 
unacceptably high. A third alternative, the most attrac- 
tive in tl~is ease, is to use the well-known approximate 
analytic solution technique that we motivate and 
describe in the following paragraphs. 

1.1. The Single Class Case 

Separable queueing networks can include load- 
dependent servers: servers  whose throughput  ra te  varies 
as a function of their  queue length. Chandy, Herzog and 
Woo [1975] showed tha t  in single class separable  net-  
works, an exact solution resul ts  when an arbi t rary  sub- 
sys tem is replaced by a single load-dependent  server  
with throughput  ra tes  de te rmined  as follows: 

consider  the subsys tem in isolation by "shorting" its 
pa ths  to the r emainder  of the queueing network; 

- for each possible cus tomer  population, n ,  analyze 
the  subsystem, obtaining its throughput  ra te  with 
r e spec t  to the remainder  of the queueing network, 
~(n); 

- create a load-dependent server whose throughput 
rate with queue length re, #(n), is equal to W(n). 

Although it is perhaps surprising that results obtained in 

memory queue'-.~ i 
- - ' I  

/9x \&/ 

at most C memory resldent users 

this man n e r  are exact, the p rocedure  is intuitively rea- 
sonable, since the  queue length at  the load-dependent  
server  in the high-level model  cor responds  to the custo- 
m e r  populat ion of the subsys tem in the original queueing 
network. Since the load-dependent  server  looks like the 
original subsys tem to the r emainder  of the queueir~ net-  
work, it is called aflo~ equivalent server. 

Nearly identical techniques can be used to define 
load-dependent servers that are "approximately" flow 
equivalent to subsystems in non-separable queueing net- 
works. An approach that can be used to approximately 
analyze our example interactive system is described 
below and i l lustrated in Figure 1.2: 

consider  the cent ra l  subsys tem in isolation by 
"shorting" its connect ion  to the terminals;  

for each  feasible cus tomer  population n=l..C, 
analyze the subsystem,  obtaining its throughput  
ra te  with r e spec t  to the  terminals,  ~(n); 
c rea te  a load-dependent  server  whose throughput  
ra te  with queue length n ,  N(n), is defined by: 

~(n) n = l . . C  

~(n) = ~(c) n > c  

solve a high-level model consisting of the full custo- 
mer population, the terminals, and this load- 
dependent server. 

Intuitively, this load-dependent server is flow equivalent 
to the original subsystem because the queue length at 
this server corresponds to the number of ready custo- 
mers, and the throughput rate of the central subsystem 
is determined by the number of active customers, which 
is equal to the lesser of the memory capacity and the 
number of ready customers. The equivalence is approxi- 
mate because the Chandy, Herzog and Woo theorem 
holds only for separable queueing networks. The approx- 
imation will yield excellent results because the terminals 
and the cent ra l  subsys tem are nearly completely decom- 
posable in a formal sense [Courtois 1977]. 

Brandwajn [1974] first suggested this general  
approach  to analyzing memory  const ra ined systems.  
Keller [1976] extensively validated the technique in the 
form we have descr ibed  it. This technique is successfully 
used with grea t  regularity, and has been ex tended  to sin- 
gle class models in which reques ts  have dist inct  memory  
requ i rements  [Brown et  al. 1977, Bryant 1982]. Its utility 
arises both  from its accuracy and from its efficiency. Its 
efficiency, in turn, depends  on two factors: 

/ M  terminals 

% 

]O 

]O 
central subsystem 

Figure 1.1 - A S imple  Memory Constrained S y s t e m  
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Figure 1.2 - An Approach Based On Approximate Flow Equivalence 

The load-dependent throughput rates used in 
defining the flow equivalent server can be obtained 
efficiently. In this case, the queueing network 
model of the central subsystem is a single class 
separable model. Exact analysis of this model 
requires time proportional to KC ( K is the number 
of service centers and C is the maximum central 
subsystem population) and space proportional to C. 
The necessary rates can be obtained from a single 
analysis, since the computational algorithms calcu- 
late performance measures for populations from 1 
to ~ - I  as a byproduct of calculating performance 
measures for population n. 
The resulting high-level queueing network model can 
be analyzed efficiently. In this case it is a single 
class separable model. 

1. p-. The Multiple Class Case 

Now, consider a system with /{ customer classes, 
7"=I..R, having independent memory constraints C r. 
There is an obvious generalization of the above flow 
equivalence technique to this case: 

consider the central subsystem in isolation; 
analyze an 17 class separable queueing network for 
each feasible population vector ~=(n,,n2,..,~R) (a 
vector with an entry for each class indicating the 
population of that class), obtaining the throughput 
rate of each class r, ~r(~l); 
use these rates to define a "population-vector- 
dependent" server with class-dependent throughput 
rates ]/r (~); 

solve a high-level model consisting of the full custo- 
mer population, the terminals, and this server. 

Recent experiments by Sauer [198i] have convinc- 
ingly validated the accuracy of this generalized tech- 
nique. Unfortunately, though, it violates both of the 
efficiency criteria set forth above: 

Although the requisite load-dependent throughput 
rates could be obtained by analyzing a single l%' 

class separable queueing network with population 
vector ~=(CI,C2,..,CR), the time and space required 
for this analysis each grow exponentially with the 
number of classes: 

RKI~ (C~ + i) 
r : ]  

for time; less by a factor of R for space. 
The resulting high-level model is not separable, so 
can be solved exactly only by the extremely expen- 
sive global balance technique, the time and space 
requirements of which grow exponentially with the 
number of classes, customers, and service centers. 

In  t h i s  p a p e r  we p r e s e n t  a n  a l g o r i t h m  for a n a ly z in g  
m u l t i p l e  c l a s s  m e m o r y  c o n s t r a i n e d  q u e u e i n g  n e t w o r k s  
t h a t ,  l ike t h e  h igh ly  d e t a i l e d  a p p r o a c h  e v a l u a t e d  by  
Saue r ,  is b a s e d  o n  t h e  c o n c e p t  of a p p r o x i m a t e  flow 
equ iva l ence .  In  d e s i g n i n g  ou r  a l g o r i t h m ,  we h a v e  co n s -  
c ious ly  t r a d e d  s o m e  of t h e  a c c u r a c y  of th i s  h i g h l y  
d e t a i l e d  a p p r o a c h  for a s i gn i f i can t  g a i n  in ef f ic iency:  o u r  
a l g o r i t h m  r u n s  in  t i m e  p r o p o r t i o n a l  to  K R  ~ a n d  in  s p a c e  
p r o p o r t i o n a l  to K R  2 + m a x  I Cr~ . S u c h  a c o m p r o m i s e  is 

T 

n e c e s s a r y  if e v e n  m o d e r a t e l y  l a rge  p r o b l e m s  a r e  to  b e  
tractable; it is an important difference between our 
approach and the one recently proposed by Menasce and 
Almeida [1981]. 

In Section 2 we motivate and describe our basic 
technique, analyze its computational requirements, and 
evaluate it on the set of example queueing networks con- 
sidered by Sauer. In Section 8 we extend our technique 
to situations in which several classes share a memory 
constraint, again evaluating it using data from Sauer's 
paper. In Section 4 we sketch a generalization to situa- 
tions in which a subsystem within an overall system 
model has a population constraint. ]n Section 5 we sum- 
marize. 

2. The Basic Technique: Independent  Memory Con- 
straint8 

In this section we present an algorithm for analyzing 
multiple class queueing networks with K' customer 
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classes, r=1..R, which may be of three  types: in terac t ive  
(a fixed number  of users  cycling between terminals  and 
the central  subsystem),  t ransac t ion  (a s t r eam of 
reques ts  tha t  arrive, obtain service, and depart) ,  or 
batch (a fixed number  of jobs). Classes of the interactive 
and t ransact ion  types may have independent  memory  
const ra ints  Cr. 

Our algori thm was devised in the context  of a larger 
effort to design a queueing network solution package 
suitable for use on very large problems. The core com- 
putational algorithms in this package, those used to 
analyze separable queueing networks, are the ext remely  
time- and space-efficient  i terative approximations based 
on Mean Value Analysis in t roduced by Bard [1979] and 
improved by Chandy and Neuse [1982], These techniques 
can analyze an R class separable queueing network in 
space and in t ime per  i terat ion proport ional  to KR ~ ; 
although the number  of i terat ions required is somewhat 
sensitive to problem size, it is typically ex t remely  small, 

Our technique, like the detailed approach  descr ibed 
in the previous section, is based on the concept  of 
approximate  flow equivalence. To achieve adequate 
efficiency we mus t  avoid calculating load-dependent  
throughput  ra tes  ~r(r~) for each of the feasible popula- 
tion vectors,  because the number  of such vectors  grows 
exponentially with the number  of classes. We must  also 
ensure that  the high-level model can be solved 
efficiently. To accomplish these two objectives we have 
made two homogene i ty  assumpt ions:  

tha t  the throughput  ra te  of class r with population 
w¢ is dependen t  only on the mean  populations of the 
other  classes, conditioned on the class r population 
being rLr; 
tha t  each class sees the o ther  classes as though 
the i r  centra l  subsys tem populations were indepen- 
dent  of one another,  obviating the above condition- 
ing. 

The former  assumpt ion accomplishes the first objective 
by allowing us to de termine  the load-dependent  
throughput  ra tes  of any class by analyzing an R class 
queueing network in which the populations of the other  
classes are fixed at their  average values. These average 
values are de te rmined  from the high-level model; the 
high- and low-level models are  solved iteratively, ter-  
minating when successive es t imates  are  sufficiently 
close. The la t ter  assumpt ion  accomplishes  the second 
objective by allowing us to define a separa te  load- 
dependent  server  for each class. In essence,  we analyze 
R separable single class high-level models, r a the r  than  a 
single non-separable  R class high-level model. 

2.1. The Algorithm 

For ease in expressing the algorithm we denote the 
number of memory constrained classes by /~--:R and 
order the classes so that the constrained classes have 
indices V =I../~. 

Algorithm 1 -- Independent Memory Constraints 

1, Obtain initial es t imates  of the average central  sub- 
sys tem cus tomer  populations for the memory  con- 
s t ra ined classes, ~r for r = l . . ~ .  To do this, ignore 
all memory  constraints ,  yielding a separable queue- 
ing network that  can be efficiently analyzed. Set nr 
to the minimum of Cr and the average class r cen- 
tral subsys tem population observed in the uncon- 
s t ra ined  model. 

2. In p repara t ion  for the iteration, change each of the 
/~ memory  const ra ined classes into a ba tch  class 
with population equal to ~a r. The non-integer custo- 

mer  populations that  arise are naturally suited to 
the core computat ional  algorithm. 

8. For each memory  const ra ined class r = 1../~: 
3.1. For each feasible population of the designated 

class, nr=l . .Cr ,  solve the  queueing network 
obtaining the throughput  ra te  of class r ,  

3.2. Create a single class load-dependent  server  
whose throughput  ra te  with queue length n ,  
pc(n) ,  is defined by: 

{ ~,(n) ~=l,.G 
p c ( n ) =  ~,(c , )  n > c ,  

9.8. Solve a single class high-level model consisting 
of this load-dependent  server  and the "external  
environment"  of class r ( terminals  or an arrival 
process) .  Obtain the queue length dis tr ibut ion 
at the load-dependent  server,  p ( n ) ,  and use 
this to calculate a new es t imate  for the average 
centra l  subsys tem population of class r :  

c c, 
c~ = ~ . i p ( i )  + ( 1 - E p ( i ) ) c ,  

t = l  i=O 

Repeat Step 3 until successive estimates of the 
for each class are sufficiently close. 

4. Obtain performance measures for the memory con- 
strained classes from the/~ high-level models solved 
during the final iteration. Obtain performance 
measures for the remaining classes by solving the 
queueing network defined in Step 2 using the final 
estimates for the r,¢. 

2. 2. Computational Requirements  

Step 1 requires  solving a single R class queueing 
network. Each execut ion of Step 3.1 requires  solving Cr 
R class networks (the MVA-based approximations do not 
compute  per formance  measures  for sub-populations),  
each requiring t ime proport ional  to K R !  Step 3.8 
requires solving one single class network. A full execu- 
tion of Step 3 requires  looping /~ times. The number  of 
i terat ions (full executions of Step 3) required is, in our 
experience,  very small (typically less than  6), and is rela- 
tively insensitive to the size of the problem. Step 4 
requires one additional solution of an R class network. 
The overall running t ime of our algori thm is thus propor- 
tional to KRa: 

~ C~ KR e 
r = l  

Its space requ i rements  are proport ional  to 
KR ~ + max I Crl . 

r 

Z.3. Evaluat.ton 

Because useful analytic error bounds for approxi- 
mate queueing network solution techniques are notori- 
ously difficult to obtain, it is necessary to empirically 
evaluate such techniques. In this subsection we compare 
our approximation to simulations conducted by Sauer 
[1981] using IBM's Research  Queueing Package (RESQ). 

The basic queueir~ network simulated by Sauer is 
shown in Figure 2.1. ]t has a CPU, four equally-loaded 
disks, and two interactive cus tomer  classes with 
independent  memory  constraints .  The number  of users  
in each class, Mr, and the memory  const ra in t  for each  
class, Cr, differ in the various simulation runs. The 
remaining pa rame te r s  are held constant ,  and are shown 
in Table 2.1. 
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Class 1 
memory queue~ 

O M 1 Class 1 terminals O M2 Class 

Class 2 ~ O ~  

memory queue| 

at most C i memory resident 
users in Class 1 

at most C 2 memory resident 
users in Class 2 

2 terminals 

0 '] ] 0 -  
O- 

F i g u r e  2 .1  - T h e  Example queue ing  N e t w o r k  

parameter Class 1 Class 2 

average think time, seconds: 
(exponentially distributed) 

5 10 

average number  of CPU-I/O cycles: 
(geometrically distr ibuted) 

10 20 

average CPU service t ime per  visit, msec.: 
(exponentially distr ibuted,  
processor  sharing discipline) 

10 100 

average disk service t ime per  visit, msec.:  
(exponentially distr ibuted,  FCFS disci- 
pline, equal disk select ion probability) 

35 35 

Table 2. I - Parameters of the Example Queueing Network 

Sauer chose th ree  pairs of values for the popula- 
tions of the two classes: (20,2), (90,3) and (40,4). For 
each  of these  pairs  he experimental ly  se lec ted  th ree  
pairs of values for the memory  const ra ints  of the two 
classes: one providing low memory  content ion (i.e., little 
queueing for memory),  one providing modera te  memory  
contention,  and one providing high memory  contention.  
RESQ was used to simulate the sys tem for each  of these  
nine sets  of p a r a m e t e r  values. Each simulation was ter-  
mina ted  when the relative width of the 90% confidence 
interval for c lass- independent  mean  response  t ime (time 
from memory  reques t  to memory  release)  was 5Z. Table 
2.2 compares  the resul ts  obtained by our approximate  
solution technique to the 90% confidence interval of the 
simulation for th ree  pe r fo rmance  measures :  total  CPU 
utilization, and average response  t ime (in seconds) for 
Class I and for Class 2 users. 

As Sauer notes, the simulation point estimates are 
not exact and the confidence intervals do not necessarily 
contain the corresponding true values. For these rea- 
sons it is difficult to judge the accuracy of the approxi- 
mation. Given this caveat, the results are very 
encouraging: 

all but two of the approximate values for CPU utili- 
zation fall within the 90Z confidence intervals; these 
two fall 1% and 4% outside; 

all but two of the approximate values for Class 1 
response time fall within the 90% confidence inter- 
vals; these two each fall i% outside; 

although half of the approximate values for Class 2 
response time fall outside the 90% confidence inter- 
vals, the average distance is 3% and the worst case 
is 15%. 

The greater errors for Class 2 are not surprising: the 
small population of this class stresses the accuracy both 
of our own algorithIn (a small absolute error in the 
number of memory resident users will result in a large 
relative error in throughput rate) and of the underlying 
MVA-based approximations. Still, the accuracy of our 
technique is comparable to that of the highly detailed 
approach, at potentially great savings in space and time. 
In Section S we will discuss sources of error in greater 
detail, 

An interesting aspect of Table 2.2 that deserves 
mention is the apparently anomolous behavior of Class 2, 
whose response time occasionally improves as the 
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M, 

20 

80 

40 

/ M2 

2 

3 

4 

I Cl 

4 
3 
1 
7 
5 
2 

14 
9 
5 

I C2 

2 
1 
1 
2 
1 
1 
4 
3 
1 

CPU utilization 

approx.  } s imul .  
.61 ( .60, .63) 
.60 (.59,.61) 
.49 (.48,.50) 
.83 (.83,.85) 
.79 (.79, 81) 
.7o (.69.71) 
.92 (.96,.~7) 
.95 (.95,.96) 
.88 687.88) 

Cl. 1 r e s p o n s e  t i m e  

approx.  I s imul .  
.81 (.77,.80)" 
.93 (.90,,95) 

4.89 (4.68,4.93) 
1.o7 (1.o3,1.o8) 
1.18 (1.13,1.19) 
4.13 (3.97,4.17) 
1.56 (L47,1~4)  
1.71 (1.67,1.74) 
2.35 (2.30,2.42) 

Table 2.2 -- I n d e p e n d e n t  Memory  Cons tra in t s  

CI. 2 r e s p o n s e  t i m e  

approx= s i m u l .  
5.01 (4.49,5.09) 
5.01 (4.71,5.31) 
3.80 (3.86,4.3!) 
8.00 (6.70,7.64) 
9.76 (8,42,9.69) 
6.04 (6.08,6.95) 

16.2 (12.2,14.1) 
12.9 (12.0,I3.3) 
15.5 (13.5,15.2) 

m e m o r y  cons t r a in t  b e c o m e s  more  severe.  When such  a 
change  in the m e m o r y  cons t r a in t  occurs ,  queueing delay 
due to m e m o r y  con ten t ion  will increase ,  bu t  queueing 
delay  within the  cen t ra l  s u b s y s t e m  will decrease .  For 
each  job class, the ne t  effect  m a y  be e i ther  beneficial or 
deleter ious.  In the  example ,  Class 2 is heavily CPU 
bound and the CPU is relat ively heavily utilized. As the  
m e m o r y  cons t r a in t  b e c o m e s  more  severe,  the  inc reased  
t ime  tha t  Class 2 u se r s  spend  queueing due to m e m o r y  
con ten t ion  is s o m e t i m e s  more  t han  offset by the 
d e c r e a s e d  t ime  t ha t  t hey  spend  queueing  for the CPU 
once they  b ecome  active. 

Finally, a brief c o m m e n t  on execut ion  t imes.  
Sauer ' s  nine s imula t ions  requ i red  an average of 578 
seconds  of CPU t ime  each  on an  ]BM S y s t e m / 3 7 0  Model 
168. Using Sauer ' s  i m p l e m e n t a t i o n  of the  detai led ana- 
lytic approach,  t hese  examples  requi red  "less t ha n  1/2  
second  each" on the  s ame  CPU. Our solut ions requi red  
an average  of 0.2 s econds  each  on a Digital VAX-11/780 
without floating point  acce lera tor ,  a mach ine  roughly 
25% the speed  of a 168. More i m p o r t a n t  t h a n  this com- 
par i son  is the  fact  t ha t  these  nine examples  were rela- 
tively small,  while the computa t iona l  advantage  of our 
t echnique  can  be expec ted  to inc rease  dramat ica l ly  with 
p rob lem size. 

3. Shared Memory  Cons tra in t s  

In Section 2 we assumed that each class was subject 
to a memory constraint that was independent of the 
behavior of the other classes. ]n this section we extend 
our algorithm to shared memory constraints: con- 
straints on the total number of jobs in memory, rather 
than on the populations of individual classes. 

Let there be D domains, or shared regions of 
memory. Let Cd be the capacity of domain d, i.e., the 
number of jobs that can reside in that domain. Each 
memory constrained job class is assigned to a domain. 
Let D(r) be a function that gives the domain number of 
class r if class T is memory constrained, and 0 other- 

wise. M(cl) is the inverse function, whose result is the 
set of classes belonging to domain d. To simplify the dis- 
cussion we will assume that more than one class is 
assigned to each domain (i.e., that D(z)=D(r') for some 
classes r~r ' ) ;  dedicated domains are, of course, a spe- 
cial case of shared domains. We will consider both FCFS 
and priority (by class) scheduling for access to memory 
within domains. 

Perhaps the simplest approach to this problem is a 
straightforward generalization of the algorithm in Sec- 
tion 2, with the only change being the calculation of the 
pc(n) in Step 3.2. This is replaced by 

pc(z) = ~ , ( c ~ - ~ , )  ~ > c ~ - ~ ,  

where d =- D ( r ) ,  and 6~ --- ~ ~s. Thus, we view a 
8 E J[ l (d ).S ~ r  

domain shared by M classes as M smaller domains, each 
used by only a single class. 

We have tried this simple approach on a set of 
examples related to those of the previous section, with 
mixed results. Because of the unreliability of this tech- 
nique, we propose a slightly more complex algorithm for 
the shared memory constraint case. We develop this 
algorithm as the natural extension of a very general view 
of the problem, which we present next. Details of the 
algorithm follow this discussion. 

3,1. A General  F r a m e w o r k  

We can view the solution of an R class memory con- 
strained model as the solution of ,7 distinct single class 
birth-death models. The behavior of each of these 
models can be visualized as shown in Figure 3.1. For 
each class r,  the states of its model correspond to the 
number of class r customers competing for memory. 
Thus, for an open class the state space is infinite, while 
for a closed class the state space is finite, with individual 
states labeled from 0 to N r, the number of customers in 
the class. 

~,r(O) ~ ), (2) ~ (3) 

Pr (i) Pr (2) U r (3) ~r (4) ~r (5) 

F ~ u ~  3.1 - Birth-Death  In terpre taUon  for  an  Open Class 
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The m o d e l  c h a n g e s  f r o m  s t a t e  n to s t a t e s  n + l  a n d  
n - 1  wi th  r a t e s  k r ( n )  a n d  p c ( n ) ,  r e spec t i ve l y .  In tu i -  
t ively,  t h e s e  p a r a m e t e r s  r e p r e s e n t  t h e  r a t e s  a t  w h i c h  
c l a s s  v c u s t o m e r s  r e q u e s t  m e m o r y  a n d  a t  w h i c h  c l a s s  r 
c u s t o m e r s  c o m p l e t e  se rv ice ,  r e s p e c t i v e l y .  We def ine  a 
solution of the model to be the set of equilibrium state 
probabilities that satisfy the flow balance constraints', in 
equilibrium, the rate at which the network flows into any 
state must equal the rate at which it flows out of that 
state. In other words, the state probabilities for class r,  
Pr(n), must satisfy the balance equations: 

Xr(~) P,(n) = pc(n+1) PA~+O, v 

E Pr(n) = 1 
I% 

The solution of models of this sort c a n  easily be shown to 
be: 

Pr(n) = Pr(O) j~-~i At( j)  
~U+l) 

Performance measures such as throughput and mean 
response time can be computed from the Pr (n). 

It is important to note that for any set of positive 
At(n) and Pr(n) there exists a set of positive pc(n) such 
that the flow balance equations are satisfied. Thus, this 
view of the problem is always sufficient, in that it is pos- 
sible to obtain exact solutions in all cases, if one could 
somehow deduce the kr(n) and pc(~.). 

The computational efficiency of any solution tech- 
nique based on this view of the problem depends upon 
the efficiency with which these state transition rates can 
be computed. Thus, we find it convenient to let the 
Ar (Tz) be the state dependent arrival rates to the system, 
since these are readily available from the input parame- 
ters of the model l, Given these values for the kr(n), the 
pc(n) must be given by: 

pc(n) = ~ ~r(~ I n) pr(~ I '~) 

w h e r e  ~ ~ (n~,n2 ..... nR) is a v e c t o r  r e p r e s e n t i n g  t h e  
n u m b e r  of c u s t o m e r s  of e a c h  c l a s s  c u r r e n t l y  in  m e m o r y ,  
P r (  ~l I n )  is t h e  p r o b a b i l i t y  t h a t  s t a t e  ~ ex i s t s  g i ven  t h a t  
t h e r e  a r e  n c u s t o m e r s  of c l a s s  r d e s i r i n g  m e m o r y ,  a n d  
~r (  ¢~ I n )  is t h e  m e a n  r a t e  a t  w h i c h  c l a s s  r c u s t o m e r s  
c o m p l e t e  s e r v i c e  w h e n  t h e  s t a t e  is ~ a n d  t h e r e  a r e  n 
c u s t o m e r s  of c l a s s  r c o m p e t i n g  for m e m o r y .  

By c l a s s i c a l  d e c o m p o s i t i o n  t h e o r y  [Cour to i s  1977], 
t h e  or ig ina l  R c l a s s  m o d e l  ts n e a r l y  c o m p l e t e l y  d e c o m -  
p o s a b l e  in to  a g g r e g a t e s  de f i ned  by  t h o s e  s t a t e s  
c o r r e s p o n d i n g  to  t h e  s a m e  v e c t o r  of c u s t o m e r s  c o m p e t -  
ing for  m e m o r y ,  s i nce  t h e  r a t e  a t  w h i c h  c u s t o m e r s  leave  
t h e  t e r m i n a l s  is m u c h  s m a l l e r  t h a n  t h e  r a t e  a t  w h i c h  
c u s t o m e r s  c i r c u l a t e  a m o n g  t h e  s e rv i ce  c e n t e r s  of t h e  
c e n t r a l  s u b s y s t e m .  Thus ,  ~ r ( ~  [ n )  d i f fe rs  only  
in s ign i f i can t ly  f r o m  the u n c o n d i t i o n e d  r a t e  (pr(~). ~ This  
g ives  

pc( '~)  ~ E ~"(~)Pr( ~ [ ~') 
tt 

~=o ,tt s.~. "%=i 

w h e r e  q,(~ I n )  is t h e  p r o b a b i l i t y  t h a t  $ c u s t o m e r s  of 
c l a s s  r a r e  in  m e m o r y  g i ven  t h a t  n a r e  c o m p e t i n g ,  a n d  
pr(Vl ] n , j )  is t h e  p robab i l i t y  of s t a t e  ~t c o n d i t i o n e d  on  n 
c u s t o m e r s  of c l a s s  r c o m p e t i n g  for m e m o r y ,  j of w h i c h  
a r e  r e s i d e n t  

I We note that because of the assumptions of the models with which 
we are dealing (specifies]]y, Poisson external arrivals and exponen- 
tially distributed service times at terminal service centers), this in- 
~%rpretation of the kr(n ) is justified. 

s observation explains Sauer's success in applying the detailed 
decomposition technique directly to the R class model. 

We note that any technique for calculating the pc(n) 
that requires an enumeration over all possible ~ is 
inherently unacceptable from a computational point of 
view, since the number of distinct ¢f is of the order 

f i  (Ns+l). A critics/ simplification in our approach, 
8=I 
then, is to replace the inner summation in equation (3. i) 
with a single quantity representing class r ' s  completion 
rate observed for a particular customer population. 
Define customer population 
~)r,j(J) -= (V7[(]) ..... ~/~-,(J),3 ..... ~(j)), where T7~(j ) is the 
average number of class s customers in memory condi- 
tioned on there being j class r customers loaded. The 
inner summation of equation (3.1) is then replaced by 
Wr(~rj(])), class r's completion rate with population 
~)rj (2) in the subsystem. 

This simplification would be exact if the completion 
rates of class r were linear in the number of customers 
of the other classes: 

~r(~) = ~r(0j) i- ,~e~ (3.2) 

l , ~ r  J 

for some set of positive constants s~, where Oj denotes 
the state with 2" class r customers, and 0 customers of 
the other classes. This condition then gives: 

ft 8.t. nr =,/" 

L t ~ r  I 

= ~,(~r,j(J)) 

rile have examined the behavior of a number of 
queueing networks to test the validity of the linearity 
assumption expressed by equation (3.2). We have 
observed that the completion rates of a designated class 
are surprisingly close to linear in the populations of 
other classes. Table 3.1 shows the completion rates of 
Class ~ as a function of the number of Class 1 customers 
for the central subsystem of the example used in Section 
2. These rates are fairly linear over a wide range of 
values. It is important to also note that the pr(~ I n , j )  
typically have low variance, that is, they are significantly 
greater than zero only for a few "adjacent" r~. Thus, for 
the approximation to be reasonable in practice, the ~r 
must be linear over only a small subspace of the /~, a 
much weaker condition. 

NI 

1 2 3 
0 .370 .473 .495 
1 .305 .400 ,429 
2 .258 .346 .378 
3 .223 .304 .336 
4 .196 .271 .303 
5 ,174 .243 .275 
6 .156 .220 .251 
7 .141 .201 .231 
8 .128 .184 .231 

T a b l e  3 . 1  --  Cl. 2 C o m p l e t i o n  R a t e s  v s .  C1. 1 P o p u l a t i o n  
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The introduction of the above assumption results in 
a great reduction in the time and space requirements 
for calculating the/~.(rt), and leaves us with~ 

~r=o 

Evaluating equation (3.3) requires only n operations, 
given the ~. and the ~r. 

3.2. The Algorithm 

Specification of the algorithm requires  tha t  we first 
identify usefu l  approxirnatione for the quanti t ies in equa- 
tion (3.3), The calculation of the ~r(@rJ~))  is difficult 
because  of the conditioning of ~,.j on J.  We therefore  
in t roduce  two homogenei ty assumptions: 

tha t  the ~ r j ~ )  are independent  of i ,  giving: 

where @rj is the population vector with the mean 
population observed by class r for all classes but r, 
and with3 for ~-; 

that the mean number of customers in other classes 
seen by a class r customer is the equilibrium mean, 
which resul ts  tinnily In: 

where ~rJ is the population vector with the equili- 
blrum mean population for all classes but r. and 
wlth ~ for r: 

While these assumptions are clearly not true in practice, 
we have found that the results obtained using them are 
quite good. Thus, we trade some potential increase in 
accuracy for computational efficiency. 

The remaining problem is to approximate the 
qr(i [~t) eff.toiently. Let ~.~ [~t) be the probability 
that ~ customers from "competitor" classes are loaded 
into domain d ~ D(r )  given tha t  the re  are  n cus tomers  
of class r present .  A compet i to r  class is any class in the 
same domain for t'ct~S scheduling, an.d any class in the 
same domain with equal or greater priority for priority 
scheduling. Then: 

[ E ~.(~ I,~) 
#ffiO 

Our problem new is to approximate the Q,.(3 [~z). To do 
so we make two assumptions: 

that ~.~ [ n) is independent of ~; 

that the Q. behave as they would In a separable 
queueing network; 

Using these assumptions, the Q. can be calculated easily 
from information obtained during the solution of the R 
single class models. 

The detailed statement of the algorithm, which fob 
lows, should serve to clarify matters. Throughout this 
description we will use d to denote D(r), the domain to 
which class r belongs. 

Algorithm g -- Mm"ed Memory Commt.rainta 

Let t r m (Lr(1),tr(~) ..... /r(~)) be a probability vec- 
tor, where//r~) represents an estimate for the pro- 
bability that i customers of class ~- are loaded in 
memory at equilibrium. For all memory con- 
s t ra ined  classes r ,  initialize: 

I j = 0  
/ ~ ) =  0 a U z e r ~ . ~ B  

E. Create a separable  queuelng network f rom the origi- 
nal memo ry  cons t ra ined  model  by replacing all 
m e m o r y  cons t ra ined  c lasses  with b a t c h  classes, 
The multiprogrRmrning level of cons t ra ined  class l- 

is taken to be ~b- ~ ~J */r(J), the current estimate 
yfn 

for the mean  class r multtprogrammin£ level. 
3. For each memory constrained class r : 

3. i. Solve the multiple class model of Step 2 with 
populations ]~rj for j varying over all feasible 
values from I to C~. s Observe the system 
throughput rate ~r(Nrj) of class r for each 
value of y. 

3.2. Compute Q.~)  as the  j t h  component  of the 
vector  obtained by conwlving toge ther  the ~ of 
all classes s tha t  compete  with class r for 
memory.  For domains with FCFS scheduling, 
these are all other  classes sharing the domaJ.n~ 
for domains with priority scheduling, these are 
all other classes with equal or greater priority 
sharing the domain. 

3.3. Solve a single class hlgh-level model consisting 
of class r's external environment and a single 
load-dependent service center. The service 
rates/~.(n) of this center are computed using 
equations (3.3), (3.4). and (3.5). This solution 
yields a vector  of probabil i t ies br(vz) for the 
number  n of class r cus tomers  competing for 
memory. 

3.4. Use the br(zL) to compute a new estimate for ~: 

-4 

3.5. Calculate a new es t imate  for ~,. f rom ~.. 
Repeat  Step 3 until successive es t imates  of the ~ .  
for each class are sufficiently close. 

4. Obtain per formance  measures  for each  memory  
const ra ined class from the  mos t  r ecen t  solution of 
the  appropr ia te  high-level model.  Obtain perfor-  
mance  measures  for the uncons t ra ined  classes  by 
solvir~g the  queueing network defined in Step 2 using 
the  final es t imates  for the fir of the cons t ra ined  
classes. 

3.3. Computat ional  ~ u i r e m e n t s  

The space requ i rement  of this a tgo~thm is dom- 
inated by the space required to hold the tr and to com- 
pute  the solutions oF the R class closed model. Thus, the 
space  requ i rement  is proport ional  to: 

The time requirement is also dominated by these two 
steps, and thus is approximately: 

~ffil ItEI 

Note tha t  these  requ i rements  are  sufficiently small tha t  
queuelng networks of any reasonable  size may be solved. 
In constras t ,  any solution technique tha t  requires  the  

S Note that it is a simple n~ttm" to model disttn~L memm'y requtre- 
rrmnts for each d ~ s  b 7 specff~in8 domM~ capacities Cdx ind.toat- 

the num'bcr of clam r jobs that can 'be ~'m]d in domain d. 
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exact  solut ion of even a single R class separab le  ne twork 
is severly l imi ted  in its applicability. S t anda rd  decompo- 
s i t ion t echn iques  are the re fo re  not  p rac t i cab le  in gen- 
eral. 

3.4. Evaluation 

As in Sect ion  2, we p r e s e n t  the resu l t s  of applying 
our a lgor i thm to a n u m b e r  of networks  solved by Sauer  
using RESQ. The basic p a r a m e t e r  se t t ings  of these  
models  are the  same as those  given in Table 2.1. How- 
ever, in all cases t h e r e  is a single domain  s h a r e d  by b o t h  
classes.  Tables 3.2, 3.3 and  3.4 show the  resu l t s  of apply- 
ing our t echn ique  to the  model  with  FCFS, pr ior i ty  to 
Class 1, and  pr ior i ty  to Class 2 m e m o r y  scheduling,  
respect ively.  Within each  table,  we explore various 
n u m b e r s  of use r s  pe r  class, and  various domain  capaci-  
ties. 

Al though the  tab les  (especial ly 3.3) indica te  a few 
discrepancies ,  in  genera l  the  a c c u r a c y  of our t echn ique  
is good. This is especial ly the  case  when  one cons iders  
i ts small  compu ta t iona l  expense  and the  inaccuracy  
i n h e r e n t  in  some of the  assumpt ions  t h a t  it makes.  

For  these  examples,  Sauer  r epo r t s  S y s t e m / 3 7 0  
Model 168 CPU t imes  of up to 1623 seconds using RESQ, 
and  up to 28 seconds using the  deta i led  analytic 
approach.  Our t echn ique  r equ i r ed  at  mos t  5 seconds  of 
VAX-1t/780 CPU time; as in the  case of i n d e p e n d e n t  
m e m o r y  cons t ra in ts ,  the  computa t iona l  advantage  of our 
t echn ique  can  be expec ted  to inc rease  dramat ica l ly  with 
p rob lem size. 

The exist ing e r ro r  c an  be attributed to mis- 
estimates of the ~A.(~) due to various simplications used 
to increase efficiency. Some of these are: 

An approximation has b e e n  used  to compute the 
~(~.i)' The approximate technique is preferable 
to exact techniques because of the considerably 
greater computational expense of the latter. Addi- 
tionally, the calculation of the ~r( /grf)  in general 
requires the solution of a model with 'a non-integer 
number of customers in closed classes, since the 
average multiprogramming level is typical[y not an 
integer, If it were possible to obtain the ~r(A~rj) 
more accurately without greatly increasing the 
computational expense of the algorithm, i t s  accu- 
racy would undoubtedly be improved somewhat. 

,,,] 
2O 

3O 

4O 

CPU uti l izat ion 
/J2 C1 J 

a p p r o ~  I s imul .  
6 .62 (.6o,.63) 

2 4 .61 ( .60 , .62)  
2 .58 .. ( .5%.54) 
9 .83 (.82,.64) 

3 6 .81 (.83,.85) 
3 .79 (.69,71) 

ls  .94 ( . 9 5 . 9 6 )  
4 12 .93 (.95,.96) 

6 ,89 . (.90,.90) 

Table 3.g 

CI. 1 r e sponse  t ime  

approx. I 
,74 
.85 

1,55 
1.06 
1.24 
2.05 
1.52 
1.61 
2.16 

-- Shared Memory Constraint. 

-',[muL. 
(.73,.76) 
(,91,.95) 

(8_,35,3.47) 

(1.oo,1.o4) 
(1.2o,1.26) 
(&44,&62~ 
(1.47,1.54) 
(1.68,1.71) 
(3.19,3.35) 

Ci. 2 response t ime  

,. approx. I, , simul,  
4.76 (4,34,4.93) 
4.73 (4.46,4.88) 
4.38 (4.85,5.12) 
8,14 (6.95,7.92) 
8,13 (6.87,7.47) 
7,02 (6.69,7.01) 

14,33 (12.41,i4.00) 
14.85 (11,6&i~.74) 
13.89 (9.23,9.8..1.) 

FUF~ Memory Schedu l ing  

l CPU u t i l i za t ion  CI. 1 r e sponse  t ime  
MI M2 C1 " - 

~pprox. I simuL approx. I simuL 
6' ,6Z (.60,.63) .73 (.74,.77) 

20 2 4 .62 (.60,.62) .76 (.89,.93) 
.60 (.49,.50) 1.~8 (1.86,1.95) 

9 .83 (.82,.84) 1.01 (1.04,1.09) 
30 3 6 .84 ( .81 , .82)  1.o3 (1.29,1.35) 

3 J .8i (.59,.60) 1.68 (2.32,2.43) 
18 .94 (.95,96) 1.51 (1.47,1.53) 

40 4 iZ ,95 (.95,.96) 1,42 (1.59,1,67) 
6 .97 (.8!~82) 1.56 (2.19,2,28) 

CI. 2 r e sponse  t i m e  

approx. I s imul .  
4.76 (4.39,5.02) 
4.72 (4.39,4,81) 
4.37 (9.35,10.23) 
8.12 (6.78,7.61) 
7.90 (7.27,7.92) 
6.75 ~_ (24.o7,27.~o) 

14.42 (12.64,14.15) 
14.70 (12.17,13.59) 
12..45 (17.84,22.13) 

Table 3.3 - Shared Memory Constraint. Priority to Class 1 

20 2 

30 3 

40 4 

CPU uti l izat ion 
Cl - 

approx~ I s imul .  
6 .62 (.62, .65) 
4 .61 (.60,.62) 
2. .55 ( .54 , .55)  
9 .83 (.84,.86) 
6 .82 (.81,.82) 
8 .69 (.73,.74) 

18 .94 (.9fi,.96) 
12 .95 (.95,.96) 
6 .88 (.91~.92) 

Table 3.4 

CI. 1 r e sponse  t ime  

.approx. I s imul.  
,75 (.75,,78) 
.92 (.91.95) 

2.78 (2.62,2.76) 
1,08 (I.06,1.11) 
1.47 (1.41,1.48) 
5.32 (4.19,4.40) 
1.52 (1.45,1.51) 
1.69 (1.64,1.72) 
4.g2 (3.58,3.77) 

CI. 2 response t ime 

approx. [ ~ul. 

4.70 (4.56,5.11) 
4.55 (4.16,4.53) 
3.~ (3.60,&75) 
7.81 (7.24,8.1 i) 
7.03 (6.22,6.67) 
4.91 (4..74,4.98) 
14.19 (12.06,13.78) 
lZ.95 (11.68,12.9v) 
8.11 (7.72,8.181 

-- Shared Memory Constraint. Priority to Class 
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The computa t ion  of the qr(J [ n )  is in error,  since 
we have assumed that  the queue length  distribu- 
tions l'r behave as they would in a separable net-  
work, while the models we are considering are not 
separable.  Unfortunately, the approximat ion is 
quite sensitive to e r rors  in the ~/(j [ n).  This sensi- 
tivity exists because the output ra te  of the cent ra l  
subsys tem can be near ly linear in the numb er  of 
cus tomers  res ident  in it, par t icular ly  if the subsys- 
t em is lightly used. In such cases,  the express ion 
for the approximate  p r ( n )  given by equation (3.S) 
can be considerably in error,  result ing in even 
larger  er rors  in response  times. This effect is most  
pronounced for models  in which the centra l  subsys- 
t em is lightly utilized, which occurs whenever the 
domain size is small, The ill effects of this can be 
seen  easily by comparing the examples in this sec- 
tion: the smaller the domain size, the less accura te  
the result.  
@r,j(j) is not independent  of j .  This simplification 
probably is the cause of much  of the  e r ro r  in the 
examples.  Unfortunately,  it appears  to be difficult 
to find a computat ional ly feasible al ternative tha t  is 
more  accurate .  
There are d iscrepancies  in the way our algori thm 
(specifically, equation (3.5)) r ep re sen t s  the details 
of domain scheduling. Specifically: 

We do not, in facL model  FCFS scheduling, but 
r a the r  "processor  sharing". 
We model preempt ive  priori ty scheduling, 
whereas Sauer simulates non-preemptive  prior- 
ity. 

4. Subsys tems  With Populat ion Constraints 

Memory is not the only resource  to impose a popula- 
tion cons t ra in t  in compu te r  systems.  Rather, it is one 
specific ins tance  of s i n z u l t a n e o u s  r e s o u r c e  p o s s e s s i o n ,  a 
general  phenomenon  that  violates the separabil i ty condi- 
tions of queueing network models. In single class queue- 
in~ networks, flow equivalent servers  have been  used to 
obtain approximate solutions for a number of simultane- 
ous resource possession problems; for example, Chandy 
and Sauer [1978] use this approach to analyze a CDC 
batch system in which the number of "peripheral proces- 
sors" (indistinguishable I/0 controllers) places a limit on 
the number of disks that can be active simultaneously, 
and Jacobson and Lazowska [1982] use this approach to 
analyze a fairly general class of simultaneous resource 
possession problems. 

The difference between modelling a memory con- 
straint and modelling a more general population con- 
straint arises in the high-level model: in the former case 
customers do not share resources outside of the popula- 
tion constrained subsystem (the "external environment" 
consists of terminals or an arrival process), while in the 
latter case they do (for example, jobs share the CPU 
when they are not contendinR for service at the 
population constrained ]/0 subsystem). Although the 
algorithm presented in Section ~ does not admit such 
sharing, it can be generalized to do so. The essence of 
this generalization is the replacement of the population 
constrained subsystem with R flow-equivalent servers, 
one for each class, whose load-dependent throughput 
rates are determined iteratively. 

We require that the subsystem of interest impose an 
independent population constraint C r on each of the 
classes r=l.,R . The algorithm follows: 

Algorithm 3 - Subsys tems  With Population Constraints 

i. Obtain initial estimates of the average subsystem 
customer populations for all classes, nr for T=I..R. 
To do this, ignore the population constraints, yield- 
ing a separable queueing network that can be 
efficiently analyzed. Set ~r to the minimum of Cr 
and the average class r subsystem population ob- 
served in the unconstrained model. 

~. in preparation for the iteration, construct two 
queueing network models, a low-level model and a 
high-level model, each of which is easily analyzed: 

The low-level model includes on ly  those 
resources belonging to the population con- 
strained subsystem. Each class r is 
represented as a batch class with population 

The high-level model includes those resources 
in the remainder of the system (the portion 
external to the population constrained subsys- 
tem) plus R load-dependent servers. Each 
class r visits its own load-dependent server, 
which represents the population constrained 
subsystem, plus appropriate other resources. 

8. Iterate as follows: 

8.I. Consider the low-level model. For each class 
r = l . . R :  

For each  feasible population of the desig- 
na ted  class, nr=l . .Cr ,  solve this model 
obtaining the throughput  ra te  of class r ,  

Create a single class load-dependent  
server  whose throughput  ra te  with queue 
length n , / z (n ) ,  is defined by: 

~('~)= ~,(c,) ~>c, 

3,2. Consider the high-level model. Using the R 
load-dependent  servers  defined in Step 3.1, 
solve this model,  obtaining the queue length 
distr ibution of each class r at its load- 
dependen t  server,  p r ( n )  . Use this distr ibution 
to calculate a new es t imate  for the average 
subsys tem population of class r : 

c c 

Repeat Step S until successive estimates of the 
average subsystem population for each class are 
sufficiently close. 

4, Obtain performance measures directly from the 
high-level model. 

This algori thm has been  p rogrammed  and used with 
good results .  Although it has not been  extensively 
evaluated, there is every reason to believe that its 
behavior will be comparable to that of the algorithm in 
Section 2. In the manner of Section S, it can be 
extended to situations in which several classes share a 
population constraint. Classes without population con- 
straints can be handled by imposing artificial constraints 
that are (almost) never reached; appropriate values can 
be determined from the queue length distributions at 
the appropriate load-dependent servers. 
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5. Summary 

Separable queueing network models are important 
tools in the design and analysis of computer systems 
because, for many applications, they strike an appropri- 
ate compromise between accuracy and efficiency. 
Although the class of separable queueing networks is 
fairly rich, certain characteristics of computer systems 
that can have significant impact on system performance, 
such as simultaneous resource possession in general and 
memory constraints in particular, cannot be modelled 
by separable networks. Specialized solution techniques 
must be devised to represent the effects of these charac- 
teristics. 

In this paper we have introduced a technique for 
analyzing multiple class queueing networks in which the 
classes have independent memory constraints. We have 
extended our technique to situations in which several 
classes share a memory constraint. We have sketched a 
generalization to situations in which a subsystem within 
an overall system model has a population constraint. 

Our technique was devised within the context of a 
larger effort to design a queueing network solution pack- 
age suitable for use on very large problems. Our algo- 
rithm is compatible with the extremely time- and space- 
efficient iterative approximate solution techniques for 
separable networks. This level of efficiency is manda- 
tory; achieving it has cost very little in terms of overall 
accuracy. 
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