Check for
Updates

Multiple Class Memory Constrained Queueing Networks

FEdward D. Lazowska and John Zaharjan

Department of Computer Science
University of Washington
Seattle, WA 98195

ABSTRACT

Most computer systems have a memory constraint: a limit on the number of
requests that can actively compete for processing resources, imposed by finite
memory resources. This characteristic violates the conditions required for queue-
ing network performance models to be separable, i.e., amenable to efficient analysis
by standard algorithms. Useful algorithms for analyzing models of memory con-
strained systems have been devised only for models with a single customer class.

In this paper we consider the multiple class case. We introduce and evaluate
an algorithm for analyzing multiple class queueing networks in which the classes
have independent memory constraints. We extend this algorithm to situations in
which several classes share a memory constraint. We sketch a generalization to
situations in which a subsystem within an overall system model has a population

constraint.

Our algorithm is compatible with the extremely time- and space-efficient itera-
tive approximate solution techniques for separable queueing networks. This level of
efficiency is mandatory for modelling large systems.

CR Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling techmigues; D.4.8
{Operating Systems]: Performance -- Modeling and prediction.,

General Terms: Performance

Additional Key Words and Phrases: computer system performance evaluation, queueing network
model, approximate solution technique, memory constraint, population constraint.

1. Introduction

Queueing network models, in particular separable
queueing network models [Baskett et al. 1975), are
important tools in the design and analysis of computer
gystems. This is the case because, for many applica-
tions, separable queueing networks strike an appropriate
compromise between accuracy and eflficiency. Predic-
tions accurate to within 5 to 10 percent for utilizations
and throughput rates and to within 25 to 50 percent for
response times are iypical from these models. The
existence of efficient solution techniques means that
these predictions can be obtained in a matter of
seconds. As a result, a large number of design

Lezowska's research is supported in part by the National Science
Foundation under Grant No. MCS-8003344. Zahorjan's research is
supported in part by the National Science Foundation under Grant
No. MCS-8104879.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct comimercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to republish, requires
a fee and/or specific permission.

© 1982 ACM 0-89791-079-6/82/008/0130 $00.75

130

alternatives may be investigated in a short period of
time.

Although the class of separable queueing networks
is fairly rich, certain structural characteristics of com-
puter systems are difficult to represent within it. The
existence of a memory constraint is one of these. Most
systems have a memory constraint: a limit on the
number of requests that. can actively compete for pro-
cessing resources, imposed by finite memory resources.
In such a system, an arriving request for which memory
is unavailable will be queued pending availability of
memory. As an example, IBM's MVS operating system
associates one or more “performance groups” (job
classes) with each of several "domains” for which "target
multiprogramming levels” are specified. A queueing net-
work performance model of such a system may need to
represent the effect of the merory constraint in order
to achieve a useful level of accuracy. The alternatives
for representing memory constraints within the class of
separable queueing networks are limited:

- The population of a class of customers may be fixed.
This accurately models a situation in which the sys-
tem is always operating at memory saturation:
there is a large external backlog of requests, and
upon completion a request is immediately replaced
in the system.

- The population of a class of customers may be
unconstrained. This accurately models a situation
in which the system never reaches memory satura-
tion:

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1035332.1035313&domain=pdf&date_stamp=1982-08-30

tion: there is always sufficient memory to accomeo-
date an arriving request.

- Arrivals may be "lost” or "triggered" as a function of
population [Lam 1977). This accurately models a
gituation in which requests that arrive when
memory is unavailable are discarded rather than
queued.

Figure 1.1 illustrates an extremely common
memory constraint phenomenon that violates the condi-
tions required for separability. This computer system
has a single customer class comprising M interactive
users, at most € of which can simultaneously occupy
memory. A request that arrives when there are already
C active requests (C or more ready requests) is queued
pending availability of memory. (In this example we
ignore the details of swapping, and also assume that all
requests have the same memory requirement.)

One alternative in analyzing this system is to ignore
the memory constraint, yielding a separable queueing
network model that can be analyzed efficiently. The
resulting error may be unacceptably large. Another
alternative is to simulate. The resulting cost may be
unacceptably high. A third alternative, the most attrac-
tive in this case, is to use the well-known approximate
analytic solution technique that we motivate and
describe in the following paragraphs.

1.1. The Single Class Case

Separable queueing networks can include load-
dependent servers: servers whose throughput rate varies
as a function of their queue length. Chandy, Herzog and
Woo [1975] showed that in single class separable net-
works, an exact solution results when an arbitrary sub-
system is replaced by a single load-dependent server
with throughput rates determined as follows:

- consider the subsystem in isolation by “shorting” its
paths to the remainder of the queueing network;

-~ for each possible customer population, n, analyze
the subsystem, obtaining its throughput rate with
respect to the remainder of the queueing network,
p(n):

- create a load-dependent server whose throughput
rate with queue length n, u{n), is equal to ¢(n.).

Although it is perhaps surprising that results obtained in

/7°
\o

this manner are exact, the procedure is intuitively rea-
sonable, since the queue length at the load-dependent
server in the high-level model corresponds to the custo-
mer population of the subsystem in the original queueing
network. Since the load-dependent server looks like the
original subsystem to the remainder of the queueing net-
work, it is called a flow equivalent server.

Nearly identical techniques can be used to define
load-dependent servers that are "approximately” flow
equivalent to subsystems in non-separable queueing net-
works. An approach that can be used to approximately
analyze our example interactive systemn is described
below and illustrated in Figure 1.2:

- consider the central subsystem in isolation by
"shorting” its connection to the terminals;

- for each feasible customer population n=1..C,
analyze the subsystem, obtaining its throughput
rate with respect to the terminals, g(n);

- create a load-dependent server whose throughput
rate with queue length n, u{n), is defined by:

p(n) =n=1.C
pn) = { p(C) n>C

- solve a high-level model consisting of the full custo-
mer population, the terminals, and this load-
dependent server.

Intuitively, this load-dependent server is flow equivalent
to the original subsystem because the queue length at
this server corresponds to the number of ready custo-
mers, and the throughput rate of the central subsystem
is determined by the number of active customers, which
is equal to the lesser of the memory capacity and the
number of ready customers. The equivalence is approxi-
mate because the Chandy, Herzog and Woo theorem
holds only for separable queueing networks. The approx-
imation will yield excellent results because the terminals
and the central subsystem are nearly completely decom-
posable in a formal sense [Courtois 1977].

Brandwajn [1974] first suggested this general
approach to analyzing memory constrained systems.
Keller [1976] extensively validated the technique in the
form we have described it. This technique is successtully
used with great regularity, and has been extended to sin-
gle class models in which requests have distinct memory
requirements [Brown et al. 1977, Bryant 1982]. Its utility
arises both from its accuracy and from its efficiency. Its
efficiency, in turn, depends on two factors:

/M terminals
v

memory queue\
L=l

o

N
/

— wms owm eme wee D G = Sme s = Gum

at most C memory resident users

10

10
1O

central subsystem

Figure 1.1 ~ A Simple Memory Constrained System

131

1O

Figure 1.2 — An Approach Based On Approximate Flow Equivalence

- The load-dependent throughput rates used in
defining the flow equivalent server can be obtained
efficiently. In this case, the queueing network
model of the central subsystem is a single class
separable model. Exact analysis of this model
requires time proportional to KC { X is the number
of service centers and C is the maximum central
subsystem population) and space proportional to C.
The necessary rates can be obtained from a single
analysis, since the computational algorithms calcu-
late performance measures for populations from 1
to n~1 as a byproduct of calculating performance
measures for population n.

- The resulting high-level queueing network model can
be analyzed efficiently. In this case it is a single
class separable model.

1.2. The Multiple Class Case

Now, consider a system with # customer classes,
r=1.K, having independent memory constraints C,.
There is an obvious generalization of the above flow
equivalence technique to this case:

- consider the central subsystem in isolation;

- analyze an K class separable queueing network for
each feasible population vector & ={n,mna..,ng) (a
vector with an entry for each class indicating the
population of that class), obtaining the throughput
rate of each class 7, ¢, (i);

- use these rates to define a "population-vector-
dependent” server with class-dependent throughput
rates u,(7);

- solve a high-level mode! consisting of the full custo-
mer population, the terminals, and this server.

Recent experiments by Sauer [1981] have convine-
ingly validated the accuracy of this generalized tech-
nique. Unfortunately, though, it violates both of the
efficiency criteria set forth above:

- Although the requisite load-dependent throughput
rates could be obtained by analyzing a single F

132

class separable queueing network with population
vector #=(Cy,Cy,..,Cg). the time and space required
for this analysis each grow exponentially with the
number of classes:

relT(G+)
r=l

for time; less by a factor of R for space.

- The resulting high-level model is not separable, so
can be solved exactly only by the extremely expen-
sive global balance technique, the time and space
requirements of which grow exponentially with the
number of classes, customers, and service centers.

In this paper we present an algorithm for analyzing
multiple class memory constrained queueing networks
that, like the highly detailed approach evaluated by
Sauer, is based on the concept of approximate flow
equivalence. In designing our algorithm, we have cons-
ciously traded some of the accuracy of this highly
detailed approach for a significant gain in efficiency: our
algorithm runs in time proportional to K®® and in space
proportional to KR? + max {3 . Such a compromise is

necessary if even moderately large problems are to be
tractable; it is an important difference between our
approach and the one recently proposed by Menasce and
Almeida [1981]).

In Section 2 we motivate and describe our basic
technique, analyze its computational requirements, and
evaluate it on the set of example queueing networks con-
sidered by Sauer. In Section 3 we extend our technique
to situations in which several classes share a memory
constraint, again evaluating it using data from Sauer's
paper. In Section 4 we sketch a generalization to situa-
tions in which a subsystem within an overall system
model has a population constraint. In Section 5 we sum-
marize.

2. The Basic Technique:
straints

Independent Memory Con-

In this section we present an algorithm for analyzing
multiple class queueing networks with R customer

classes, r=1..R, which may be of three types: interactive
(a fixed number of users cycling between terminals and
the central subsystem), transaction (a stream of
requests that arrive, obtain service, and depart), or
batch (a fixed number of jobs). Classes of the interactive
and transaction types may have independent memory
constraints C;.

Our algorithm was devised in the context of a larger
effort to design a queueing network solution package
suitable for use on very large problems. The core com-
putational algorithms in this package, those used to
analyze separable queueing networks, are the extremely
time- and space-efficient iterative approximations based
on Mean Value Analysis introduced by Bard [1979] and
improved by Chandy and Neuse [1982]. These techniques
can analyze an KR class separable queueing network in
space and in time per iteration proportional to KR* ;
although the number of iterations required is somewhat
sensitive to problem size, it is typically extremely small.

Qur technique, like the detailed approach described
in the previous section, is based on the concept of
approximate flow equivalence. To achieve adequate
efficiency we must avoid calculating load-dependent
throughput rates g¢,(7t) for each of the feasible popula-
tion vectors, because the nummber of such vectors grows
exponentially with the number of classes. We must also
ensure that the high-level model can be solved
efficiently. To accomplish these two objectives we have
made two homogeneity assumptions:

- that the throughput rate of class r with population
n, is dependen: only on the mean populations of the
other classes, conditioned on the class r population
being n.;

- that each class sees the other classes as though
their central subsystem populations were indepen-
dent of one another, obviating the above condition-
ing.

The former assumption accomplishes the first objective

by allowing us to determine the load-dependent

throughput rates of any class by analyzing an R class
queueing network in which the populations of the other
classes are fixed at their average values. These average
values are determined from the high-level model; the
high- and low-level models are solved iteratively, ter-
minating when successive estimates are sufficiently
close. The latter assumption accomplishes the second
objective by allowing us to define a separate load-
dependent server for each class. In essence, we analyze

R separable single class high-level models, rather than a

single non-separable K class high-level model.

2.1. The Algorithm

For ease in expressing the algorithm we denote the
number of memory constrained classes by <R and
order the classes so that the constrained classes have
indices r=1..K.

Algorithm 1 - Independent Memory Constraints

1. Obtain initial estimates of the average central sub-
system customer populations for the memory con-
strained classes, 7, for 7=1.. To do this, ignore
all memory constraints, yielding a separable queue-
ing network that can be efficiently analyzed. Set 7,
to the minimum of ¢ and the average class r cen-

tral subsystem population observed in the uncon-
strained model.

2. In preparation for the iteration, change each of the

memory constrained classes into a batch class
with population equal to 7,. The non-integer custo-

133

mer populations that arise are naturally suited to
the core computational algorithm.

8. For each memory constrained class r=1..%:

3.1. For each feasible population of the designated
class, n,.=1..C., solve the gqueueing network
obtaining the throughput rate of class r,
¢r(ne).

Create a single class load-dependent server
whose throughput rate with queue length n,
ur(n), is defined by:

@r(n)
?-(G)

Solve a single class high-level model consisting
of this load-dependent server and the "external
environment" of class 7 {terminals or an arrival
process). Obtain the queue length distribution
at the load-dependent server, p{n), and use
this to calculate a new estimate for the average
central subsystem population of class 7:

g G
7 =§lip<i> + (1-Xp))G

3.2.

n=1.G
Mp(n) = n>C,

3.3.

Repeat Step 3 until successive estimates of the 7,
for each class are sufficiently close.

4. Obtain performance measures for the memory con-
strained classes from the £ high-level models solved
during the final iteration. Obtain performance
measures for the remaining classes by solving the
queueing network defined in Step 2 using the final
estimates for the 7,.

2.2. Computational Requirements

Step 1 requires solving a single R class queueing
network. Each execution of Step 3.1 requires solving C,
R class networks (the MVA-based approximations do not
compute performance measures for sub-;opulations),
each requiring time proportional to KR® Step 3.3
requires solving one single class network. A full execu-
tion of Step 3 requires looping K times. The number of
iterations (full executions of Step 3) required is, in our
experience, very small (typically less than 6), and is rela-
tively insensitive to the size of the problem. Step 4
requires one additional solution of an R class network.
The overall running time of our algorithm is thus propor-
tional to KRS

f: G KR?
r=1

Its space requirements
KR? + max { G} .

are proportional to

2.3. Evaluation

Because useful analytic error bounds for approxi-
mate queueing network solution techniques are notori-
ously difficult to obtain, it is necessary to empirically
evaluate such techniques. In this subsection we compare
our approximation to simulations conducted by Sauer
[18B1] using IBM’s Research Queueing Package (RESQ).

The basic queueing network simulated by Sauer is
shown in Figure 2.1. It has a CPU, four equally-loaded
disks, and two interactive customer classes with
independent memory constraints. The number of users
in each class, M, and the memory constraint for each
class, (., differ in the various simulation runs. The

remaining parameters are held constant, and are shown
in Table 2.1.

O Ml Class 1 terminals

O

Class 1

memory queue {)

— e e e -
at most C, memory resident
users in Class 1

Class 2

memory queuey]

e e TE wms e e emp M A Wmp WS et e e me S Gae

O Mz Class 2 terminals

O

at most C, memory resident

users 1in Class 2

Figure 2.1 — The Example Queueing Network

parameter Class1 | Class2
average think time, seconds: 5 10
(exponentially distributed)
average number of CPU-1/0 cycles: 10 20
(geometrically distributed)
average CPU service time per visit, msec.: 10 100
(exponentially distributed,
processor sharing discipline)
average disk service time per visit, msec.: 35 35
(exponentially distributed, FCFS disci-
pline, equal disk selection probability)

Table 2.1 — Parameters of the Example Queueing Network

Sauer chose three pairs of values for the popula-
tions of the two classes: (R0.,2), (30.3) and {40,4). For
each of these pairs he experimentally selected three
pairs of values for the memory constraints of the two
classes: one providing low memory contention (i.e., little
queueing for memory), one providing moderate memory
contention, and one providing high memory contention.
RESQ was used to simulate the system for each of these
nine sets of parameter values. Each simulation was ter-
minated when the relative width of the 890% confidence
interval for class-independent mean response time {time
from memory request to memory release) was 5%. Table
2.2 compares the results obtained by our approximate
solution technique to the 90% confidence interval of the
simulation for three performance measures: total CPU
utilization, and average response time (in seconds) for
Class 1 and for Class 2 users.

As Sauer notes, the simulation point estimates are
not exact and the confidence intervals do not necessarily
contain the corresponding true values. For these rea-
sons it is difficult to judge the accuracy of the approxi-
mation. Given this caveat, the results are very
encouraging:

134

- all but two of the approximate values for CPU utili-
zation fall within the 907 confidence intervals; these
two fall 1% and 4% outside;

- all but two of the approximate values for Class 1
response time fall within the 90% confidence inter-
vals; these two each fall 1% outside,

- although half of the approximate values for Class 2
response time fall outside the 90% confidence inter-
vals, the average distance is 3% and the worst case
is 15%.

The greater errors for Class 2 are not surprising: the
small population of this class stresses the accuracy both
of our own algorithm (a small absolute error in the
number of memory resident users will result in a large
relative error in throughput rate) and of the underlying
MVA-based approximations. Still, the accuracy of our
technique is comparable to that of the highly detailed
approach, at potentially great savings in space and time.
In Section 3 we will discuss sources of error in greater
detail.

An interesting aspect of Table 2.2 that deserves
mention is the apparently anomolous behavior of Class 2,
whose response time occasionally improves as the

CPU utilization Cl. 1 response time Cl. 2 response time
My | Mz | C | Cp
approx. L simul. f_xppro;l simul. approx. simul.
4 2 .81 (.60,.63) .81 (.77,.80) 5.01 (4.49,5.09)
20 2 3 1 .60 (.59,.61) .93 (.90,.95) 5.01 (4.71,5.31)
11 49 (.48,.50) 4.89 (4.68,4.93) 3.80 _ (3.86,4.31)
7T R .83 (.83,.85) 1.07 (1.03,1.08) 8.00 (6.70,7.64)
30 3 5 1 .79 (.79..81) 1.18 (1.13,1.19) 9.76 (B.42,9.69)
2 1 .70 (.69,.71) 4.13 (3.97,4.17 6.04 _(6.08,6.95)
14 4 .92 (.96,.97) 1.56 (1.47,1.54) 18.2 (12.2,14.1)
40 4 9 3 .95 (.95,.96) 1.71 (1.67,1.74) 12.9 (12.0,13.3)
5 1 B8 (.87,.88) 235 _ (230242) | 155 (13.5,15.2)

Table 2.2 — Independent Memory Constraints

memory constraint becomes more severe. When such a
change in the memory constraint occurs, queueing delay
due to memory contention will increase, but queueing
delay within the central subsystem will decrease. For
each job class, the net effect may be either beneficial or
deleterious. In the example, Class 2 is heavily CPU
bound and the CPU is relatively heavily utilized. As the
memory constraint becomes more severe, the increased
time that Class 2 users spend queueing due to memory
contention is sometimes more than offset by the
decreased time that they spend queueing for the CPU
once they become active.

Finally, a brief comment on execution times.
Sauer’'s nine simulations required an average of 578
seconds of CPU time each on an 1BM System /370 Model
168. Using Sauer's implementation of the detailed ana-
lytic approach, these examples required "less than 1/2
second each" on the same CPU. Our solutions required
an average of 0.2 seconds each on a Digital VAX-11/780
without floating point accelerator, a machine roughly
25% the speed of a 168. More important than this com-
parison is the fact that these nine examples were rela-
tively small, while the computational advantage of our
technique can be expected to increase dramatically with
problem size.

3. Shared Memory Constraints

I Section @ we assumed that each class was subject
to a memory constraint that was independent of the
behavior of the other classes. In this section we extend
our algorithm to shared memory constraints: con-
straints on the total number of jobs in memory, rather
than on the populations of individual classes.

Let there be D domains, or shared regions of
memory. Let (4 be the capacity of domain d, i.e., the
number of jobs that can reside in that domain. Each
memory constrained job class is assigned to a domain.
Let D(r) be a function that gives the domain number of
class r if class 7 is memory constrained, and 0 other-

A (D)

wise. M(d) is the inverse function, whose result is the
set of classes belonging to domain d. To simplify the dis-
cussion we will assume that more than one class is
assigned to each domain (i.e., that D(r)=D(r') for some
classes 7#7'); dedicated domains are, of course, a spe-
cial case of shared domains. We will consider both FCFS
and priority (by class) scheduling for access to memory
within domains.

Perhaps the simplest approach to this problem is a
straightforward generalization of the algorithm in Sec-
tion 2, with the only change being the calculation of the
ur(n) in Step 3.2. This is replaced by

_ { §’r(n) n < 46,
[J.,-('n) - ¢T(Cd ‘57) n > C4—6,
where d = D(r), and 6, = 7is. Thus, we view a

s e M(d)s»r
domain shared by M classes as M smaller domains, each
used by only a single class.

We have tried this simple approach on a set of
examples related to those of the previous section, with
mixed results. Because of the unreliability of this tech-
nique, we propose a slightly more complex algorithm for
the shared memory constraint case. We develop this
algorithm as the natural extension of a very general view
of the problem, which we present next. Details of the
algorithm follow this discussion.

3.1. A General Framework

We can view the solution of an R class memory con-
strained model as the solution of R distinct single class
birth-death models. The behavior of each of these
models can be visualized as shown in Figure 3.1. For
each class r, the states of its model correspond to the
number of class r customers competing for memory.
Thus, for an open class the state space is infinite, while
for a closed class the state space is finite, with individual
states labeled from O to N;, the number of customers in
the class.

A (3) A_(4)

)\r(O) Ar(Z)

u. (1) u(2) u(3) u (4)

Figure 3.1 — Birth-Death Interpretation for an Open Class

135

A/ A A ™ A
(=) (=) () () () oo
“ R R R __

u_(5)

The model changes from state n to states n+1 and
n-1 with rates A.{n) and u,.(n), respectively. Intui-
tively, these parameters represent the rates at which
class r customers request memory and at which class 7
customers complete service, respectively. We define a
solution of the model to be the set of equilibrium state
probabilities that satisfy the flow balance constraints: in
equilibrium, the rate at which the network flows into any
state must equal the rate at which it flows out of that
state. In other words, the state probabilities for class 7,
P.(n), must satisfy the balance equations:

A(n) Pr(n) = ur(n+1) Pr(n+1),
Y En)y=1

The solution of models of this sort can easily be shown to
be:

V'n

_ = Ar(])
 P(n) —Pr(O);UO Ty

Performance measures such as throughput and mean
response time can be computed from the F,.(n).

It is important to note that for any set of positive
A (n) and P.(n) there exists a set of positive u,.(n) such
that the flow balance equations are satisfied. Thus, this
view of the problem is always sufficient, in that it is pos-
sible to obtain exact solutions in all cases, if one could
somehow deduce the A.(n) and u.(n).

The computational efficiency of any solution tech-
nique based on this view of the problem depends upon
the efficiency with which these state transition rates can
be computed. Thus, we find it convenient to let the
Ar(n) be the state dependent arrival rates to the system,
since these are readily available from the input parame-
ters of the model!. Given these values for the A.(n), the
pr(n) must be given by:

pr(n) = %} e |) pr(7 | m)

where @ = (n;n,...,ng) is a vector representing the
number of customers of each class currently in memory,
p-(7 | n) is the probability that state 7 exists given that
there are n customers of class r desiring memory, and
¢-(# | n) is the mean rate at which class r customers
complete service when the state is 71 and there are n
customers of class 7 competing for memory.

By classical decomposition theory {Courtois 1877],
the original R class model is nearly completely decom-
posable into aggregates defined by those states
corresponding to the same vector of customers compet-
ing for memory, since the rate at which customers leave
the terminals is much smaller than the rate at which
customers circulate among the service centers of the
central subsystem. Thus, ¢,(7 |n) differs only
insignificantly from the unconditioned rate ¢,(7). This
gives

e (n) ™ %‘ ¢-()p (7 | n)

=D in) T e ing) (81
j=0 s j

.t n.=j

where g.(j | n) is the probability that j customers of
class 7 are in memory given that n are competing, and
p.(# | n.7) is the probability of state # conditioned onn
customers of class 7 competing for memory, j of which
are resident.

1 We note that because of the assumptions of the models with which
we are dealing (specifically, Poisson external arrivals and exponen-
tially distributed service times at terminal service centers), this in-
Eerpretation of the A, (n) is justified.

This observation expleins Sauer's success in applying the detailed
decomposition technique directly to the R class model.

136

We note that any technique for calculating the u,(n)
that requires an enumeration over all possible 7 is
inherently unacceptable from a computational point of
view, since the number of distinct 7 is of the order

TT(Ws+1). A critical simplification in our approach,
§=)

then, is to replace the inner summation in equation (3.1)
with a single quantity representing class r's completion
rate observed for a particular customer population.
Define customer population
(7)) = @G . A71(3).3.... MR(F)), where 73(7) is the
average number of class s customers in memory condi-
tioned on there being j class 7 customers loaded. The
inner summation of equation (3.1) is then replaced by
@, (Pr (7)), class r's completion rate with population
By j (js in the subsystem.

This simplification would be exact if the completion
rates of class » were linear in the number of customers
of the other classes:

er(it) = ¢, (5;) 1—‘§m &

t#r

(3:2)

for some set of positive constants z;, where J; denotes
the state with j class v customers, and 0 customers of
the other classes. This condition then gives:

2 ¢r(ﬁ)pr(ﬁ | n.])
st n,=j

1't§"’»¢€¢ pr(1 | n.j)
=}
t

= ¢r(6j) 2

st n.=j

= 0r(B;) [1- Gz

= o0 (7 5(5))

We have examined the behavior of a number of
queueing networks to test the validity of the linearity
assumption expressed by equation (3.2). We have
observed that the completion rates of a designated class
are surprisingly close to linear in the populations of
other classes. Table 3.1 shows the completion rates of
Class 2 as a function of the number of Class 1 customers
for the central subsystem of the example used in Section
2. These rates are fairly linear over a wide range of
values. It is important to also note that the p,(” | n j)
typically have low variance, that is, they are significantly
greater than zero only for a few "adjacent” 7. Thus, for
the approximation to be reasonable in practice, the ¢,
must be linear over only a small subspace of the 7, a
much weaker condition.

Ne
1 2 3
0 ([.370 473 .495
1| .305 .400 .429
2| .258 .346 .378B
3} .23 .304 .338
N, 41} .196 271 .303
51 .174 243 R75
6 | .166 220 .251
7| .141 201 231
8| .128 .1B4 .R31

Table 3.1 - Cl. 2 Completion Rates vs. Cl. 1 Population

The introduction of the above assumption results in
a great reduction In the time and space requirements
for calculating the ,-(n), and leaves us with:

) 0.0 | n)p By (5)
j=0

Evaluating equation (3.3) requires only n operations,
glven the g, and the p,.

(3.3)

3.2. The Algorithm

Specification of the algorithm requires that we first
identily useful approximations for the quantities In equa-
tion (3.3). The calculation of the @.(#,;(/)) iz difficult
bacause of the conditioning of %, ; on 3’ . We therelore
introduce two hernogeneity assumptions:

- that the #,;(/) are independent of §, giving:

Pr (ﬂrJ) =vr ("’r.j)

where #,; is the population vector with the mean
population observed by class r for all clagses but 7,
and with § for r;

- that the mean number of customers in other clagses

seen by a class r customer is the equilibrium mean,
which results finally in:

¢r(ﬁr..f) = ¥r (Nr.g‘) (3.4)

where N, Jj 1s the population vector with the equili-
birum mean population lor all classes but r, and
with 7 for r:

Nra‘ = (f,. A, . .. oo g . .. 1iR)

While these assumptions are clearly not true in practice,
we have found that the results obltained using them are
quite good. Thus, we trade some potentia! increase in
accuracy for computational efficiency.

The remeining problem is to approximate the
g-(| n) efliciently. Let @.(J | ») be the probability
that j customers from "competitor” classes are loaded
into domain d = D{r) given that there are n customers
of class r present. A comﬁatitor class is any class in the
same domain for FCIS scheduling, and any class in the
same domain with equal or greater priority for priority
scheduling. Then:

@(Ca—5 | m) i <
g0l In)=] oy Pen
Yaw i

I'C

(3.5)

Our problem now is to approximate the &.(j|n). To do
80 we make two assumptions:

- that &(J | n) is independent of n;

- that the & behave as they would in a separable
queueing network;

Using these assumptions, the § can be calculated easily
from lnformation obtained during the solution of the R
single class models.

The detailed statement of the algorithm, which fol-
lows, should serve to clarify matters. Throughout this
description we will use d to denote D(r), the domain to
which class r belongs.

Algorithm 2 — Shared Memory Constraints

1. Let L =(4(1),(2)....4(&)) be a probability vec-
tor, where L.(7) represents an estimate for the pro-
bability that j customers of class » are loaded in
memory at equilibrium. For all memory con-
ptrained classes 7, initialize:

137

R E =0
‘r(J)=[0 atherwise

2. Create a separable queueing network from the origi-

pal memory constrained model by replacing all
memory constrained classes with batch classes,
The multiprogramming level of constrained class r

istakentobef, =). j *4.(j). the current estimate
i=1
for the mean class » multiprogramming level.

3. For each memory constrained class r :

3.1. Solve the multiple class model of Step 2 with
populations A, 4 for j varying over all feasible
velues from 1 to %.3 Observe the system
throughput rate @.(N,;) of class r for each
velue of 7.

Compute &.(f) as the jth compcnent of the
vector obtained by convolving together the Lot
all clesses s that compete with cless 7 for
memory. For domains with FCFS scheduling,
these are all other classes sharing the domain;
for domains with priority scheduling, these are
all other classes with equal or greater prlority
shering the domain.

Solve a single class high-level model consisting
of class T's external environment and a single
load-dependent service center. The service
rates u.(n) of this center are computed using
equations {3.3). (3.4), and (3.5). This solution
ylelds a vector of probabilities b.(n) Ifor the
number n of class © customers competing for
memory.

3.4, Use the b,(n) to compute a pew estimate for Z.:

- 3
LY = § bl @G + b S GK) (08)

iy +1

3.2

3.3

3.5. Calculate & new estimate for fi, from ﬂ

Repeat Step 3 until successive estimates of the n,
for each class are sufficiently close.

4. Obtain performance measures for each memory

constrained class from the most recent solution of
the appropriate high-level model. Obtain perfor-
mance measures for the unconstrained classes by
solving the queusing network deflned in Step 2 using
the final estimates for the fi, of the constrained
classes.

8.3. Computational Requirements

The space requirement of this algorithm ts dom-
inated by the space required te hold the f, and to com-~
pute the sclutions of the R class closed model. Thus, the
gspace requirement is proportional to:

KR® + ﬁ Col)
i

The time requirement is alsc dominated by these Lwo
steps, and thus is approximately:
R‘f GF + R° f G
i=1 =l
Note that these requirements ere sufficiently small that

queueing networks of any reasonable size may be solved.
In constrast, eny solution technique that requires the

Note that it is a simple matter to mode! distinot memary require-
ments far each closs by specifying domain capacities Cy, indicat-
ing the number of clase 7 jobs that can be held in domaind.

exact solution of even a single F class separable network
is severly limited in its applicability. Standard decompo-
sition techniques are therefore not practicable in gen-
eral.

3.4. Evaluation

As in Section 2, we present the results of applying
our algorithm to a number of networks solved by Sauer
using RESQ. The basic parameter settings of these
models are the same as those given in Table 2.1. How-
ever, in all cases there is a single domain shared by both
classes. Tables 3.2, 3.3 and 3.4 show the resuits of apply-
ing our technique to the model with FCFS, priority to
Class 1, and priority to Class 2 memory scheduling,
respectively. Within each table, we explore various
numbers of users per class, and various domain capaci-
ties.

Although the tables (especially 3.8) indicate a few
discrepancies, in general the accuracy of our technique
is good. This is especially the case when one considers
its small computational expense and the inaccuracy
inherent in some of the assumptions that it makes.

For these examples, Sauer reports System /370
Model 168 CPU times of up to 1623 seconds using RESQ,
and up to 2B seconds using the detailed analytic
approach. Our technique required at most 5 seconds of
VAX-11/780 CPU time; as in the case of independent
memory constraints, the computational advantage of our
technique can be expected to increase dramatically with
problem size.

The existing error can be attributed to mis-
estimates of the . (n) due to various simplications used
to increase efficiency. Some of these are:

- An approximation has been used to compute the
#-(V, ;). The approximate technique is preferabie
to exact techniques because of the considerably
greater computational expense of the latter. Addi-
tionally, the calculation of the ¢.(A, ;) in general
requires the selution of a model with a non-integer
number of customers in closed classes, since the
average multiprogramming level is typically not an
integer. 1f it were possible to obtain the or(Ne)
more accurately without greally increasing the
computational expense of the algorithm, its accu-
racy would undoubtedly be improved somewhat.

CPU utilization Cl. 1 response time Cl. 2 response time
M| M Oy
TOX. simul. approx. simul. approx. simul.
6 .62 (.60.,.63) 74 (.73,.76) 4.78 4,34,4.93
20 2 4 .81 (.80,.62) .85 (.91..95) 4.73 %4,46.4.883
5 58 (.53,.54) 1.65 (2.35,3.47) 4.38 (4.85,5.12)
.83 (.82,.84) 1.06 (1.00,1.04 B.14 6.95,7.92
30 3 6 .81 (.B3,.85) 1.24 (1.20,1263 B.13 §6,B7.7.47§
g .79 __E.Bﬁﬁl) 2.05 (344362)] 702 {6.69,7.01)
1 .94 .95,.96) 1.52 (1.47,1.54) | 14.33 12.41,14.00
40 4 |12 .93 (.95,.986) 1.61 (1.68,1.71) 14.85 §11.63.12.743
6 .89 (.90,.90) 2.16 (3.19,3.35) 13.89 {9.23,9.81)
Table 3.2 — Shared Memory Constraint, FCFS Memory Scheduling
CPU utilization Cl. 1 response time T cz response time
Ml Mz Cl -
TOX. simul. Approx. sirpul. rox, simul.
8 .62 (.60,.63) 73 (.74,.77) 4.76 (4.39,5.02)
20 2 4 .62 (.60,.82) 78 (.89,.93) 4.7 (4.39,4.81)
2 .60 (.49,.50) 1.28 (1.86,1.95) | 4.37 (9.85,10.23)
9 .83 (.82,.84) 1.01 (1.04,1.09) B.12 (6.78,7.61)
30 3 6 .84 (.81,.82) 1.03 (1.29,1.35) 7.90 (7.27,7.92)
3 .81 (.59,.60) 1.68 (2.32,2.43) 8.75 _ (24.07,27.30)
18 .84 (.95,.96) 1.51 (1.47,1.53) 14.42 (1R2.84,14.15)
40 4 | 12 .95 (.95,.96) 1.42 (1.59,1.67) 14.70 (1R.17.13.53)
5 .97 J‘BlLBZ)_l 1.56 (2.192.28) | 1245 (17.84,22.13)
Table 3.3 — Shared Memory Constraint, Priority to Class 1
CPU utilization Cl. 1 response time Cl. 2 response time
My | Mz | O T
Prox. simul. approx. J_simul. approx. J simul.
6 .82 (.62,.85) 75 (.75,.78) 4.70 (4.56,5.11)
20 2 4 .81 (.60,.62) .92 (.91,.95) 4.55 (4.16,4.53)
2 .55 (.54,.55) 2.78 (2.62,2.76) 3.80 (3.60,3.75)
9 .83 (.84,.86) 1.08 (1.08,1.11) 7.81 (7.24,8.11)
30 3 8 .82 (.81..82) 1.47 (1.41,1.48) 7.03 (6.22,6.67)
3 .69 (.73,.74) 5.32 (4.19,4.40) 4.91 (4.74,4.98)
18 .94 (.95,.96) 1.52 (1.45,1.51) 14.19 (12.06,13.78)
40 4 | 12 .95 (.95,.96) 1.69 (1.64,1.72) 12.95 (11.68,12.97)
6 .88 (91,92) | 422 (3.58,3.77) B.11 (7.72,8.18)

Table 3.4 — Shared Memory Constraint, Priority to Class 2

138

- The computation of the gq,.(j | n) is in error, since
we have assumed that the queue length distribu-
tions I, behave as they would in a separable net-
work, while the models we are considering are not
separable. Unfortunately, the approximation is
quite sensitive to errors in the ¢(j | »). This sensi-
tivity exists because the output rate of the central
subsystem can be nearly linear in the number of
customers resident in it, particularly if the subsys-
tem is lightly used. In such cases, the expression
for the approximate w.{(n) given by equation (3.3)
can be considerably in error, resulting in even
larger errors in response times. This effect is most
pronounced for models in which the central subsys-
tem is lightly utilized, which occurs whenever the
domain size is small. The ill effects of this can be
seen easily by comparing the examples in this sec-
tion: the smaller the domain size, the less accurate
the result.

- #;(7) is not independent of j. This simplification
probably is the cause of much of the error in the
examples. Unfortunately, it appears to be difficult
to find a computationally feasible alternative that is
more accurate.

- There are discrepancies in the way our algorithm
(specifically, equation (3.5)) represents the details
of domain scheduling. Specifically:

- We do not, in fact, model FCFS scheduling, but
rather "processor sharing".

- We model preemptive priority scheduling,
whereas Sauer simulates non-preemptive prior-
ity.

4. Subsystems With Population Constraints

Memory is not the only resource to impose a popula-
tion constraint in computer systems. Rather, it is one
specific instance of simultaneous resource possession, a
general phenomenon that violates the separability condi-
tions of queueing network models. In single class queue-
ing networks, flow equivalent servers have been used to
obtain approximate solutions for a number of simultane-
ous resource possession problems; for example, Chandy
and Sauer [1978) use this approach to analyze a CDC
batch system in which the number of "peripheral proces-
sors” (indistinguishable 1/0 controllers) places a limit on
the number of disks that can be active simultaneously,
and Jacobson and Lazowska [1982] use this approach to
analyze a fairly general class of simultaneous resource
possession problems.

The difference between modelling a memory con-
straint and modelling a more general population con-
straint arises in the high-level model: in the former case
customers do not share resources outside of the popula-
tion constrained subsystem (the “external environment”
consists of terminals or an arrival process), while in the
latter case they do (for example, jobs share the CPU
when they are not contending for service at the
population constrained 1/0 subsystem). Although the
algorithm presented in Section 2 does not admit such
sharing, it can be generalized to do so. The essence of
this generalization is the replacement of the population
constrained subsystem with # flow-equivalent servers,
one for each class, whose load-dependent throughput
rates are determined iteratively.

We require that the subsystem of interest impose an

independent population constraint (, on each of the
classesr=1..F . The algorithm follows:

139

Algorithm 3 — Subsystems With Population Constraints

1. Obtain initial estimates of the average subsystem
customer populations for all classes, 7, for r=1.. k.
To do this, ignore the population constraints, yield-
ing a separable queueing network that can be
efficiently analyzed. Set 7 to the minimum of (&
and the average class 7 subsystem population ob-
served in the unconstrained model.

2. In preparation for the iteration, construct two
queueing network models, a low-level model and a
high-level model, each of which is easily analyzed:

- The low-level model includes only those
resources belonging to the population con-
strained subsystem. Each «class r is
represented as a batch class with population
iy

- The high-level model includes those resources
in the remainder of the system (the portion
external to the population constrained subsys-
tem) plus R load-dependent servers. Each
class r visits its own load-dependent server,
which represents the population constrained
subsystem, plus appropriate other resources.

3. Iterate as follows:

3.1. Consider the low-level model.
r=1.R:

- For each feasible population of the desig-
nated class, 7.=1..(., solve this model
obtaining the throughput rate of class 7,
@r (1),

- Create a single class load-dependent
server whose throughput rate with queue
length nn, u(n), is defined by:

pln) n=LG
er(CG) n>Cr

3.2. Consider the high-level model. Using the &
load-dependent servers defined in Step 3.1,
solve this model, obtaining the queue length
distribution of each class = at its load-
dependent server, p,.(n) . Use this distribution
to calculate a new estimate for the average
subsystem population of class 7 :

C, C,
7, = an + (LR)G

For each class

p(n) =

Repeat Step 3 until successive estimates of the
average subsystem population for each class are
sufficiently close.

4, Obtain performance measures directly from the
high-level model.

This algorithm has been programmed and used with
good results. Although it has not been extensively
evaluated, there is every reason to believe that its
behavior will be comparable to that of the algorithm in
Section 2. In the manner of Section 3, it can be
extended to situations in which several classes share a
population constraint. Classes without population con-
straints can be handled by imposing artificial constraints
that are (almost) never reached; appropriate values can
be determined from the queue length distributions at
the appropriate load-dependent servers.

5. Summary

Separable queueing network models are important
tools in the design and analysis of computer systems
because, for many applications, they strike an appropri-
ate compromise between accuracy and efficiency.
Although the class of separable queueing networks is
fairly rich, certain characteristics of computer systems
that can have significant impact on system performance,
such as simultaneous resource possession in general and
memory constraints in particular, cannot be modelled
by separable networks. Specialized solution techniques
must be devised to represent the effects of these charac-
teristics.

In this paper we have introduced a technique for
analyzing multiple class queueing networks in which the
classes have independent memory constraints. We have
extended our technique to situations in which several
classes share a memory constraint. We have sketched a
generalization to situations in which a subsystem within
an overall system model has a population constraint.

Our technique was devised within the context of a
larger effort to design a queueing network solution pack-
age suitable for use on very large problems. Our algo-
rithm is compatible with the extremely time- and space-
efficient iterative approximate solution techniques for
separable networks. This level of efficiency is manda-
tory; achieving it has cost very little in terms of overall
accuracy.

Acknowledgements

Pat Jacobson suggested the generalization to popu-
lation constrained subsystems described in Section 4.
Charlie Sauer assisted us in interpreting his simulation
results.

References

[Bard 1979]
Yonathan Bard; "Some Extensions to Multiclass
Queueing Network Analysis’; Proc. IFIP W.G.7.3
International Symposium on Computer Performance
Modelling, Measurement and Evaluation, Vienna,
February 1979.

[Baskett et al. 1975]
Forest Baskett, K. Mani Chandy, Richard R. Muntz
and Fernando G. Palacios; "Open, Closed and Mixed
Networks of Queues with Different Classes of Custo-
mers"; JACM 22, 2, April 1975, pp. 248-260.

[Brandwajn 1974]
Alexandre Brandwajn; "A Model of a Time-Sharing
System Solved Using Equivalence and Decomposi-
tion Methods'; Acta Informatica 4, 1, 1974, pp. 11-
47.

140

[Brown et al, 1975]
R.M. Brown, J.C. Browne and KM. Chandy; "Memory
Management and Response Time"; CACM 20, 3,
March 1977, pp. 153-185.

[Bryant 1982]
R.M. Bryant; "Maximum Processing Rates of Memory
Bound Systems"; JACM 29, 2, April 1982, pp. 461-
477.

[Chandy et al. 1975]
KM. Chandy, U. Herzog and L. Woo; "Parametric
Analysis of Queueing Networks', /BM J. Kes.
Develop. 19, 1, January 1975, pp. 36-42.

[Chandy & Neuse 1982}
K.M. Chandy and D. Neuse; "Fast Accurate Heuristic
Algorithms for Queueing Network Models of Comput-
ing Systems"; CACM 25, 2, February 1982.

[{Chandy & Sauer 1978]
K. Mani Chandy and Charles H. Sauer; "Approximate
Methods for Analyzing Queueing Network Models of
Computing Systems"; Computing Surveys 10, 3,
September 1978, pp. 281-317.

[Courtois 1977]
P.J. Courtois; Decomposability: Queueing and Com-
puter System Applications; Academic Press, 1977.

[Jacobson & Lazowska 1982]
Patricia A. Jacobson and Edward D. Lazowska: "The
Method of Surrogates; Simultaneous Resource Pos-
session in Queueing Network Models of Computer
Systems"; CACM 25, 2, February 1982.

[Keller 1976]
T.W. Keller; "Computer System Models with Passive
Resources'; Ph.D. Thesis, University of Texas at Aus-
tin, 1976.

[Lam 1977]
S.S. Lam; "Queuing Networks with Population Size
Constraints"; /BM J. Kes. Develop. 21, 4, July 1977,
pp. 370-378.

[Menasce & Almeida 1981]
Daniel A. Menasce and Virtilio A.F. Almeida; "Com-
puting Performance Measures of Computer Systems
with Variable Degree of Multiprogramming'; Proc.
CMG X1I, pp. 97-106.

[Sauer 1981]
Charles H. Sauer; "Approximate Solution of Queue-
ing Networks with Simultaneous Resource Posses-
sion”; IBM J. Res. Develap. 25, 6, November 1981,
pp. 894-903.

