

Telecommunication Network Design with Parallel Multi-objective
Evolutionary Algorithms

Susana Duarte Flores, Benjamín Barán Cegla, and Diana Benítez Cáceres

Centro Nacional de Computación, Universidad Nacional de Asunción
San Lorenzo, Paraguay - P.O. Box: 1439

bbaran @ cba.com.py
http://www.cnc.una.py

Abstract

This paper proposes parallel
asynchronous versions of promising multi-
objective evolutionary algorithms,
implemented over a network of personal
computers, with the aim of designing an
optimal telecommunication network in the
presence of multiple conflicting objectives
as cost and performance. The resulting
tool provides a set of Pareto optimal
solutions, facilitating the decision making
process of designing a telecommunication
network with a mix of different
technologies.

1 Introduction

The design of communication networks
has been solved using operational research
approaches for several years [1]. At the
beginning, it was solved as a single
objective optimization problem, using the

cost of the network as a typical objective to
be minimized, subject to several constrains
as reliability, maximum delay, etc.

However; it is now clear that the design
of a communication network is better
stated as a multi-objective optimization
problem [2]. In this new multi-objective
context, the aim of a designer is to
simultaneously optimize a set of
conflicting objectives as: reliability, cost,
delays, throughput, capacity, etc, while
maintaining restrictions over another set of
requirements as: minimum reliability,
maximum cost, maximum acceptable
delay, minimum speed, etc. This problem
is known to be NP-Hard [3].

Many approaches have been designed to
address this problem, some of them based
on various kinds of graph perturbation
heuristics [4, 5], and others founded in
techniques from artificial intelligence
(taboo search [6], simulated annealing [7]
and genetic algorithms [1, 2, 8, 9]). An
interesting summary of these methods can
be found in [9]. To shorten the discussion
it is useful to say that:

a) none of them treats the problem as a
multi-objective problem, but they
would rather choose an objective to

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
LANC'03 October 3-5, 2003, La Paz, Bolivia
Copyright 2003 ACM 1-58113-789-3/03/0010.....$5.00.

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1035662.1035663&domain=pdf&date_stamp=2003-10-03

optimize, leaving the others as
restrictions;

b) all of them can be applied only to
networks of limited magnitude, and in
very restricted situations. As the size
of commercial systems grows there is
a complete lack of tools to aid in the
designing process; and the
methodology of trial & error that has
been applied is neither effective nor
efficient.

The present work proposes the use of
Multi-Objective Evolutionary Algorithms
(MOEA) to solve the design problem and
presents an implementation of two
versions of the Strength Pareto
Evolutionary Algorithm (SPEA) [10] and
the Non Dominated Sorting Genetic
Algorithm (NSGA) [11]. This paper also
examines and compares the results
obtained with both algorithms, with the
aim of helping the designer of a network to
choose the best tool for his/her work. The
SPEA was chosen because it implements
elitism through the maintenance of an
external population of best solutions found
during the whole generational loop; then,
convergence is guaranteed [12]. NSGA
was chosen because of its promising
experimental results [13]. As this later
algorithm does not implement elitism, we
have decided to alter its original
formulation slightly. In addition; it was
added an external population with the only
purpose of archiving good solutions
already found. This external population of
non-dominated solutions does not
participate of the genetic operators.

The rest of this work is organized in the
following way: section 2 introduces the
problem to be solved with its restrictions
and generalities. Section 3 discusses the
test problem. Section 4 and 5 contain

descriptions of our implementations.
Section 6 includes performance metrics
used for the testing procedure. Section 7
presents experimental results. Finally,
section 8 presents some conclusions and
directions for further work.

2 Statement of the Problem

A network can be modeled by a
probabilistic undirected graph [1] G = (V,
L, p), where:

• V is the set of nodes.
• L is the set of links (arcs). The

cardinality of L is also the number of
possible links and can be expressed
as

()
2

1−
==

VV
Ln (1)

• and p is the reliability of links.

A network design problem consists in
choosing the communication links of
different characteristics (or technologies)
between a given set or location centers
(nodes). The resulting network should
acquire a certain set of values for the
objectives (as cost and reliability) and
complied with another set of requirements
(as maximum cost or minimum reliability).

From the above definitions, it is obvious
that the problem of a backbone network
design optimization can be expressed as a
multi-objective optimization problem. As
the problem can be as big as a designer
states it (i.e., he can choose as many
objectives as he wants and as many kind of
links as technology and budget lets him),
there is a need to place limits on it,
according to the available computer
resources he has access to. In the present
work, the design problem is stated as the
optimization of only two objectives (k =

2

2): reliability and cost. The fact that every
network topology must be connected is
expressed by restricting reliability to
positive values. Then, the proposed
solutions must meet a single and very
simple reliability requirement (m = 1). It is
assumed one bi-directional link between
each pair of nodes (redundancy is not
allowed). Thus the potential links between
every pair of nodes are the decision
variables. Every decision variable x is
composed of a tuple (x1, x2, ..., xn).

The constraints on redundancy and
number of objectives are only apparent and
do not make the problem less general, as
the addition of new objectives is a trivial
problem, even though it may require more
computational resources. Also, redundant
links can be treated as another kind of link,
with its own cost and reliability [2]. Then,
the design problem is stated as:

Optimize y = f(x) = (f1(x), f2(x)) (2)
subject to e1(x) > 0

where:
• x = (x1, x2, ... , xn) ∈ X is the decision

vector; every xi {0, 1, ..., t} represents
a (type of) link between a pair of
nodes and t is the number of different
link types, while 0 is used to indicate
the absence of connection;

• y = (y1, y2) ∈ Y is the objective
vector;

• f1(x) is the reliability corresponding
to a configuration x;

• f2(x) is the cost function of the same
configuration x;

• e1(x) refers to the minimum
acceptable reliability.

Although parameters like delay, speed,
capacity and throughput are important for
innovative applications, the main network
design objectives are still cost and

reliability [2]. Both functions were studied
in almost all papers found referring to
design optimization problems. Sometimes,
the problem was declared as the
minimization of cost subject to a reliability
constraint; while some others as the
maximization of reliability subject to a cost
constraint. Even some times [1] a weighted
sum approach of both objectives was
suggested. But the multi-objective nature
of the problem has not been previously
evidenced.

The concept of reliability depicts the
probability of a system to have an expected
performance over a time interval. So, the
reliability of a system depends on its
configuration and the reliability of its
components. There are many methods and
metrics to measure reliability. For our
instance of the problem, to ensure that
there is always a communication path
between every pair of nodes in the
network, the all-terminal reliability metric
was chosen (i.e. the network forms at least
a spanning tree) [2, 3]. The reliability
calculation is done via Monte Carlo
simulations because there are not other
methods that can give good results in
acceptable time (the problem of computing
the reliability of a network is, in its
context, NP-Hard [3]).

The cost of each configuration is
calculated adding up the costs of every link
added to the topology. Each link has a cost
that is the product of the distance it covers
and its cost per distance unit, given that
only fiber optic links are considered in this
paper. However, there is no difficulty in
considering a given cost per link
depending on the technology to be
considered (microwave, satellite, etc.).

In order to solve the problem the
following assumptions are necessary [8]:

3

• nodes are perfectly reliable (failure
of nodes can be simulated by a
failure of its incident links);

• the cost and reliability of each
potential link are known;

• links can be in only one of two
possible states: operational or failed;

• links fail independently, i.e. the
failure in a link does not imply the
failure of another one;

• no repair is considered, i.e. when a
link fails it is not repaired and does
not enter into operation afterwards.

3 Test Problem

The test problem is based on the expansion
of the ULAK-NET network, first published
in [8]. It is a simplified version of a real
network design problem conceived to link,
using distinct types of fiber, 19 universities
and research centers located in 9 different
cities of Turkey. It was chosen because it is
the largest published example found during
our research. Besides, the results of this
example were available and they were used
to compare with our experimental results.

The distance matrix in kilometers for
each pair of nodes is presented in the
Appendix (Matrix 1). Three types (t = 3)
of fiber optic links are considered for each
pair of nodes; their costs and reliabilities
are (333 $/km, 96%), (433 $/km, 97.5%)
and (583 $/km, 99%) respectively. Then,
the size of the search space is in the order
of 10114 individuals of the form (x1,…, x171)
with their corresponding cost and
reliability.

4 Description of the Implementation

For the application of the Multi-Objective
Evolutionary Algorithms (MOEAs), each
possible solution x = (x1, x2, ..., xn) was

coded using a string of integer numbers, xi
∈ {0, 1, ..., t}. To obtain the string an
adjacency matrix of the graph that models
the network was written [14]. Since this
matrix is symmetrical, only the upper
triangular part was inserted into the
chromosome. For example, to code the
network of figure 1, the matrix of figure 2
was used.

Figure 1. Graphical representation of a computer
network backbone.

 1 2 3 4 5
1 0 1 3 0 0

2 1 0 0 1 2

3 3 0 0 0 2

4 0 1 0 0 0

5 0 2 2 0 0

Figure 2. Adjacency matrix for network of Figure 1.

The final representation x taken from

the upper triangular part (and not
considering the diagonal) is the string
1300012020.

Continuing with the test problem, the
calculation of reliability is accomplished
with Monte Carlo simulations [2, 15]. Only
10000 replications were made due to the
high computational cost. Solutions not
achieving the minimum reliability
requirement are not inserted in the external
population, even though they may be part
of the purported Pareto set. In any case,
they remain in the current population
because feasible children can be generated
from them. Since it was formerly stated,
the total cost of a network is the sum of the
costs of its links.

 1

 2

 3

 4

 5

 1 1

 2
 3

 2

4

Following the definition of SPEA [10],
two populations of individuals are kept, the
first one (depicted as P) is known as the
current population, while the second one or
external non-dominated set P’ maintains
every non-dominated individual found so
far.

NSGA is implemented in two versions,
the first one following the original
formulation suggested by the authors [11],
and the second one with an external non-
dominated backup population P’, as was
explained above.

The process of finding the non-
dominated individuals in P is based on the
concept of dominance [12]. We say that a
solution χa dominates another solution χb
if it is a better solution in at least one
objective function without being worse in
any other objective function. For example,
if the solution has a better reliability
without costing more. With this dominance
concept, the implemented MOEAs
implement elitism in the following way:
every time a new non-dominated
individual is found using an evolutionary
algorithm, it is compared against the
members in P’; if it is a new solution, it is
inserted into P’ erasing any dominated
suboptimal solution that was kept in P’.
The number of individuals in P is N and
remains constant during the whole
generational loop for both algorithms, but
the number of individuals in P’ may
change from one generation to the other.
To avoid a computer overflow, P’ can not
have more individuals than a previously
stated number of N’. If the size of P’ is
greater than N’ clustering should be
performed to eliminate any danger of
overflow. The process of clustering [10,
16] has been implemented, but was never
used in our experimental computations

because the maximum size of the external
population was never reached.

SPEA and NSGA differ from the
traditional genetic algorithm only in the
way fitness is assigned to individuals. The
computation of the fitness value follows
the procedure explained in [10] and [11,
13], respectively.

In SPEA, every member of P’ has a
fitness equal to the number of individuals
in P it dominates plus one; while every
member of P has as its fitness the sum of
fitness of the members of P’ that
dominates him. In this way, it is ensured
that members of P’ have a better fitness
value than members of P. Notice that this
is in the context of fitness minimization.
The fitness assignment process, as well as
clustering induces the maintenance of
diversity [10].

In NSGA, fitness is assigned after a
classification of individual into ranks. First
of all, the non-dominated solutions are
identified. All these non-dominated
solutions belong to the first rank and the
same high fitness value is assigned to
them. To maintain diversity, these
solutions undergo a fitness sharing
procedure. After sharing their fitness value,
the solutions of the first rank are
temporarily ignored to continue with the
classification of the other solutions. The
same routine is applied again and a second
level of ranks is determined. The solutions
in this rank receive an original fitness
value that is slightly lower than the worse
fitness value assigned to the solutions of
the first rank. Again this fitness is shared
between all the individuals of this rank.
This iterative process continues until an
adequate fitness value is assigned to every
member of the population.

5

Selection is implemented with binary
tournaments, and the next generation is
created via one point crossover. The
mutation operator takes m% individuals
from the population and changes every
allele from its chromosome with
probability 0.3.

The parameters of the algorithms used
in our experiments are the following:

• Population size (N): 100 individuals.
• External non-dominated set size

(N’): 100 individuals.
• Maximum number of generations

(gmax): 10000.
• Crossover probability (pc): 1.
• Mutation rate (rm): 0.3.
• Percentage of population mutated in

each generation (m%): 5%.

The initial population for the algorithm
was generated probabilistically using a
heuristic algorithm where individuals with
fewer links have a greater probability of
being inserted into the initial population.
This approach has shown its usefulness to
speed up convergence.

A stop criterion has also been
implemented. The algorithm continues
with its generational cycle if new
individuals are being inserted into P’ every
50 generations, or if the maximum number
of generations (10000) has not been
reached. Those numbers were chosen for
the first implementation and proved to be
very good for the test problem, but a
complete study still should be done.

When the algorithm stops, it has its
solutions in P’, which is called the known
Pareto set Xknown. The corresponding
objective vectors Yknown = f(Xknown) is the
known Pareto front.

5 Parallel Versions

Since the calculation of objective values,
especially the computation of reliability, is
extremely time consuming, the execution
time of the proposed algorithms can be
improved running them in a distributed
environment. Moreover, the total
implementation costs can be reduced
significantly if we use a network of
inexpensive personal computer instead of a
massively parallel supercomputer.

The implementations for both
algorithms consist of two kinds of
processes, an organizer or master process
and several slave processes. There is only
one organizer, with the responsibility of
creating all the slaves and collecting the
final results. The slaves do the real work.

The Pseudocode1 is for the organizer
process.

Procedure Organizer()
Begin
 Spawn H slaves
 flag_counter = 0
 While flag_counter < H
 Wait flag from H processes
 If a flag is received
 Collect results from process that sent a
 flag and kill him
 flag_counter=flag_counter+1
 End If
 End While
 Do union operation over sets obtained from
 slaves
 Apply Pareto dominance to obtain Xknown

 Calculate Yknown
 Print final result.
End

Pseudocode 1. Organizer Procedure.

Straight away, the slaves are discussed.
Given a distributed system with H
processors, in each processor h, h ∈ {1, .. ,
H}, two populations are kept Ph(g) and
P’h(g). The population Ph(g) contains the
members generated by crossover in the

6

previous generation g-1; while P’h(g) is the
external set of non-dominated solutions
found from the beginning of the
generational loop until generation g is
reached.

Each processor h runs its own version
of the evolutionary algorithm. Once new
solutions for P’h(g) are found, at
generation g, processor h broadcasts them
to all the other processors. This procedure
is known as migration and consists on
sending (and receiving) good solutions
known as migrants. The receiving
processors accept all the migrants, as long
as their memory capacity is not exceeded.

For the sequential version the
population is composed of N individuals.
As the parallel version is implemented in
H identical processors, the size of each
population Ph will be N/H. When migrants
are received, the population grows;
returning to its normal level after the
genetic operators (as selection) is applied.
The Pseudocode2 is for the Slave
Procedure:

This parallelization scheme is
completely different from other suggested
approaches because it includes the
independent evolution of many sub-
populations that exchange information
about good individuals, at every
generation, in an asynchronous
environment; while other proposals are
based in the parallelization of portions of
the generational loop, like the computation
of objectives of the fitness assignment.
Experimental results demonstrate that this
new proposal is effective and efficient.
This empirical conclusion is very
important mostly because other suggested
approaches have not yet been tested in any
kind of problems.

For the parallelization of the NSGA
without external population, the selected
scheme is very similar, except for the
selection of migrants, which is
straightforward. In every generation, all
non-dominated solutions are broadcasted.
Again, all migrants are received and are
placed in the current population. The size
of the population is kept stable through the
subsequent application of the selection
genetic operator.

Procedure Slave()
Begin
 Read initial input parameters
 Read initial population P
 Gen_Count = 1
 While StopCondition is not reached and
 Gen_Count < gmax
 Compute values of objectives for each
 individual
 Receive migrants from other processes
 and add them to current population P
 Find non-dominated individuals in P
 Update external non-dominated set P’
 Broadcast new solutions from P’
 If number of external stored solutions
 exceeds N’
 Prune P’ by means of clustering
 End If
 Calculate fitness of individuals in P and P’
 Select individuals from the union set P+P’
 until the mating pool is filled
 Generate new set P applying
 crossover & mutation
 Gen_Count = Gen_Count + 1
 End While
 Send flag to Organizer informing process
 is done
 Send individuals from P’ to the Organizer
 Wait for a kill signal sent by the Organizer
End.

Pseudocode 2. Slave Procedure.

6 Performance Metrics

To evaluate experimental results of the two
algorithms, an appropriate test suit metrics
is used because no single metric can
entirely capture performance, effectiveness

7

and efficiency for multi-objective
evolutionary algorithms.

Since most of these metrics reflect the
likeness between the true Pareto optimal
front Ytrue and the computed Pareto front
Yknown, a good approximation of the true
Pareto optimal front is built by gathering
all non-dominated individuals from all
computed sets. In other words, for the
following results, the real Pareto Optimal
front is approximated by the best known
solutions of all our experiments.

The test suit was taken from [12] and
comprises the following metrics:
1) Overall Non-dominated Vector

Generation (ONVG), that simply
counts the number of solutions in the
Pareto front Yknown

cknownYONVG ||
∆
= (3)

where
c
 denotes cardinality.

2) Overall true Non-dominated Vector
Generation (OTNVG): counts the
number of solutions in the Pareto front
Yknown that are also in the true Pareto
optimal front Ytrue.

{ }
ctrueknown YyYyyOTNVG ∈∧∈=

∆
 (4)

3) Overall Non-dominated Vector
Generation Ratio (ONVGR):

ctrueY

ONVG
ONVGR

||

∆
= (5)

It denotes the ratio between the number
of solutions in Yknown to the number of
solutions in the true Pareto front Ytrue.
Since the objective is to obtain a set Yknown
as similar to the true Pareto front as it is
possible, a value near to 1 is desired.

4) Error Ratio (E):

ONVG

e
E

N

i i� =
∆
= 1 (6)

where:

knowni Ye in vector a if 0=

trueYFront Pareto truein the also is

otherwise 1 =

This ratio reports the proportion of
objective vectors in Yknown that are not
members of Ytrue. Therefore, an error ratio
close to 1 indicates a poor correspondence
between the obtained and the true Pareto
front, i.e. E = 0 is desired.

5) Generational Distance (G) [12]:

()
ONVG

d
G

N
i i

2
1

1
2

� =
∆
= (7)

where di is a distance (in objective space)
between each objective vector F in Yknown
and its nearest correspondent member in
the true Pareto front Ytrue. The Euclidean
distance is recommended in [12]. A large
value of G indicates Yknown is far from Ytrue
being G = 0 the ideal situation.

7 Experimental Results

The results presented here were obtained
from successive runs over a 10 Mbps
Ethernet network composed of up to 8
personal computers, each one with AMD
K6-2 350 MHz processor, with 128 MB of
RAM. The program code is entirely written
in C, and the parallel implementation was
done using PVM (Parallel Virtual
Machine) running over LINUX (Mandrake
7.0).

A summary of our experimental results
using SPEA and NSGA with external
populations are shown in Tables 1 and 2,

8

where the first column identifies a given
run, the second column gives the number
of processors running in parallel, columns
3 to 6 presents the above defined
performance metrics, column 7 gives the
running time (in hours), while the last
column presents a rank considering as
performance metrics of a running columns
3 to 7, being rank 1 the set of optimal runs.

Table 1. Experimental Result and Performance Metrics
of the SPEA algorithm for 10 runs, using P = 1, 2, 4

and 8 processors

P ONVG OTNVG ONVGR E Time Ran
k

1 1 41 0 0.323 1 8.64 7
2 1 42 0 0.331 1 8.712 7
3 1 46 0 0.362 1 8.95 7
4 1 46 0 0.362 1 8.45 6
5 1 51 0 0.402 1 9.003 5
6 1 44 3 0.346 0.932 8.35 6
7 1 43 1 0.339 0.977 8.96 7
8 1 51 0 0.402 1 8.472 5
9 1 51 2 0.402 0.961 8.269 3

10 1 57 0 0.449 1 8.726 4
11 2 45 4 0.354 0.911 5.946 5
12 2 47 6 0.370 0.872 5.267 4
13 2 52 0 0.409 1 5.002 4
14 2 56 2 0.440 0.964 5.637 3
15 2 57 0 0.449 1 5.891 3
16 2 41 5 0.323 0.878 5.236 4
17 2 47 7 0.370 0.851 5.189 3
18 2 50 2 0.394 0.96 4.968 3
19 2 54 0 0.425 1 4.256 3
20 2 46 3 0.362 0.935 4.781 3
21 4 49 1 0.386 0.980 2.78 3
22 4 52 1 0.409 0.981 2.64 2
23 4 56 2 0.441 0.964 2.859 2
24 4 41 10 0.323 0.756 3.05 1
25 4 59 3 0.465 0.949 2.956 2
26 4 47 3 0.370 0.936 2.567 3
27 4 49 8 0.386 0.837 2.368 2
28 4 54 3 0.425 0.944 2.945 2
29 4 53 2 0.417 0.962 2.847 2
30 4 51 12 0.402 0.765 2.369 1
31 8 55 0 0.433 1 1.498 1
32 8 50 1 0.394 0.98 1.486 1
33 8 49 6 0.386 0.878 1.56 1
34 8 56 11 0.441 0.804 1.689 1
35 8 53 9 0.417 0.830 1.67 1
36 8 61 3 0.480 0.951 1.547 1
37 8 47 2 0.370 0.957 1.689 1
38 8 51 6 0.402 0.882 1.487 1
39 8 58 5 0.457 0.914 1.694 1
40 8 59 4 0.465 0.932 1.567 1

In general, the ranks were built in such a
way that any run of a given rank k>1 is
dominated by at least one run of rank (k-1).

Results using the original NSGA without
an external population are not presented
because it is clearly worse than its version
with elitism.

Table 2. Experimental Result and Performance Metrics
of the NSGA algorithm with external population for 10

runs, using P = 1, 2, 4 and 8 processors

P ONVG OTNV
G

ONVGR E Time
Ran

k
1 1 32 4 0,224 0,875 11.894 8
2 1 41 0 0,287 1 9.956 10
3 1 29 0 0,203 1 9.036 3
4 1 31 5 0,217 0,839 10.894 11
5 1 45 0 0,315 1 11.563 7
6 1 44 0 0,308 1 10.547 8
7 1 34 2 0,238 0,941 11.451 12
8 1 36 3 0,252 0,917 11.354 5
9 1 44 1 0,308 0,977 10.256 5

10 1 46 2 0,322 0,957 11.378 6
11 2 35 0 0,245 1 5.946 2
12 2 44 6 0,308 0,864 6.784 2
13 2 42 8 0,294 0,810 5.781 8
14 2 33 14 0,231 0,576 6.124 8
15 2 31 0 0,217 1 5.787 3
16 2 45 8 0,315 0,822 6.003 5
17 2 39 0 0,273 1 5.961 9
18 2 42 5 0,294 0,881 5.649 7
19 2 50 0 0,350 1 5.891 2
20 2 43 2 0,301 0,953 5.678 7
21 4 39 2 0,273 0,949 2.78 2
22 4 46 11 0,322 0,761 3.208 6
23 4 51 8 0,357 0,843 2.859 3
24 4 47 0 0,329 1 3.05 1
25 4 39 3 0,273 0,923 2.956 2
26 4 37 5 0,259 0,865 3.103 3
27 4 45 6 0,315 0,867 2.864 2
28 4 35 0 0,245 1 2.945 4
29 4 39 4 0,273 0,897 2.847 2
30 4 45 0 0,315 1 2.965 5
31 8 39 0 0,273 1 1.598 2
32 8 47 6 0,329 0,872 1.678 1
33 8 52 3 0,364 0,942 1.697 3
34 8 46 0 0,322 1 1.7 3
35 8 43 18 0,301 0,581 1.764 4
36 8 41 4 0,287 0,902 1.767 1
37 8 42 3 0,294 0,929 1.77 1
38 8 39 1 0,273 0,974 1.801 2
39 8 48 5 0,336 0,896 1.807 4
40 8 56 4 0,392 0,929 1.853 1

Comparing tables 1 and 2, it is clear that
the SPEA algorithm is the one with the
best performance given that it founds the
larger number of solutions (ONVG) with a
fewer percentage of suboptimal solutions
(not included in Ytrue), using for its
calculation less time than its NSGA
counterpart.

9

At the same time, parallelism proved to
be very efficient in this context, as can be
noted in tables 1 and 2, given that the
average rank of a run improves with the
number of processors for all the
implemented algorithms.

8 Conclusions and Further Work

This paper first proposes the use of
MOEAs to solve the network design
problem. Several MOEAs alternatives
were tested, being the SPEA the one with
the best performance running in a network
of personal computers, showing an
excellent scalability in parallel executions.
To run the experiments, a near real world
test problem first published in [8] was
used, obtaining a solution with a cost of
1,755,474 M$ and a reliability of 0.991,
the best known so far (considering as best
already published result the solution with a
cost of 1,987,805 M$ and the same
reliability [2]).

As future work, the authors are
implementing more objective functions as
maximum throughput, minimum delay,
minimum number of links, between other
objectives. At the same time, other
MOEAs are being tested in the context of
the network design problem, as well as a
larger number of processors, especially in a
heterogeneous network of computers and
communication devices, as Internet.

References

1. Dengiz B., Smith A. B. and Altiparmak
F. “Local search genetic algorithm for
optimal design of reliable networks”.
IEEE Transactions on Evolutionary
Computation, Vol. 1, N° 3, September
1997.

2. Laufer F. and Barán B. “Topological
Optimization of Reliable Networks
using A-Teams”. In Proceedings of the
5th International Conference on
Information Systems Analysis and
Synthesis. Vol 5. Florida. 1999.

3. Colbourn C. J. Reliability Issues in
Telecommunications Network Planning.
Department of Computer Science,
University of Vermont. Burlington.
USA.

4. Tanembaum A. S. Computer Networks.
Prentice-Hall, Englewood Cliffs, New
Jersey 1981.

5. Boorstyn R. and Frank H. “Large-Scale
Network Topological Optimization”.
IEEE Trans. on communication, vol.
COM-25, nº 1, pp. 29-47. 1977.

6. Pierre S. and Elgibaoui A. “A taboo
search approach for designing computer
network topologies with unreliable
components”. IEEE Trans. on
reliability, vol. 46, nº 3, pp. 350-359.
1997.

7. Pierre S., Hyppolite M. A., Bourjolly J.
M. and Dioume O. “Topological design
of computer communication networks
using simulated annealing”.
Engineering application of artificial
intelligence, vol. 8, nº 1, pp. 61-69.
1995.

8. Deeter D. L., and Smith A. B.
“Economic Design of Reliable
Networks”. IIE Transactions, vol. 30, in
print. 1999.

9. Konak A. and Smith A. “A Hybrid
Genetic Algorithm Approach for
Backbone Design of Communication
Networks”. Proceedings of the 1999
Congress on Evolutionary Computation,
Washington D. C., IEEE, 1999.

10. Zitzler E. and Thiele L.
“Multiobjective evolutionary
algorithms: a comparative case study
and the strength pareto approach”. IEEE

10

transactions on evolutionary
computation, vol 3, n° 4. November,
1999.

11. Deb K. Non-linear Goal
Programming Using Multi-Objective
Genetic Algorithms. Technical report
TR CI-60/98, University of Dortmund,
Germany: Department of Computer
Science/XL 1999.

12. Van Veldhuisen D. A.
Multiobjective Evolutionary
Algorithms: Classifications, Analyses
and New Innovations. PhD thesis,
Department of Electrical and Computer
Engineering. Graduate School of
Engineering. Air Force Institute of
Technology. Ohio, EE. UU. May, 1999.

13. Deb K. Evolutionary Algorithms
for Multi-Criterion Optimization in
Engineering Design. In Kasia Miettinen,
Marko M. Mäkelä, Pekka Neittaanmäki,
and Jacques Periaux, editors,
Evolutionary Algorithms in Engineering
and Computer Science, chapter 8. John
Wiley & Sons, Chichester, U.K. 1999.

14. Horowitz E. and Sahni S.
Fundamentals of Data Structures.
Reprint edition. W H Freeman & Co.
June 1983.

15. Jan R. H. “Design of Reliable
Networks”. Computers and operations
research, vol. 20, nº 1, pp. 25-34. 1993.

16. Morse J. N. “Reducing the Size of
the Nondominated Set: Pruning by
Clustering. Comput. Oper. Res., vol 7,
n° 1 y 2. 1980

Appendix

Matrix 1: Distance Matrix of the Test Problem (ULAK-NET 19 nodes design problem)
 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v11 v12 v13 v14 v15 v16 v17 v18 v19

v1 111 126 120 122 115 116 132 346 968 343 343 344 106 107 105 454 613 828 1261
v2 - 15 15 17 5 6 243 458 1079 454 454 456 10 11 5 565 724 939 1342
v3 - 15 17 13 14 258 473 1094 469 469 471 25 26 23 580 740 954 1357
v4 - 2 5 6 248 460 1082 456 456 457 12 13 15 570 730 943 1353
v5 - 8 9 251 463 1085 459 459 460 15 16 18 573 733 946 1355
v6 - 1 246 457 1080 454 454 455 10 9 12 568 728 940 1350
v7 - 245 456 1079 453 453 454 9 8 11 567 727 939 1351
v8 - 384 383 380 380 381 235 236 240 322 542 831 1301
v9 - 766 3 3 4 450 451 453 580 542 487 920

v10 - 763 763 764 1074 1075 1077 1345 1307 972 624
v11 - - 1 450 451 453 582 544 489 921
v12 - 449 450 452 583 545 490 922
v13 - 1 4 560 720 932 1337
v14 - 3 561 721 933 1338
v15 - 563 723 934 1340
v16 - 469 898 1424
v17 - 553 1079
v18 - 526

11

