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Abstract 

This paper proposes parallel 
asynchronous versions of promising multi-
objective evolutionary algorithms, 
implemented over a network of personal 
computers, with the aim of designing an 
optimal telecommunication network in the 
presence of multiple conflicting objectives 
as cost and performance. The resulting 
tool provides a set of Pareto optimal 
solutions, facilitating the decision making 
process of designing a telecommunication 
network with a mix of different 
technologies. 

 

1 Introduction 

The design of communication networks 
has been solved using operational research 
approaches for several years [1]. At the 
beginning, it was solved as a single 
objective optimization problem, using the  

cost of the network as a typical objective to 
be minimized, subject to several constrains 
as reliability, maximum delay, etc.  

 

However; it is now clear that the design 
of a communication network is better 
stated as a multi-objective optimization 
problem [2]. In this new multi-objective 
context, the aim of a designer is to 
simultaneously optimize a set of 
conflicting objectives as: reliability, cost, 
delays, throughput, capacity, etc, while 
maintaining restrictions over another set of 
requirements as: minimum reliability, 
maximum cost, maximum acceptable 
delay, minimum speed, etc. This problem 
is known to be NP-Hard [3]. 

 

Many approaches have been designed to 
address this problem, some of them based 
on various kinds of graph perturbation 
heuristics [4, 5], and others founded in 
techniques from artificial intelligence 
(taboo search [6], simulated annealing [7] 
and genetic algorithms [1, 2, 8, 9]). An 
interesting summary of these methods can 
be found in [9]. To shorten the discussion 
it is useful to say that:  

 

a) none of them treats the problem as a 
multi-objective problem, but they 
would rather choose an objective to 
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optimize, leaving the others as 
restrictions;  

b) all of them can be applied only to 
networks of limited magnitude, and in 
very restricted situations. As the size 
of commercial systems grows there is 
a complete lack of tools to aid in the 
designing process; and the 
methodology of trial & error that has 
been applied is neither effective nor 
efficient. 

 

The present work proposes the use of 
Multi-Objective Evolutionary Algorithms 
(MOEA) to solve the design problem and 
presents an implementation of two 
versions of the Strength Pareto 
Evolutionary Algorithm (SPEA) [10] and 
the Non Dominated Sorting Genetic 
Algorithm (NSGA) [11]. This paper also 
examines and compares the results 
obtained with both algorithms, with the 
aim of helping the designer of a network to 
choose the best tool for his/her work. The 
SPEA was chosen because it implements 
elitism through the maintenance of an 
external population of best solutions found 
during the whole generational loop; then, 
convergence is guaranteed [12]. NSGA 
was chosen because of its promising 
experimental results [13]. As this later 
algorithm does not implement elitism, we 
have decided to alter its original 
formulation slightly. In addition; it was 
added an external population with the only 
purpose of archiving good solutions 
already found. This external population of 
non-dominated solutions does not 
participate of the genetic operators. 

 

The rest of this work is organized in the 
following way: section 2 introduces the 
problem to be solved with its restrictions 
and generalities. Section 3 discusses the 
test problem. Section 4 and 5 contain 

descriptions of our implementations. 
Section 6 includes performance metrics 
used for the testing procedure. Section 7 
presents experimental results. Finally, 
section 8 presents some conclusions and 
directions for further work. 

2 Statement of the Problem 

A network can be modeled by a 
probabilistic undirected graph [1] G = (V, 
L, p), where: 

• V is the set of nodes.  
• L is the set of links (arcs). The 

cardinality of L is also the number of 
possible links and can be expressed 
as  
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• and p is the reliability of links.  
 

A network design problem consists in 
choosing the communication links of 
different characteristics (or technologies) 
between a given set or location centers 
(nodes). The resulting network should 
acquire a certain set of values for the 
objectives (as cost and reliability) and 
complied with another set of requirements 
(as maximum cost or minimum reliability). 

 

From the above definitions, it is obvious 
that the problem of a backbone network 
design optimization can be expressed as a 
multi-objective optimization problem. As 
the problem can be as big as a designer 
states it (i.e., he can choose as many 
objectives as he wants and as many kind of 
links as technology and budget lets him), 
there is a need to place limits on it, 
according to the available computer 
resources he has access to. In the present 
work, the design problem is stated as the 
optimization of only two objectives (k = 
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2): reliability and cost. The fact that every 
network topology must be connected is 
expressed by restricting reliability to 
positive values. Then, the proposed 
solutions must meet a single and very 
simple reliability requirement (m = 1). It is 
assumed one bi-directional link between 
each pair of nodes (redundancy is not 
allowed). Thus the potential links between 
every pair of nodes are the decision 
variables. Every decision variable x is 
composed of a tuple (x1, x2, ..., xn). 

 

The constraints on redundancy and 
number of objectives are only apparent and 
do not make the problem less general, as 
the addition of new objectives is a trivial 
problem, even though it may require more 
computational resources. Also, redundant 
links can be treated as another kind of link, 
with its own cost and reliability [2]. Then, 
the design problem is stated as: 

 

Optimize y = f(x) = (f1(x), f2(x))      (2) 
subject to  e1(x) > 0 
 

where: 
• x = (x1, x2, ... , xn) ∈  X is the decision 

vector; every xi {0, 1, ..., t} represents 
a (type of) link between a pair of 
nodes and t is the number of different 
link types, while 0 is used to indicate 
the absence of connection; 

• y = (y1, y2) ∈  Y is the objective 
vector; 

• f1(x) is the reliability corresponding 
to a configuration x; 

• f2(x) is the cost function of the same 
configuration x; 

• e1(x) refers to the minimum 
acceptable reliability. 

 

Although parameters like delay, speed, 
capacity and throughput are important for 
innovative applications, the main network 
design objectives are still cost and 

reliability [2]. Both functions were studied 
in almost all papers found referring to 
design optimization problems. Sometimes, 
the problem was declared as the 
minimization of cost subject to a reliability 
constraint; while some others as the 
maximization of reliability subject to a cost 
constraint. Even some times [1] a weighted 
sum approach of both objectives was 
suggested. But the multi-objective nature 
of the problem has not been previously 
evidenced. 

 

The concept of reliability depicts the 
probability of a system to have an expected 
performance over a time interval. So, the 
reliability of a system depends on its 
configuration and the reliability of its 
components. There are many methods and 
metrics to measure reliability. For our 
instance of the problem, to ensure that 
there is always a communication path 
between every pair of nodes in the 
network, the all-terminal reliability metric 
was chosen (i.e. the network forms at least 
a spanning tree) [2, 3]. The reliability 
calculation is done via Monte Carlo 
simulations because there are not other 
methods that can give good results in 
acceptable time (the problem of computing 
the reliability of a network is, in its 
context, NP-Hard [3]).  

 

The cost of each configuration is 
calculated adding up the costs of every link 
added to the topology. Each link has a cost 
that is the product of the distance it covers 
and its cost per distance unit, given that 
only fiber optic links are considered in this 
paper. However, there is no difficulty in 
considering a given cost per link 
depending on the technology to be 
considered (microwave, satellite, etc.). 

 

In order to solve the problem the 
following assumptions are necessary [8]: 
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• nodes are perfectly reliable (failure 
of nodes can be simulated by a 
failure of its incident links);  

• the cost and reliability of each 
potential link are known; 

• links can be in only one of two 
possible states: operational or failed; 

• links fail independently, i.e. the 
failure in a link does not imply the 
failure of another one; 

• no repair is considered, i.e. when a 
link fails it is not repaired and does 
not enter into operation afterwards. 

3 Test Problem 

The test problem is based on the expansion 
of the ULAK-NET network, first published 
in [8]. It is a simplified version of a real 
network design problem conceived to link, 
using distinct types of fiber, 19 universities 
and research centers located in 9 different 
cities of Turkey. It was chosen because it is 
the largest published example found during 
our research. Besides, the results of this 
example were available and they were used 
to compare with our experimental results. 

 

The distance matrix in kilometers for 
each pair of nodes is presented in the 
Appendix (Matrix 1). Three types (t = 3) 
of fiber optic links are considered for each 
pair of nodes; their costs and reliabilities 
are (333 $/km, 96%), (433 $/km, 97.5%) 
and (583 $/km, 99%) respectively. Then, 
the size of the search space is in the order 
of 10114 individuals of the form (x1,…, x171) 
with their corresponding cost and 
reliability. 

4 Description of the Implementation 

For the application of the Multi-Objective 
Evolutionary Algorithms (MOEAs), each 
possible solution x = (x1, x2, ..., xn) was 

coded using a string of integer numbers, xi 
∈ {0, 1, ..., t}. To obtain the string an 
adjacency matrix of the graph that models 
the network was written [14]. Since this 
matrix is symmetrical, only the upper 
triangular part was inserted into the 
chromosome. For example, to code the 
network of figure 1, the matrix of figure 2 
was used. 
 

 
 
 
 
 
 

Figure 1. Graphical representation of a computer 
network backbone. 

 
 

 1 2 3 4 5 
1 0 1 3 0 0 

2 1 0 0 1 2 

3 3 0 0 0 2 

4 0 1 0 0 0 

5 0 2 2 0 0 
 

Figure 2. Adjacency matrix for network of Figure 1. 
 
The final representation x taken from 

the upper triangular part (and not 
considering the diagonal) is the string 
1300012020. 

 

Continuing with the test problem, the 
calculation of reliability is accomplished 
with Monte Carlo simulations [2, 15]. Only 
10000 replications were made due to the 
high computational cost. Solutions not 
achieving the minimum reliability 
requirement are not inserted in the external 
population, even though they may be part 
of the purported Pareto set. In any case, 
they remain in the current population 
because feasible children can be generated 
from them. Since it was formerly stated, 
the total cost of a network is the sum of the 
costs of its links. 
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Following the definition of SPEA [10], 
two populations of individuals are kept, the 
first one (depicted as P) is known as the 
current population, while the second one or 
external non-dominated set P’ maintains 
every non-dominated individual found so 
far. 

NSGA is implemented in two versions, 
the first one following the original 
formulation suggested by the authors [11], 
and the second one with an external non-
dominated backup population P’, as was 
explained above. 

 

The process of finding the non-
dominated individuals in P is based on the 
concept of dominance [12]. We say that a 
solution χa dominates another solution χb 
if it is a better solution in at least one 
objective function without being worse in 
any other objective function. For example, 
if the solution has a better reliability 
without costing more. With this dominance 
concept, the implemented MOEAs 
implement elitism in the following way: 
every time a new non-dominated 
individual is found using an evolutionary 
algorithm, it is compared against the 
members in P’; if it is a new solution, it is 
inserted into P’ erasing any dominated 
suboptimal solution that was kept in P’. 
The number of individuals in P is N and 
remains constant during the whole 
generational loop for both algorithms, but 
the number of individuals in P’ may 
change from one generation to the other. 
To avoid a computer overflow, P’ can not 
have more individuals than a previously 
stated number of N’. If the size of P’ is 
greater than N’ clustering should be 
performed to eliminate any danger of 
overflow. The process of clustering [10, 
16] has been implemented, but was never 
used in our experimental computations 

because the maximum size of the external 
population was never reached. 

 

SPEA and NSGA differ from the 
traditional genetic algorithm only in the 
way fitness is assigned to individuals. The 
computation of the fitness value follows 
the procedure explained in [10] and [11, 
13], respectively.  

 

In SPEA, every member of P’ has a 
fitness equal to the number of individuals 
in P it dominates plus one; while every 
member of P has as its fitness the sum of 
fitness of the members of P’ that 
dominates him. In this way, it is ensured 
that members of P’ have a better fitness 
value than members of P. Notice that this 
is in the context of fitness minimization. 
The fitness assignment process, as well as 
clustering induces the maintenance of 
diversity [10]. 

 

In NSGA, fitness is assigned after a 
classification of individual into ranks. First 
of all, the non-dominated solutions are 
identified. All these non-dominated 
solutions belong to the first rank and the 
same high fitness value is assigned to 
them. To maintain diversity, these 
solutions undergo a fitness sharing 
procedure. After sharing their fitness value, 
the solutions of the first rank are 
temporarily ignored to continue with the 
classification of the other solutions. The 
same routine is applied again and a second 
level of ranks is determined. The solutions 
in this rank receive an original fitness 
value that is slightly lower than the worse 
fitness value assigned to the solutions of 
the first rank. Again this fitness is shared 
between all the individuals of this rank. 
This iterative process continues until an 
adequate fitness value is assigned to every 
member of the population. 
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Selection is implemented with binary 
tournaments, and the next generation is 
created via one point crossover. The 
mutation operator takes m% individuals 
from the population and changes every 
allele from its chromosome with 
probability 0.3. 

 

The parameters of the algorithms used 
in our experiments are the following: 

• Population size (N): 100 individuals. 
• External non-dominated set size 

(N’): 100 individuals.  
• Maximum number of generations 

(gmax): 10000.  
• Crossover probability (pc): 1.  
• Mutation rate (rm): 0.3.  
• Percentage of population mutated in 

each generation (m%): 5%. 
 

The initial population for the algorithm 
was generated probabilistically using a 
heuristic algorithm where individuals with 
fewer links have a greater probability of 
being inserted into the initial population. 
This approach has shown its usefulness to 
speed up convergence.  

 

A stop criterion has also been 
implemented. The algorithm continues 
with its generational cycle if new 
individuals are being inserted into P’ every 
50 generations, or if the maximum number 
of generations (10000) has not been 
reached. Those numbers were chosen for 
the first implementation and proved to be 
very good for the test problem, but a 
complete study still should be done. 

 

When the algorithm stops, it has its 
solutions in P’, which is called the known 
Pareto set Xknown. The corresponding 
objective vectors Yknown = f(Xknown) is the 
known Pareto front.  

5 Parallel Versions 

Since the calculation of objective values, 
especially the computation of reliability, is 
extremely time consuming, the execution 
time of the proposed algorithms can be 
improved running them in a distributed 
environment. Moreover, the total 
implementation costs can be reduced 
significantly if we use a network of 
inexpensive personal computer instead of a 
massively parallel supercomputer. 

 

The implementations for both 
algorithms consist of two kinds of 
processes, an organizer or master process 
and several slave processes. There is only 
one organizer, with the responsibility of 
creating all the slaves and collecting the 
final results. The slaves do the real work. 

 

The Pseudocode1 is for the organizer 
process.  

 

Procedure Organizer() 
Begin 
 Spawn H slaves 
 flag_counter = 0 
 While flag_counter < H 
   Wait flag from H processes 
   If a flag is received 
     Collect results from process that sent a  
     flag and kill him 
     flag_counter=flag_counter+1 
   End If 
 End While 
 Do union operation over sets obtained from 
 slaves  
 Apply Pareto dominance to obtain Xknown 

 Calculate Yknown 
 Print final result. 
End 

Pseudocode 1. Organizer Procedure. 
 

Straight away, the slaves are discussed. 
Given a distributed system with H 
processors, in each processor h, h ∈ {1, .. , 
H}, two populations are kept Ph(g) and 
P’h(g). The population Ph(g) contains the 
members generated by crossover in the 
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previous generation g-1; while P’h(g) is the 
external set of non-dominated solutions 
found from the beginning of the 
generational loop until generation g is 
reached. 

 

Each processor h runs its own version 
of the evolutionary algorithm. Once new 
solutions for P’h(g) are found, at 
generation g, processor h broadcasts them 
to all the other processors. This procedure 
is known as migration and consists on 
sending (and receiving) good solutions 
known as migrants. The receiving 
processors accept all the migrants, as long 
as their memory capacity is not exceeded. 

 

For the sequential version the 
population is composed of N individuals. 
As the parallel version is implemented in 
H identical processors, the size of each 
population Ph will be N/H. When migrants 
are received, the population grows; 
returning to its normal level after the 
genetic operators (as selection) is applied. 
The Pseudocode2 is for the Slave 
Procedure: 

 

This parallelization scheme is 
completely different from other suggested 
approaches because it includes the 
independent evolution of many sub-
populations that exchange information 
about good individuals, at every 
generation, in an asynchronous 
environment; while other proposals are 
based in the parallelization of portions of 
the generational loop, like the computation 
of objectives of the fitness assignment. 
Experimental results demonstrate that this 
new proposal is effective and efficient. 
This empirical conclusion is very 
important mostly because other suggested 
approaches have not yet been tested in any 
kind of problems. 

 

For the parallelization of the NSGA 
without external population, the selected 
scheme is very similar, except for the 
selection of migrants, which is 
straightforward. In every generation, all 
non-dominated solutions are broadcasted. 
Again, all migrants are received and are 
placed in the current population. The size 
of the population is kept stable through the 
subsequent application of the selection 
genetic operator. 

 

Procedure Slave() 
Begin 
 Read initial input parameters 
 Read initial population P 
 Gen_Count = 1 
 While StopCondition is not reached and 
 Gen_Count < gmax 
   Compute values of objectives for each 
     individual 
   Receive migrants from other processes  
     and add them to current population P 
   Find non-dominated individuals in P 
   Update external non-dominated set P’ 
   Broadcast new solutions from P’  
   If number of external stored solutions  
   exceeds N’ 
     Prune P’ by means of clustering 
   End If 
   Calculate fitness of individuals in P and P’ 
   Select individuals from the union set P+P’  
     until the mating pool is filled 
   Generate new set P applying  
   crossover & mutation  
   Gen_Count = Gen_Count + 1 
 End While 
 Send flag to Organizer informing process  
 is done 
 Send individuals from P’ to the Organizer 
 Wait for a kill signal sent by the Organizer 
End. 

Pseudocode 2. Slave Procedure. 
 

6 Performance Metrics 

To evaluate experimental results of the two 
algorithms, an appropriate test suit metrics 
is used because no single metric can 
entirely capture performance, effectiveness 
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and efficiency for multi-objective 
evolutionary algorithms.  

 

Since most of these metrics reflect the 
likeness between the true Pareto optimal 
front Ytrue and the computed Pareto front 
Yknown, a good approximation of the true 
Pareto optimal front is built by gathering 
all non-dominated individuals from all 
computed sets. In other words, for the 
following results, the real Pareto Optimal 
front is approximated by the best known 
solutions of all our experiments. 

 

The test suit was taken from [12] and 
comprises the following metrics: 
1) Overall Non-dominated Vector 

Generation (ONVG), that simply 
counts the number of solutions in the 
Pareto front Yknown 

 

cknownYONVG ||
∆
=                       (3) 

 

where 
c
 denotes cardinality. 

 

2) Overall true Non-dominated Vector 
Generation (OTNVG): counts the 
number of solutions in the Pareto front 
Yknown that are also in the true Pareto 
optimal front Ytrue. 

 

{ }
ctrueknown YyYyyOTNVG  ∈∧∈=

∆
     (4) 

 

3) Overall Non-dominated Vector 
Generation Ratio (ONVGR): 

 

ctrueY

ONVG
ONVGR

||

∆
=           (5) 

 

It denotes the ratio between the number 
of solutions in Yknown to the number of 
solutions in the true Pareto front Ytrue. 
Since the objective is to obtain a set Yknown 
as similar to the true Pareto front as it is 
possible, a value near to 1 is desired. 

 

4) Error Ratio (E): 
 

ONVG

e
E

N

i i� =
∆
= 1          (6) 

 

where:  

knowni Ye   in vector  a if 0=  

trueYFront  Pareto  truein the also is           

otherwise   1    =  
 

This ratio reports the proportion of 
objective vectors in Yknown that are not 
members of Ytrue. Therefore, an error ratio 
close to 1 indicates a poor correspondence 
between the obtained and the true Pareto 
front, i.e. E = 0 is desired. 

 

5) Generational Distance (G) [12]:  
 

( )
ONVG

d
G

N
i i

2
1

1
2

� =
∆
=          (7) 

 

where di is a distance (in objective space) 
between each objective vector F in Yknown 
and its nearest correspondent member in 
the true Pareto front Ytrue. The Euclidean 
distance is recommended in [12]. A large 
value of G indicates Yknown is far from Ytrue 
being G = 0 the ideal situation. 

7 Experimental Results 

The results presented here were obtained 
from successive runs over a 10 Mbps 
Ethernet network composed of up to 8 
personal computers, each one with AMD 
K6-2 350 MHz processor, with 128 MB of 
RAM. The program code is entirely written 
in C, and the parallel implementation was 
done using PVM (Parallel Virtual 
Machine) running over LINUX (Mandrake 
7.0).  

 

A summary of our experimental results 
using SPEA and NSGA with external 
populations are shown in Tables 1 and 2, 
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where the first column identifies a given 
run, the second column gives the number 
of processors running in parallel, columns 
3 to 6 presents the above defined 
performance metrics, column 7 gives the 
running time (in hours), while the last 
column presents a rank considering as 
performance metrics of a running columns 
3 to 7, being rank 1 the set of optimal runs.  

 

Table 1. Experimental Result and Performance Metrics 
of the SPEA algorithm for 10 runs, using P = 1, 2, 4 

and 8 processors 

# P ONVG OTNVG ONVGR E Time Ran
k 

1 1 41 0 0.323 1 8.64 7 
2 1 42 0 0.331 1 8.712 7 
3 1 46 0 0.362 1 8.95 7 
4 1 46 0 0.362 1 8.45 6 
5 1 51 0 0.402 1 9.003 5 
6 1 44 3 0.346 0.932 8.35 6 
7 1 43 1 0.339 0.977 8.96 7 
8 1 51 0 0.402 1 8.472 5 
9 1 51 2 0.402 0.961 8.269 3 

10 1 57 0 0.449 1 8.726 4 
11 2 45 4 0.354 0.911 5.946 5 
12 2 47 6 0.370 0.872 5.267 4 
13 2 52 0 0.409 1 5.002 4 
14 2 56 2 0.440 0.964 5.637 3 
15 2 57 0 0.449 1 5.891 3 
16 2 41 5 0.323 0.878 5.236 4 
17 2 47 7 0.370 0.851 5.189 3 
18 2 50 2 0.394 0.96 4.968 3 
19 2 54 0 0.425 1 4.256 3 
20 2 46 3 0.362 0.935 4.781 3 
21 4 49 1 0.386 0.980 2.78 3 
22 4 52 1 0.409 0.981 2.64 2 
23 4 56 2 0.441 0.964 2.859 2 
24 4 41 10 0.323 0.756 3.05 1 
25 4 59 3 0.465 0.949 2.956 2 
26 4 47 3 0.370 0.936 2.567 3 
27 4 49 8 0.386 0.837 2.368 2 
28 4 54 3 0.425 0.944 2.945 2 
29 4 53 2 0.417 0.962 2.847 2 
30 4 51 12 0.402 0.765 2.369 1 
31 8 55 0 0.433 1 1.498 1 
32 8 50 1 0.394 0.98 1.486 1 
33 8 49 6 0.386 0.878 1.56 1 
34 8 56 11 0.441 0.804 1.689 1 
35 8 53 9 0.417 0.830 1.67 1 
36 8 61 3 0.480 0.951 1.547 1 
37 8 47 2 0.370 0.957 1.689 1 
38 8 51 6 0.402 0.882 1.487 1 
39 8 58 5 0.457 0.914 1.694 1 
40 8 59 4 0.465 0.932 1.567 1 

 

In general, the ranks were built in such a 
way that any run of a given rank k>1 is 
dominated by at least one run of rank (k-1). 

Results using the original NSGA without 
an external population are not presented 
because it is clearly worse than its version 
with elitism. 

 

Table 2. Experimental Result and Performance Metrics 
of the NSGA algorithm with external population for 10 

runs, using P = 1, 2, 4 and 8 processors 

# P ONVG OTNV
G 

ONVGR E Time 
Ran

k 
1 1 32 4 0,224 0,875 11.894 8 
2 1 41 0 0,287 1 9.956 10 
3 1 29 0 0,203 1 9.036 3 
4 1 31 5 0,217 0,839 10.894 11 
5 1 45 0 0,315 1 11.563 7 
6 1 44 0 0,308 1 10.547 8 
7 1 34 2 0,238 0,941 11.451 12 
8 1 36 3 0,252 0,917 11.354 5 
9 1 44 1 0,308 0,977 10.256 5 

10 1 46 2 0,322 0,957 11.378 6 
11 2 35 0 0,245 1 5.946 2 
12 2 44 6 0,308 0,864 6.784 2 
13 2 42 8 0,294 0,810 5.781 8 
14 2 33 14 0,231 0,576 6.124 8 
15 2 31 0 0,217 1 5.787 3 
16 2 45 8 0,315 0,822 6.003 5 
17 2 39 0 0,273 1 5.961 9 
18 2 42 5 0,294 0,881 5.649 7 
19 2 50 0 0,350 1 5.891 2 
20 2 43 2 0,301 0,953 5.678 7 
21 4 39 2 0,273 0,949 2.78 2 
22 4 46 11 0,322 0,761 3.208 6 
23 4 51 8 0,357 0,843 2.859 3 
24 4 47 0 0,329 1 3.05 1 
25 4 39 3 0,273 0,923 2.956 2 
26 4 37 5 0,259 0,865 3.103 3 
27 4 45 6 0,315 0,867 2.864 2 
28 4 35 0 0,245 1 2.945 4 
29 4 39 4 0,273 0,897 2.847 2 
30 4 45 0 0,315 1 2.965 5 
31 8 39 0 0,273 1 1.598 2 
32 8 47 6 0,329 0,872 1.678 1 
33 8 52 3 0,364 0,942 1.697 3 
34 8 46 0 0,322 1 1.7 3 
35 8 43 18 0,301 0,581 1.764 4 
36 8 41 4 0,287 0,902 1.767 1 
37 8 42 3 0,294 0,929 1.77 1 
38 8 39 1 0,273 0,974 1.801 2 
39 8 48 5 0,336 0,896 1.807 4 
40 8 56 4 0,392 0,929 1.853 1 

 

Comparing tables 1 and 2, it is clear that 
the SPEA algorithm is the one with the 
best performance given that it founds the 
larger number of solutions (ONVG) with a 
fewer percentage of suboptimal solutions 
(not included in Ytrue), using for its 
calculation less time than its NSGA 
counterpart. 
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At the same time, parallelism proved to 
be very efficient in this context, as can be 
noted in tables 1 and 2, given that the 
average rank of a run improves with the 
number of processors for all the 
implemented algorithms. 

 

8 Conclusions and Further Work 

This paper first proposes the use of 
MOEAs to solve the network design 
problem. Several MOEAs alternatives 
were tested, being the SPEA the one with 
the best performance running in a network 
of personal computers, showing an 
excellent scalability in parallel executions. 
To run the experiments, a near real world 
test problem first published in [8] was 
used, obtaining a solution with a cost of 
1,755,474 M$ and a reliability of 0.991, 
the best known so far (considering as best 
already published result the solution with a 
cost of 1,987,805 M$ and the same 
reliability [2]). 

 

As future work, the authors are 
implementing more objective functions as 
maximum throughput, minimum delay, 
minimum number of links, between other 
objectives. At the same time, other 
MOEAs are being tested in the context of 
the network design problem, as well as a 
larger number of processors, especially in a 
heterogeneous network of computers and 
communication devices, as Internet. 
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Appendix 

Matrix 1: Distance Matrix of the Test Problem (ULAK-NET 19 nodes design problem) 
 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v11 v12 v13 v14 v15 v16 v17 v18 v19 

v1 111 126 120 122 115 116 132 346 968 343 343 344 106 107 105 454 613 828 1261 
v2 - 15 15 17 5 6 243 458 1079 454 454 456 10 11 5 565 724 939 1342 
v3  - 15 17 13 14 258 473 1094 469 469 471 25 26 23 580 740 954 1357 
v4   - 2 5 6 248 460 1082 456 456 457 12 13 15 570 730 943 1353 
v5    - 8 9 251 463 1085 459 459 460 15 16 18 573 733 946 1355 
v6     - 1 246 457 1080 454 454 455 10 9 12 568 728 940 1350 
v7      - 245 456 1079 453 453 454 9 8 11 567 727 939 1351 
v8       - 384 383 380 380 381 235 236 240 322 542 831 1301 
v9        - 766 3 3 4 450 451 453 580 542 487 920 

v10         - 763 763 764 1074 1075 1077 1345 1307 972 624 
v11          - - 1 450 451 453 582 544 489 921 
v12            - 449 450 452 583 545 490 922 
v13             - 1 4 560 720 932 1337 
v14              - 3 561 721 933 1338 
v15               - 563 723 934 1340 
v16                - 469 898 1424 
v17                 - 553 1079 
v18                  - 526 
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