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Abstract

This article presents the Web cache replace-
ment algorithm named Least Semantically Re-
lated (LSR), as an alternative to well-known
and widely employed replacement policies, such
as SIZE, LFU and LRU, which are based
on physical properties of objects (documents).
LSR is based on the semantics of the infor-
mation contained within objects: LSR tends
to evict objects which are less related to the
last object to enter the cache with respect to
their semantics, therefore preserving objects of
more interest to clients. A detailed algorithm
and a data structure for LSR where objects are
classified according to a previously established
taxonomy were designed and implemented for
the purposes of validation and comparison with
other replacement policies. Besides, a frame-
work for simulation was designed and verified,
including the data preparation process. The
initial experimental results show that LSR out-
performs traditional policies in terms of hit
rate, in most cases.
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1 Introduction

This article introduces a novel cache replace-
ment algorithm based on document semantics,
i.e., some information about the contents of
the documents. This new algorithm is called
Least Semantically Related — LSR, for short.
The main supposition of LSR is that every
client tends, for a certain period of time, to
seek documents which are related to a given
subject and, therefore, have close semantics.
That is accomplished by simply discarding ob-
jects which are less related to a new entry with
respect to their semantics: LSR favors the per-
manence of documents in cache with are close
with respect to their semantics and discard
documents which might be of less interest to
a client. In this first version, objects are clas-
sified according to a previously established tax-
onomy.

The increasing use of the Internet and its
emerging applications make it to tend to sat-
uration due to the corresponding increase in
data transmission. Cache mechanisms help
to reduce network and server load by avoid-
ing transmission of documents which are re-
quested several times. They are traditionally
employed on three places: (i) between a client
(e.g., a Web browser) and a server; (ii) between
a client and a proxy ; and (%) between prox-
ies. In fact, cache mechanisms are currently
fundamental for the scalability of the Internet.

However, every cache is naturally limited in
size and, as a consequence, documents may
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need to be discarded to create room for a new
entry. That is, it may be necessary to replace
some documents by the new one. For that pur-
pose, there is a number of cache replacement
algorithms currently in use [Arlitt et al., 1998].
Typically, these algorithms are based on physi-
cal properties of documents, such as their size,
their access frequency rate, their last time of
access, and so on, as discussed in Section 2.
In other words, the traditional cache mecha-
nisms treat documents as black boxes and dis-
card them according to some information that
is not related to their contents at all. Never-
theless they produce satisfactory results in av-
erage, a question that remains open is whether
an algorithm based on the contents of docu-
ments would be more efficient.

A summary of our research work is here pre-
sented; a more detailed discussion is presented
in [dos Santos, 2001]. The remaing of this arti-
cle is organised as follows. Section 2 discusses
the main cache replacement algorithms cur-
rently in use on the Internet. Section 3 de-
scribes LSR — the proposed algorithm — and
presents an example of use. Section 4 describes
an implementation of LSR where document se-
mantics is realised through tree-based classifi-
cation of documents. Section 5 describes an
experiment which simulates LSR for the pur-
poses of validation and comparison to tradi-
tional cache replacement algorithms. Finally,
Section 6 presents some conclusions and gives
some directions for future work.

2 Related Work

Cache replacement algorithms have a fun-
damental role in the project of any stor-
age component. Such algorithms, for exam-
ple, have been intensively studied in the con-
text of virtual memory management systems
[O’Neil et al., 1993]. There are dozens of such
algorithms documented in the literature. Our
intention in this Section is just emphasize that
they all use physical properties of objects as
the criteria to evict objects. We neither ana-
lyze nor compare such algorithms since their
own bibliographical refecences do that.

We do not describe any Web cache
replacement algorithm that is based on
document semantics because, to the best

of our knowledge, none is well known.
There are, however, some attempts to
create semantic caching mechanisms for

database and query systems, where data is
well-structured, thus providing a means of
organizing objects according to some semantic
information. Some of those attempts include
[Dar et al., 1996], [Chidlovskii et al., 1999],
[Keller and Basu, 1996] and [Ren et al., 2003].
They all conclude that the semantic-based
approach to cache replacement performs
better than traditional policies.

More recently, in the field of wireless infras-
tructure and applications, there is a preocu-
pation to develop more appropriated caching
schemes where physical locality can be ex-
ploited. = The research work presented in
[Zheng et al., 2002] combines such an idea
with information semantics and obtains good
results as well.

Finally, there are efforts to create caching
mechanisms for distributed objects systems,
such as [Atzmon et al., 2002], where an object
can encapsulate a Web document; it builds
a hierarcy for each cached object based on
client’s access pattern and objects are explicty
evited by clients by invoking operations to re-
register objects.

For completeness sake, we briefly describe
the most relevant cache replacement algo-
rithms which are based on physical properties
of objects, because either they are widely em-
ployed on the Internet or their research stage
is quite mature.

SIZE This algorithm simply elects for removal
the biggest object in cache. When two
objects with the same size are elected,
the less frequently accessed is removed
[Aggarwal et al., 1999].

LEAST RECENTLY USED (LRU) This
algorithm elects for removal the object
which is the one least recently used by
clients [Aggarwal et al., 1999].

LEAST FREQUENTLY USED (LFU)
This algorithm elects for removal the
object which is the one least frequently
used by clients [Williams et al., 1996].
There are two versions of this algorithm:

1. In-Cache LFU: In this version, the
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access counter for an object is ze-
roed everytime the object enters the
cache.

2. Perfec LFU: In this version, the ac-
cess counter for an object is zeroed
only the first time the object enters
the cache. If an object that has been
previously removed comes back to
cache, its access counter will have the
same value when removed.

LOWEST RELATIVE VALUE (LRV)
This algorithm assigns a relative cost
value for each object in cache in order to
calculate their utility; the object with the
lowest relative value is elected for removal
[Rizzo and Vicisano, 2000].

LRUMIN This algorithm tends to keep in
cache objects of smaller size in order
to minimize the number of replacements.
Suppose that a new object of size S has to
enter the cache and there is not enough
room for it. If there is any objects in
cache which size is at least S, the least
recently used (LRU) one is removed. Oth-
erwise, objects with size at least S/2 are
sequentially removed following the LRU
policy. If still necessary, objects with
size at least S/4, S/8, and so on are re-
moved until the needed room is created
[Aggarwal et al., 1999].

GREEDYDUAL-SIZE (GD-SIZE) This
algorithm is a generalization of the LRU.
It is concerned with the case when objects
have the same size, but incur different
costs to fetch from a secondary storage.
The algorithm associates a value, H, with
each cached object. The initial value of
H is the cost to fetch the object. When a
replacement need to be made, the object
with the lowest H, say h, is replaced, and
then all objects reduce their H values by
h. Everytime an object is accessed, its
H value is restored to the corresponding
original value [Cao and Irani, 1997].

HYPER-G This algorithm is a refinement of
the LFU, with last access time and size
considerations [Williams et al., 1996].

PITKOW/RECKER This algorithm re-
moves the least-recently-used document,

except if all documents are accessed today,
in which case the largest one is removed
[Williams et al., 1996].

LOWEST-LATENCY-FIRST This
algorithm tries to minimize aver-
age latency by removing the object

with the lowest download latency first
[Wooster and Abrams, 1997].

HYBRID This algorithm aims at reducing
the total latency [Cao and Irani, 1997]. It
replaces the object which results the low-
est value for the following function:

(cs + I;,V_:) X (np)""

Zp

where s is a server, p is an object located
in s, ¢, is the time to connect to s, by the
bandwidth to server s, n, is the number
of times p has been requested since it was
brought into the cache, z, is the size (in
bytes) of p, and W}, and W, are constants.

FIRST-IN, FIRST-OUT (FIFO)
This  algorithm replaces the ob-

ject that enters the cache first
[Silberschatz and Galvin, 1994].

FUNCTION-BASED REPLACEMENT
This algorithm employes a general func-
tion for different factors, such as the last
access, entry time of an object into cache,
transfer cost and the time-to-live of an

object [Wooster and Abrams, 1997].

SIZE ADJUSTMENT LRU (SLRU)
This algorithm is known as the Knapsack
Problem — it orders the objects in cache
according to their cost and size; the
object with largest index is evicted from

cache when a replacement is needed
[Aggarwal et al., 1999].

Pyramidal Selection Scheme with award
This policy classifies objects according to
their size using a logarithmic function,
combined with frequency access rate.
[Cheng and Kambayashi, 2000].

Partitioned Cache This policy splits the
cache into partitions that sotre classes of
documents based on their size, instead of
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having a single cache to store all docu-
ments. Its aim is to take into consider-
ation the high variability noticed in the
WWW [Murta et al., 1998].

As discussed above, the known algorithms
for cache replacement are based only on phys-
ical properties of objects, and each algorithm
uses a particular heuristic to elect objects to
remove from cache. Therefore, there is a con-
dition where such an algorithm performs opti-
mally, as well as there is a condition where the
same algorithm performs badly (worst case),
that is, there is no optimal solution for the
problem and the choice of the most appropri-
ate algorithm will depend always on the user
access pattern.

3 The LSR algorithm

3.1 Rationale

The Least-Semantically Related (LSR) algo-
rithm associates a semantics to each object in
cache in such a way that is possible to deter-
mine a semantics distance between any two ob-
jects; the semantics of an object is (staticaly or
dynamicaly) defined according to its contents.
When a new object n enters the cache, the al-
gorithm evicts the objects from cache which
are less semantically related to n, that is, the
objects which are more distant to n with re-
spect to their semantics.

3.2 Formalization

The LSR algorithm to insert a new object into
cache is formalized through the pseudo-code
listed in Figure 1. The algorithm has two in-
put arguments (line 1): a cache C' where an
object n must be inserted. The test in line 2
checks whether the object fits in the cache; if
the object size is greater than the cache capac-
ity then there is nothing to be done. The code
between lines 3 and 8 takes care of object re-
moval, if necessary, while line 9 contains the
code to insert the new object into the cache.
The test in line 3 checks whether is necessary
to do any object removal; while the object size
is greater than the free room in the cache, ob-
ject removal will be carried out. The set of
objects D defined in line 4 is a subset of the

cache C' that contains the most semantically
distant objects with respect to the new object
n still remaining in the cache; all objects in D
have exactly the same semantics distance to n.
The loop between lines 5 and 8 does the actual
work: it evicts objects from cache according to
the subset D, until there is no objects left in
D or the free room in cache is enough to in-
sert the new object. The code in line 6 picks
an object from the subset D according to some
implementation-dependent criteria, since they
all have the same semantics distance to the new
object n. Thus, any of the traditional algo-
rithms, such as the LRU, could be applied in
this case.

4 Tree-based implementa-
tion

One approach to associate semantics to each
object is through a taxonomy, i.e., objects can
be organized according to a tree-based hierar-
chy of subjects: each tree node represents a
subject and contains objects whose contents
have the corresponding semantics, as well as a
tree node may have children, which represent
more specific subjects.

The LSR algorithm described in Section 3
must be refined according to approach used to
represent object semantics. In the case where
a tree-based hierarchy of subjects is used to
represent semantics, it is assumed that there
is a function that, when applied to an object,
returns the semantics of such an object in the
form of a sequence of tree nodes that repre-
sent subjects, from more general to more spe-
cific ones. Naturally, this is not a rule for the
Internet as a whole in the present days, but
there are efforts to create a standard taxon-
omy for Internet objects, such as the Open
Directory Project'. Also, there is a proposal
[Shmidt, 2002] based on the RDF (Resource
Description Format) standard to create Web
servers that provide the semantics of an object
given its URL. Moreover, it is perfectly feasi-
ble to create a taxonomy for more controlled
environments, such as for a digital library, for
a specific domain of knowledge or for a cer-
tain organization, where LSR could then be

1URL: http://www.dmoz.org
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1sr ( Cache C, Object n )
if n.size <= C.capacity then
while n.size > C.freeroom
Set D
repeat
Object x
C.evict_object( x );

© 00 ~NO O WN =

C.insert( n );

:= C.get_most_semantically_distant_objects( n );
:= D.remove_an_object;

until D is empty or C.freeroom >= n.size

Figure 1: Pseudo-code for the LSR algorithm

employed.

4.1 Example

The diagram in Figure 2 illustrates a tree-
based hierarchy of subjects and corresponding
objects in cache. The node named Root repre-
sents the universe of subjects and has two chil-
dren named Sport and Music. The node Sport
has two children named Basketball and Foot-
ball. The node Music has two children named
Jazz and Rock. Thus, each object in cache may
be linked to its suject by inserting the object
under the corresponding tree node. For ex-
ample, object number 1 is linked to subject
Root.Sport, while object number 6 is linked to
subject Root. Music.Rock. A node named etc is
present in each tree branch in order to cover all
subjects which are absent. Thus, for example,
if an object whose contents has the semantics
Root.Sport. Football. EuroCup, like the case of
the object number 5, such an object should be
placed under the node Root.Sport. Football.etc,
since the subject FuroCup is absent.

4.2 Algorithm refinement

The only part of the LSR algorithm described
in Section 3 that needs refinement is the
code present in line 4 of Figure 1, i.e., the
function get_most_semantically_distant_objects,
which returns the set of objects in cache that
are the most semantically distant from the ob-
ject given as argument. For the tree-based
hierarchy of subjects approach to semantics
representation, such a refinement is formalized
through the pseudo-code listed in Figure 3.

The function
get_most_semantically_distant_objects has
two arguments as input (line 1): a cache C
where an object n should be inserted. Note
that the object is not inserted by this function;
it is given as argument for the function to
know where in the tree of subjects the object
should be inserted, and then determine the
objects that are most semantically distant
from such a place; the set of objects (an
instance of ObjectSet) obtained as most
distant is returned by the function. The set
of objects named result defined on line 2 is
used for collecting all objects in cache that
have the maximum semantics distance from
the object n, and is returned on line 6. The
function mark_ancestors invoked on line 3
gets the semantics of the object given as
argument and marks as “ancestors” all nodes
in the tree corresponding to the list of subjects
contained by that semantics, including the
node where the object should be inserted.
The sequence of marked nodes defines the
ancestors path for the new object; it denotes
the set of objects that have close semantics to
the new object and, therefore, should be the
last to be evicted from cache. The function
unmark_ancestors invoked on line 5 removes
the marks done before. The recursive function
collect (detailed below) invoked on line 4
inserts in result all objects that have the
maximum semantics distance from the new
object, starting from the Root subject, and
considering the ancestors path.

The function collect has two arguments as
input (line 7): a subject (or node) where the
function is applied and a set of objects result
where the most semantically distant objects
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________ [ #1, SIZE = 3569 ]

_______ _[ #4, SIZE = 2547 )

————{ #5,5ZE=8302 |

- —[ #2, SIZE = 15720 )

- —[ #3, SIZE = 3569 j

_______ #6, SIZE = 560

________ [ #7, SIZE = 2547 ]

Figure 2: A tree-based hierarchy of subjects and objects in cache

must be inserted. The “deepness” of a node
is given by the number of tree levels of descen-
dants until the lowest descendant that contains
at least one object; the deepness of the lowest
descendant is 1, the deepness of its father is 2,
and so on. The algorithm gives priority to col-
lect objects contained by deepper subjects, as
an attempt to evict objects that have the most
specific semantics, therefore, most distant from
the new object. The target subject may have
no childreen (directly or indirectly) containing
objects (the deepness of such a child would
be greater than zero). If this is the case — as
verified by the code on line 8 — objects con-
tained by the target subject itself is added to
the result set, as shown by the code on line
9. Otherwise, the children’s objects should
be collected as follows. The set of subjects
candidates defined on line 11 is initialized with
the “deepper” children of subject, excluding
subjects marked as ancestors. The function
get_deepper_but_ancestors invoked on line 11 ig-
nores not only ancestor subjects but also sub-
jects whose deepness is 0. The obtained set of
candidates will be empty when the only child
is marked as ancestor. Such a condition is ver-
ified by the code on line 12, while the code

on line 13 assigns as the only candidate the
child that is marked as ancestor. Once the set
of candidates is defined, the function collect is
recursively invoked for each one.

4.3 Example of application of
LSR for a tree of subjects

Figure 4 shows a tree of subjects with corre-
sponding objects before and after the insertion
of a new object into the cache. The new object
is identified as #1, its semantics is G.H.A and
its size is 19. The capacity of the cache is 30,
while its size before insertion is 29. That is,
the required room is 19, while the free room is
1. Thus, some objects have to be evicted from
cache to enable the insertion. More precisely,
it is necessary to evict objects to create extra
room of size at least 18. In this example, the
function remove_an_object (Figure 1, line 6) is
implemented using the SIZE policy. Table 1
shows step-by-step how data concerning LSR
changes until the object is finally inserted into
cache.
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01 get_most_semantically_distant_objects( Cache C, Object n ) : ObjectSet
02 ObjectSet result := empty;

03 mark_ancestors( n );

04 collect( C.Root, result );

05 unmark_ancestors;

06 return result;

07 collect( Subject subject, ObjectSet result )

08 if subject has no child with deepness > 0

09 result.add( subject.objects );

10 else

11 SubjectSet candidates := subject.children.get_deepper_but_ancestors;
12 if candidates is empty

13 candidates := subject.children.get_ancestor;

14 for each s in candidates

15 do collect( s, result );

Figure 3: Pseudo-code for the LSR refinement: function to obtain most semantically distant

objects on a tree of subjects

5 Experiment and valida-
tion

The LSR Algorithm was implemented for val-
idation and performance assessment purposes.
This Section presents the data preparation pro-
cess for simulation, such as some results. The
algorithm is compared to traditional object
replacement policies such as LFU, LRU and
SIZE, with respect to hit rate, since they are
widely employed on the Internet and there are
many studies that compare them, such as in
[Arlitt et al., 1998]. A module named Inter-
net Client represents any Internet entity that
uses a cache, such as a Web browser, a proxy
or even an Internet server. Since ordinary In-
ternet objects do not provide explicit seman-
tics, the simulated sequence of accesses con-
tains only objects defined by the Yahoo! search
engine, where objects are properly classified
according to a certain taxonomy. The Inter-
net Client module simulates a sequence of ob-
ject accesses according to an expected user ac-
cess pattern, i.e., it is supposed that users ac-
cess objects of a certain subject for some time
before changing to another subject — locality.

Moreover, the simulated object accesses con-
form to a real distribution of objects per num-
ber of accesses, obtained from a Squid Proxy?
log file; the Monte Carlo [Liu, 2001] Method
is employed to implement such a distribution
by categorizing Yahoo! objects according to
the number of times they should be accessed
in a certain period of time. The only relevant
object attributes for the purposes of simula-
tion are semantics (given by the Yahoo! tax-
onomy) and size (obtainable, for example, by
actually accessing an object through its URL).
The second module, named Cache Manager,
contains the cache where objects are stored and
a corresponding tree of subjects; the LSR Al-
gorithm is implemented by this module. The
simulation process is fully described by the fol-
lowing sections.

5.1 Universe of objects

The first step for simulating the LSR Algo-
rithm is to define a universe of objects, which
corresponds to the set of objects available for
access. In this very first experiment with LSR,

2www.squid-cache.org
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Figure 4: A tree of subjects before and after a new object enters the cache

such a universe of objects was manually built
by reproducing part of the Yahoo! search en-
gine hierarchy of subjects. More precisely, a
universe of 983 objects and 180 distinct sub-
ject paths was built. The following data are
necessary for each object for the purposes of
simulation: its semantics (subject path), its
identity (normally, its URL) and its size (nor-
mally, in bytes). Thus, two plain text files were
created as input: a file containg the universe
of objects for an instance of the Internet Client
module, and a file containing all corresponding
distinct subject paths for an instance of the
Cache Manager module.

5.2 Distribution of object ac-
cesses

The Internet Client module produces a se-
quence of object accesses. Such a sequence
must conform to real-world object access pat-
terns. A typical distribution of object accesses
was discovered by analysing the log file pro-

duced by a Squid Proxy for a certain period
of time, containing about 2 million records of
access to 866,915 Internet objects. Figure 5
shows a histogram with the corresponding dis-
tribution. It can be noticed that many objects
are accessed a few times, while a few objects
are accessed many times. This actual distri-
bution was the basis to generate a sequence
of object accesses for the universe of objects
chosen. This was implemented by associating
each object in the universe with a category of
access, according to the actual distribution of
accesses.

5.3 Sequence of object accesses

The next step for simulating the LSR Algo-
rithm is to create a bounded sequence of object
accesses corresponding to a possible behaviour
of an Internet client. Every item of the se-
quence fully describes an object: semantics,
identity and size. Figure 6 shows a didactid
example of sequence of accesses to objects clas-
sified according to the tree of subjects shown in
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while - step 1 while - step 2 | while - step 3 | insert
repeat repeat repeat
C.size 29 23 18 17 12 6 25
C.freeroom | 1 7 12 13 18 24 5
{#10, | {#8, | {#2} | {} | {#4}| {} | {#7 | {#7,
D #8, | #2} #5, | #43}
#2) 443}
z #10 | #8 | #2 #4 #5
T.812€ 6 5 1 ) 6

Table 1: Example of step-by-step changes of LSR data

Figure 2. Figure 7 shows an excerpt of the se-
quence of object accesses actually used for the
simulation. In both cases, it can noticed that
some objects are accessed more than once, like
in a real-world sequence of accesses. This is
achieved by applying the Monte Carlo Method.
Table 2 contains a small example of the neces-
sary data to apply the Monte Carlo Method to
obtain a sequence of accesses. Each row corre-
sponds to a category of access (c) and contains
the following data:

e the corresponding quantity (¢) of objects
in the universe of objects

e a probability obtained by dividing the
quantity of objects by the total number
of objects in the universe:

— ge
Pc - Ec 4c
e a lower bound obtained by summing the
probabilities of all previous categories:

YELP

e an upper bound obtained by summing the
probabilities of all previous categories and
the probability of this category too:

c
i1 1

Once such a table is built, objects are ran-
domly chosen from the universe of objects to
create a sequence of object accesses. There is
a counter associated to each object: it grows
by one every time the object is chosen; when
it reaches the value of the corresponding cate-
gory of access, the object is marked as invalid
so it cannot be chosen again.

5.4 Results

A standard metrics for the efficacy of a cache
system is the so-called hit rate, which corre-
sponds to the probability of finding in cache a
certain object requested by an Internet client.
The hit rate of a cache system depends on the
cache size and on the present number of ac-
cesses. For that reason, a number of sequences
of object accesses was produced and submit-
ted for simulation in caches of different sizes.
More precisely, the experiment was carried out
for thirteen sequences of accesses (varying in
size from 1,000 to 30,000 accesses), six differ-
ent sizes for cache (from 1 million to 10 million
bytes) and four policies (LSR, SIZE, LRU and
LFU), giving a total of 312 simulation scenar-
ios. Each one of the thirtheen sequences was
rearranged in order to reflect the assumed lo-
cality property, that is, users access objects of
a certain subject for some time before changing
to another subject.

The simulation confirmed that all the poli-
cies tend to make the best use of the cache, i.e.,
the cache stays close to full after a number of
object accesses; that shows that our implemen-
tation of the policies are correct in that sense.
The graphics in Figure 8 shows the effect of
number of object accesses on the hit rate for a
cache of a certain size: it grows, tending to sta-
bilize, as the number of object accesses grows.
The graphics in Figure 9 shows the effect of
the cache size on the hit rate: it grows as the
cache size grows and, after a certain cache size,
the hit rate is identical for all the policies, as
expected — em theory, the cache can be big
enough to store all objects of the universe.

The most important fact observed is that,
practically in all simulation scenarios, the LSR

29



800.000

700.000 4

600.000 4

500.000 -

400.000 A

Number of objects

300.000 4

200.000 4

100.000 -

1 3 5 7 9

11 13 15 17 19 Others

Category of access

Figure 5: Distribution of object accesses according to a Squid Proxy log file

Algorithm perfomed — in terms of hit rate —
better than the other policies. Although the
actual gain by using LSR still needs new ex-
periments that use larger data for an accurate
assess, it is sure that such a gain exists.

6 Concluding remarks and
future work

We have introduced a novel policy for object
cache replacement, the LSR Algorithm, and
shown that it performs better than traditional
policies normally employed on the Internet,
namelly SIZE, LFU and LRU, in terms of hit
rate and, certainly, implies a gain in terms of
network load. The algorithm was properly for-
malized and implemented for the purposes of
validation and performance analysis. We have
designed and implemented a simulation model
that uses real-world data; since the algorithm
assumes that it is possible to get the semantics
for every Internet object, our first implementa-
tion is based on a tree of subjects to categorize
objects and is based on the taxonomy given by

the Yahoo! search engine.

The first results are very promissing, thus
encouraging to proceed with the research. We
intend to carry many improvements, such as:

e The development of LSR assumes that
the semantics of each object is available.
This should be feasible with the adop-
tion of the RDF standard. A proposal
by [Shmidt, 2002] explores this idea and
shows that it is possible to use LSR for
real-world systems. Certainly, that will
require some implementation effort, but
it will make it possible to test and assess
LSR with a large amount of objects and
users.

e The experiments done so far test an iso-
lated cache. A possible extension is to ex-
periment with a hierachy (or grid) of coop-
erating caches. For that purpose, we are
considering to use the simulation platform
developed by [Brandao and Anido, 2001].

e The tree of subjects approach used in the
first implementation needs to be arranged
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Figure 6: A sequence of object accesses
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Figure 7: A sequence of Yahoo! object accesses

according to users interests; LSR will per-
form better when the tree is well suited
for users interests. Since such interests
can change over time, it is required a rear-
rangement of the tree. Therefore, it would
be interesting to have a mechanism that
dynamically updates trees of subjects ac-
cording to the way users change their in-
terests. This is possible to dected by trac-
ing the semantics of objects accessed. For
example, if a etc node becames to busy, it
means that the tree does not conform to
users interests anymore.

The current version of LSR is well suited
for a single interest at a time (not nec-
essarily a single user). An interesting re-

search path is to enhance LSR to suit a
number of parallel threads of interest (of a
single user or a group of users). That will
require extra information, such as history
of access, that is, when objects need to
be evicted from a cache, LSR would con-
sider not only the semantics of the new
object that enters the cache, but a window
of latest objects. The research work pre-
sented in [Vakali, 2001] has already shown
the benefits of keeping history information
about object access when applied to tra-
ditional cache replacement policies.

Another research path is to employ an al-
ternative to tree of subjects as a means
to represent semantics. We are currently
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Access Quantity | Probability Range
Category | of Objects Lower Bound | Upper Bound

c qde Pc = X:q:qc 25;11 Pz §:1 R
1 20 0.47 0.00 0.47
2 10 0.23 0.47 0.70
3 6 0.14 0.70 0.84
4 4 0.09 0.84 0.93
5 2 0.05 0.93 0.98
6 1 0.02 0.98 1.00

Total 43 1

2 e 2P

Table 2: Monte Carlo Method probability distribution

pursuing a solution that applies the stan-
dard Vector Model widely employed by
search engines for information retrieval.
That will make LSR universally applyable
on the Internet, independently of any tax-
onomy.

e Finally, LSR can be used for informa-
tion pre-fetching rather than caching, es-
pecially because it considers users inter-
ests by construction.

Therefore, the main contributions of our re-
search work is the proposal of a novel policy
for object cache replacement, its implementa-
tion and validation, and a complete simulation
model. The first results favor LSR — users
can get their objects faster and the network
is less loaded — and open new research per-
spectives, especially in the context of Semantic
Web, where the assumed object semantics is a
fact.
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