Improved Compression of Topology for View-Dependent
Rendering

Christopher Zach* Markus Grabner! Konrad Karner?
VRVis Research Center TU Graz VRVis Research Center

Abstract

We present a simple and efficient representation to store
and transmit connectivity data of view dependent meshes
for out-of-core rendering of large datasets. Resident
mesh data available for rendering is organized as vertex
tree to support real-time visualization of huge models.
Our approach is not restricted to manifold meshes and
can be used in the presence of non topology-preserving
refinement operations as well. In contrast to progressive
mesh compression our representation allows selective ac-
cess to relevant fractions of the refinement hierarchy. Af-
ter new mesh refinements are received, the update of the
resident hierarchy available for display does not rely on
known topology in the neighborhood of the patches to
be refined. Therefore our approach does not require de-
pendencies. We compare our connectivity coding with
an existing framework for efficient transmission of view-
dependent meshes and obtained substantially better com-
pression results.

1 Introduction

Interactive visualization of huge 3D models, that fit only
partially into main memory, requires enhanced rendering
techniques. Additionally, there is an increasing need for
network based visualization systems with a client/server
architecture, e.g. in the context of geoinformation and
virtual tourism. In our work we address the challenging
task of displaying huge polygonal models in real-time us-
ing view-dependent rendering and multiresolution tech-
niques. Since our system handles very large datasets in a
client/server environment, special purpose compression
methods for faster transmission of scene data over a net-
work are required.

Single rate compression methods for geometry en-
code 3D geometry very efficiently, but the model can
only be displayed on screen if all data was received.
Progressive compression and transmission of geometric
data display the 3D model initially at low resolution and
gradually refine the displayed mesh when receiving new
data. Therefore these methods avoid the latency until the

Copyright © 2004 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

© 2004 ACM 1-58113-967-5/04/0004 $5.00

168

3D model is displayed on the client computer at some
level of detail. Pure progressive compression increases
the available resolution of the model uniformly, which
yields to low visual quality, if the full model is substan-
tially larger than available memory on the client com-
puter (Figure 1(a)). Selective transmission of geometry
data depending on the current and expected viewing pa-
rameters allow high quality visualization even if only a
fraction of the model data fits into main memory (Fig-
ure 1(b)). Additionally, it is reasonable to utilize a view-
dependent rendering (or level of detail) approach for al-
ready resident geometry data, since even the available
model will be typically too large to be rendered in real-
time at full resolution. Figure 2 illustrates the selective
retrieval of geoemtry data for a terrain data set.

SoA A

(a) View-independent progressive transmission

AV.AV.

(b) View-dependent progressive transmission

Figure 1: Progressive transmission of multiresolution
models and view-dependent transmission. Shaded re-
gions indicate resident portions of the vertex tree.

The main contribution of this work is an improved en-
coding for connectivity of view-dependent meshes over
earlier work. We allow non-manifold meshes to be rep-
resented and non-topology-preserving mesh refinement
operations are possible as well.

*zach@vrvis.at
T grabner @icg.tu-graz.ac.at
Tkarner@vrvis.at

¢ Walk Viewer

(a) High resolution data is available for the
initial viewing position.

X Walk Viewer

(b) A larger view on the model after dis-
abling further retrieval of geometry. The
in-memory model has a non-uniform reso-
lution.

Figure 2: Selective paging of a terrain dataset.

2 Related Work

2.1 View-Dependent Simplification
The key prerequisite for view—dependent mesh visual-
ization is the generation of a multiresolution data struc-
ture containing a set of smooth levels of detail of the
original model. One popular multiresolution concept is
the progressive mesh [Hoppe 1996], which is essentially
a sequence of meshes with successively lower geomet-
ric accuracy and complexity. Starting with the original
mesh the next sequence element is obtained by applying
one edge collapse operation (Figure 3) to remove one
edge and several (usually two) triangles from the pre-
vious mesh. The sequence of edge collapses is chosen
such that the overall shape of the model is preserved.
Edge collapses are performed until the mesh distortion
(according to some quality metric) is larger than some
threshold. A successful metric to guide the simplifica-
tion procedure is the quadric error metric proposed by
Garland and Heckbert [Garland and Heckbert 1997].
Several authors observed that the linear sequence of
edge collapses can be generalized to a partial ordering
represented by the vertex tree [Floriani et al. 1997; Hoppe
1997; Pajarola 2001; Xia and Varshney 1996]. Selective
refinement at runtime determines the currently displayed
mesh. Our framework is based on VDS1ib [Luebke
2002], which is described by Luebke and Erikson [Lue-
bke and Erikson 1997]. Figure 4 gives an overview of
the most important data structure, the vertex tree. At
runtime the nodes in the vertex tree fall into three cat-
egories: active nodes, which contain the currently ren-
dered triangles (called subtriangles or subtris for short),
boundary nodes, which correspond to vertices in the dis-
played mesh, and inactive nodes. For each frame to ren-

169

edge collapse

=

AN
4y

Figure 3: Edge collapse operation. The vertices a and b
are collapsed into vertex c, therefore removing one edge
and 2 triangles. The inverse operation, vertex unfolding
(or vertex split), is applied at runtime for mesh refine-
ment.

der, the vertex tree is traversed in top down order and ac-
tive nodes are determined according to some screen error
metric.

2.2 Geometry and

Streaming

Compression

The necessity to transmit large geometric models over
slow network connections has initiated much research
on geometry compression. Early work addressed
single-rate, non-progressive compression of static 3D
models [Deering 1995; Rossignac 1999; Taubin and
Rossignac 1998; Touma and Gotsman 1998]. Although
these compression techniques are very effective, the non-
progressive nature introduces a significant latency until
the model can be displayed on the target computer. In or-
der to reduce this lag progressive transmission methods
for geometry were developed. These methods allow dis-
play of a coarse model very quickly after the transmission

Figure 4: The vertex tree as found in VDS1ib. Every node stores geometric data (point coordinate, color, a bounding
sphere etc.), its children and a list of associated triangles, the so called subtris. The triangle (abc) is a subtri of v, because
it exists only if v is unfolded at runtime. The nodes emphasized with a circle are possible corners of (abc) chosen for

rendering. v’, b’ and ¢’ are explained in Section 4.

has been initiated and refine the displayed model as soon
as more data is received. Progressive Meshes allow a
somewhat compact external representation [Hoppe 1996;
Hoppe 1998]. Cohen-Or et al. [Cohen-Or et al. 1999]
describe a progressive encoding of geometry based on
successive vertex insertion and graph coloring to identify
affected triangles. Giving up some flexibility of the orig-
inal progressive mesh approach, grouping several mesh
updates into batches yields to even more compact rep-
resentation [Pajarola and Rossignac 2000; Taubin et al.
1998]. Alliez and Desbrun [Alliez and Desbrun 2001]
achieve very low bitrates using a valence-driven vertex
decimation method. Devillers and Gandoin [Devillers
and Gandoin 2000; Gandoin and Devillers 2002] tightly
couple connectivity compression with progressive cod-
ing of vertices using spatial subdivision methods.

Meshes with regular topology can be converted into
a multiresolution representation based on wavelets [Eck
et al. 1995]. Wavelets provide a general tool for pro-
gressive and compressed transmission of arbitary data.
Khodakovsky et al. [Khodakovsky et al. 2000] present
a progressive mesh encoding scheme based on wavelet
transformation.

None of the above mentioned compression techniques
allow selective transmission of refinement updates based
on the current or predicted future viewing parameters,
since the resident mesh is refined uniformely. For very
huge models like large terrains and other outdoor envi-
ronments, it is reasonable to refine the mesh near to the
current viewing position sooner. Additionally we explic-
itly allow unbalanced refinement hierarchies resident in
memory to store only relevant parts of the hierarchy in
the clients memory.

Wang and Li [Wang and Li 2000] propose an octree-
based clustering method to obtain a multiresolution
model similar to the VDS representation. In order to
transmit fractions of the model depending on current

viewing parameters, they employed an absolut path cod-
ing of vertices. Yang et al. [Yang et al. 2001] al-
low partially view-dependent transmission of progressive
meshes by splitting the base mesh in partitions, which
can be transmitted independently.

Our work is a significantly refined and optimized ver-
sion of the CAME topology coding approach [Grabner
2002]. The CAME framework stores triangle connectiv-
ity similar to the VDS framework, but uses paths through
the simplification hierarchy to access mesh vertices in-
stead of node IDs. Hence, mesh vertices are identified
by bit strings indicating the path to be taken in the sim-
plification hierarchy to reach the leaf node corresponding
to the vertex. Each bit in the string identifies the branch
to be taken after a vertex split. Topology compression
is achieved by omitting redundant prefixes of bit strings.
A slightly improved variant of connectivity coding over-
coming some limitations found in the CAME framework
is described in Section 4 in more detail. In this paper
we address solely the compression of connectivity infor-
mation. A improved method to encode vertex positions
based on the CAME framework can be found in [Grabner
and Zach 2003].

3 Dependency-Free Transmis-
sion

With sufficiently known topology in the neighborhood of
the considered refinement, compact encoding of updates
(vertex splits) is possible by indicating cut edges. De-
termined topology can be enforced by dependencies be-
tween refinements to narrow the possible sequences of
refinements. If we assume an average valence of 6 for
every mesh vertex, approximately 5 bits are sufficient to
encode the connectivity update for a vertex split [Hoppe
1996]. This compact representation requires dependency

170

data to be encoded additionally. View-dependent pro-
gressive meshes [Hoppe 1997] and merge trees [Xia and
Varshney 1996] rely on these dependencies at run-time,
therefore this data must be transmitted anyway.

The VDS framework [Luebke and Erikson 1997] does
not require dependencies between vertex nodes in gen-
eral, but dependencies can be beneficial for image qual-
ity, since the probability of run-time mesh foldovers is re-
duced. Typically only thin or otherwise fragile triangles
are worth to add dependencies to avoid run-time arte-
facts. Therefore it is reasonable to insert vertex depen-
dencies only for selected nodes. Without dependencies
throughout the refinement hierarchy the neighborhood of
a vertex ready to split is only known partially, therefore
compact cut edge coding is inhibited.

Single refinements are usually grouped into meta
nodes [El-Sana and Chiang 2000] to be more efficiently
transmitted over a network. Within a framework relying
on dependencies a predefined clustering of nodes based
on the vertex tree can result in some waste of transmis-
sion time, since refinements that depend on non-resident
vertices cannot be decompressed. It is unclear whether
this is a severe penalty. Nevertheless, the virtual memory
management required for networked out-of-core render-
ing frameworks is substantially simplified in the absence
of dependencies. Hence, we assume in this work that no
or only few dependencies are transmitted and we focus
purely on encoding the connectivity of triangles.

4 Relative Encoding of Triangle
Topology

In this section we describe the basic method to encode
triangle vertices efficiently for an external memory rep-
resentation. This basic method is loosely based on the
encoding used in the CAME framework [Grabner 2002].

Unlike view-independent progressive compression
schemes view-dependent meshes require index-based
specification of triangle vertices. The methods to encode
vertex splits compactly as described by Hoppe [Hoppe
1998] and Pajarola and Rossignac [Pajarola and
Rossignac 2000] are not applicable for view-dependent
representations, since the topology in the neighborhood
of the vertex to split is only partially known. The knowl-
edge of surrounding connectivity depends on the parts of
the vertex hierarchy already transmitted.

4.1 Relative Vertex ID Coding

Referring to Figure 4, the subtriangle (abc) of a node v
is represented by its three vertices (node IDs) pointing to
the appropriate leaves in the vertex tree. Node IDs are as-
signed using a depth-first traversal (see Figure 5(a)). At
least two of these corners (a and b) are leaves in the sub-

171

tree of the node v owning the subtriangle. We call these
corners internal nodes (wrt. the owning node). There-
fore it is reasonable to encode the relative path from v to
the leaf vertices [Grabner 2002]. Instead of directly en-
coding the relative paths, we employ relative coding of
node IDs. Internal corners are stored as the difference
n.id — v.id (here n is either a or b). These differences
are finally entropy coded. By the numbering scheme for
node IDs, this difference is always positive.

The third corner c of the triangle is not in the subtree
of v. We call this node external, and relative coding is
slightly different. The leaf node c belongs to the subtree
of the common ancestor v of v and c¢ (recall Figure 4).
Therefore the external node c is represented as the pair
(h, c.id—v'.id), where h is the height difference between
v" and v. These values are again entropy coded in a final
pass.

During the vertex tree construction the assigned node
IDs are based on a preorder traveral (see Figure 5(a)). At
runtime this unique numbering can be relaxed and we can
improve incremental coding by the modified numbering
scheme illustrated in Figure 5(b). For binary vertex trees
the achieved benefit is about one bit per vertex, since the
range of ID values is effectively halved.

(a) VDS node numbering

(b) Compact node numbering

Figure 5: Node numbering in the VDS framework and
the ID assignment scheme used for improved relative
coding.

We achieve even higher compression if the following
considerations are taken into account: if corner a is al-

ready encoded, b must be in the right subtree of v. There-
fore the ID of b is at least the ID of the leftmost leaf b’
in the right subtree of v (Figure 4) and we only need to
encode the difference V'.id — b.id. In practice this addi-
tional improvement saves 1.5 to 2 bits per triangle. Note
that there is only a benefit if the first encoded vertex is in
the left subtree. The improvement can be applied to the
external node c.

So far this encoding method does only exploit the co-
herence of triangle corners within the vertex tree, but it
does not exploit mesh connectivity found in the original
3D model. Nevertheless this incremental coding of node
IDs alone yields to substantial reduction of connectivity
data compared with an indexed face set representation
(14.9 bits per vertex on average instead of 3 x 17 = 51
bits for the crater model).

4.2 Entropy Coding of Difference Val-
ues

Since the range of differences between node IDs is rather
large, but concentrated near small values, we utilize a
variation of Huffman coding in order to avoid very large
dictionaries: we store the 511 most frequent difference
values in the Huffman table and the 512th code repre-
sents the prefix for all other differences, which are en-
coded directly with the appropriate number of bits. This
encoding is only slightlier inferior to true Huffman cod-
ing, but has a bounded size of the dictionary to transmit.

Additionally we tested separate Huffman tables for en-
coding differences of internal and external vertices. In
these cases the allowed table size is halved to obtain a
fair comparison. Separate tables yield to a reduction of
0.5 bits per triangle.

4.3 Restructuring the Vertex Tree

Without changing the semantics of the vertex tree the
successors of a node may be permuted arbitrarily. The
distribution of difference values depends on the shape of
the vertex tree as seen in Figure 6. Rearranging the tree
such that deeper parts move to the right end proved ben-
eficial in all our experiments. Although the gain is rather
marginal in most cases (0.3-0.5 bits/triangle), it is a sim-
ple enhancement with no additional memory costs.

4.4 Path Coding versus ID Difference
Coding

Unlike the CAME framework [Grabner 2002] we explic-
itly allow unbalanced vertex trees in our approach. Bi-
nary (relative) paths form another strategy of node iden-
tification, but the range of assigned values is sparse for
unbalanced trees. Highly unbalanced trees can appear in
practice, e.g. if the scene database has large variations

172

(a) Large difference
value to encode ¢

(b) Small difference value to
encode ¢

Figure 6: The effect of restructuring the vertex tree to
move deep subtrees to the right tail. The triangle (a, b, ¢)
is a subtri of v. The difference c.id — v.id is much larger
in tree (a) than in (b).

in scale. A mostly uniform height field representing a
large area might be enhanced with highly detailed local
3D models. In such cases the restriction of a maximum
path length of 52 nodes (as found in the current CAME
implementation) may be too restrictive. For these reasons
we decided to assign node IDs from a compact range of
values, which proved somewhat superior to relative path
coding.

5 Improved Coding of Internal

Vertices

Relative coding of triangle topology as described in the
previous section still requires about 15 bit per triangle,
which is substantially more than required for pure pro-
gressive coding. In this section we argue that encoding
and transmitting only the external corner of each sub-
triangle is sufficient and the two internal corners can be
mostly omitted. Unfortunately these improvement does
not reduce the encoded size to one third, since referenc-
ing external nodes is much more expensive than referring
to internal corners.

When a vertex split u — (u1, u2) and external corners
v; and v, are received by the client, typically two new tri-
angles A(uq1,uz,v;) and A(ug,us,v,) are available for
rendering (see Figure 7).

Triangles adjacent to u must be updated to reflect the
refined corners. Adjacent triangles fall into two cate-
gories:

1. Triangles, that reference u as external corner.
The update of affected corners is done implicitly by
the run-time mesh selection procedure, since exter-
nal corners specify the full path to the corresponding
leaf vertex. Notice that nodes owning such triangles

R

> s

(2) (b)

Figure 7: Triangles adjacent to u are affected by the ver-
tex split u — (u1, uz).

are not ancestors of u.

Subtriangles owned by ancestor nodes of w.

These subtris refer to the appropriate leaf vertex be-
low u only implicitly and the correct substitution
u — uy or u — uo for the corner must be deter-
mined.

If we presume an orientable manifold, all triangles adja-
cent to u (either by referencing a leaf node in the subtree
below u or only implicitly referencing u) can be arranged
in an oriented triangle fan (see Figure 7(a)). If u is on
the boundary, the fan does not constitute a closed loop.
The correct update information can be distributed across
this triangle fan. In order to avoid the time consuming
search for triangles currently adjacent to u, faces need
to store pointers to neighboring triangles (similar to the
Face structure used in the efficient implementation of
progressive meshes [Hoppe 1998]). These pointers must
be updated if new refinements are received by the client
or unused parts of the vertex tree are removed from main
memory.

This approach requires strictly orientable 2-manifolds
as source mesh and only topology preserving edge col-
lapses are permitted. Since we allow general input
meshes and do not restrict edge collapses (and explicitly
permit general vertex pair contractions), we encode the
required control information to correctly update adjacent
subtris of parent nodes directly. The affected subtriangles
of ancestor nodes can be serialized into a linear sequence,
therefore the mapping of a control bit to the target subtri
is unique. Additionally, the number of control bits needs
not to be encoded. In our experiments with mostly man-
ifold meshes about 4 control bits are necessary for every
refinement, which implies that two bits per triangle are
additionally required. Figure 8 and Figure 9 give a small
example, how adjacent triangles of parents are affected
and encoded by vertex splits.

Finally, we give details on our implementation for the

173

uy

le

Figure 8: The control bits associated with the nodes. The
notation u : ¢, ws;01 inserts the two triangles (u;cusg)
and (ujuswsy) and updates the subtris of its parent v ap-
propriately.

data encoded for the refinement ©v — (uq, uz): Usually
the two inserted subtriangles are encoded as a pair of ex-
ternal vertices (see Section 4). We extend the domain of
the height difference h with two new symbols to repre-
sent non-existent subtris and non-manifold updates intro-
ducing more than 2 triangles.

6 Summary of the Method

In this section we summarize the proposed encoding
method. The vertex tree obtained by the mesh simpli-
fication procedure is initially reordered as described in
Section 4.3. Subsequently, node IDs are assigned to each
leaf. A manifold vertex split v — (v1,v2) creating two
new triangles (v1,v2,a) and (v, v1,b) is encoded as the
bit string hg, a.id — vg.1d; hy, b.id — vy.id; control bits.
The height differences h,, and the ID differences n.id —
vp.id of the external vertices n € {a,b} are entropy
coded (with separate dictionaries). v,, denotes the com-
mon ancestor of v and n (recall Section 4). The con-
trol bits are determined as explained in Section 5. It is
not necessary to store the number of control bits explic-
itly, since this number can be reconstructed from the al-
ready decoded vertex tree. The dictionary of height dif-
ferences is extended by special symbols indicating non-
manifold vertex splits. This initial symbol is followed by
the number of triangles to decode. The triangles in the
non-manifold case are encoded explicitly with two inter-
nal and one external corner. Since non-manifold splits
are enountered only infrequently (e.g. 227 out of 34800
nodes for the bunny model), a more efficient encoding is
not required.

7 Results

We tested our connectivity coding on several geometric
datasets with various complexities. The first columns in
table 1 gives an overview on the complexity of the evalu-
ated models. The Bunny, Hand and Dragon models were
obtained from the Large Geometric Models Archive of
the Georgia Institute of Technology. The Crater dataset

R

a a

TN

TN

E

a a

Figure 9: A small sequence of vertex refinements. Dark shaded triangles indicate subtris of w (splitted into u; and
u9). Lighter triangles depict subtriangles of the parent v, which are adjacent to u and hence control bits are required
for correct updates. The numbers in the light triangles determine, how they need to be adjusted. ‘0’ represents the
replacement of u by u1, whereas ‘1’ indicates the substitution u — 9. With this information the triangles (uaw) and
(uwbd) can be updated correctly. Note, that the triangle adjacent to u and inserted with the second vertex split references

u as external corner.

is provided with the QSlim mesh simplification software
by M. Garland. The inner city and large city datasets
consist of an urban 3D model with detailed roofs and flat
facades. The DEM model showing an urban area was
obtained by an airborne laser scanner.

The vertex trees for these models were generated with
the quadric error metric, if not noted otherwise. The
obtained compression results for various encoding tech-
niques for view-dependent meshes are summarized in Ta-
ble 1. We evaluated relative path compression found in
CAME, relative ID coding (Section 4), and our proposed
coding (Section 5). Additionally we specify the maxi-
mum depth of a node in the corresponding vertex tree for
each model to show the influence of balancing on com-
pression results.

The presented numbers of bits per triangle refer to en-
coding only connectivity information without the struc-
tural data required to recover the tree structure. The ben-
efit of encoding ID differences (7th column) instead of
relative paths (6th column) varies with the dataset, but the
gain of external corner coding (last column) is usually 3
bits per triangle (with the exception of the city datasets).

8 Analysis and Discussion

8.1 Analysis for Internal Vertices

In this section we argue, that the observed 2 bits per tri-
angle to encode internal vertices are no coincidence. The
proof is based on a simple counting argument: If we con-
sider a balanced vertex hierarchy with height d, the num-
ber of subtris (for 2-manifold meshes) is 2 x (2% —1). At
level k in the hierarchy (k < d), 2 x 2* triangles refer to
2 x 2 x 2* internal vertices. Furthermore, for triangles at
level k, d — k — 1 control bits are required at successor

174

nodes. Summation over all levels yields, that
d—1
4y Md-k—-1)=42'-d-1)
k=0

control bits are required in total. Consequently,

4x (27 —d—1)
2 x (24 -1)

bits are required to encode the internal vertices of each
subtriangle. In summary, encoding internal vertices for
(mostly) 2-manifold meshes and somewhat balanced hi-
erarchies requires about 1 bit per internal vertex.

8.2 Worst-Case Results for External
Vertices

The figures given in Table 1 suggest that the number of
bits to encode one triangle are relatively constant for all
datasets regardless of the model complexity. In this sec-
tion we disprove the conjecture, that in fact a constant
number bits is required to encode connectivity of view-
dependent meshes.

In Figure 10 an example for an input mesh and cor-
responding vertex trees are given. Note, that the mesh
bears some resemblance to a bipartite graph. The ver-
tex trees presented in Figure 10(b) and (c) can actually
be generated by a reasonable error metric (e.g. using the
edge length as quality metric), if the vertex positions are
adjusted accordingly. In this case all vertices on the left
and on the right constitute separated subtrees below the
root node and references to external corners are ineffi-
cient.

The vertex trees for this (somewhat artificial) exam-
ple allow two conclusions: At first, even balanced vertex
trees do not guarantee a constant number of bits per trian-
gle to encode topology, and the number of bits per trian-
gle required with relative path coding can be linear in the

Dataset name | #vertices | [log,#vertices| | #triangles | Depth | CAME | Relative ID | Proposed
Bunny 34834 16 69451 21 18.48 15.08 12.12
Bunny“ 27 18.80 14.01 11.06
Bunny? 18 16.00 14.21 11.21
Crater 100000 17 199114 26 18.04 14.93 11.95
Inner city 72186 17 162146 132 18.99 12.03 12.32
Large city 144243 18 248755 128 19.06 11.45 10.70
Skeleton hand | 327323 19 654666 118 18.41 15.32 12.23
DEM 361176 19 720000 29 19.99 15.49 12.39
Dragon 437645 19 871414 30 18.96 15.25 12.21
Dragon® 48 19.51 13.70 10.91
Dragon® 24 16.71 14.37 11.33

Table 1: Compression results for the evaluated datasets. The figures represent the required number of bits per triangle.
The vertex hierarchies were created using the quadric error metric. Additionally the bunny and dragon model were
simplified using the edge length metric (indicated by ¢) and a refined edge length metric including a balancing factor to

penalize unbalanced hierarchies (denoted with by,

number of mesh vertices n (instead of O(logn) for an
indexed representation without relative coding). Notice
that the second observation applies only to path coding,
since in the given example the relative paths comprise
a sparse subset of bit strings. Node ID coding requires
always O(log n) bits in the worst case.

9 Conclusions and Future Work

We have presented an improved method to encode view-
dependent meshes for selective and efficient transmission
over slow connections. Received refinements can arrive
in arbitrary top-down order, since decompression is only
dependent on ancestor nodes. Dependencies between re-
finement operations are only required on demand for im-
proved visual quality to avoid run-time mesh foldovers.

In this work we have only addressed efficient encod-
ing of connectivity data and we did not discuss com-
pression of vertex positions and other attributes. Ap-
propriate compression of vertex positions depends on
the actual mesh simplification procedure, e.g. half-edge
collapses [Pajarola 2001] benefit possibly from a dif-
ferent position coding method than optimal placement
strategies (e.g. found in the quadric error metric ap-
proach [Garland and Heckbert 1997]). We suppose that
geometry coding is largely orthogonal to connectivity
compression in our approach. Further, we would like
to emphasize, that our method works on given view-
dependent meshes and encoding is not tightly coupled
with the generation of the multiresolution representation
(as opposed to many progressive methods).

There is still a significant gap between the perfor-
mance of progressive mesh coders and our method. Gan-
doin and Devillers [Gandoin and Devillers 2002] report
less than 2 bits per triangle for manifold surfaces in con-
trast to estimated 10-12 bits per triangle required by

175

our approach (for mostly manifold meshes). Progressive
methods cannot be directly compared with our approach,
since we aim on efficient transmission of meshes suit-
able for view-dependent rendering at the client computer.
Nevertheless, we expect improved compression methods
for view-dependent meshes in the future.

10 Acknowledgements

We would like to thank Ivana Kolingerova and Sebastian
Krivograd for helpful discussions.

This work has been done in the VRVis research center,
Graz and Vienna/Austria (http://www.vrvis.at), which is
partly funded by the Austrian government research pro-
gram Kplus.

References

ALLIEZ, P., AND DESBRUN, M. 2001. Progressive com-
pression for lossless transmission of triangle meshes.
In Proceedings of SSIGGRAPH 2001, 195-202.

COHEN-OR, D., LEVIN, D., AND REMEZ, O.
1999. Progressive compression of arbitrary triangu-
lar meshes. In Proceedings of IEEE Visualization '99,
67-72.

DEERING, M. 1995. Geometry compression. In Pro-
ceedings of SIGGRAPH ’95, 13-20.

DEVILLERS, O., AND GANDOIN, P.-M. 2000. Ge-
ometric compression for interactive transmission. In
Proceedings of IEEE Visualization 2000, 319-326.

Eck, M., DEROSE, T., DucHamP, T., HOPPE, H.,
LOUNSBERY, M., AND STUETZLE, W. 1995. Mul-
tiresolution analysis of arbitrary meshes. In Proceed-
ings of SIGGRAPH ’95, 173-182.

(2)

(b) Logarithmic tree depth

(c) Linear tree depth

Figure 10: The structure of a worst case mesh and pos-
sible vertex trees. The dashed arrows indicate references
to external corners.

EL-SANA, J., AND CHIANG, Y.-J. 2000. External mem-
ory view-dependent simplification. In Proceedings of
Eurographics 2000, 139-150.

FLORIANI, L. D., MAGILLO, P., AND PUPPO, E. 1997.
Building and traversing a surface at variable resolu-
tion. In IEEE Visualization’97, 103-110.

GANDOIN, P.-M., AND DEVILLERS, O. 2002. Progres-
sive lossless compression of arbitrary simplicial com-
plexes. ACM Transactions on Graphics (TOG) 21, 3,
372-379.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface
simplification using quadric error metrics. In Proceed-
ings of SIGGRAPH "97,209-216.

GRABNER, M., AND ZAcH, C. 2003. Adaptive
quantization with error bounds for compressed view-

176

dependent multiresolution meshes. In EUROGRAPH-
ICS 2003, Short Presentations, 77-82.

GRABNER, M. 2002. Compressed adaptive multiresolu-
tion encoding. Journal of WSCG 10, 1, 195-202.

HoPPE, H. 1996. Progressive meshes. In Proceedings
of SIGGRAPH 96, 99-108.

HoprPE, H. 1997. View-dependent refinement of pro-
gressive meshes. In Proceedings of SIGGRAPH 97,
189-198.

HoprpPE, H. 1998. Efficient implementation of progres-
sive meshes. Computers and Graphics 22, 1, 27-36.

KHODAKOVSKY, A., SCHRODER, P., AND SWELDENS,
W. 2000. Progressive geometry compression. In Pro-
ceedings of SIGGRAPH 2000, 271-278.

LUEBKE, D., AND ERIKSON, C. 1997. View—dependent
simplification of arbitrary polygonal environments. In
Proceedings of SIGGRAPH ’97, 199-208.

LUEBKE, D., 2002. View-dependent simplification li-
brary. http://vdslib.virginia.edu.

PAJAROLA, R., AND ROSSIGNAC, J. 2000. Compressed
progressive meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics 6, 1, 79-93.

PajarROLA, R. 2001. Fastmesh: Efficient view-
dependent meshing. In Proceedings Pacific Graphics
2001, 22-30.

ROSSIGNAC, J. 1999. Edgebreaker: Connectivity com-
pression for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics 5, 1, 47-61.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric
compression through topological surgery. ACM Trans-
actions on Graphics 17, 2, 84—115.

TAUBIN, G., GUEZIEC, A., HORN, W., AND
LAzARUS, F. 1998. Progressive forest split compres-
sion. In Proceedings of SIGGRAPH °98, 132—-132.

TouMa, C., AND GOTSMAN, C. 1998. Triangle mesh
compression. In Proceedings of Graphics Interface,
26-34.

WANG, H., AND L1, J. 2000. OctMesh - interactive
mesh browsing over the internet. In Int’l Conference
on Information Technology: Coding and Computing
(ITCC’00), 104-108.

XI1A, J. C., AND VARSHNEY, A. 1996. Dynamic view-
dependent simplification for polygonal models. In
IEEE Visualization 96, 335-344.

YANG, S., KiM, C.-S., AND Kuo, C.-C. K. 2001.
View-dependent progressive mesh coding for graphic
streaming. In Proc. SPIE ITCOM.

