
Wulfdieter L. Bauerfeld 
Hahn-Mei tner-Ins ti rut Berlin, Germany 

on leave at 
The University of Texas at Austin 
Department of Computer Sciences 

A Communication Concept for Protocol Models 

A concept is introduced for the communication within hierarchically ordered 
distributed systems like computer network protocols. Characterstrings common 

for output and input instructions are sufficient to describe a broadcast 
communication via an unbuffered send. The broadcast can be restricted to 
clusters of processes to express the physical links in a network. Any 
hierarchical order is not described in process types but in messages which 
can be encoded or decoded. 

I. Process- to-Process Communication 

Protocols are considered as to be made up by at least two parallel pro- 
cesses whose execution agrees in certain rules and common variables in given 
formats. Modeling of protocols for verification, performance analysis or an 
adequate specification of the implementation demand a great deal from a com- 
munication method. The variety of methods is restricted to exchange of mes- 

sages. Data sharing and parallelism are inherently difficult to combine ef- 
fectively in a language [Qu79]. Shared storage locations can be modeled as a 
separate process. Thus communication solely by messages seems to be 

sufficient. Still different naming strategies used in message oriented com- 
munication systems have to be examined. 

To send a message the receiving process can be named in the SEND in- 
s truc tion which is paired by a RECEIVE instruction where a sender descrip- 
tion might be optional. This process naming requires that processes have 
access to each other names. An agreement upon the significance of the used 
variables should have been settled. However the number of messages sent or 
received can be different for both processes. Compiler type checking of mes- 

sages to express different transition types is not possible. Individual SEND 
and RECEIVE instructions could be paired only if analysis of the behaviours 
of both processes is possible. 

A more modular approach is to declare a number of ports for each module 
[Hu78]. Verification could be done by a technique known as "symbolic execu- 
tion" which covers all possible interactions between processes following a 
proof tree [BJ78]. It is assumed that individual processes define particular 
variables - the port names - to be accessable externally. Providing an ex- 
ternal mechanism for linking which allows dynamic port linkage, any process 
name can be omitted. Ports can be of a given type; variables passing through 
a typed port must have a type that agrees with the port type. Checking of 
agreement of types between a message and a port name and between port names 
can be done before process execution begins [0u79]. 

32 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1040114.1040116&domain=pdf&date_stamp=1981-01-01

