Verification of flow control protocols,

Klaus Hansen
e DIKU, University of Copenhagen
Sigurdsgade 41, DK-2200 Copenhagen N

ABSTRACT

An important issue in computer network design is end-to-end
control, a term covering error control and flow control. The
validity of schemes for these purposes may be demonstrated using
simple formal models, in which assertions about central program
variables are proven, 5.Krogdahl [2] and D.E.Knuth (1] have
shown the wvalidity of error control for a class ot data link
protocols using such methods. In this paper their method 1is
extended to cover flow control. The method is illustrated by
proving assertions for a simple case, and it 1s shown how complex
systems may be seen as compositions of the simple case.

1. Introduction,

End-to-end protocols in computer networks guarantee that a data path
between a producer (or data source) and a consumer (or data sink) provides a
reliable service, An end-to-end protocol incorporates mechanisms for error
control and flow control.

Error control covers the aspects of preserving the sequence as well as
detecting loss, duplication or corruption of data. This 1s important when
data are transfered over a data path with a significant probability for
errors,

Flow control covers resource management. Transmission of data 1involves
a certain amount of copying, and flow control methods are employed to utilize
limited buffer resources. A flow control scheme is valid, when 1t ensures
that transmission is always possible in spite of limited resources. Other
aspects of flow control, i.e. smooth flow and good utilization of resources.
are not treated in this paper. They involve statistical behaviour of the com-
ponents, and a treatment calls for e.g. queueing theory, which is outside the
scope of this paper.

The method used to verify schemes is similar to that in (1], A scheme is
given by a set of algorithms working on a set of common variables., Each algo-
rithms is given a name and is called an operation. The particular order 1in
which the operations will be performed 1s i1mmaterial for the purpose. To
cite:

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1040124.1040125&domain=pdf&date_stamp=1985-01-01

"Our goal 18 to derive facts about any scheme that 13 based on
these operations: 1t 1s 1n this sense we are studying a "protocol
skeleton” for a large class of conceivable protocols, The facts we
shall derive are expressed 1n termg of relations that remain
tovardant urder all operations,”

The scheme 1s thus completed by specifying a set of assertions about the
variables,

The set of assertions consists of global and local assertions, the glo-
bal assertions specifving the behaviour of combinations of operations, and
the local assertions determiming the applicability of each operation,

The method 18 applied to a simple case and two composite cases, The
cases are simplified versions of protocols found in real networks: the sim-
plification 18 done by ignoring the representation of various data. while
keeping the essential parts of the protocols concerned with queues and feed-
back,

2. Flow control.

A constrained producer/consumer system (figure 1) consists ot a producer
of full butfers, a consumer that empties them, and two queues,

-NNNN—

Producer @ @ Consumer
“ppg-—

Imoty Buffers E

(F dencotes queue of full buffers, E gqueue of empty)
Figure 1: Constrained producersconsumer system,

Flow control is implicat in the synchronization method used, as a processz 1s
blocked (waits) whenever a gueue 18 empty., The system 18 stable irrespec-
tively of the relative speeds: this 13 one of the purposes of synchronization
methods,

However when the system 1s aplit into two and a transmission system 18
added (figure 2), 1t 18 necessary to provide a buffer pool at the consumer
end, as the transmission path acts as a copying mechanism only, which cannot
buffer data, We assume the transmission path to be error-tree and have lim-
ited, but positive apeed,

Transmitter Receiver

1 ¥
. | | . =
| 1
E | X
c O‘» g > =] Consumer

N]

\\\ [::] B
~

k \.\ 1

:red’its_ 7

Note: lower case letters denote numbers.

The queues are: E empty buffers, H buffers held betfore
transmission, B auxiliary pool of empty, W full buffers waiting
to be consumed. X 18 transmission path. k credits in transit,

¢ available credits at T,

Figure 2: Producer/consumer with transmission system.

The queue of full buffers (F) has been split in three: buffers waiting
for transmission (H), buffers in transit (X), and buffers delivered to the
consumer, but waiting to be emptied (W). The producer fills an empty buffer
from E and delivers it to the transmitter, where 1t is put into the H queue.
At an appropriate time, it is put into the transmission path, and the bufier
is returned empty to E. When data arrives at the receiver, 1t 1s put into a
buffer taken from B and delivered to the consumer queue W, After emptying it.
the consumer returns it to B. X may contain any number of buffers, depending
on propagation time and speed of the data path,

The feed-back needed is provided by a stream of credits that conveys
information about empty buffers, one credit representing one empty buffer.

The purpose of flow control is now to avoid the situation where B 1s
empty when data are received, an unrecoverable situation. 1f the number of
buffers in X and B are called x and b respectively, this may be expressed as

x<b 1.1y
i.e. the number of buffers in transit must not exceed the current size of B.

The full description of the variables is:

11

& 3si1ze of empty queue (E) imitially &
h size of hold gqueue (H) initially ©
X number of butters in transit initially G
b size of free gueue (B) initially B
W 31z of queue Of waiting (W) inttially O
¥ credits in transit imitially O
o current credits at transmitter imitially B

3. Operations and assertions for the simple systes.

Using the variables described above, we can give a scheme ror the simple
system 1n figure ¢ that has f{ive operations, three for the transmitter (Tl.
T2, T3) and two for the receiver (R1. RZ), The operations are qgiven below,
The comments enclosed 1n (* and r) shows the semantics of the statement.
which 1s otherwise only specified by the effect on the common variables,
Local assertions are shown for each operation. and have to be true for the
operation to be applicable, e.g. h»0 and ¢>0 for a buffer to be transmitted
by operation T2, A protocol using flow control will consist of some sequence
ot these operations; a sequence 18 valid only 1f the local assertions are
true when an operation 18 invoked,

Ti: PUT FULL
{# azsert s> *)
gr= g~1°
hi= h+l: {®* enueue *)

T2: DELIVER FULL
(% agsaert h>0 #)

hi= h-1; (* dequeue *)

ci= -1

wi= xel {(# SEND DATA #)
grs pel (# deliver empty*)

T3: CREDIT ARRIVED
{* assert k>0 #)
ki= k-1:

g ool

Ri: FULL ARRIVED
{# agsert x>0 #)
iz x~1:

bi= b-1: (* dequeue *)
wiw el (# deliver full =)
w2: PUT BOPTY

(# assert wrl *)
wi= w-l;
bi= b+l (#* ergueue *)
kr= kel (# SEND CREDIT #)

The global assertions are as follows., All variables except ¢ are non-
negative; for c a weaker assumption c+k>0 may be used (the meaning of this is
not elaborated here).First, the purpose of flow control is reformulated as

c+k=b-x (l.1ay
Second, no buffers may be lost or misplaced at T or K;

e+h=@é (1.2)

w+b=B (1.3)

It is easily seen that the assertions are true for the 1initial values
and invariant under the operations. To prove x<b observe that

b-x = c+k and ctk > 0
which implies that

x-b ¢ 0

The global assertions will then be true. and the total scheme be valid.

A simplified version of the operations is worth considering. When the
variables ¢ and k, and operation T3 are omitted, there 13 no feed-back, If
the consumer and transmission path are faster than the consumer, it 18 easy
to construct a valid sequence which violates equation (1.1): an example 1s
(T1 T2 R1) repeated a sufficient number of times. This scheme is invalid for
flow control: but it may of course be used if one dares to use timing con-
siderations in validity arguments,

4, Composite systems.

Two common ways ..f obtaining more complex schemes are to combine simple
schemes by concatenation or nesting, in the following called serial and mul-
tiplexed flow control.

Serial flow control is found in gateways between different nets and 1in
front-ends for host computers.

Multiplexing and the resulting nesting of flow control is common, exam-
ples are the X.25 datalink and DCE-DTE levels. or the datalink, network and
transport layers in the Open Systems Interconnection model ([31.

S. Serial flow control.

Figure 3 shows the concatenation of two schemes., The arguments above
are easily generalized to a concatenation of simple schemes joined in the
obvious way. The five operations are still valid, with a change of variables
to indexed variables, to distinguish between the component schemes, As a
consequence, some variable names are synonyms:

13

24 {
AN %&
L5

Figure 3: serial flow control.

bixez and wixnz

The operations are derived from those of the simple system by indexing
of variables. The assertions are (1 having values 1 and 2):

Cz*ﬁizbz"xl (2.1
a1+hlxel (Z.2)

YD =D)
W, bz El (2.3

It is easily verified that the assertions are valid. The proot of x.<b
is similar to that of the simple scheme, The conclusion 1s that concatenat1oh
of flow control is a meaningful operation, which preserve the validity,

b, HKultiplexing.

when several data streams share a channel, but are otherwise indepen-
dent, the data streams are said to be multiplexed (see also [3]). The outer
transmission systems (for the streams) use that of the inner (the channel)
for the actual transfer (see figure 4). As both the channel and the streams
need flow control, this leads to nested flow control., The combined producers
and stream transmitters act as one producer for the channel, and similarily
the combined consumers and recelvers act as one consumer,

In the following the index zero signifies the channel variables, and a
positive index the corresponding stream. The notation 18 otherwise
unchanged .

The scheme has been simplified somewhat with respect to the queues. [t
iz assumed that no copying 138 needed at the stream/channel interface. As a
consequence E. and B, are omitted. Similarily the buffers in B are non-
existent bu@ bz i8 the number of buffers in BG that stream 1 considers 1its

— P v

Stream 4§
Channel ;
—1f =
% 2=
X N c Z\\\
on-
* c sumer@
~ E:I i
\\ :]B,
AN N £
N -
€
- ki

Figure 4: Multiplexing, nested flow control.

share. Allocation of buffers is a separate 1ssue,

The operations of the channel and the streams are as follows (note that
some actions are coupled together):

Operations of the channel.

Ti: PUT FULL
(* assert nil %)
h0:= h0+1: (* engueue *)

T2: DELIVER FULL
(* assert h0>0 *)

hai= ha=13 (* dequeue *)
0: "0 ¢
Cq+ g7l
S xo+ls (* SEND DATA *)

Xne- X \
cgll SQREAMi.TA; (* deliver empty *)

T3: CREDIT ARRIVED
(* assert k0>0 *)
ko= ka-1:

0: 0+1,

CO . co I
R1: FULL ARRIVED
(* agssert x0>0 *)

HoH

xD:z xo-l:
"bni= bo-1; (* dequeue *)
0 0 (* call STREAM,.Rl *)
R2: PUT EMPTY
(* assert nil *)
bo;: b0+1; (% enqueue %)
kO:u k0+1: (# SEND CREDIT *)

15

Operations for stream i,

Ti: PUT FULL
(% asgert @1>@ #)
& o= @imit
hi:: hl%iz L* enqueus #)

TZ: DELIVER FULL
{(# aagert h >0 #)

hi': hiéif (* dequeus *)
glrte ool
xiﬂz x§+;: (# call CHANNEL.T1 #)

T3: CREDIT ARRIVED
(* aasmert k. >0 #)

k 1= k =1:

cltx a%@iz

1 1

T4d: EMPTY AHRIVED
(# aggert nil #}

e}:: el*iz (* deliver »)

Ri: FULL ARRIVED
(# aggert x>0 #)

x1,= xiéit
hi:x b1~i:
wi:: wi@1; {(# deliver full =

R2: PUT EMPTY

w.oiz w. -1

£li= £le1

cAll CHANNEL.R2:

k1= ko +1; (% SEND CREDIT #)

The invariants are (note i>0 unless otherwise stated):

ci%k1 = biwxl (all 1) (3.1
Z(el&h1}$h6 = 28, (3.2)
Ewi+bﬁ = EQ (3,3
Multiplexing is consistent
in:hﬁ+xﬁ (3.4

It is8 easily verified that the assertions are true under the operations,
1£ Eﬁi g,ﬁg then follows (as Zbi i< hg is invariant):

blwxizci+ki 20
which implies blle

which implies bO 2 Ebi 2 le = hO*XO<Z %q

s this does not involve the assgertions for c, and k., 1t shows that
independent of the channel flow control mechanism, the channel will never
overflow if the stream flow control is congervative enocugh. Thus interesting
enough, we have shown that the channel flow control can be omitted. This may
be taken ag an argument against indiscriminate use of nested or layered sys-
tems,

7. Conclusion,

1t has been shown that a simple scheme consisting of a few time-
independent operations and their associated variables and assertions may be
used to validate the essential part of flow control protocols. Furthermore,
it is possible to obtain results for composite systems using the same method.

The method combines well with the error control validation of (1], to
give a total method for verifying end-to-end protocols.

Other methods for specification and veritication [4] like f{finite-state
automata or Petri nets are used for specific protocols to prove e.g. freedom
from deadlock, completeness, or stability, or to verify that the design meets
its specification. The approach in this paper is not quite the same, as it 1s
more limted with respect to properties, and more general in scope, as the
properties are shown for classes of conceivable protocols.,

8. Acknowledgements,

I wish to thank Jens Hammerum for the original idea, which appeared in
his Master's thesis in disguise, and A.P.Ravn for much advice on the presen-
tation of the ideas.

9. Litterature,

[1] D.E.Knuth: Verification of link-level protocols.
BIT 21,1 (1981)

(2] S.Krogdahl: Verification of a class of link-level protocols.
BIT 18,4 (1978)

31 1s0/1s 7498 .
Open Systems Interconnection s
(1983)

(4] C.A.Sunshine: Formal Modelling of Communication Protocols,
Usc/Information Sciences Institute, Rk-81-89 (March 1981)

17

