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Abstract

Personal assistants need to allow the user to interact with the system in a flexible and

adaptive way such as through spoken language dialogue. This research is aimed at

achieving robust and effective dialogue management in such applications. We focus

on an application, the Smart Personal Assistant (SPA), in which the user can use a

variety of devices to interact with a collection of personal assistants, each specializing

in a task domain. The current implementation of the SPA contains an e-mail man-

agement agent and a calendar agent that the user can interact with through a spoken

dialogue and a graphical interface on PDAs. The user-system interaction is handled

by a Dialogue Manager agent.

We propose an agent-based approach that makes use of a BDI agent architecture

for dialogue modelling and control. The Dialogue Manager agent of the SPA acts as

the central point for maintaining coherent user-system interaction and coordinating

the activities of the assistants. The dialogue model consists of a set of complex but

modular plans for handling communicative goals. The dialogue control flow emerges

automatically as the result of the agent’s plan selection by the BDI interpreter. In

addition the Dialogue Manager maintains the conversational context, the domain-

specific knowledge and the user model in its internal beliefs.

We also consider the problem of dialogue adaptation in such agent-based dialogue

systems. We present a novel way of integrating learning into a BDI architecture so

that the agent can learn to select the most suitable plan among those applicable in

the current context. This enables the Dialogue Manager agent to tailor its responses

according to the conversational context and the user’s physical context, devices and

preferences.

Finally, we report the evaluation results, which indicate the robustness and effec-

tiveness of the dialogue model in handling a range of users.
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Introduction

The past decade has seen an enormous growth in the use of mobile devices such

as PDAs and mobile phones. In the modern era, people are highly mobile and

often out of the office; this type of go-anywhere device allows them to always be

available for contact. In addition, mobile devices have introduced a new way of

personal information management, which supports almost anytime, anywhere

access to important information such as personal data, documents, the World

Wide Web, etc. This is made possible by recent technological advances which

allow these compact devices to be equipped with reasonably powerful proces-

sors, enough memory storage and adequate battery life. They are becoming

increasingly useful and widely accepted, hence more and more applications are

being developed, exploiting them to their fullest.

Recent innovations and advances in speech technology have enabled the use

of the speech modality in human-machine interaction, which is necessary in

many applications. For example, using speech interfaces is perhaps the most

appropriate solution for blind users to interact with computer-based systems.

Moreover, speech interfaces may be more feasible to be used on small computing

devices because of the lack of screen space for a visible graphical interface.

Modern home appliances are becoming more complex, thus having many more

features, which cannot fit easily on a small graphical interface. Hence it may be

more convenient for the users to interact with them through speech interfaces.

In some computer-based applications such as aircraft control where timing is

critical but manual interaction with computing systems is slow, speech interfaces

1



could also be more appropriate. Furthermore, given the increasing number of

control functions being integrated in modern cars, there is a potential for the use

of speech interfaces in vehicle systems so that users do not need to take their

eyes away from the road or hands away from the steering wheel when using

these functions. Finally, teaching and learning are based on communication,

thus computer-aided learning/training systems would be more effective if they

allowed speech-based interactions [Lewis, 1993].

In this research, we are interested in developing conversational speech in-

terfaces for computer-based applications. Incorporating spoken dialogue as a

major modality for user-system interaction is especially relevant in the context

of mobile devices where traditional user interface peripherals may not be avail-

able or appropriate. The main objective is to develop the dialogue management

component for such applications, enabling natural and coherent user-system in-

teraction through a spoken natural language dialogue.

Mobile devices have been used to schedule activities, search information or

maintain interaction with other people. The availability of high-speed wireless

Internet access allows data to be retrieved and managed on the devices while

being kept securely on remote servers. However, different task domains are

currently handled by different applications, thus managing information from

these various sources can be a difficult task. Hence we aim to provide a single

interface to the unified set of different back-end applications, which allows the

users to collectively manage their information. We have built a Smart Personal

Assistant (SPA), a collection of personal assistants, each specializing in a specific

domain. The user can remotely interact with the SPA to perform a variety

of tasks such as scheduling and updating appointments, manipulating e-mail

messages, etc. The SPA can collaborate with and support the user by hiding

task complexity, such as combining information in several domains if necessary.

Hence the user interface for the SPA must support effective input methods,

enable easy switching between application domains, and be able to present data

of different formats appropriately.

2



1.1 Conversational User Interfaces

However, mobile devices do have limitations: their small keypad and stylus

are not convenient for entering input and a typical screen is only capable of

legibly displaying a few lines of text. Therefore there is an obvious potential for

developing other sophisticated means of interaction (e.g. through spoken natural

language dialogues) in addition to the conventional graphical user interface.

There have existed systems with speech interfaces that focus on a command and

control style of interaction. Nevertheless, command-based speech interfaces are

just an adapted version of graphical control interfaces where normal commands

or features are mapped into speech commands. Our research objective is to

develop user interfaces that can allow more sophisticated interaction through

spontaneous interactive natural language dialogue. Spoken dialogues are feasible

in applications such as the SPA because although the tasks are complex, they

are also constrained, so that most domain-related keywords are known, which

helps overcome the limitations of speech recognition over large vocabularies. In

Figure 1.1, an example is presented to illustrate the functioning of the SPA

in a scenario where the user engages in a spoken dialogue with the system to

remotely access his e-mail and calendar.

1.1 Conversational User Interfaces

The graphical user interface has been so far the main method for human-

computer interaction, in which the user interacts with the computer through

direct manipulation of graphical objects. In traditional computer systems run-

ning the DOS or Unix operating system, user-system interaction is done through

text-based interfaces and in a function-oriented manner. The user types a com-

mand on the keyboard and the computer performs the corresponding task, e.g.

executing a Unix command. With the invention of pointing devices, in partic-

ular the mouse, in the 60s, and windows in the late 80s, user interfaces have

advanced to a higher level, in which the user operates on various objects such as

3



1.1 Conversational User Interfaces

SPA Hello, how can I help you?

User Do I have any new e-mail?

SPA You have two new messages, one from John Lloyd about school

meeting and one from Paul Song about travel policy.

Displays the two message headers.

User Show me the message from John.

SPA Here you are.

Correctly displays the message’s content.

User Move it to the Meeting folder.

SPA Message has been archived.

Displays again the two message headers.

User Now show me my appointments for tomorrow.

SPA You have two appointments tomorrow, one with John and

one with Anna.

Displays tomorrow’s calendar showing the two appointments.

User Cancel the school meeting at 3 pm.

SPA Appointment has been deleted.

Displays tomorrow’s calendar showing the other appointment.

User Thank you.

SPA You are welcome.

Figure 1.1: A Sample Scenario with the SPA

windows, icons or hierarchical menus, to perform tasks. This way of interaction

is feature-oriented, relying on graphical control features of the graphical user

interface.

However, research has been carried out since the 80s with the objective of

developing conversational user interfaces to provide more natural user-system

interaction. Graphical user interfaces are not always convenient to use. They

require memorizing a set of pre-defined functions or operations, and tasks must

be carried out as a sequence of these basic interaction steps. Thus, for some

users, learning to use computers is not trivial. Complex tasks may take a long

4



1.1 Conversational User Interfaces

time to accomplish because of the time required for performing an excessive

number of steps and navigating the interface. For example, a typical task such

as changing the font of an existing document might involve several steps: open

the document using a suitable application; select the document text using either

a key shortcut or the mouse; interact with the task-menu to choose a new font

face and/or a new font size; and finally, save the document. To do such complex

tasks, the user must be able to determine and carry out that sequence of actions.

User interfaces should rather be result-oriented, focusing on what users want to

do rather than on how to do it. In order to achieve this, conversational natural

language dialogue would be an effective communication modality for interacting

with computer-based applications, a valuable addition to the current GUIs. For

instance, the above task could be accomplished easily using a natural language

request: “Change the font of this document to Arial twelve”. However, a GUI is

still necessary for displaying the document.

Conversational user interfaces can allow more flexible and effective interac-

tion. Current trends have shown an increasing number of features in computer-

based applications, which would require a more complex hierarchical graphical

interface, making the interaction with the application even more difficult. In

contrast, a conversational user interface is by nature more human-like. It allows

the user to describe the tasks in a high level which does not require primitive

steps to be explicitly formulated, thus even unfamiliar users would be able to

use the system effectively. As in the previous example, natural language dia-

logue could allow any user to change the font of a document without knowing

how to use the GUI of the available document processing software. Conversa-

tional user interfaces can also be useful in information retrieval domains such

as question-answering, help-desk or search engine applications. They offer users

more expressive power to specify their information requests than with keyword

combinations. In addition, the conversational context can also be taken into ac-

count to incrementally refine the request and present the user with more relevant

information.
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Existing research on intelligent user interfaces suggests that user interfaces

should exhibit to some degree intelligent agent-like behaviour. Initially, there

were arguments over which of two interaction metaphors would be better for

user interface development: the tool metaphor or the agent metaphor. In one

view, the system interface is viewed as a tool that allows the user’s direct manip-

ulation of available options in order to perform some task, whilst researchers of

the interface-as-agent view suggested that intelligent interfaces should better be

conceived as agents. This view is strengthened by Chin’s argument [1991] that

an intelligent interface must exhibit to some degree autonomous and intelligent

behaviour, such as taking the initiative to correct user misconceptions or suggest

alternative actions. A more recent proposal by Horvitz [1999] was to improve

user-system interaction by combining the tool and agent metaphors into a single

framework. Thus for personal assistant applications on mobile devices such as

the SPA, it is essential to provide this sort of mixed-initiative interface (e.g.

through natural language dialogue) in addition to the conventional GUI due to

the limitations (e.g. small keyboard, stylus for input, small screen for output)

of mobile devices such as phones and PDAs.

1.2 The Smart Personal Assistant (SPA)

In this section, we present a brief introduction to the Smart Personal Assistant

application (SPA) [Wobcke et al., 2005], which sets the context for our research.

The development of the SPA was motivated by the notion of a personal assis-

tant promoted by Maes [1994] as a way to help users coping with information

overload. The idea is a software agent that behaves as a personal assistant

who collaborates with and supports the user in various ways such as hiding the

complexity of difficult tasks, performing tasks on the user’s behalf, and helping

the user to manage his/her own activities or coordinated teamwork activities

with other users. A set of specialist personal assistants can be integrated into a

multi-agent system in which assistants cooperate with one another or are coor-
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dinated by a coordinator agent [Azvine et al., 2000]. The SPA is a collection of

personal assistants, each specializing in a particular task domain. The users can

interact with the SPA through a variety of devices such as desktop PCs, mobile

phones or PDAs as with a single smart assistant, for manipulating their e-mail

and calendar. The overall architecture of the SPA is shown in Figure 1.2. In

this research, we are specifically interested in the dialogue management aspect

of such applications, aiming to provide sophisticated interaction through spoken

natural language dialogue.

Partial
Parser

Speech
Processor

E−mail
Server

Calendar
Server

User
Interface

Agent

DesktopPC

Laptop

Agent
Manager
DialogueUser

Interaction
Agent

E−mail
Agent

Calendar
Agent

SPA Client SPA Server

PDA

Figure 1.2: Overview of the SPA System Architecture

The SPA has been implemented as a multi-agent system using the JACK

Intelligent AgentsTM platform [Howden et al., 2001], in which the agents com-

municate using message passing. There are two back-end task agents, which are

wrappers built around the existing e-mail and calendar management software.

The calendar system supports the usual tasks such as creating and modifying

appointments. The email management software, EMMA [Ho et al., 2003], en-

ables the Dialogue Manager to request the system to perform tasks such as

searching, deleting and archiving e-mail messages, and notifying the user on the

arrival of important messages. In addition, EMMA can perform classification of

e-mail in the Inbox into sorting folders and prioritize them based on the degree

of importance, urgency, etc. This information is given to the user and also used

by the Dialogue Manager in processing e-mail tasks.
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1.2 The Smart Personal Assistant (SPA)

Although the SPA architecture allows the use of different user device types,

the PDA has been chosen for system development to address the issue of mobil-

ity. User-system interaction, therefore, is through a simple kind of multimodal

dialogue, including a speech interface and a graphical user interface on the PDA.

The User Interface agent that resides on the user device monitors the user in-

put and passes it to the User Interaction agent. Speech input is recognized by

the Speech Processor, then processed by the Partial Parser to extract domain-

specific keywords and other syntactic phrases. The Dialogue Manager uses the

results to interpret the user’s requests and delegates these tasks to the appro-

priate task assistants (agents). The system output is generated by the Dialogue

Manager and returned to the user’s device as speech and/or GUI output.

In order to support natural and flexible user-system interaction, developing

the SPA requires consideration of both coordination and dialogue modelling as-

pects. Coordination of the specialist task assistants is required to provide a single

point of contact for the user to maintain a coherent dialogue with the system

while, possibly, switching the interaction to other task assistants or switching to

use a different device. In addition, a sophisticated dialogue model is required to

maintain the conversational context, allowing the system to interpret the user’s

actions on the interface and/or natural language utterances. Furthermore, the

system may also need to exploit and combine information available in the back-

end assistants in interpreting the user’s intention.

To meet those requirements, dialogue management and coordination in the

SPA application must be closely related. Thus it is necessary that the SPA have

a central component, the Dialogue Manager, for handling both of these aspects.

The research reported in this thesis is focused primarily on the development

of the SPA’s Dialogue Manager, which presents a single point of contact for

the user to interact with the SPA, mediating communication between the user

and the task assistants. Moreover, the Dialogue Manager must maintain the

dialogue context and be able to recognize and fulfil the user’s requests, possibly

by delegating them to appropriate task assistants.
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1.3 Practical Spoken Dialogues

With improvements in speech technology, numerous systems using spoken dia-

logue interfaces have been developed; most support practical dialogues that focus

on specific tasks or goals such as planning travel trips, booking flights, seeking

transportation timetables, etc. [Allen et al., 2001]. Analysis of human-human

and human-computer dialogues suggested that users still expect the system to

retain many characteristics of a human service agent. McGlashan [1996] has

proposed some of the required features as follows:

• global structure: most dialogues should have an opening, a body and a

closing. This could also suggest that verification and acknowledgment be

used for grounding the information being conveyed.

• mixed-initiative: both the user and the system should be able to take

the initiative in the conversation. The information flow can be directed

by both the user requesting the system or the system asking the user for

missing information or clarification.

• over-informativeness: as often occurs in human-human dialogues, users

may give redundant information that the system should be able to detect

and ignore, or in some cases, take into account if the information is useful.

• contextual interpretation: user input may be partial or ambiguous, which

can only be fully interpreted based on the current conversational context.

Similarly, the user also interprets system responses as relative to the cur-

rent context.

• recovery from failure: the system should have effective strategies for recov-

ering from failures which can occur because of speech recognition errors

or limitations of the system’s internal knowledge. Users are easily frus-

trated by unsuccessful interaction attempts and excessive time spent on

recovering from failures.
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In recent years, considerable research effort has been directed at the area of

dialogue management for computer-based applications. The goal is to provide

high-level, human-like user-system interaction such as through conversational

speech interfaces. With recent advances in speech technology, this has become

feasible in domains that are sufficiently constrained to overcome the limitation

of speech recognition over large vocabularies. Spoken dialogue systems allow the

users to specify their requests and receive the results by conducting a natural

language dialogue. Therefore, dialogue management in such applications is of

particular importance to ensure effective but also flexible and adaptive interac-

tion. The ultimate goal is to have the requests understood and accomplished

successfully. However, the users should be able to express their requests in dif-

ferent ways, and modify or cancel them at any time. It is also desirable that

the system’s responses can be adapted to the conversational context, the user’s

physical context and preferences.

Our research goal is focused on the problem of managing (i.e. modelling and

controlling) natural language dialogue for human-computer interaction, specif-

ically, in applications for mobile devices. According to Churcher et al. [1997],

the two main aspects to be considered in dialogue management are: firstly,

mechanisms for maintaining the conversational context, and secondly, defining

strategies to be adopted by the system in order to control the dialogue structure.

An adequate model of the dialogue, including the conversational context, is not

only necessary in interpreting the user’s input but also helpful in predicting

the user’s next possible actions. The SPA’s dialogue strategies should support

mixed-initiative interaction, exhibiting reactiveness in responding to the user’s

request and pro-activeness to allow recovery from failures.

Existing dialogue systems are mostly developed for some pre-defined task

domain(s). The dialogue requirements are usually well specified and once the

dialogue model has been developed, it is not intended to have further adapta-

tion or extension for use in other applications. Hence the issues of reuse and

extensibility have been given little consideration. However, being able to reuse a
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dialogue model would reduce the cost of developing a dialogue system for a new

task domain. Moreover, a multi-domain dialogue system would likely require the

addition or removal of domain-specific back-end components, and the extension

or modification of the dialogue model for handling different domains. This sug-

gests a need to focus on the issue of extensibility in dialogue modelling. A generic

dialogue model could be developed for a certain class of domains, which would

enable the adaptation of the model for a new domain or its extension for han-

dling additional tasks. Many existing dialogue systems make use of a dialogue

model and a task model, however these are not always clearly distinguished.

Our SPA application requires sophisticated dialogue interaction, and so requires

a complex dialogue model, but not necessarily a complex task model. For our

application, there is a potential that the system would be extended for inte-

grating additional task assistants. Thus it is more important that the dialogue

model can be reused, so that the system can be extended without much cost, at

the same time maintaining the level of dialogue sophistication. Therefore, there

should be a clear separation between domain-specific and domain-independent

dialogue information and this requires the dialogue model to be at high level of

modularity.

In this research, we propose an agent-based approach that employs a BDI

agent architecture for developing the dialogue management component of spoken

dialogue systems such as the SPA. The idea of employing an agent paradigm is

motivated by the important agent-like requirements that the system must be re-

active in fulfilling the user’s request but also pro-active in recovering from errors

or notifying the user of important events. Moreover, our approach is based on

the theory of speech acts by Austin [1962] and Searle [1969]: the speaker, when

speaking of an utterance is simultaneously performing three kinds of speech

acts: locutionary, illocutionary and perlocutionary acts, in which the illocution-

ary force is the speaker’s intention. Our motivation to employ an agent-based

approach is further strengthened by earlier work on speech act theory and prag-

matics of spoken dialogues. Perrault, Allen and Cohen [1978] view the coherence
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of a dialogue as the contribution of its speech acts to the achievement of the

speaker’s goals. Similar to planning in problem solving, the speaker in the dia-

logue plans speech acts to satisfy a goal (e.g. affecting the hearer’s beliefs, goals,

etc.) [Cohen and Perrault, 1979; Allen, 1979]. Dialogue coherence, therefore,

depends on the hearer’s recognition of the speaker’s plan. Making the hearer

identify references in the speaker’s utterance is also intended in the speaker’s

plan [Cohen, 1981]. We also consider dialogue acts as rational actions, exhibiting

goal-directed behaviour. Using the BDI agent architecture allows the dialogue

model to be explicitly represented in dialogue plans. Hence both dialogue and

problem solving plans can be expressed in this common framework. This is re-

quired in the case of the SPA because of the close connection between dialogue

management and coordination aspects.

We have developed the dialogue manager agent of the SPA by extending a

BDI agent architecture, in which the dialogue model is encoded as a set of agent

plans. These plans are at high level of abstraction, each specifying steps to

achieve a goal corresponding to a dialogue aspect. In addition, discourse-level

dialogue plans are separated from domain-level plans, thus enabling discourse-

level plans to be reused in different SPA-type applications. The control flow

of the dialogue is derived simply and automatically as the result of the BDI

interpretation cycle, in which the most appropriate plans are selected according

to the agent’s beliefs and the current context.

1.4 Dialogue Adaptation

The usability of the SPA on a mobile device with small screen and limited

bandwidth can be enhanced by adaptively tailoring responses according to the

conversational context and the user’s physical context, device and preferences.

For example, e-mail messages are often too long to fit on one PDA screen, thus

showing only a message summary could sometimes be more desirable. However,

this solution may not be desirable for some users. Other users might prefer this

behaviour but only if the e-mail message is not so important.
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The user may interact with the system in different physical and social con-

texts: being at a noisy airport, in a one-speaker seminar or in a quiet office. This

diversity in the device working environment also requires dialogue adaptation

to provide appropriate interaction. For instance, spoken output should not be

used in seminars or hospital wards because it would be socially inappropriate.

In this research, we also look at the problem of adaptive response generation

for plan-based spoken dialogue systems such as used in the SPA, thus enabling

the system responses to be tailored to the user’s device, physical context and

preferences. Because the SPA’s dialogue manager uses plans for generating

responses, the problem of dialogue adaptation becomes the problem of learning

which dialogue plan to be selected and executed in a given context. We propose

a general method of integrating learning into a BDI agent architecture, which

allows the dialogue manager agent to learn plan selection, thus being able to

provide dialogue adaptation.

1.5 Overview of the Thesis

The contribution of this research is twofold. Firstly, we consider the problem

of dialogue management in spoken dialogue systems for personal assistants. We

propose an agent-based approach for developing the dialogue manager by extend-

ing a BDI agent architecture. This BDI approach allows high level of abstraction

in designing the dialogue model which consists of a set of modular plans, each

associated with a communicative goal or dialogue aspect. There are other plans

for handling domain-specific tasks. Thus this approach enables discourse-level

plans to be reused in other applications.

Secondly, we consider the problem of adaptation of spoken dialogues in appli-

cations for mobile devices. In particular, we present a method for incorporating

learning into a BDI agent architecture, allowing learning of the agent’s plan

selection, hence achieving adaptivity with plan-based dialogue management sys-

tems. This method enables the system to tailor its responses according to the

conversational context and the user’s physical context, devices and preferences.
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The organization of the thesis is as follows:

• In Chapter 2, the existing work in linguistics that provides the founda-

tion for our approach is presented, which includes the theory of speech

acts and computational work in discourse and dialogue structure. More-

over, we give an extensive analysis of the existing approaches in dialogue

management from simple methods such as state-based, frame-based and

script-based ; to methods based on game theory, information state; and

more complex methods which are plan-based or agent-based. We also con-

sider in this chapter specific issues for developing spoken and multimodal

dialogue systems.

• Chapter 3 gives an overview of our agent-based approach to dialogue man-

agement [Nguyen and Wobcke, 2005]. First, we discuss the dialogue re-

quirements of the SPA application and the advantages and disadvantages

of various approaches and why they are not suitable for such applica-

tions. We then present our motivation to employ an agent-based approach.

We argue that dialogue management in the SPA requires many agent-like

characteristics, which motivates the use of a BDI agent architecture for

developing the SPA’s dialogue manager agent. The dialogue model, which

is explicitly represented as (agent) dialogue plans for handling different

discourse-level and domain-level aspects, will be described in detail. The

modularity of this approach allows the dialogue model to be extended and

reused in other applications [Nguyen and Wobcke, 2006b].

• Chapter 4 describes the dialogue management process in the SPA in detail.

We first describe the SPA overall architecture and its various components,

including the user interface, the speech processor, the syntactic parser,

the Dialogue Manager and the back-end e-mail and calendar task assis-

tants [Wobcke et al., 2005]. The system is implemented as a multi-agent

system using the JACK agent development platform, in which the Dia-

logue Manager is also a JACK agent. Using our agent-based approach,
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dialogue processing is done automatically as the result of the Dialogue

Manager agent’s plan selection by the BDI interpreter. Dialogue examples

will be given to illustrate how dialogue plans get selected and the dialogue

management process is performed, which can be roughly divided into four

sub-processes: analysing the syntax and semantics of the user’s input, rec-

ognizing the user’s intention, processing the requested tasks and generating

and returning the output to the user [Nguyen and Wobcke, 2005].

• In Chapter 5, we address the problem of achieving dialogue adaptation

in the SPA application, which can be considered the problem of learning

plan selection strategies in our plan-based dialogue model. We propose

a general method for incorporating learning in a BDI agent architecture,

which can be used to achieve adaptation in plan-based spoken dialogue

systems [Nguyen and Wobcke, 2006a].

• Chapter 6 reports the evaluation results of the SPA. Firstly, we review

two existing methods for evaluating dialogue systems and discuss whether

they would be suitable for our evaluation purposes. We then describe

our evaluation setup and present and discuss the objective and subjective

results. Overall, a high task completion rate was achieved, which indicates

the potential of our agent-based approach in developing spoken dialogue

systems.

• Finally, we give our conclusion and discuss the future work in Chapter 7.
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Dialogue Management

Conversational dialogue is a kind of discourse, therefore, similar to other kinds

of discourse, is an instance of the use of language. A dialogue is a cohesive

linguistic unit which is composed of a sequence of natural language utterances,

carrying a conversation of two or more persons. For example, unlike other kinds

of discourse such as monologues, a spoken dialogue has at least one speaker and

one hearer who communicate on some common topics. User-system interaction

in spoken dialogue systems exhibits similar characteristics to those of human-

human dialogues. Therefore computer-based management of conversational di-

alogues requires the use of techniques in related areas such as natural language

processing (e.g. methods for syntactic and semantic analysis of sentences); dis-

course theory (e.g. how utterances in a discourse are coherently related and how

past utterances can be used in interpreting the upcoming ones) and pragmatic

analysis of dialogue such as the theory of speech acts (i.e. the idea that people

speaking language are performing some kinds of communicative acts in order to

accomplish their goals).

In this chapter, we first introduce the linguistic foundations of our research,

which are common to many frameworks for dialogue management: the theory

of speech acts and other important theories in discourse analysis. We shall then

discuss the general problem of dialogue management and analyse the applica-

bility of existing approaches in personal assistant applications. Our application,

the Smart Personal Assistant, which provides both natural language and GUI

access to e-mail and calendar, requires only limited support for multimodal input

and output. Thus we shall briefly consider some important issues in multimodal
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dialogue management. We also discuss the specific requirements for develop-

ing spoken dialogue applications, such as dialogue strategies for recovery from

speech recognition errors.

2.1 Linguistic Foundations

2.1.1 Speech Act Theory

The theory of speech acts originated in the field of the philosophy of language

and was first proposed by Austin [1962], in which he points out the distinc-

tion between performative and constative utterances. He argues that not all

utterances are statements describing facts that must be either true or false (i.e.

constative utterances) but there is another type of utterances, i.e. performatives,

which are not only used to describe an action but to actually perform it. More-

over, none of these performative utterances are either true or false; they are

rather felicitous or infelicitous. Hence constatives are for “saying” things while

performatives are for “doing” things such as in the utterance: “I appoint John

to be the executive manager”, which is felicitous if the speaker had the right to

make the appointment and the effect of the performance of the utterance is John

successfully becoming the executive manager.

However, Austin did not give absolute criteria for distinguishing these two

kinds of utterances, perhaps because an utterance can be either a constative

or a performative, depending on the context in which it has been uttered. For

example, “I take the blue cap” may have a performative force of making an

order or it may be just making a statement. Not only the context but the use

of special features of spoken language such as the tone of voice could make the

utterance a performative.

Searle [1969] has proposed a more comprehensive version of the theory of

speech acts, which does not distinguish constatives from performatives but con-

siders constatives as also the performance of a speech act, e.g. the illocutionary
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act of stating a fact. According to Searle, speaking a language is engaging in a

rule-governed form of behaviour to perform speech acts. Moreover, uttering a

sentence is simultaneously performing three kinds of speech act: locutionary (a

locutionary act contains an utterance act and a propositional act), illocutionary

and perlocutionary acts, according to different aspects of the speaker’s intention.

Table 2.1 gives a description of these types of speech acts.

Act Type Description

locutionary the act of uttering a string of words, an utterance, in a
language.

illocutionary the act of stating, questioning, commanding, etc.

perlocutionary the act representing the notion of consequences or effects
of the three acts above have on the hearer. For example,
by making a statement the speaker may make the hearer
convinced, by making a request the speaker may get the
hearer to do something, etc.

Table 2.1: Types of Speech Acts

Different utterances may have the same reference (to a certain object) and

predication, yet have different illocutionary forces, such as in the following ex-

ample (adopted from [Searle, 1969, p.22]). The four utterances are respectively

a statement, a question, a command and an expression of desire even though

they have the same propositional content.

1. Sam smokes habitually.

2. Does Sam smoke habitually?

3. Sam, smoke habitually!

4. Would that Sam smoked habitually.

In the speech act theory, the unit of language communication is not linguistic

elements such as words, sentences, etc., but rather the production of utterances

in performing a speech act. Moreover, speech acts are made and performed in

accordance with certain rules by the use of linguistic elements. For an utterance,

the order of words, the stress, the main verb, the verb mood, etc., can serve as

the indicating devices for recognizing the underlying illocutionary force.
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According to Grice [1957], when uttering an utterance, the speaker intends

to induce a belief in the hearer, and also intend that the utterance is recognized

as so intended. Thus the coherence of a dialogue depends on the hearer’s un-

derstanding of the speaker’s intentions, and in order to identify the speaker’s

intentions, it is useful to recognize the associated speech acts or the illocutionary

force of the utterance being performed, Bruce and Newman [1978], Allen [1979]

and Cohen and Perrault [1979]. Likewise, in spoken dialogue applications, the

system needs to identify the user’s intentions to be able to fulfil their requests.

The theory of speech acts, therefore, has been used as a common linguistic

foundation in the development of many existing dialogue systems, which helps

realizing the requirements of modelling and processing dialogue: the recognition

of the propositional acts, e.g. the objects that are referred to, the predications

on these objects, and importantly, the illocutionary acts being performed and

so the user’s intentions.

Moreover, Searle has pointed out that, because the basic unit of linguistic

communication is the production of an utterance in the performance of a speech

act, the action of making a noise or a mark on a piece of paper can also be con-

sidered an instance of linguistic communication if it is done by oneself and with

certain kinds of intentions. Therefore, in multimodal dialogues, the user’s ac-

tions in modalities other than speech can be considered a part of the intentional

communication and hence modelled using speech acts.

Although the theory of speech acts indicates the existence of perlocutionary

acts, i.e. the effects or consequences for the hearer by the speaker in performing

illocutionary acts, the practical use of the theory in dialogue applications does

not require modelling of these acts because in most cases, the perlocutionary

effect of the utterance is closely related to its illocutionary act. The reason is

that the user, by nature, typically has a cooperative attitude towards the system,

i.e. having requests understood and carried out successfully, as formulated in the

Cooperative Principle by Grice [1975]. Similarly, the system can be developed to

be cooperative as well. Therefore, in many human-computer dialogue systems,
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we can assume that each illocutionary act is to communicate only one intention

and this intention is made as clear as possible to be recognized. The four maxims

of the Cooperative Principle and their explanation are given in Table 2.2.

Maxim Explanation

Quantity make your contribution as informative as required but
not over-informative

Quality do not say anything you believe as false or lack adequate
evidence

Relation be relevant

Manner be brief, orderly and avoid obscurity, ambiguity

Table 2.2: The Cooperative Principle

The speech act theory of Austin and Searle provides the theoretical basis for

understanding that language is not just a means of communicating information

but also a mode of action, i.e. speaking language is performing communicative

acts according to different aspects of the speaker’s intentions. In personal as-

sistant applications, the user, when speaking an utterance, has the intention of

having some task(s) done, and this intention is intended to be recognized by the

system. The theory of speech acts provides important concepts for modelling the

communicative acts performed by dialogue participants, thus has application to

dialogue modelling in personal assistant applications.

2.1.2 Discourse Structure

Dialogue is a kind of discourse where each participant periodically takes turns

to be the speaker and the hearer. Dialogue management requires understand-

ing of the structure of a dialogue and the notion of a coherent dialogue. Se-

mantically, each utterance in a coherent dialogue must somehow relate to each

other utterance of the dialogue so that interpretation and generation of linguis-

tic phenomena such as anaphoric references or temporal expressions is possible.
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Discourse research has been closely related to a question of what information

is being conveyed in a coherent discourse, in addition to the literal meanings

of the individual utterances. There are two major lines of approach which are

referred to as informational and intentional. Informational approaches consider

the coherence of discourse to derive from semantic relationships between the in-

formation expressed by successive utterances [Mann and Thompson, 1988]. On

the other hand, according to intentional approaches, the coherence of discourse

comes from the intentions of the speaker, and understanding depends on the

hearer’s recognition of those intentions.

Among the intentional approaches, computational work in discourse by Grosz

and Sidner [1986] has identified three components of discourse structure: the

linguistic structure (i.e. the sequence of utterances), the intentional structure

and the state of focus of attention. Utterances in a discourse naturally form a

hierarchy of discourse segments, which is the discourse’s linguistic structure. In

addition, each discourse segment has a discourse segment purpose or discourse

segment intention. The intentional structure of the discourse contains these

segment intentions and also captures the relations between them. Discourse

intentions differ from other kinds of intentions in that they are intended to be

recognized. Nevertheless, the speaker, when communicating an utterance, may

often have other intentions that are intentionally hidden from the hearer.

According to Grosz, Weinstein and Joshi [1995], the attentional state models

the discourse participant’s focus of attention at any given point in the discourse.

It has two components for modelling the changes of attention within the local

discourse segment and at the global level, which correspond to the coherence

of the discourse at the local and global level. Coherence of the dialogue at the

global level is affected by the intentional structure, i.e. the relationships among

the discourse segment purposes. The local coherence among segment utterances,

on the other hand, depends on the compatibility between the utterances’ centring

objects and their subsequent referring expressions. In addition, the attentional

state has an important part which contains the salient entities that have been
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mentioned earlier in the discourse. Thus references to these entities could be

resolved by searching for matched objects that are currently in attention.

Dialogue modelling for personal assistants requires a computational model

of discourse for representing and accessing information about the conversational

context. The intentional approach of Grosz and Sidner is a suitable framework,

which is based on recognizing and using intentions to represent the discourse

structure, while in conversational dialogues, the intentions of the dialogue’s par-

ticipants can be considered the discourse intentions. In addition, this approach

is consistent with the earlier work on speech act theory.

2.1.3 Reference Resolution

Reference is a common linguistic phenomenon, in which a linguistic expression

is used to refer to some discourse entity, i.e. its referent. The referents can be

entities in the real world such as a person, an object or the time of an event

occurrence. In conversational dialogue, the use of references is very common.

Moreover, it is necessary that the hearer can resolve these references in order

to interpret the speaker’s utterance, thus recognize his/her intention. Anaphora

is the most common type of reference, which is the use of certain words to

refer to other referring expressions mentioned previously in other utterances or

together in the same utterance. For example, a previously mentioned noun or

noun phrase can be referred to using a pronoun or a definite noun phrase as in

the following sentences:

Mary was on her way to work when she saw the accident.

I knew Mary when I was in university. That girl is super smart.

Grosz, Weinstein and Joshi [1995] have claimed that certain discourse enti-

ties mentioned in an utterance are more central than others. Inspired by this

centring theory, Strube [1998] proposes a computational model that can be used

to resolve anaphoric references called the salient list. The salient list contains
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some discourse entities that are currently in focus for the hearer, and their rank

order (based on their degree of salience) provides some indication of how likely

they will be referenced in future utterances. The concept of salience originates

from cognitive psychology, and refers to the degree to which a particular object

stands out relative to other objects in a situation. In Strube’s computational

model, the salience of discourse entities are based on their information status

or expression type. The rank order of the salient list provides preferences for

interpreting anaphoric references. There are three types of expression for rep-

resenting discourse entities, as follows, and the ranking criterion is shown in

Figure 2.1 (adopted from [Strube, 1998, p.1253]).

• Old: Refer to old discourse entities that have been mentioned previously

in the discourse. This type of expression is further divided into evoked and

unused entities.

• Med: Refer to mediated discourse entities and consists of three different

types: inferables, containing inferables and anchored brand-new.

• New: Introduce brand-new discourse entities, which are mentioned in the

discourse the first time.

Old

E ≺ U
≺

Med

I ≺ CI ≺ BN-A
≺

New

BN

Figure 2.1: Ranking of the Salient List Entities

Anaphora resolution can be done by searching the salient list from left to right

according to the rank order. The objects in the referring expression are checked

against discourse entities in the salient list until a matched type has been found.

After that, the salient list must be updated accordingly, which may require re-

positioning some elements of the list to conform with the ranking criteria. In
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addition, brand-new objects mentioned in the dialogue are immediately inserted

into the salient list at their determined positions.

For dialogue applications such as e-mail and calendar management, it is de-

sirable that the user be able to use references such as anaphora and temporal

expressions. For example, the user might use pronouns to refer to people, e-

mail messages or topics. Temporal expressions might also be used frequently for

making and changing appointments. To provide sophisticated interaction, the

system must be able to perform reference resolution correctly and effectively.

Therefore, the use of a computational model such as the salient list for main-

taining discourse entities is required, which can be used not only for resolving

references but also generating context-sensitive natural language responses.

2.2 Dialogue Management: An Overview

In recent years, considerable research effort has been directed at the area of

dialogue management for computer-based applications. The goal is to provide

high-level, human-like user-system interaction such as through conversational

speech interfaces. Most existing dialogue systems have a special component,

the dialogue manager, for handling the dialogue interaction. However, the di-

alogue model can be distributed in several system components and dialogue

management performed by more than one system component. The main func-

tions of the dialogue management component are maintaining the conversational

context and having effective strategies for controlling the dialogue flow. The di-

alogue model must specify how the dialogue evolves from one state to another

in response to the user’s current utterance and according to the conversational

context. Whether being centralized or distributed, the dialogue model must in-

clude up-to-date information about the current state of the dialogue. Moreover,

it is likely that some domain-specific knowledge is required in interpreting the

user’s utterances, handling the user’s requests and generating suitable responses.

Thus the dialogue model should also contain necessary domain knowledge.
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Existing approaches to dialogue management use different methods for mod-

elling the dialogue’s informational components and control strategies. Systems

that are required to handle only simple and constrained tasks often employ sim-

ple but effective approaches, such as using a finite state machine to represent all

possible dialogue states. In addition, dialogue control strategies, i.e. the state

transition model, are either pre-specified by the system developers or learned

from training examples. In contrast, there are more sophisticated methods, in

which dialogue is viewed as a collaborative problem solving process. Systems

that employ these approaches can handle more complex and less constrained

tasks. Dialogue management in most of these applications involves complex

plan recognition, as for problem solving.

Depending on the required complexity of the dialogue interaction, an ad-

equate dialogue model is needed to provide coherent interaction between the

user and the system. In command-based speech applications, each user’s ut-

terance corresponds to a single task, thus the system can perform effectively

by just responding to the user’s requests in a reactive manner. Nevertheless,

sophisticated dialogue systems must support requests that require user-system

interaction spread over multiple utterances and multiple turns such as to pro-

vide more information or clarification. Therefore, the dialogue model must allow

for the system to maintain the conversational context and to be pro-active in

requesting additional information, recovering from errors or notifying the user

of important events.

In the following section, we present existing approaches to dialogue man-

agement in the literature, ranging from simple but effective to more complex

methods. We classify these approaches into different categories according to

how they handle the two main aspects of dialogue modelling: the representa-

tion of the dialogue’s information state and the specification of dialogue control

strategies. In multi-domain applications such as the SPA system, there is a

potential to reuse and/or extend the dialogue model for handling different task

domains, thus we shall also discuss how the existing methods support the issues

25



2.2 Dialogue Management: An Overview

of reuse and extensibility. Among the existing approaches, perhaps the frame-

based method has been the most popular, which uses frames of filled/unfilled

slot-filling values for the underlying representation of the information state and

models dialogue interaction as a set of pre-defined rules for filling these values.

In addition, there have been other methods that employ state-based graphs or

scripts for dialogue modelling. These approaches have been shown to be effec-

tive in handling simple and constrained tasks. Their main weakness is that they

are limited in supporting complex mixed-initiative dialogue interactions and al-

lowing complex task models. Moreover, the maintenance and extension of the

state and transition sets, the topic hierarchies and/or rule sets requires signifi-

cant effort and the dialogue models generally do not scale well as the dialogue

interaction becomes more complex.

Another method is based on the concepts of information state and dialogue

moves. The information state represents the relevant aspects of information in

the dialogue and is updated in every dialogue move according to a set of update

rules. This approach allow modelling simple goal-directed discourse behaviour

through the use of dialogue moves. Although complex models of the information

state can be achieved, there still is the problem of defining and maintaining a

large set of update rules, which makes it difficult to control complex dialogue

interaction.

There has been other work on modelling dialogue for complex task domains,

which views dialogue as a collaborative process in which the user and the system

work together for some problem solving. Plan-based approaches are based on

using plans to model the problem solving tasks, considering dialogue interaction

the process of task planning and execution. As an extension of the plan-based

method, agent-based approaches view dialogue interaction as rational action,

exhibiting goal-directed behaviour. Using an agent-based approach, the dia-

logue structure automatically emerges according to the agent’s rationality prin-

ciples. It is possible to model common discourse phenomena such as grounding,

sub-dialogues for confirmation, clarification, negotiation, etc. An agent-based
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method can allow robust and sophisticated mixed-initiative dialogue interaction.

We now consider each approach in more detail.

2.3 Approaches to Dialogue Modelling

2.3.1 State-Based Approaches

The main idea behind state-based methods is to enumerate all possible dialogue

states and allowable transitions between them. The dialogue model is explicitly

represented using a finite state machine or graph of pre-defined conversation

states, in which each state is defined by a set of state variables representing dif-

ferent aspects of the ongoing conversation. For each state, there can be a number

of possible transition choices, leading to the next state. The transitions between

states are determined by the system’s dialogue strategies. Figure 2.2 shows the

state diagram for a telephone-based book service [Larsen and Baekgaard, 1994].

At each state, the system prompts the user for choosing one of the available

options or providing more information, which will lead to a next state. The

number of states needed for this simple book service is 11, which could grow

and become unmanageable as the problem becomes more complex.

In the Syrinx spoken language system [Estival, 2002], a state-based dia-

logue model for each domain is defined using a scripting language, which spec-

ifies possible paths through a course of interaction and the system’s actions

to be carried out at each dialogue state. The dialogue states and associated

system actions are designed by the system developer and interpreted at run-

time by the dialogue flow controller. Dialogue strategies for systems using

state-based approaches can be pre-specified during design phase, e.g. the CSLU

toolkit [Novick and Sutton, 1996]. However, dialogue strategies can also be

learned from a corpus of training examples. The Email Voice Interactive Sys-

tem (ELVIS) [Walker et al., 1998; Walker, 2000] is a speech application for the

e-mail management domain which employs reinforcement learning to learn the
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’Welcome to CPK’s automatic book club service. Do you know
how to use this system?’

’Do you wish to order books, to cancel an order, or to get
an overview of your orders?’

CHECK MEMBER

GEN INFO

OVERVIEWCANCELORDER

EXIT

’Please say your member number’

’order’ ’cancel’ ’overview’

’yes’ ’Do you wish to continue?’ ’no’

’yes’ ’no’

Figure 2.2: Example State Diagram for a Book Service Application

strategy choice selection. ELVIS allows access to e-mail over fixed-line phone

in a simple question-answer fashion. In this system, for each strategy type (e.g.

provide-info, summarization task, etc.), there are a number of possible strategy

choices leading to different state transitions. For example, to give the user infor-

mation about the current state of the Inbox, the system can choose to give a brief

summary, a summary and the subject of the newest message, or a choice-prompt

for selecting which message to be shown.

State-based approaches are useful for simple applications with strict system-

initiative. An advantage is that as the system takes initiative all the time and the

user is given only a few choices in response to a system question, it can provide

useful constraints for improving speech recognition performance. State-based

approaches, however, are not practical for complex domains because a typical

conversation would require a large number of states. Moreover, a sophisticated

dialogue that supports mixed-initiative would require very complex dialogue
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strategies, resulting in a complex transition model. In addition, if the system

supports more than one topic, the user cannot switch back and forth between

topics in the middle of an ongoing conversation. Furthermore, it is not always

possible for the user to go back and correct information supplied earlier. It is

even impossible for the user to provide over-informative answers as the system

would ignore the additional information. In more complex applications, several

mixed-initiative dialogue interactions are often required to complete a single

task. Designing a state-based dialogue model is only computationally effective

for a small number of states, hence state-based methods are more suitable for

developing command-based speech interfaces than for modelling sophisticated

dialogue systems. Finally, state-based dialogue models contain largely domain-

dependent information, i.e. each state is defined by a set of variables representing

different aspects (most are domain specific) of the ongoing conversation. Thus

this method does not support reuse; adapting a state-based dialogue system for

a new application domain requires developing a new set of dialogue states and

transitions.

2.3.2 Frame-Based Approaches

Perhaps the most popular approach to dialogue management is the frame-based

method. Although in practice, existing systems have employed different varia-

tions, they share a general framework, in which dialogue interaction is consid-

ered a slot-filling problem. The dialogue model typically includes a hierarchy of

frames as the representation of the information state. Each frame is used for

encoding a task-related collection of information, often a set of filled/unfilled

variable values (slot-filling values). Thus the role of these systems is to find the

appropriate values for the required variables, then create and perform database

queries to retrieve the user’s requested information or execute other operations

to fulfil the user’s request. The frame-based method may also be referred to

as a “rule-based” method because dialogue control is governed by a pre-defined

set of ordered rules which specify what actions to take when a variable has or
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has not been filled. In other words, these dialogue control rules specify the sys-

tem’s dialogue strategies. An advantage of this method, in comparison to the

state-based method, is that systems using frame-based approaches can support

mixed-initiative dialogue. Moreover, the user can actively provide information

and provide more information than required.

Frame-based approaches can support more flexible dialogue interaction than

state-based approaches because dialogue flow does not have to strictly follow the

pre-defined state transitions. However, the frame-based method is still limited

because it can only allow a simple task model that contains a fixed set of required

variables. Therefore, most frame-based dialogue applications are focused on sim-

ple and constrained tasks such as database information retrieval [Jönsson, 1997];

providing information over the phone about train timetables (the Philips sys-

tem [Aust et al., 1995]), ferry information (Waxholm [Carlson, 1996]) or movie

show-times (MIMIC [Chu-Carroll, 2000]). The Philips system uses a dialogue

description language (HDDL) to specify dialogue sections (frames), the associ-

ated variables and dialogue rules for extracting variable values. Similarly, in

the Waxholm system, each dialogue topic, e.g. getting a timetable or showing

the map of a place of interest, is represented as a frame with associated slots.

The dialogue topic is identified by examining the dialogue history and consid-

ering the existence of slot values. Figure 2.3 shows a frame used in MIMIC for

specifying the required variables of the movie show-time request task.

Question-Type: When

Movie: mandatory

Theater: mandatory

Town: optional

Figure 2.3: Slot-filling frame for a movie show-time task

More recently, several travel planning dialogue systems have been devel-

oped within the DARPA Communicator Project, most employ the frame-based

method, such as the University of Colorado’s CU dialogue system for travel and
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navigation [Pellom et al., 2001], the Mercury on-line flight booking system de-

veloped at the MIT lab [Seneff and Polifroni, 2000], the Bell Labs DARPA com-

municator [Potamianos et al., 2000]; and the CMU Communicator for handling

flight, hotel and car reservations [Xu and Rudnicky, 2000]. Dialogue control in

the CU system is very simple. If a frame is in focus, the system keeps prompting

the user for all mandatory variables until the frame is complete. The Mercury

system, however, has only one frame but a set of over 200 dialogue control rules

(a few of which are shown in Figure 2.4), which clearly are very domain-specific.

In the Bell Labs dialogue system, e-forms are used as the equivalent of frames

and the dialogue interaction is limited to be fixed system-initiative. The dialogue

model of the CMU Communicator is the most complex, which is roughly a com-

bined frame-based and state-based approach. The domain task is represented

as a state-based graph of topics, each a frame-based or slot-filling problem.

week | day | rel date → resolve relative date

flight number & !airline → need airline

clause price & topic itinerary & truth value deny → dont price itinerary

clause book & num found = 1 → add flight to itinerary

num nonstops > 1 & num nonstops < 4 & arrive time → speak three arrivals

Figure 2.4: Example dialogue control rules used in Mercury system

Similarly, SUNDIAL [Bilange, 1991; Peckham, 1991] is a large collabora-

tive project in Europe, lasting over five years, which aimed to develop dialogue

systems for providing information over the phone about flight schedules and

reservations and train timetables. Dialogue management in SUNDIAL sys-

tem is frame-based and event-driven. Thus each user input (e.g. a telephone

ring or an utterance) is an event, triggering the update of the current dialogue

state: firstly, formulating a frame-type representation of the utterance’s seman-

tic features, and then, a frame of task-specific features. The difference in the

frame-based method used in SUNDIAL is the distribution of the dialogue’s
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information state over different levels: linguistically-oriented and task-oriented

frames. The interesting point in this work, however, is how feedback to the

user is affected by dialogue degradation and recovery according to the dialogue

strategies. For example, as a dialogue degrades, i.e. the system has repeatedly

failed to interpret the user input, its confirmation strategy changes from being

implicit to explicit, and finally, at the lowest level, is replaced by a request-spell

strategy (an example dialogue is shown in Table 2.3.

Conversation Dialogue Strategy

User Leave London at 3 pm.

System <failed to recognize> implicit confirmation

Where and when will you leave?

User London at 3 pm.

System <failed to recognize> explicit single-parameter

Where will you leave? confirmation

User London.

System <failed to recognize> request-spell

Could you spell that?

Table 2.3: SUNDIAL Dialogue Strategies Example

Frame-based approaches rely heavily on using domain-specific information

in the linguistic structure of the current and previous utterances and simple

heuristics for filling the values of required variables and matching dialogue con-

trol rules. The system then takes the actions specified in the matched rules to

perform back-end database access or other dialogue actions such as requesting

the user for more information. The major disadvantage of the frame-based ap-

proaches is that design and maintenance of the system’s frame hierarchy and/or

rule set requires significant effort. There is also the issue of achieving modularity

with this method. Appropriate priorities of the control rules are important but

hard to specify. If the dialogue processing fails, it would be difficult to identify

the problem and the associated rules. Developing the rule set for complex task
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domains usually requires collecting and analysing a large number of training

dialogues. In frame-based approaches, although some of the rules or frames can

be reused, extending a frame-based dialogue model for handling additional task

domains is difficult because of the lack of modularity. Hence a dialogue model

with higher level of abstraction and modularity is needed to enable the reuse

and extension of the dialogue across different application domains.

2.3.3 Script-Based Approaches

The ELIZA computer program [Weizenbaum, 1966] is perhaps the first “dia-

logue system”, a conversation simulator implementing a Rogerian psychologist.

ELIZA is better described as a script-based chat-bot that is able to chat with

humans in typed natural language, however it cannot understand and perform

tasks. A ELIZA script contains rules used to look for certain patterns of words

in the user’s input, and reply with a pre-determined output. Although ELIZA

does not have a real dialogue model, it has worked effectively as a chat-bot

because people themselves tend to attribute meanings to their past experience

that were not intended by ELIZA.

More recently, there has been work that attempts to facilitate the prob-

lem of developing and maintaining dialogue control rules by grouping them

into contexts (scripts), each corresponding to some dialogue topic, e.g. ProBot

[Sammut, 2001]. In ProBot, each rule contains a pattern and a response, where

the pattern is used to match with some domain-specific features of the user’s

utterances. Thus in practice, constructing and prioritizing these dialogue rules

is time consuming. Although some degree of modularity can be attained with

this script-based method, still there is the basic problem of maintaining a large

rule-base of scripts. This makes the control rules in a scripting system difficult

to specify and hence scripting systems do not tend to scale well. There is also

the difficulty of reusing and extending these scripts.
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2.3.4 Information State Approaches

The information state approach [Traum and Larsson, 2003] views dialogue in-

teraction as a sequence of information state updates, which is the result of the

performance of dialogue moves. In this approach, dialogue modelling requires

consideration of several components as follows:

• Conceptual descriptions and formal representations of the informational

components. The informational components capture different aspect of

the dialogue, which include static information such as domain knowledge

or dynamic information such as the conversational context, dialogue par-

ticipants, their obligations, commitments, etc.

• A set of dialogue moves that triggers the update of the information state.

Language interpretation rules are required for recognizing the associated

dialogue moves from the speaker’s utterances.

• A set of update rules which governs the updates of the information state

given the current status of the information state and the recognized dia-

logue moves. An update rule contains a list of preconditions, which must

be true on the information state for the rule to be applicable. The effect

list of the update rule defines operations to be applied to the information

state.

• An update strategy for determining, from the set of applicable update

rules, which rule(s) to apply. The simplest strategy is to select the first

applicable rule.

Based on the notions of information state and dialogue move, the TRINDI

Dialogue Move Engine Toolkit, the TrindiKit [Larsson and Traum, 2000], pro-

vides support for developing information state-based dialogue systems, allowing

making choice of the representations and implementations of the informational

components, dialogue moves, update rules and update strategies. The TrindiKit
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architecture is presented in Figure 2.5, in which the dialogue move engine up-

dates the information state according to the selected update rules on the basis of

recognized dialogue moves. DIPPER [Bos et al., 2003] is a another multi-agent

architecture for prototyping spoken dialogue systems, which is implemented on

top of the Open Agent Architecture (OAA) [Martin et al., 1999], and has its di-

alogue management component based on the information state approach. Other

components such as for speech input and output, natural language understand-

ing and generation, etc., are software agents built on existing off-the-shelf soft-

ware. In comparison with TrindiKit, the main difference in DIPPER is the

use of a different language for defining information update and dialogue move

selection rules. In addition, the multi-agent architecture of DIPPER allows

replacing system components with others of the same functionality.

Update
Module

Selection
Module

Control

Interpreter Generator

Information State

Database
Dialogue Grammar
Plan Library

Dialogue Move Engine

Figure 2.5: The TrindiKit Architecture

The TrindiKit architecture has been used to develop dialogue systems such

as EDIS [Matheson et al., 2000] and MIDAS [Bos and Gabsdil, 2000] for route

information service and GoDIS [Bohlin et al., 1999] in the travel agency do-

main. However, neither of these systems has been fully implemented according

to the proposed design specification and they handle only simple, mainly system-

initiative, dialogue interaction.
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In the GoDIS system, the most important components of the information

state include a list of actions that the system wants to carry out (i.e. a plan

corresponding to the recognized task), the short-term actions that the system is

going to do next (e.g. what question to ask the user) and a stack of questions

under discussion. When the system asks a question, it is pushed onto the top of

the stack; when the question is answered, it is popped off the stack. This means

every answer of the user must correspond to a question under discussion. The

research focus was on question and task accommodation in handling elliptical

utterances. An elliptical utterance is always assumed to be of a reply move,

which will trigger a special update rule for determining a matching question

from the current plan. There is another update rule for accommodating tasks

if the system has no plan yet in the information state. Dialogue control in

GoDIS is similar to that of the frame-based dialogue systems, considering the

system’s plan as the current frame and searching for the relevant question under

discussion filling in some slot value(s).

In contrast, the emphasis in the EDIS system is on realizing social commit-

ments and obligations of the dialogue’s participants as the effects of the dialogue

acts (moves) performed. Obligations are actions that the system is obliged to

perform while commitments are the system’s accepted propositions. Thus the

information state contains grounded and ungrounded information, i.e. obliga-

tions and commitments. Ungrounded information becomes grounded as a result

of a grounding act, the ack move.

The MIDAS system uses discourse representation structures proposed in the

Discourse Representation Theory (DRT) of Kamp [1981] as the major compo-

nent of the information state. An utterance is analysed and transformed into

discourse representations structures, which serves as the context for processing

the next utterance. A discourse representation structure contains a discourse

referent and its associated conditions, represented in a first-order logic. MIDAS

uses theorem provers for recognizing dialogue moves and performing information

state updates.
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There has been other work using the information state approach, based on

Conversational Games Theory [Power, 1979], which models dialogue moves as

moves exchanged in conversational games. This approach considers the user

participating in a task-oriented dialogue to engage in a series of conversational

games, each corresponding to a task request. Moreover, each utterance in the

dialogue can constitute one or more moves in its relevant game. For instance,

the MailSec system of Williams [1996], a telephone-based application for remote

access to e-mail, uses six types of games and twelve types of moves. A game

typically consists of just a pair of moves but can also be nested. The system

maintains a stack of games and moves as the core dialogue data structure, its

information state. Dialogue control in MailSec is simple, using simple syntactic

features to recognize a single move from the user’s utterance. Because most

game moves go in pairs, the selection of the system’s moves and so the update

of the dialogue data structure is straightforward.

Based also on the notion of conversational games, dialogue control in the

SRI Autoroute system [Lewin, 1998] is more complex than that of MailSec.

Possible sequences of dialogue moves are defined using transition networks. The

system uses syntactic and semantic features of the user’s utterance together with

the current game state to recognize a number of possible moves and a scoring

function is used to determine the most appropriate one. The system then selects

its move from the possible transitions using another scoring function. However,

if a transition path runs into a dead-end, the system can backtrack to re-select

the path with next highest score. Dialogue control in the Autoroute system is

similar to the state-based approach but based on abstract dialogue moves rather

than specific dialogue states, thus dialogue strategies can be reused in other

applications. Nevertheless, modelling dialogue move selection using transition

networks is only suitable for simple dialogue interaction.

Theoretically, the information state approach is a more general version of the

frame-based method, allows complex representations of the information state,

and allows modelling of a variety of complex mental states such as obligations
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and commitments. However, dialogue control using dialogue moves and update

rules does not facilitate complex dialogue behaviour, thus in practice, this ap-

proach is not suitable for sophisticated dialogue interaction. There is still the

problem of defining and maintaining a large set of dialogue moves, update rules

and their rank order. However, the advantage of this approach over the sim-

ple frame-based method is to allow modelling simple goal-directed behaviour

through the use of dialogue moves. This helps improve the modularity of the

dialogue model and enables the reuse of some dialogue moves in other similar

applications. Although, as a result, some domain-independent update rules can

also be reused, most update rules involve updating the information state and

require domain-specific information, which must be redeveloped for other do-

mains. From the developer’s point of view, even when extending a relatively

small rule set, testing and debugging is difficult as it is not easy to understand

how adding or changing a rule will affect the overall intended behaviour of the

system.

Mirkovic and Cavedon [2005] have proposed a method for extension of dia-

logue models that are based on the dialogue move and information state update

approach. A dialogue move scripting language has been introduced, which al-

lows inheritance of existing (possibly domain-independent) dialogue move scripts

for developing domain-specific extensions. Each script consists of conditions for

mapping the user input to a dialogue move and rules to specify the required

information updates. Inheritance in this approach is similar to the use of inter-

face in the Java programming language, which helps improve abstraction but

not much reuse.

2.3.5 Distributed Dialogue Models

An alternative method to the above centralized approaches is having a dis-

tributed dialogue model and dialogue management controlled by more than one

system component. In the Jaspis architecture [Turunen and Hakulinen, 2001],
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dialogue management is performed by three kinds of components: dialogue

agents that are capable of handling the dialogue interaction in different ways;

dialogue evaluators, each giving ranking scores for the dialogue agents on a

specific feature; and a dialogue manager that controls the selection and perfor-

mance of the dialogue agents and dialogue evaluators. For example, in Mail-

man [Turunen and Hakulinen, 2000], a telephone-based e-mail management ap-

plication of Jaspis, there are specialized dialogue agents, each corresponding to

a system’s dialogue action such as listing e-mail messages or generating context-

sensitive help. The specialized dialogue agents produce events, which are further

processed by the domain-specific dialogue agents. These domain agents are re-

sponsible for interacting with the back-end to perform tasks such as retrieving

e-mail messages from the server or activating an e-mail message for reading.

An advantage of this approach is that it allows dialogue adaptation based on

the use of evaluation functions. By adjusting the dialogue evaluators, it is also

possible to change the system’s strategies for selecting dialogue agents. How-

ever, this approach is only practical if the dialogue model is simple. Complex

dialogue interaction requires a large number of dialogue agents, making it dif-

ficult to define the evaluation functions. Moreover, increasing the number of

dialogue agents requires more computation of the ranking scores, thus affecting

the system’s performance efficiency. Reuse of the domain dialogue agents in

other application domains is not possible. Considering the Mailman applica-

tion, it is also difficult to reuse the specialized dialogue agents as they are not

completely domain-independent.

The dialogue system developed at the MITRE Corporation is also based on

a distributed dialogue model [LuperFoy et al., 1998]. Dialogue control is per-

formed by three components: the dialogue manager, two context trackers and

two pragmatic adapters. The system is implemented using a “blackboard” style

multi-agent architecture, the Open Agent Architecture [Martin et al., 1999], in

which the three dialogue components and other agents (e.g. speech recognizer,

speech synthesizer, back-end interface, etc.) interact with each other by reading
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and writing messages to the blackboard. The two context trackers maintain lists

of discourse entities and resolve or insert references for input and output utter-

ances. The pragmatic adapter on input is used for recognizing the back-end

tasks from the logical forms of the user’s utterances. Conversely, the conver-

sion from back-end results to logical forms is handled by the other pragmatic

adapter. The interaction among these components and other agents is con-

trolled by the dialogue manager. Using a distributed dialogue model makes it

difficult to specify and control the system’s overall behaviour. Moreover, system

robustness is difficult to be guaranteed in the case of an individual component’s

failure. Because dialogue management is handled by a set of agents, in order to

maintain a coherent dialogue, there are aspects of the dialogue model that must

be duplicated in multiple components. Furthermore, if both the user and the

system initiate conversation at the same time, a synchronization problem may

occur as the distributed nature of the system makes it difficult to coordinate

simultaneous communication events.

2.3.6 Plan-Based Approaches

There has been other work on modelling dialogue for complex task domains,

which views dialogue as a collaborative process in which the user and the sys-

tem work together on problem solving tasks [Grosz, 1977; Allen et al., 2002].

Plan-based approaches consider the speaker participating in a dialogue as per-

forming acts to achieve goals e.g. domain tasks. Dialogue control in these ap-

proaches, therefore, is based on recognizing and planning communicative and

non-communicative actions to fulfil these goals/tasks. Collagen [Rich et al., 2001]

is a Java “middleware” for building dialogue systems, which uses plans to model

tasks, represented as a hierarchy of sequences of actions typically performed to

achieve goals in the application domain. Collagen focuses on using plan recog-

nition for identifying the user’s requested tasks, constructing the task structure

and managing the dialogue interaction. In Collagen, the task and dialogue

40



2.3 Approaches to Dialogue Modelling

models are not clearly distinguished, being captured in a common structure.

Collagen has been used in developing a number of applications such as air travel

planning [Rich and Sidner, 1998], teaching procedural tasks [Rickel et al., 2000],

etc., most involving the system guiding the user step by step in recognizing a

task plan, which does not require complex and flexible dialogue interaction.

The system is not required to effectively respond to dynamically changing sit-

uations, such as for handling speech recognition errors, user cancelling tasks or

the user going back to adjust information, etc. Collagen provides a common

architecture for developing dialogue systems that require complex task models

but constrained dialogue interaction. On the other hand, dialogue management

in personal assistant applications require more than just planning tasks but

providing a sophisticated level of dialogue interaction.

Ardissono, Boella and Lesmo [2000] have proposed a plan-based dialogue

model which is much more complex than that of Collagen. Taking the view that

humans communicate to achieve goals that must be recognized by the partners

in order to maintain the coherence of the dialogue, the approach is based on

modelling dialogue interaction as the process of plan formation and execution.

Every utterance is expected to be coherent with respect to the ongoing dialogue,

and that it must in some way contribute to one of the currently executing plans.

The contribution can be either to the satisfaction of a recognized goal, an inferred

goal or to the current execution of a plan. There are different levels of dialogue

plans: a meta-level describing recipes for plan formation and execution, and an

object-level for recognizing and executing task plans and performing primitive

domain actions. The proposed computational model of dialogue is more complex

than for typical dialogue applications such as personal assistants where the tasks

are not complex but the required dialogue interaction is more sophisticated. If

the task structure is complex, the combined process of plan recognition and

planning in this approach might become intractable. The model has not been

implemented in any existing dialogue systems but only an artificial domain for

illustrate the proposed features. The domain task is to make a plan for an
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university student to register for various types of exam such as oral exam, written

exam, lab work, etc.

The work of Fitzgerald and Firby [1998; 2000] also considers natural lan-

guage dialogue is a kind of task planning and execution, thus dialogue systems

are instances of task execution systems. In this work, the authors propose the

use of the Reactive Action Package (RAP) system [Firby, 1989] for develop-

ing dialogue applications. The architecture provides a Conceptual Memory, an

assertional database, for maintaining the description of the various concepts

mentioned during the conversation. These concepts are pre-specified so that

the Conceptual Memory Parser, using pattern matching techniques, can extract

attribute patterns from the input language to formulate its concept description.

There is always a top-level task waiting for the input language. The concept

description of the input is resolved to a RAP task, which is either an action or a

query that can be handled by a plan. Task execution in RAP is situation-driven.

A plan consists of tasks, each having a satisfaction test, a time window and a set

of execution methods that are appropriate in different circumstances. If the exe-

cution of a task involves sub-tasks, the task is suspended and its sub-tasks added

to the system’s task hierarchy called the task agenda. The RAP interpreter se-

lects from the agenda unsatisfied tasks for execution, starting from the top-level.

If the task fails, it may be executed as many times as necessary (within the time

window) to make it satisfied or immediately removed from the agenda. The

RAP system was originally designed for reactive sensor-based robots, focusing

on task re-planning in response to observable sensory data. However, man-

agement of the dialogue interaction requires handling not only short-term but

long-term dialogue goals of the participants. Parallel plan execution in RAP

makes it difficult to manage the dialogue control flow. The RAP system can

provide an architecture for developing dialogue applications but this approach

lacks a theoretical basis for modelling discourse phenomena in complex dialogue

interaction.
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2.3.7 Agent-Based Approaches

Multi-Agent Based Distributed Dialogue Model

The dialogue modelling approach used in the TRAINS system [Allen et al., 1996]

and its successor, TRIPS [Allen et al., 2000; Allen et al., 2001], is a kind of

plan-based method. The underlying idea is using plan recognition for identifying

the user’s speech act and domain-specific goals. However, dialogue management

is performed in a distributed manner, using a multi-agent system consisting of

agents for handling different aspects such as speech recognition, speech gen-

eration, chart parsing, discourse management, reference resolution, verbal rea-

soning, problem solving, etc. Having complex dialogue and task models, these

systems model human-system interaction as human collaborative problem solv-

ing, thus suitable for applications in complex domains such as an emergency

vehicle dispatch scenario. Approaches such as in TRAINS and TRIPS would be

unnecessarily complicated for personal assistant applications that involve less

complex problem solving but more continuous dialogue interaction. In such

a system, a centralized dialogue model is more appropriate to avoid synchro-

nization problem. In addition, the dialogue manager should be light enough

to be computationally effective, focusing mostly on maintaining a coherent and

sophisticated dialogue.

Dialogue Manager as a Single Agent

Agent-based approaches can be considered a remodelling of plan-based methods,

providing a declarative way to model the dialogue using more comprehensive

formal frameworks than that of the plan-based method. Agent-based methods

view dialogue interaction as rational action, exhibiting goal-directed behaviour.

In these approaches, dialogue control is performed by a single dialogue manager

agent. The dialogue model is explicitly encoded using an agent architecture and

the dialogue structure automatically emerges according to the agent’s rationality

principles.
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Sadek [1999] proposes the use of an agent framework for the development

of dialogue agents. His model of rational agency is based on the notions of the

agent’s mental attitudes: beliefs (logical propositions that the agent consider

true), uncertainty (what the agent believes is not yet true) and intention (the

agent’s commitment to bring about a proposition), and use a number of logical

axioms in a first-order modal logic to model rational behavior. The framework

has been used in the Artimis architecture of France Telecom, a system for devel-

oping dialogue agents. Artimis consists of a rational unit, a domain knowledge

management component and a language understanding and generation compo-

nent. The rational unit is the kernel of the agent, which performs reasoning

about actions and plans using a theorem prover as the inference engine. In Ar-

timis, not all stages of dialogue processing are done within the agent framework.

Language understanding and generation are performed by components external

to the rational unit (the system’s dialogue manager) though still require infor-

mation about the conversational context or the current dialogue state such as for

reference resolution and generation. Hence there is a practical problem integrat-

ing the agent’s kernel with the external components. Most dialogue applications

developed using Artimis are natural language database query systems such as

for accessing weather or transportation information.

Wallis et al. [2001] have presented an initial proposal for the use of the

BDI (Belief, Desire, Intention) agent architecture of Rao and Georgeff [1995] for

discourse analysis. In this approach, dialogue interaction is viewed as consisting

of goal-directed dialogue games which can be handled by the agent’s dialogue

plans. To illustrate the approach, the car booking domain is chosen and dialogue

plans for this domain are built using a task analysis method. Then 25 real

dialogue phone calls were recorded, transcribed and analysed to understand the

errors made by users and the strategies used by the expert. A set of plans (or

procedures) was built based on the result analysis of the task structure. Each

plan is associated with a goal such as taking call, entering user name, etc. There

can be several plans for handling a same goal, but only one that matches the
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dialogue cues will be selected for execution. The authors have claimed that this

set of plans can be directly mapped into the BDI plan structure to obtain a

dialogue system for booking cars, nevertheless this has not been done.

Our approach falls into this agent-based category but differs from these ex-

isting methods in several respects, making it more suitable for personal assistant

applications. Dialogue modelling for domains such as e-mail and calendar man-

agement has additional requirements to allow more complex and sophisticated

dialogue interaction. The system must maintain a mixed-initiative and coherent

conversation with the user, and additionally, tailor the responses to the conver-

sational context, the user’s preferences, etc. Thus the use of information about

the conversational context and other knowledge is required in various stages of

dialogue processing. These processes should therefore be tightly integrated in a

common framework (e.g. a centralized dialogue manager agent) to enable more

effective management of the dialogue. The approach of Sadek does not facil-

itate this centralized management requirement. The work of Wallis et al., on

the other hand, is focused on discourse analysis, building dialogue models based

on collected training examples. In our case, more robust and active dialogue

management is required to provide natural and flexible interaction.

2.4 Spoken Dialogue Management

Spoken dialogue management requires additional consideration to provide natu-

ral and sophisticated interaction. Firstly, good dialogue control strategy should

allow both the user and the system to take the initiative in the conversation. The

user should not be forced to give an exact answer to every system prompt, but

be able to provide more information than as required, or at any time cancel the

current request and start a new one. Support of user barge-in may be preferred

to allow immediate cancellation of the ongoing task or interrupt a long response.

User barge-in, however, can cause problems for speech recognition. Another im-
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portant issue is whether the system should or should not interrupt the user when

the user is speaking. The system should take into account the importance of the

notification and the preferences of the user. Smith and Hipp [1994, pp. 11-12]

have suggested four different levels of system initiative, which can be adjusted

according to the application domain and the user’s competency level to provide

more effective interaction:

• Directive: The system has full control of the dialogue interaction, prompt-

ing the user for every missing piece of information. The user is only ex-

pected to provide short and simple answers. This kind of interaction could

be suitable in travel booking, route finding and similar applications.

• Suggestive: The system still has dialogue control, but suggests and allows

the user to change the direction of the dialogue according to the user’s pref-

erences. The user can provide as much information as he/she wishes. This

suggestive mode can allow more flexible and natural dialogue interaction.

• Declarative: The user has dialogue control. Although not required, the

system is able to mention additional relevant facts, in responding to the

user’s questions. This mode of interaction could be used in simple question-

answer type services.

• Passive: The user has complete control of the dialogue. The system re-

sponds passively and directly to the user’s questions. This simple mode

of interaction is only suitable for command-based speech-enabled interface

such as for operating home appliances.

A conversational dialogue is achieved by the mutual exchange of utterances

between the participants. Thus the system should always indicate that the con-

versation is ongoing and that the system has perceived the user’s requests. If

the requested task has been completed but does not have observable effects, the

system should state that the task has been done. If a task takes long to accom-

plish, there should be an indication that the task is in progress. In addition,
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the system should have a time-out so that if the user does not respond after a

while, the user is re-asked the last question or is suggested to request another

task. Grounding is often required in conversation to establish a common ground

of understanding among the participants. In spoken dialogue applications, mis-

interpretation can occur due to speech recognition or dialogue processing errors,

which may not be easily noticeable to the user as in human-human dialogue.

Hence the system should make clear to the user how it understood the user’s

request, for example, by repeating important information in the response (e.g.

proper names, temporal phrases, etc.) or confirming non-reversible tasks.

Generating appropriate responses also contribute to the satisfaction of users

of dialogue systems. A question is whether the system should behave naturally,

adopting some human-like characteristics, e.g. answering the user with complex

sentences and in different ways, or whether it should maintain a consistent, direct

but uninteresting style. Perhaps many users do not like the idea of talking to

a machine because current telephone-based dialogue systems can only provide

a very simple kind of interaction. On the other hand, varying system responses

may confuse the user. The user may over-estimate the system’s supported level

of dialogue sophistication, resulting in system failures and user frustration and

dissatisfaction. Another point for consideration is that novice and experienced

users may have different expectations in using the system. It is useful if the

system can use the context to detect any problems and provide appropriate help

messages to guide the users. Finally, a speech synthesis component capable of

producing more natural voice output can help achieve better user satisfaction.

2.4.1 Overcoming Speech Recognition Limitations

Successful development of spoken dialogue systems requires the integration of

different language technologies including speech recognition, speech synthesis,

language processing, dialogue modelling, etc., in which the system’s performance
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relies heavily on the performance of the speech recognition component. One

fundamental problem with spoken dialogue systems is that the interaction can

easily fail due to speech recognition errors. Although speech recognition systems

have significantly improved recently, the performance is still far from perfect.

Hence dialogue models must include mechanisms for recovering from these errors

to provide an adequate level of system robustness. There are three type of speech

recognition errors: deletion, substitution, and insertion errors. Deletion errors

occur when the user says some words but they are not recognized at all by the

speech recognizer. Substitution errors correspond to the case when some words

are misrecognized as other words. In the case of insertion errors, the speech

recognizer’s output includes words that the user did not say. Substitution errors

cause more problems for dialogue processing than others.

In comparison to speech recognition in dictation mode, grammar-based speech

recognition can give better accuracy. However, grammar-based speech recogni-

tion components are likely to exhibit performance degradation as the vocabulary

size increases. Thus their users are expected to use more structured utterances

and are limited to a set of pre-defined words. Moreover, constructing grammar

rules for a grammar-based speech recognition system can be difficult since often

it requires the use of a large number of collected training examples. However,

a grammar-based method is more effective for constrained application domains

such as travel booking or route directory services, in which dialogue interaction

can be made simple and direct, and proper names, i.e. location names, can be

pre-specified. Complex and unconstrained dialogue applications, on the other

hand, are better with speech recognition in dictation mode because although

many domain-specific keywords can be pre-specified, other phrases, and so the

vocabulary, should not be restricted. These speech recognition systems have

a potential for covering a wider range of spoken utterances, even those that

are not grammatically correct. It is also worth mentioning that user-dependent

speech recognizers require a period of training, while other speaker-independent

systems require no training but support only limited vocabulary.
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In spoken dialogue systems using off-the-shelf speech recognition software,

it is impossible to detect and correct speech recognition errors directly in the

speech software. Error recovery is therefore usually done as part of dialogue man-

agement and at the level of pragmatic analysis, possibly using the constraints

provided by the conversational context or information from the back-end appli-

cations. In the domain of personal data management, an example is the use of

back-end information such as the user’s address book to constrain the possible

proper names that match the user’s input. The system can also detect prob-

lems with speech recognition output if the user’s current utterance does not fit in

with the ongoing conversation, and can suggest or prompt the user to resolve the

problem. Some speech recognition software can provide a confidence measure

representing the reliability of the recognition result. The dialogue system can

request the user to repeat the utterance in the case of having a low confidence

value. Although it may not be user-friendly, a multimodal dialogue system may

allow the user to see the output of the speech recognizer so that the user can

detect and self-repair speech recognition errors by repeating or rephrasing the

utterance.

2.5 Multimodal Dialogue Management

Each communication modality has its own advantages and disadvantages. Mul-

timodal systems combine different input modes such as speech, GUI actions,

hand gestures, etc., and process them in a coordinated manner with multimodal

output to provide greater expressive power, naturalness, flexibility and portabil-

ity [Oviatt, 1999]. These systems require an effective method for time-sensitive

fusion of multimodal inputs that co-occur temporally, taking into account that

the information conveyed by different input modes may contain some degree of

redundancy. It might be thought that incorporating multiple error-prone recog-

nition technologies (e.g. speech, gesture recognition, etc.) will produce com-

pounded errors, resulting in unreliable system performance. However, according
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to Oviatt, multimodal systems in fact can support more robust recognition due

to the user’s natural ability to optimize and use multiple input modes effectively.

The existing work of McGlashan [1996] allows speech and GUI input (but

not both in the same turn) for accessing a consumer information service about

microwave ovens. The dialogue modelling approach used in this work is in-

formation state based, in which the dialogue model is composed of contextual

variables, dialogue goals and corresponding rules for updating these variables.

There are domain-dependent heuristic rules, which are based on the type and

content of the system goals, used for modality selection in responding to the

user. The system also employed goal-specific strategies in deciding to offer the

user more or to filter out information when the user’s request results in too few

or too many solutions that can not fit on the screen.

SmartKom [Wahlster, 2006] is a large cooperative project conducted by ma-

jor German research institutes, companies and universities over a four year pe-

riod, which has resulted in an architecture for multimodal interaction. The

SmartKom architecture [Herzog and Reithinger, 2006] consists of many func-

tional blocks, each for handling a part of the dialogue processing task and inter-

acting with each other by exchanging messages in XML format. In SmartKom,

the modality fusion component [Engel and Pfleger, 2006] is responsible for merg-

ing contents of the input modalities into a unified representation, i.e. typed fea-

ture structure or frame, which is then used to identify the user’s intention. The

dialogue model of SmartKom is based on the information state approach, repre-

senting the user’s intention as a sequence of dialogue goals/moves. Multimodal

fusion in SmartKom is done by treating speech modality as the primary input

mode. Referring expressions specified in the user’s utterances are then resolved

by considering information of other appropriate input modes.

For personal assistant application such as the SPA, providing a combination

of spoken dialogue and a graphical user interface on devices such as PDAs allows

more efficient user-system interaction and enhances the system’s usability. Even

though such systems need to support only limited multimodal input and output,
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dialogue management still requires timely handling of the speech and GUI input.

Taking an example in the e-mail management domain, the user might select

several message headers on the PDA’s interface, then use speech to request

those messages be archived to a folder. The message list must be added into

the conversational context before the spoken request is processed. In addition,

the system’s responses may need to be tailored to the available modalities. For

instance, a small calendar GUI, only capable of displaying a brief summary of

the user’s appointments, should be combined with more detailed speech output.

On the other hand, if the GUI can display more details of the appointments, a

short speech output would be more appropriate to avoid redundancy.

2.6 Concluding Remarks

We have presented in this chapter important work in speech act theory and

discourse analysis, which take the view that speaking language is performing

communicative acts, according to the speaker’s intentions, in order to achieve

goals. In addition, the coherence of a dialogue depends on the recognition of

the speaker’s intentions, which can be done by firstly, recognizing the performed

speech acts. The linguistic concepts and computational models presented in

this chapter have potential application for use in dialogue modelling in per-

sonal assistant applications. We have also reviewed in this chapter the existing

work in dialogue management, discussing advantages and disadvantages of these

methods. In order to provide robust and sophisticated dialogue interaction, we

propose an agent-based approach, which is suitable for developing personal assis-

tants for multi-domain applications such as the SPA. Details of our agent-based

approach will be described in the following chapters.
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Dialogue Management

In this chapter, we describe our agent-based approach to the problem of dialogue

management in software personal assistants such as the Smart Personal Assistant

(SPA). The SPA is an integrated collection of back-end task assistants, allowing

the user to remotely and collectively perform tasks in application domains such

as e-mail and calendar management through a unified user interface. Moreover,

with the availability of speech modality on mobile devices such as PDAs, the

SPA enables user-system interaction to be conducted via a sophisticated spoken

natural language dialogue.

We will explore in this chapter the dialogue requirements in the case of the

SPA and give arguments for our motivation to employ an agent-based approach

to dialogue modelling and control. We argue that dialogue management in the

SPA should exhibit agent-like behaviour, which motivates the use of a BDI

agent architecture for developing the SPA’s dialogue manager agent, in which

the dialogue model is explicitly represented in the agent plans and beliefs. The

dialogue manager agent uses its beliefs for maintaining information about the

dialogue states, including the discourse history and the salient list, as well as

the domain-specific knowledge and the user model.

Next we will give an overview of BDI agents and then, describe in detail our

plan-based dialogue model, which consists of different (agent) dialogue plans for

handling different discourse-level and domain-level goals. Moreover, dialogue

processing is done automatically as the result of the agent’s BDI interpreter
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selecting and executing plans during its execution cycles, according to the agent’s

beliefs and current context. The modularity of the plans allows the dialogue

model to be extended and reused in other applications.

In the next chapter, we discuss dialogue management using our agent-based

approach in the context of the SPA application. We shall present the imple-

mentation of the dialogue manager agent using the JACK Intelligent Agent

platform [Howden et al., 2001], a Java-based PRS-style system. In addition,

the course of dialogue processing in the SPA will be described in detail through

dialogue examples.

3.1 Dialogue Characteristics

To begin with, we describe again our application, the Smart Personal Assis-

tant (SPA), and then, analyse the requirements of dialogue management in the

SPA and similar applications. The SPA is a suite of task assistants, each an

agent “wrapper” around existing task management software. Each task assis-

tant specializes in a particular application domain such as e-mail or calendar

management. The e-mail assistant supports tasks such as searching, deleting,

archiving and replying to e-mails. In addition, the user is able to request for

notification of important message arrivals. Similarly, the calendar assistant sup-

ports common calendar tasks such as scheduling appointments and/or other

user activities. The integrated collection of the tasks assistants, i.e. the SPA,

is accessible via a range of devices, e.g. PDAs, desktops. Importantly, the user

should be able to interact with the system through a spoken natural language

dialogue and the GUIs of the devices.

The SPA application requires both coordination of the assistants and man-

agement of the spoken dialogue with the user. Coordination of the task assis-

tants is required to provide a single point of contact for the user to conduct a

coherent dialogue with all the assistants and be able to easily switch between

different front-end devices. In terms of dialogue management, the system needs
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to be able to recognize the user’s intention when doing actions on the interface

or speaking natural language commands, which may involve acquiring domain

information from the back-end assistants. In addition, the dialogue responses

should be tailored according to the conversational context as well as the user’s

physical context, devices and preferences.

Coordination Requirements

The user should not have to deal with each assistant separately but be able

to interact with them as if there is just a single smart assistant. An excerpt

from a dialogue scenario is given in Figure 3.1, in which a user changes the

conversational context from e-mail to the calendar domain, making references

to the same person, John Lloyd, and suggesting a new appointment. After the

new appointment has been successfully created, the conversation is shifted back

to the e-mail domain. A single point of contact has been provided that allows

the user to easily switch back and forth between different task assistants while

still being in a continuing conversation with the whole SPA.

During a course of interaction, the user may change physical context by

switching to different devices although it is unlikely that more than one front-

end device would be used at the same time. It is required that the interaction

and conversational dialogue with the user will be maintained coherently. How-

ever, the user’s preferences in interacting with the SPA may not be the same in

different physical contexts and on different devices. Thus the user’s current con-

text, e.g. location, devices, etc., need to be taken into account in responding to

the user. In other words, the SPA should be able to tailor the system responses

according to the conversational context and the user’s physical context, devices

and preferences.

Moreover, in some cases, complex interaction with the back-end assistants is

required in fulfilling the user’s requests. For example, for the task of searching

e-mail messages about a certain topic, only looking for keywords in the message

contents might not give the best results. In the SPA, the e-mail assistant is
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User Do I have new e-mail from John?

SPA You have two new messages from John Lloyd.

One is about slides and one is about workshop.

User Show me the one about the slides please.

SPA Displays the message from John Lloyd about slides.

User I need to see him at 5 pm this Friday.

SPA Do you want to create that appointment?

User Yes, please.

SPA What is the appointment title?

User Workshop.

SPA Appointment has been created for Friday 5 pm.

Displays calendar view showing the new appointment.

User Any messages from Paul?

SPA You do not have any new messages from Paul.

User Notify me if I have an e-mail from him.

SPA Certainly, I will notify you if you have new messages from Paul.

Figure 3.1: Dialogue Illustrating Context Switching

capable of classifying messages into different categories, thus the system can

make use of the classification results in the search task. Processing the domain

tasks may even involve combining information from more than one assistant,

which requires coordination of the task assistants. Furthermore, the system

needs to correctly handle two-way information flow, such as when notifying the

user of new message arrivals. This strengthens the point made earlier that the

dialogue manager of the SPA must be the central component for maintaining

a coherent dialogue with the user as well as coordinating the activities of the

other assistants.

Dialogue Management Requirements

Leaving the coordination requirements aside, dialogue management involves

maintaining the conversational context and having strategies for controlling the
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conversation flow. The dialogue in the case of the SPA is mainly user-driven.

Nevertheless, system initiative is also essential for clarifying user requests or

notifying the user of important events. Hence the dialogue management, from

an agent point of view, requires some degree of pro-activeness for error recovery

but also reactiveness in order to fulfil the user’s requests. Therefore, the SPA

requires a sophisticated dialogue model for handling such complex behaviour.

Firstly, the system must understand the user’s intentions when doing actions

on the interface or speaking natural language utterances. Information from the

back-end assistants must be exploited in interpreting the user’s requests. For

instance, the sample dialogue given in Figure 3.2 illustrates a possible use of

back-end information in the calendar’s address book to resolve the reference of

“John” in the user’s utterance.

User Do I have any appointments with John tomorrow?

SPA Searching the address book of the calendar assistant

has found one John, viz. John Lloyd.

You have an appointment with John Lloyd at 3 pm tomorrow

about workshop slides.

Displays calendar view showing the appointment.

Figure 3.2: Use of Back-End Information to Support Dialogue Management

Secondly, from the developer’s point of view, the dialogue model of the SPA

should be extensible; reuse and maintenance should not take much effort. A

multi-domain dialogue system would likely require the addition or removal of

domain-specific back-end components, and the extension or modification of the

dialogue model for handling different domains. Thus the SPA’s dialogue model

should allow extensions to cover new tasks and/or more dialogue aspects. More-

over, the dialogue model should be scalable, enabling the integration of new task

assistants or being customized to a different set of task assistants.
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Although the dialogue model of the SPA must be user-independent so that

the system can be deployed for different users, it should be easy to incorporate

adaptation methods into the model so that the dialogue can be adaptive to

the user’s device, physical context and preferences. For example, the system

must decide not to use spoken dialogue in environments such as seminars since

it would be socially inappropriate. Similarly, the user’s current location and

activities could be made available from the calendar entries or from sensor data.

As discussed previously, more interesting is the potential for the character of the

dialogue to change during a course of interaction. The user may change physical

context by moving around and/or being connected to new devices. The same

back-end assistants can be used to avoid synchronization issues such as data

inconsistency. However, the interaction and conversational dialogue with the

user must be maintained coherently, which require that the system responses be

tailored to the current device. For instance, while full information can be shown

on large-screen devices (e.g. desktops), only important information should be

displayed on small devices such as PDAs. Instead of showing the whole content

of a message, a summary containing the main information could be given.

Motivation for an Agent-Based Approach

As we have discussed in Section 2.3, most existing spoken dialogue systems fo-

cus on simple and highly constrained tasks such as telephone-based flight and

travel booking or transportation timetable services. These applications employ

relatively simple dialogue models, in which the representation of dialogue states

is based on a finite state machine or a hierarchy of frames or scripts. Dialogue

control is governed by a set of pre-defined rules. State-based dialogue models

are very limited because of their small number of states and the high cost re-

quired for dialogue extension. The major disadvantages of the frame-based and

script-based methods is that maintenance of the system’s frame/script hierar-

chy and/or rule set requires significant effort. Although some of the rules or

frames/scripts can be reused, extending the dialogue models for handling ad-

ditional task domains is difficult because of the lack of modularity. Moreover,
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appropriate priorities among dialogue control rules are crucial but difficult to

specify and maintain. These approaches are not suitable for applications such

as the SPA. They typically cannot provide the desired level of sophistication

required for complex domains such as remote e-mail and calendar management

without becoming unmanageable. In the case of the SPA, dialogue interaction

is more complex and mixed-initiative, in which several user and system turns

are often required to complete a single task.

There has been other work on modelling dialogue for complex task do-

mains, in which dialogue is considered a collaborative process where the user

and the system work together for some problem solving tasks [Grosz, 1977;

Allen et al., 2002]. These applications require a very complex domain model

(as for a planning system). The SPA application domain involves less problem

solving but more continuous interaction than in those systems. Hence these

approaches would be unnecessarily complicated for the SPA. The dialogue man-

ager of the SPA should be light enough for this problem, and focus more on the

user’s interaction than on problem solving.

One of the SPA’s dialogue management requirements is being reactive as well

as pro-active in fulfilling the user’s requests, hence we believe that it is advan-

tageous to design the dialogue manager as an agent, specifically, using a BDI

agent architecture (Section 3.2). The idea of employing an agent paradigm is

strengthened by existing research, which considers dialogue interaction as ratio-

nal action, exhibiting goal-directed behaviour [Perrault et al., 1978; Allen, 1979;

Cohen and Perrault, 1979; Cohen, 1981]. In our agent-based approach, the di-

alogue manager agent will have a number of plans each specifying the agent’s

actions for achieving a goal, such as utterance interpretation, identifying the

user’s intention, response generation, etc. The agent looks through its plans to

find those that are relevant to its goal and applicable to the situation and ex-

ecutes them. The dialogue manager agent maintains coherent interaction with

the user as well as being a coordinator that directs the actions of the specialist

assistants such as e-mail and calendar agents.
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3.2 BDI Agents

Although the term agent has been used popularly in the research community, its

meaning is often vague, possibly because there has not been a widely accepted

answer for the question of what constitutes an agent. The Oxford English Dictio-

nary1 provides two meanings of the term agent that are relevant to the answer

of this question. In one sense, an agent acts in a particular direction to produce

an effect, thus exhibiting goal-oriented behaviour. Another sense views an agent

as one who acts for another, on behalf of another. In computer terms, this sec-

ond meaning is close to the notion of a personal assistant that collaborates with

and supports the user in various ways, such as hiding the complexity of difficult

tasks, performing tasks on the user’s behalf, helping the user to manage his/her

own activities or coordinating teamwork activities with other users [Maes, 1994].

In this research, the SPA application as a whole could be considered a personal

assistant in the second sense.

The term agent in this thesis, however, is used in the first sense, that is

an entity situated in an environment, capable of exhibiting autonomous goal-

oriented behaviour. Wooldridge and Jennings [1995] suggest that there is a

weak notion and a stronger notion of an agent. An agent should have at least

the two properties of the weak notion, i.e. reactiveness and pro-activeness. The

agent should perceive and reactively respond to the changes in the environment.

However, it should also be pro-active, taking the initiative in achieving its goals.

The stronger notion of agency considers the agents having other human char-

acteristics such as informational attitudes to maintain information about the

environment (e.g. knowledge or belief) and pro-attitudes to guide the agent’s

action (e.g. desires, goals or intentions). Many agent architectures in the liter-

ature follow the well-known BDI model [Bratman, 1987], in which an agent has

three primary mental attitudes of Belief, Desire and Intention. These attitudes

respectively represent the informational, motivational and deliberative states of

1Oxford University Press, http://dictionary.oed.com, 2005.
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the agent, Rao and Georgeff [1995]. The beliefs of the agent represent infor-

mation about the world or the environment. Its desires represent the agent’s

desired end states. The chosen desires that the agent has committed to achieve

are its intentions.

3.2.1 The PRS Agent Architecture

One instance of BDI agent architecture, the PRS (Procedural Reasoning Sys-

tem) architecture, was developed by Georgeff and Lansky [1987] and Georgeff

and Ingrand [1989]. The PRS abstract architecture is presented in Figure 3.3.

PRS consists of the current beliefs or facts about the world; a set of current goals

to achieve; a library of plans describing the sequences of actions may be per-

formed to achieve certain goals or react to situations; and an intention structure

containing the plans that have been chosen for execution, either immediately or

at some later time, and the partially executed plans.

The inputs to the agent are events from the environment and the outputs are

the agent’s actions. The interpreter loops and generates an action in each cycle.

External and internal events are always added to an event queue. The agent’s

beliefs are adjusted according to those events. At the beginning of a cycle, plans

are triggered from the plan library which specify courses of action that may

be undertaken in order to achieve the agent’s goals. Next, the deliberator, a

component of the interpreter, selects a subset of these plans to be adopted and

adds them to the intention structure. The agent then executes one action from

one plan in the intention structure. However, due to new external and internal

events, the agent can reactively choose to drop intended plans and/or adopt oth-

ers. The intention and goal structures are modified by dropping successful goals

and satisfied intentions as well as impossible goals and unrealizable intentions.

In other words, the agent is able to adjust its goals and intentions accordingly

in reacting to new situations. The agent’s pro-activeness is evidenced by the use

of explicitly represented intentions directed towards goals, which determine the

agent’s selection of next actions [Bratman, 1987].
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Figure 3.3: PRS Architecture

The PRS architecture has been shown to operate very effectively in contin-

uously changing environments such as air pilot simulation [Tidhar et al., 1998].

In such environments, the agent must respond appropriately in reacting to the

situation as well as be deliberative in fulfilling its prior goals. The situation in

the SPA application is probably less dynamic. However, the dialogue manage-

ment must similarly balance the requirements of being reactive and pro-active,

as has been discussed earlier. Therefore, we propose an approach to dialogue

management in which the PRS agent architecture is used for developing the

dialogue manager. The dialogue model is encoded in the agent’s plans which

are modular units for handling dialogue and domain-specific aspects. In this ap-

proach, dialogue management strategies are also encoded in the agent’s plans so

the control flow emerges automatically as the result of the agent’s plan selection

by the BDI interpreter during its execution cycles.

3.3 The Dialogue Manager Agent

In this section, we present our Dialogue Manager, which has been developed us-

ing an agent-based approach. In particular, we employ a BDI agent architecture,

the PRS system, for dialogue modelling and management. In our approach, the

dialogue model is encoded in the plans of the Dialogue Manager agent. Each plan

is a modular unit, handling a discourse-level goal such as recognizing the user’s

intention or a domain-level aspect such as performing a domain task. Thus there

is a separation between discourse-level and domain-level plans, which enables the
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reuse of discourse-level plans in other applications. The Dialogue Manager agent

maintains the conversational context and other domain-specific knowledge as its

internal beliefs. Using this approach, dialogue processing is done automatically

as the result of the BDI interpreter selecting and executing plans according to

the current context. Before going into the Dialogue Manager’s plan-based dia-

logue model in detail, we discuss the use of conversational acts in our approach

for the representation of the dialogue information state and handling dialogue

characteristics such as turn-taking and grounding. In addition, we will briefly

present the belief representation of the Dialogue Manager agent.

3.3.1 Conversational Acts

In conversational personal assistant applications, dialogue management requires

not only recognizing and handling tasks that are expressed in individual user

utterances but more importantly, maintaining a coherent dialogue and being

able to recognize tasks that spread over multiple utterances. It is therefore nec-

essary to understand the structure of a dialogue (or discourse) and the notion

of a coherent one. As we have discussed in Section 2.1.2, there are two major

lines of approaches to discourse research, which are referred to as informational

and intentional. On one stream, informational approaches consider the coher-

ence of discourse to derive from semantic relationships between the information

expressed by successive utterances. We, however, follow the intentional ap-

proaches, which are consistent with early work on speech act theory by Austin

and Searle (Section 2.1.1). The speaker in a dialogue, by making an utterance,

intends to perform some action known as an illocutionary act (generally termed

a speech act). According to Searle, illocutionary acts can be classified into five

major classes: assertives, directives, commissives, expressives and declarations.

More important is that the intention of the speaker can be recognized from the

speech acts being performed. Thus, maintaining a coherent dialogue requires

understanding of the user’s underlying intentions when speaking utterances by

first, recognizing the associated speech acts.

62



3.3 The Dialogue Manager Agent

Our approach is based on the theory of speech acts, so that in order to rec-

ognize the user’s intentions, the Dialogue Manager agent needs to first recognize

the associated speech acts being performed. According to work in discourse

by Grosz and Sidner [1986], each discourse segment has a discourse segment

purpose or discourse segment intention. The intentional structure of the dis-

course contains these segment intentions and also captures the relations between

them. Discourse intentions differ from other kinds of intentions that they are

intended to be recognized. The speaker, in communicating an utterance, may

have other intentions that are intentionally hidden from the hearer. However,

when interacting with software personal assistants, there should not be any hid-

den intentions of the user, but only the intentions of requesting tasks, which

are expected to be recognized. These tasks, hence, can be considered the dia-

logue’s discourse segment intentions. Moreover, with the level of complexity of

the application domains of software personal assistants, we make an assumption

that although there may be multiple speech acts being performed in any given

utterance, only one of them is important in determining the user’s intention in

the current segment. We call this act a conversational act (c.f. illocutionary act,

as in speech act theory). We separate domain-independent conversational acts

from domain-dependent task goals, thus although there are multiple conversa-

tional acts exchanged in each discourse segment, the intention of every segment

is to fulfil a domain task. In addition, each user utterance in the dialogue plays

one of two roles: specifying the user’s intention in the current segment (i.e. a task

to be performed) or adjusting the recognition of that intention (e.g. clarifying

or giving more information).

A description of the defined conversational acts is shown in Table 3.1. Note

that in carrying out the domain tasks, the Dialogue Manager may also interact

with other personal assistants. The interaction between the Dialogue Manager

and personal assistants is also modelled as performing conversational acts such

as a Request for delegating a task or a Respond to return the task’s results.
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Conversational Act Act Description

Greet express the speaker’s greetings and/or feelings

Request ask the addressee to fulfil a request

Respond describe the results of the request to the requester

Notify notify or inform the addressee of a fact

Request-Clarify ask the addressee to clarify some ambiguities

Clarify clarify some ambiguities

Request-Confirm ask the addressee to confirm by expressing agreement or

disagreement

Confirm confirm some proposition by expressing agreement or dis-

agreement

Cancel cancel the current discourse segment and start a new one

Advertise special act for the personal assistant to describe its capa-

bility to the Dialogue Manager

Ack express acknowledgement

Table 3.1: Conversational Act Descriptions

It is important to consider that dialogue (spoken and written) differs from

other kinds of discourse in some characteristics such as turn-taking, grounding,

etc. The proposed dialogue model allows mixed-initiative interaction, i.e. the

user and the Dialogue Manager can alternately take turns in the conversation.

The user takes turn when requesting tasks or confirming information while the

Dialogue Manager takes the turn when requesting clarification or giving back the

task results. However, the Dialogue Manager may also initiate a conversation to

notify the user of important events such as e-mail message arrivals or calendar

appointments that are due soon, etc. This mixed-initiative behaviour occurs

automatically as the result of the Dialogue Manager agent selecting appropriate

plans in a certain context.

Grounding in the literature is commonly understood as a process through

which the speaker and the hearer constantly establish common ground, proposi-
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tions that they both mutually believe, Clark [1996]. This is done by the hearer

acknowledging the speaker’s utterances or specifying any problems arising in

reaching the common ground. The user needs to know what has happened if

his/her request fails: has the speech recognition failed; or is the utterance too

complex to be understood and needs to be rephrased; or is the request not sup-

ported by the system? Appropriate acknowledgements are always necessary to

help the user determine what went wrong. Even if the request has succeeded,

a confirmation of a delete task such as “The messages have been deleted” is

desirable. In dialogue systems, grounding is required to support sophisticated

and natural interaction. In our model, the Ack, Request-Clarify, Clarify,

Request-Confirm and Confirm conversational acts are used for grounding. The

Ack acts are for acknowledgement while the others are for resolving ambigui-

ties. Moreover, context-sensitive system responses can also be used to provide

grounding information.

Table 3.2 shows an example dialogue together with the corresponding conver-

sational acts. In this scenario, the user requests for information about appoint-

ments with Paul on the next day. Since there are no appointments with any Paul

other than Paul Compton on the next day, the system simply returns the results

without the need to clarify which Paul. However, the system has mentioned the

person’s full name, i.e. “Paul Compton”, in the response for grounding. Thus

any future references to either “him” or “Paul” will be resolved to Paul Comp-

ton until new entities are introduced. The user then asks the system to cancel

one of the appointments. In this current context, an appointment at 2pm does

not match any of the two appointments with Paul Compton, so the system per-

forms a Request-Clarify act to request the user for clarification. As the user

clarifies that the appointment at 3pm should be cancelled, the task can then be

completed successfully and the system performs a Respond act to report the out-

come. The two utterances in shaded rows illustrate how the Request-Confirm

and Confirm acts are performed.
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Dialogue Conversational Act

System: Hello, how can I help you. Greet

User: Do I have any appointments with Paul tomorrow? Request

System: You have two appointments with Paul Compton Respond

tomorrow. One at 10 am about AI workshop and

the other at 3 pm about agents course.

User: Cancel the appointment at 2 pm. Request

System: Sorry which appointment with him do you Request-Clarify

want to cancel?

User: I mean the one at 3 pm. Clarify

System: Are you sure? Request-Confirm

User: Yes. Confirm

System: Appointment has been deleted. Respond

Table 3.2: Example Dialogue and the Associated Conversational Acts

According to Grosz, Weinstein and Joshi [1995], the attentional state of the

discourse has two components for modelling the changes of attention within the

local discourse segment and at the global level, which correspond to the coher-

ence of the discourse at the local and global level. In addition, the attentional

state has an important part which contains the salient entities that have been

mentioned earlier in the discourse. In our application, we refer to the attentional

state as the dialogue’s conversational context, which is maintained in the agent’s

beliefs. Thus the belief state of the Dialogue Manager agent contains the past

and current states of the dialogue, which are represented in the discourse history

and the salient list . The agent modifies its beliefs accordingly in response to

the changes in the context of the dialogue, for maintaining an up-to-date con-

versational context. In addition, there is other linguistic and domain-specific

knowledge, which is used in analysing the semantics of the user’s utterances and

extracting domain-specific information for task processing. This domain-specific
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knowledge is supplied by the task assistants. Moreover, there is a user model

representing the user’s current context and preferences, which can be taken into

account in tailoring the dialogue responses to enhance the system’s usability. In

summary, the Dialogue Manager’s beliefs include:

• Discourse History : for maintaining the conversational context such as in-

formation about the current and past dialogue states. The discourse his-

tory is represented as a hierarchy of discourse segments and conversational

acts. Each discourse segment has a segment purpose, which is equivalent

to the user’s intention (or requested task) in that segment. The con-

versational acts are those exchanged between the user and the Dialogue

Manager as well as between the Dialogue Manager and the task assistants.

• Salient List : for maintaining a list of objects which have been mentioned

previously in the conversation, i.e. the objects that are in focus of attention.

The salient list is used for resolving references and generating context-

dependent natural language responses.

• Domain-Specific Knowledge: include domain-specific vocabulary and in-

formation of the tasks that are supported, which are used in interpreting

the user’s requests.

• User Model : for maintaining information about the user such as the cur-

rent device, preferred modality of interaction, physical context, prefer-

ences, etc.

3.4 Plan-Based Dialogue Model

In the PRS architecture (Section 3.2.1), an agent has a set of plans, each speci-

fying the agent’s required actions for accomplishing a goal. In our agent-based

approach, the Dialogue Manager is an agent with the dialogue model encoded in

the agent’s plans. Dialogue management requires that the user’s intentions be
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recognized correctly with respect to the current conversational context. If the

user’s intention was to request a task then the requested task must be carried

out appropriately with or without interacting with the other task assistants.

Finally, the outcomes of processing the task must be given to the user in suit-

able formats. These are the goals that the Dialogue Manager needs to achieve.

We model the user-system dialogue as a set of modular plans, each associated

with a dialogue aspect. Thus the Dialogue Manager controls the dialogue in-

teraction by appropriately selecting and executing its plans according to the

context. Moreover, in our dialogue model, discourse-level plans—corresponding

to domain-independent aspects—are separated from domain-level plans—used

for performing domain tasks. Hence, due to the modularity of this plan-based

approach, there is a potential for the dialogue model, particularly the discourse-

level plans, to be reused for other applications.

Figure 3.4 shows the overall structure of our plan-based dialogue model. The

main part of a BDI agent are the plans that specify the actions to be performed

in order to achieve its goals. In the diagram, the Dialogue Manager’s plans are

roughly arranged into four different groups according to their purpose: seman-

tic analysis, pragmatic analysis, task processing and response and clarification

generation. Each group itself contains several plans. In this figure, there is

more than one task processing group to indicate that there is a task process-

ing sub-group for interacting with each task assistant. We have also mentioned

earlier that the Dialogue Manager uses its beliefs, i.e. the discourse history , the

salient list and the user model to maintain the conversational context and the

domain-specific knowledge in recognizing the user’s task requests.

The inputs to the Dialogue Manager are external events arising from the

user’s graphical actions on the GUI or as spoken utterances become available,

which trigger the agent’s plan selection and execution. The execution of a di-

alogue plan can further bring up internal events, which in turn trigger the ex-

ecution of other plans. As the system interacts with the user, the Dialogue

Manager maintains the conversational context in its belief state and uses its
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Figure 3.4: Plan-Based Dialogue Model

plans to perform semantic analysis of the user’s utterances, determine the user’s

conversational acts, identify the user’s intentions, perform the requested tasks

and generate appropriate responses. An important aspect of the diagram in

Figure 3.4 is that the control flow between the plans is not explicitly coded.

The plans are modular units which are selected at the appropriate points by the

execution of the standard BDI interpreter. The arrows on the diagram show the

flow of control that arises from this behaviour so that we can understand how a

series of plans are invoked in dealing with a user’s utterance.

The user has the choice of interacting with the system using both or either

the spoken dialogue and the system interface on the device. In some cases, it

is possible that the user may prefer written to spoken dialogue in situations

such as attending a seminar. Hence the Dialogue Manager is required to process

not only spoken utterances but the user’s actions and/or typed sentences on
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the system interface. As shown in Figure 3.4, firstly the user’s utterance is

processed by a speech recognizer to (ideally) obtain the equivalent text. Next,

this sentence is partially parsed into some syntactic representation and output to

the Dialogue Manager. The partial parser uses a dictionary of keywords to parse

the user’s utterance or sentence into a pre-defined shallow syntactic frame. One

component of the syntactic frame represents the utterance type, which can be

one of the following: greeting, declaration, imperative, wh-question and yes/no

question.

Successful management of the dialogue depends to a certain extent on the

performance of the speech recognizer. In order to improve the speech recognition

results, it is hypothetically possible to tightly integrate the speech recognition

component with the Dialogue Manager so that the conversational context can be

used to constrain the recognition problem. Nevertheless, most existing speech

recognition software is commercial software, which is available “as is” and does

not allow the recognition process to be constrained by contextual inputs. More-

over, it would be easier to constrain the recognition if it is grammar-based,

i.e. the input utterances must comply with a pre-defined grammar in order to

achieve good results. However, grammar-based speech recognition is not suit-

able for sophisticated dialogue applications because although domain-specific

keywords are likely to be used, the vocabulary should not be restricted. Fur-

thermore, the performance of speech recognition would decrease dramatically

as the grammar becomes large. Complex domains such as e-mail and calendar

management are sufficiently constrained to overcome the limitations of speech

recognition over large vocabularies. However, speech recognition is required to

reliably recognize keywords such as “mail”, “appointment”. Otherwise, recogni-

tion errors (e.g. for proper names) need to be consistent to enable correction by

the Dialogue Manager, for instance with the use of back-end information such

as an address book. Moreover, the dialogue model can include specific strate-

gies to recover from speech recognition errors, such as requesting the user for

confirmation or to resolve ambiguities.
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The Partial Parser can be part of the Dialogue Manager but we have cho-

sen to make it an external component of the Dialogue Manager because parsing

can be done effectively without using the conversational context. Although this

means any available natural language parsers could be used, complex parsing is

not suitable as it will increase the dialogue processing time, hence increase the

system’s response time. The SPA employs a partial parser that uses scripting

rules for pattern matching, using domain-specific keywords, to detect uncon-

strained phrases and parse the user’s utterances into a shallow syntactic frame.

For each turn, the Dialogue Manager’s response is generated by the response

and clarification generation plan group and returned to the user. The response

can be a task’s results, a clarification question or a notification of important

event. The Dialogue Manager uses the conversational context and the user’s

contextual information to generate multimodal responses appropriately. Speech

output is generated by the Text-to-Speech Engine before being sent to the in-

terface while text output and graphics are returned directly to the interface.

We now describe the agent plans used in our plan-based dialogue model.

These plans are complex but modular units, associated with particular com-

municative or domain-specific goals. The modularity of this approach enables

domain-independent discourse-level plans to be reused for different applications.

3.4.1 Discourse-Level Plans

The Dialogue Manager’s discourse-level plans are used for analysing the user’s

utterances, which includes: classifying the utterances to a task domain, for-

mulating the semantic representation of the utterances, identifying the con-

versational acts being performed, and recognizing the underlying intentions of

the user. Each plan is a modular unit used for handling a specific domain-

independent dialogue aspect. In this chapter, we intend to describe these plans

at a high level of abstraction. The details of our implementation are given in

the next chapter. There are roughly 20 discourse-level plans in our current

implementation of the SPA.
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In other applications, the number of discourse-level plans could vary, depend-

ing on the complexity of the required dialogue interaction. If the application

domain requires more complex dialogue behaviours, our plan-based approach

would facilitate the addition of discourse-level plans, for instance, to handle

additional conversational acts. Note that the generic and domain-independent

nature of these additional plans can be preserved, and so the reusability and

extensibility of the dialogue model. The important point is that our approach

achieves modularity at the level of plans and there is a separation between

discourse-level and domain-level plans, thus enabling the reuse and extension of

our plan-based dialogue model for other applications.

We list below some of the most important discourse-level plans in our dia-

logue model. Here, only a short description is provided for each plan as their

functions can be better understood by considering the processing of dialogue,

which is described in Chapter 4:

Domain Classification plan

Classify the user’s utterance into a task domain by calculating the likelihood

based on the occurrences of domain-specific keywords. These keywords are pre-

defined in domain-specific vocabulary and kept in the Dialogue Manager’s do-

main knowledge.

Semantic Analysis plan

Formulate a semantic representation of the user’s utterance. The manipulation

process is based on the general linguistic knowledge of the Dialogue Manager

as well as some limited domain knowledge. This domain knowledge is supplied

systematically by the task assistants so that the use of this knowledge in the

plan does not affect its generic nature.
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Act Type Determination plan

Determine the type of conversational act that the user is performing. This is

done by considering syntactic and semantic features of the user’s current ut-

terance and the previous conversational acts performed by both the user and

the Dialogue Manager. This information is maintained in the conversational

context, which is kept in the discourse history . The diagram in Figure 3.5 il-

lustrates the execution of the Act Type Determination plan. The Start, End

and Fail points indicate the beginning, end and failure of plan execution. Dia-

monds denote decision points. Rectangles indicate calls to procedures for data

manipulation. The curved rectangles denote the executions of a sub-plan.

UA was Request

LA was Respond

UT is Wh−question

UA was Request

LA was Request−Confirm

UT is Agreement

Append Request to S Append Confirm to S

.....
S is empty

yes

no

End

Fail

LA = lastDialogueManagerAct();

UA = lastUserAct();

UT = typeOfUserCurrUtterance();

S = set of possible user acts

Start

no no

yes yes

Figure 3.5: Example Act Type Determination Plan

Act Handling plan set

There is one plan for each possible type of the user’s conversational acts. In

executing the plan, the Dialogue Manager appropriately updates the dialogue’s

intentional structure (discourse history) and triggers execution of other plans

for determining the user’s intention based on the recognized conversational act.

For example, if the conversational act is a Request, then a new dialogue sub-

segment will be created and the Intention Identification plan will be executed

to determine the user’s requested task.
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Intention Identification plan

Identify the user’s intention, i.e. the requested task. The diagram in Figure 3.6

illustrates the execution of this plan. First, a set S of the possible user’s conver-

sational acts is determined by the Act Type Determination plan. The Dialogue

Manager selects the most likely element in this set to be the user’s current

conversational act CA. Depending on the type of CA, either a request must be

identified or the partially recognized request in the discourse history must be

updated. An appropriate event is raised which triggers execution of another

plan for handling this conversational act. This involves identifying the type of

the requested task or the attributes of the domain objects mentioned in the re-

quest. If the intention identification process fails, the Dialogue Manager selects

the next element in S, and repeats this process.

Fail

Start

.....

End

Act Type

Determination

S = set of 

possible act types

CA = next type in S

type

Request Act
Handling

Clarify Act
Handling

of CA

fail

pass

no

fail

yes

fail

passpass

S is
empty

Clarify

Request

Figure 3.6: Example Intention Identification Plan

Task Type Determination plan

Using keywords in the domain-specific vocabulary to recognize the type of the re-

quested task. Because the domain of the task has been determined, the selection
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of the corresponding domain knowledge can be done automatically, allowing the

plan to be domain-independent. The user’s requests can also be general domain-

independent tasks such as a greeting expression or a request to go back to the

previous GUI screen, etc.

Graphical Action Handling plan

Process the user’s actions on the GUI, which may involve performing domain

tasks such as deleting e-mail messages, going back to show the previous display

or updating the salient list .

Reference Resolution plan

Resolve anaphoric references and temporal adverbs. The resolution of definite

noun phrases (of the domain objects) requires the Dialogue Manager to interact

with the back-end task assistants. For example, if there are two e-mail messages

in the focus of attention and the user requests the message from John, the two

message IDs and the from John condition will be sent to the E-Mail agent for

resolution.

People Determination plan

Determine if any contact names or references to some persons are mentioned

in the user’s utterance. If any task assistant provides an address book then

from within this plan, the Dialogue Manager may interact with the assistant to

identify a set of people that best match the mentioned name. This information

can also be used to generate clarification requests. Considering an example, if

the user mentions John where there are two Johns in the address book, the

system could ask the user Do you mean John Lloyd or John McGuire?
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Clarification Generation plan

Generate clarification or confirmation requests so that they can be directed to

the user for resolving ambiguities. These questions are generated using pre-

defined templates provided in advance by the back-end task assistants and kept

as domain-specific knowledge.

Response Generation meta-plan

Select appropriate domain-level plans for generating system responses which are

tailored to the user’s device, context and preferences.

3.4.2 Domain-Level Plans

Domain-level plans are those that require domain-specific knowledge to be en-

coded in the plan, and include the following:

Domain Object Determination plan set

Determine conditions and attribute values of any domain objects mentioned

in the user’s request. This may involve combining information in the user’s

current utterance (such as in the case of clarification or confirmation) and in

the partially recognized request. For the e-mail management domain, there is

an E-mail Determination and a Folder Determination plan. An illustration of

the E-mail Determination plan is shown in Figure 3.7.

The goal of the E-mail Determination plan is to determine e-mail related at-

tributes/conditions mentioned in the user’s utterance such as message is sent

from John, message is about upcoming meeting, etc. Firstly, the Dialogue

Manager computes the partially recognized user’s intention (I), the Dialogue

Manager’s last conversational act (LA) and the user’s current act (CA). If the

Dialogue Manager’s last act was a Request-Clarify and the user’s current act

is a Clarify then the e-mail attributes mentioned in the current utterance are
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Fail

End

Start

I = currentIntention();

LA = DMLastAct();
CA = userCurrentAct();

Clarify

LA is Request−

if
EmailAttribute = getAttr(CA)

update(I, EmailAttribute)

EmailAttribute = getAttr(CA,LA)

update(I, EmailAttribute)

CA is

if

Respond

if
exists refs

Reference

Resolution

no

yes

yes

no

fail

yes

pass

no

Figure 3.7: Example E-mail Determination Plan

extracted and merged with the information obtained in I. If there are any refer-

ences to e-mail messages in the user’s utterance, the Reference Resolution plan

will be triggered for execution. If the E-mail Determination plan fails, it trig-

gers the execution of the Clarification Generation plan, requesting the user for

clarification.

Domain Task Processing plan set

There is one plan for processing tasks in each domain, which may require in-

teracting with the back-end assistant agent such as to search for new messages,

archive messages to a folder. If interaction with some back-end task assistant is

required, the Dialogue Manager delegates the task to the task agent. Otherwise,

other plans are triggered for immediate response generation. Figure 3.8 shows

an example of the E-mail Task Processing plan. The diagram shows that if re-

sponse cannot be generated immediately, a task is computed for being delegated

to the E-mail agent. The Dialogue Manager then starts waiting for the results.
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FailEnd

Task Assistant

DT

Start

yes

no

yes no

return response

can

immediately?

DT = delegatedTask();

I = currentUserIntention();

T = userTaskRequest();

task

succeeded

Figure 3.8: Example E-mail Task Processing Plan

Domain Task Response Handling plan set

There is one plan for processing responses from each back-end task agent. The

responses may be notifications of new message arrivals or responses to the del-

egated tasks.

Domain Task Response Generation plan set

There is one plan set for generating system responses in each task domain so

that the system responses can be adapted according to the user’s device and

available modalities.

3.4.3 Dialogue Model Reuse and Extensibility

Many existing dialogue systems make use of a task model and a dialogue model,

however these are not always clearly distinguished. In the SPA, there is a clear

separation between the task model and the dialogue model due to the use of

the special Dialogue Manager agent. The SPA requires sophisticated dialogue

interaction, and so requires a complex dialogue model, but not necessarily a

complex task model. For our application, it is more important that the dialogue
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model can be reused, so that the system can be extended without much cost, at

the same time maintaining the level of dialogue sophistication.

The modularity of the SPA’s dialogue model is at the level of agent plans,

enabling the reuse of discourse-level plans, so that adding a new task domain

requires only the development of some domain-dependent plans and domain-

specific knowledge. Moreover, domain-specific knowledge is defined in a uniform

format for each back-end task assistant and provided to the dialogue manager

when the task assistant is connected to the system. This reduces the amount

of effort required to adapt or extend the dialogue model for use in different

task domains. In our initial implementation with only the e-mail task assistant,

the dialogue model has about 20 discourse-level plans and 6 domain-level plans,

in addition to some auxiliary plans for handling system authentication, etc.

In extending the dialogue model for the calendar domain, we have reused the

discourse-level plans, hence needed to develop only another 6 domain-level plans

and the calendar domain knowledge description.

Although extending the dialogue model for handling the additional calendar

task domain means that a new set of domain-level plans must be defined for the

calendar task assistant, these plans are very similar in structure to those of the

e-mail management domain. Hence defining domain-level plans for new applica-

tions does not require much effort. Even though the total number of the dialogue

plans must increase as the number of integrated task assistants increases, the

dialogue model is scalable and computational efficiency is not affected because

most of the time the dialogue interaction is in a single domain, thus involves

only the plans in that domain. For handling the calendar management domain,

we have extended our initial dialogue model to include new domain-level plans,

including an Appointment Determination plan, a Todo Determination plan, a

Calendar Task Processing plan, a Calendar Task Response Handling plan and

a Calendar Task Response Generation plan set. The extended dialogue model

allows the user to have continuous dialogue interaction with both e-mail and

calendar task assistants as illustrated in a previous example in Figure 3.1.
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3.5 Discussion

Our agent-based approach is suitable for developing personal assistants for multi-

domain applications. The dialogue manager agent, based on a BDI architecture,

acts as the central point maintaining continuous user-system interaction and co-

ordinating the activities of the assistants. We consider dialogue interaction as

rational action, exhibiting goal-directed behaviour, thus a BDI architecture of-

fers a complex but modular approach to dialogue modelling. The dialogue model

is at high-level of abstraction, consisting of a set of modular plans, each associ-

ated with a communicative goal. Hence this facilitates the reuse and extension

of the dialogue model in other applications. The dialogue manager controls the

dialogue interaction by appropriately selecting and executing its plans accord-

ing to the current context, which is done automatically as the result of the BDI

interpreter’s execution cycle.

Our approach is also beneficial in other respects. The issue of semantic

interoperability is solvable by formulating declarative representations of the ca-

pabilities of individual agents and of the system as a whole, which will enable

back-end integration with existing personal assistants. As the dialogue model is

modular at the level of agent plans, adapting a plan-based dialogue model for

integration of more specialist agents becomes easier with this approach, requir-

ing the addition to the agent of domain-related plans and internal knowledge.

Moreover, it is possible for learning to be integrated into the agent by incorpo-

rating meta-plans as intermediate steps for plan selection, thus enabling dialogue

adaptation. The conversational context as well as other domain knowledge and

the user model, encoded as a part of the agent’s beliefs, allow the agent to

easily maintain information about dialogue states and use this knowledge in

interpreting the user’s requests.
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Dialogue Management in the

Smart Personal Assistant

In Chapter 3, we presented our agent-based approach to dialogue modelling in

multi-domain personal assistants such as the Smart Personal Assistant (SPA)

application. We have described the use of a BDI agent architecture for the devel-

opment of the dialogue manager, the central component that maintains coherent

dialogue with the user as well as coordinates the back-end task assistants. The

Dialogue Manager has a set of modular plans, each for handling a particular

discourse-level or domain-level goal. Moreover, the conversational context and

other knowledge are maintained in the agent’s internal beliefs, which include

the discourse history, the salient list, the domain-specific knowledge and the

user model. In this chapter, we discuss the application of our approach to the

particular case of dialogue management in the SPA, focusing on the dynamic

aspect of dialogue processing.

We will start by presenting the implementation of the SPA application. The

SPA and the Dialogue Manager agent have been developed using the JACK

agent platform. JACK is a Java implementation derived from the PRS architec-

ture, which includes mechanisms for agent communication by exchanging mes-

sages, thus facilitating the implementation of the SPA as a multi-agent system

that supports interaction among the Dialogue Manager agent and other back-

end task agents. Currently, the SPA has two task assistants, the E-Mail and

Calendar agents, which are developed as JACK agent wrappers, built around

the e-mail and calendar management software.
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The BDI agent architecture in JACK provides a general framework for im-

plementing the Dialogue Manager agent. In addition, this framework has been

extended for including the dialogue data structure to maintain the conversational

context. Before looking into the process of dialogue control in the SPA, we de-

scribe the implementation of the Dialogue Manager agent’s belief structures:

firstly, the use of domain-specific knowledge and the user model in interpreting

the user’s requests and generating adaptive system responses (Section 4.2.2 and

4.2.3), and secondly, the representation of discourse information in the SPA’s

dialogue model, in particular, the computational model of the discourse history

and the salient list (Section 4.2.4).

Finally, in Section 4.3, we discuss the course of dialogue processing in the

SPA, which can roughly be divided into four sub-processes: analysing the se-

mantics of the user’s utterances, identifying the user’s intention, processing the

requested tasks and generating system responses. In brief, dialogue control is

performed automatically as the Dialogue Manager agent selecting and execut-

ing appropriate plans using the standard BDI plan selection mechanism. An

example dialogue scenario will be used throughout this chapter to illustrate how

dialogue control is performed.

4.1 The Smart Personal Assistant Architecture

4.1.1 Overview

Currently, the SPA has two task assistants, which allows the user to perform

tasks in the e-mail and calendar management domains. The system components

are as illustrated in Figure 1.2, repeated as Figure 4.1, which include a PDA

interface, a speech engine, a partial parser, the Dialogue Manager agent, the

E-mail agent and the Calendar agent1. All three agents are implemented using

1The PDA e-mail interface, the User Interface Agent and the E-mail server were imple-
mented by Van Ho. The PDA calendar interface, Speech Processor and Calendar server were
implemented by Alfred Krzywicki.
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JACK and interact with each other using the JACK communication mechanism.

However, only the Dialogue Manager agent makes significant use of the JACK

agent’s reasoning capability.

Partial
Parser

Speech
Processor

E−mail
Server

Calendar
Server

User
Interface

Agent

DesktopPC

Laptop

Agent
Manager
DialogueUser

Interaction
Agent

E−mail
Agent

Calendar
Agent

SPA Client SPA Server

PDA

Figure 4.1: The SPA System Architecture

The user’s interaction with the system is done through a simple kind of mul-

timodal dialogue, i.e. using a speech interface as well as a limited GUI on the

PDA which enables the users to navigate using a menu system or highlight im-

portant text. Thus the user’s inputs to the system can be spoken utterances,

typed text sentences or graphical actions on the GUI. Similarly, the outputs can

be speech or GUI output. The user’s spoken utterances are first processed by

the speech recognition component of the speech engine, which then passes the

corresponding text outputs to the Partial Parser. The typed text sentence or

the word-string output of the speech recognizer is parsed into a shallow syntac-

tic structure before being sent to the Dialogue Manager (Section 4.2.1). User

graphical actions on the interface, however, are sent directly to the Dialogue

Manager to update the conversational context. User requests that are initiated

through spoken dialogue are handled by the Dialogue Manager while those ini-

tiated from interacting with the GUI are handled by the interface and usually

require direct interaction with the E-mail or Calendar server.

In handling the user’s requests, the Dialogue Manager uses information from

its internal beliefs (e.g. conversational context) or may need to interact with
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the E-mail and/or Calendar agent to request for information or delegate tasks.

If there is no ambiguity and the request is completed successfully, the Dia-

logue Manager generates the responses to return to the user; speech outputs

are passed to the speech synthesizer first while graphical outputs are directed

to the interface. Otherwise, the Dialogue Manager generates questions to ask

the user for clarification. Therefore the Dialogue Manager not only maintains a

coherent dialogue with the user but also acts as a centralized coordinator agent

for coordinating the task assistant agents.

The Calendar agent is implemented as a JACK agent wrapped around the

calendar management software, which can be used for scheduling personal ac-

tivities. The calendar management software is capable of handling common

scheduling tasks such as creating, updating and deleting appointments and/or

to-do tasks. The schedule data are stored in the Calendar server. All data

changes made by the Calendar agent are also forwarded to the interface for

synchronization.

The E-mail agent is also an agent wrapper built around the existing EMMA

e-mail management software enabling the Dialogue Manager to delegate re-

quests to the EMMA system for performing tasks such as searching, deleting

and archiving e-mails, and notifying the user on the arrival of some important

messages [Ho et al., 2003]. In addition, EMMA can perform classification of e-

mail messages in the Inbox into sorting folders, and prioritization based on the

degree of importance, urgency, etc. This information is given to the user and

can also be used in processing e-mail tasks. For example, the user may ask “Do

I have any new messages about meetings?” and there exists a meeting virtual

folder. Here the classification results of this virtual folder can be used, which

is more appropriate than searching for e-mails containing the word “meeting”.

However, the meaning of “about meetings” varies between users but should be

consistent with their pre-defined classification rules.
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4.1.2 Speech Recognition

The speech engine handles speech recognition and text-to-speech synthesis. The

SPA application does not require speech recognition of 100% accuracy. How-

ever, certain domain-specific keywords (e.g. “mail”, “from”) need to be reliably

recognized. Otherwise, recognition errors (e.g. for proper names) need to be

consistent to enable correction by the Dialogue Manager. The first attempt

used a Linux version of the IBM ViaVoice speech recognition software, which

showed that although the SPA is able to recover from some speech recognition

errors, ViaVoice is unpredictably unreliable. On some occasions, the results were

of high accuracy while on most others the accuracy was very low. Hence, this

version of the ViaVoice software is not adequate for the speech recognition task.

The current implementation of the SPA employs Dragon NaturallySpeak-

ing in dictation mode for speech recognition and Lernout and Hauspie TTS for

speech synthesis. The speech recognition is more consistent and errors more pre-

dictable, enabling correction by the Dialogue Manager. For every recognition

result, Dragon NaturallySpeaking can return a number of alternative candidate

phrases and their confidence values. However, our initial testing showed that

most of the time, the top candidate is the best and with a very high confi-

dence value. In addition, the implementation of the Speech Server uses the

CloudGarden’s Java Speech API, which cannot return the alternative phrases.

Thus we use only the top suggestion from Dragon NaturallySpeaking. Table 4.1

shows some examples of the actual utterances and the corresponding outputs

recognized by this speech software using the in-built microphone on the PDA

(iPaq hx4700) with no apparent benefit to using the headset microphone. As

ViaVoice, Dragon NaturallySpeaking requires the user to spend time training

the voice model. However, the design of the SPA system architecture is inde-

pendent of the particular speech recognition engine used, thus it is possible to

replace it by other user-independent speech recognition systems.
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Actual Utterance Speech Recognizer’s Output

Is there new e-mail from John Is the only new e-mails from John

Is there new e-mail from John Is very new e-mails from John

Is there new e-mail from John The venue e-mail from John

Show me all my e-mails from John Show me all night e-mails from John

Show e-mail about seminars Samuel e-mail about seminars

Move them to the seminars folder And move them to the seminars older

Do I have an appointment with Jessica
today

Do I have been appointment with Jes-
sica today

Show it to me Shown it to be

Show me all appointments with Jessica Surely in all appointments with Jessica

Table 4.1: Example Speech Recognition Output

4.2 Dialogue Modelling

The dialogue management process in the SPA involves analysing the syntax and

semantics of the user’s input, recognizing the user’s intention, processing the

requested tasks and generating and returning the system output to the user’s

device. However, this whole course of actions is done automatically as the result

of the agent’s plan selection mechanism using the plans described in Section 3.4.1

and Section 3.4.2. The example scenario in Figure 4.2 will be used throughout

the following sections to describe different aspects of the dialogue management

process.

The Dialogue Manager has been implemented using the JACK agent plat-

form, a Java-based PRS-like agent development platform. In the PRS architec-

ture, the BDI interpreter loops and generates an action in each cycle. In re-

sponding to external and internal events, plans are chosen from the plan library

which specify courses of action that may be undertaken in order to achieve the

agent’s goals. Next, the interpreter selects a subset of these plans to be adopted

according to the current context. At the end of each cycle, the agent selects

one action from one plan in the intention structure to be executed. Due to new
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1 User Is there any e-mail from Paul Compton?

2 SPA You have two messages from Paul Compton. One is about

project summary and one is about project proposal.

Displays the two message headers.

3 User Show me the one about proposal please.

4 SPA Here is your message about proposal.

Displays the message from Paul Compton about project

proposal.

5 User I need to make an appointment with him.

6 SPA Please specify date and time of the appointment?

7 User Monday at 11 am.

8 SPA What is the appointment title?

9 User Project archive.

10 SPA Appointment has been created for next Monday 11 am.

Displays calendar view showing the new appointment.

11 User Show me all e-mail about seminars?

12 SPA You have three messages about seminars. One from

Bruno Gaeta and two from Bernhard Hengst.

Displays the three message headers.

13 User Move these messages to the meetings folder.

14 SPA Meetings folder does not exist.

15 User Move them to the seminars folder.

16 SPA The messages have been moved to seminars folder.

Goes back to display calendar view.

17 User Do I have an appointment with Jessica for today?

18 SPA You have an appointment with Jessica about budget

today at 4 pm.

19 User Delete it.

20 SPA Are you sure you want to delete that appointment?

21 User Yes.

22 SPA Appointment has been deleted.

Displays calendar view with the appointment deleted.

Figure 4.2: Example Scenario Illustrating Dialogue Management Process
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external and internal events, the agent can reactively choose to drop intended

plans or revise its internal beliefs. Therefore, in our approach, dialogue process-

ing is done automatically as the Dialogue Manager agent selecting appropriate

plans according to the current context, resulting from the BDI interpretation

cycle. Note also that the agent’s reactiveness is evidenced by immediately re-

sponding to events, while its pro-activeness, by its commitment to existing goals,

i.e. intentions, which constrain the agent’s selection of next actions.

Figure 4.3 shows a simplified diagram illustrating the data flow between the

Dialogue Manager agent and other components of the SPA. Input to the Dia-

logue Manager can be either the syntactic frame of the user’s current utterance

(obtained from the Partial Parser, Section 4.2.1) or the description of the user’s

graphical action on the interface. The action description includes the domain of

the action (e.g. e-mail or calendar), the user’s action such as delete, highlight

or archive, etc., and the list of domain objects that are currently in focus on

the GUI. For example, if the user’s action was delete in the e-mail management

domain, then the object list contains the IDs of the messages to be deleted.

E−mail
Agent

Dialogue
ManagerPartial

Parser

Recognizer

Text−to−Speech
Engine

Interface

Graphical

User Device

e.g. PDAs

Text

Speech

Calendar
Agent

Speech

Calendar
Server

Server
E−mail

Figure 4.3: Interaction of SPA Components

Dialogue processing in our application involves, for each of the user’s ut-

terances, the Dialogue Manager recognizing the user’s request, performing the
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requested task (which may require interaction with other back-end task assis-

tants) and finally, generating the response and returning it to the user’s device.

The user, by interacting with the interface or speaking an utterance, generates

input to the Dialogue Manager, causing an external event to trigger the selec-

tion of dialogue plans for execution. The execution of these agent plans can

raise internal events, which in turn, trigger the selection and execution of other

plans. The behaviour of the agent on plan failure is specified in the plan, so

that the Dialogue Manager agent either drops that plan or selects another one.

The control flow of our agent-based dialogue management is not directly spec-

ified but derived automatically using the plan selection mechanism as part of

the BDI’s agent interpretation cycle. During the agent’s plan execution, the

Dialogue Manager agent may also revise its internal beliefs, which is how it

maintains the conversational context.

For the remainder of this section, we describe the first stage in dialogue

processing, analysing the syntactic structure of the user’s utterances, which is

done by the Partial Parser and does not involve executing a dialogue plan. We

then discuss the discourse representation used in the SPA, in particular, the

domain-specific knowledge, the user model, and the computational model of the

discourse history and the salient list.

In Section 4.3, we shall explain how a typical course of dialogue processing

is done by the Dialogue Manager selecting and executing its dialogue plans.

Different sub-processes will be looked at in detail: analysing the semantics of

the utterance, identifying the user’s intention, processing the requested task and

generating system responses.

4.2.1 Syntactic Analysis

The first stage in processing the dialogue is to parse the user utterances or typed

text sentences into some shallow syntactic structure. For application domains

such as the SPA, full parsing is inappropriate for the following reasons. Firstly,
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existing speech software can only provide a level of quality which is far less than

perfect, hence the recognition results are not likely to be grammatically correct

sentences. In addition, many English speakers regularly use shortened forms of

expression (abbreviated commands), which usually do not strictly adhere to the

grammar. Thus, it would be inefficient or even impossible to fully parse the

user’s utterances. Another reason for not using full parsing is that the language

vocabulary (e.g. proper names, objects) in the application is unconstrained.

Hence building the dictionary for a full parser would be difficult. For example,

consider the request “Are there any new messages about . . . ?”. The missing

phrase could be anything. However, because the task domains are known, a

domain-specific dictionary can be constructed with a reasonable amount of effort,

hence the domain-specific keywords can be used for pattern matching to detect

other unconstrained phrases.

The Partial Parser is implemented using ProBot [Sammut, 2001], a rule-

based system embedded in a Prolog interpreter. A dictionary of keywords has

been used to parse user utterances and sentences into a pre-defined shallow

syntactic frame which consists of one or more clauses, each having up to eight

components, as shown in Table 4.2. The keywords are classified into different

syntactic categories, which are used to define ProBot rules for pattern matching.

Taking the example scenario in Figure 4.2, the syntactic frame representing the

user’s utterance (1) is shown in Table 4.3.

Figure 4.4 shows some simple scripting rules of the Partial Parser. For exam-

ple, rule (1) checks if a noun phrase is at the beginning of the utterance. If the

noun phrase is found, it is assigned to the subject component of the syntactic

frame and the remainder of the utterance is passed on for determining the other

components. If matched, rule (2a) is for extracting an e-mail related descriptive

phrase (as direct object component) and complementary phrase from the utter-

ance. Rule (2b) extracts an e-mail related phrase and a folder related phrase

as the direct object and indirect object component respectively. More example

rules are given in Appendix A.
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Utterance

Component Description

clause[] a set of syntactic frames each for a clause of the utterance

Clause

Component Description

connective conjoin word used to connect clauses

type utterance type as one of: yes/no-question, wh-question, dec-
laration, imperative, greeting

type supplement an optional phrase which gives supplementary information
e.g. “how many”, “when” if the utterance type is wh-
question

subject the syntactic subject of the sentence

predicate the main verb phrase of the utterance, in which the pri-
mary verb is obtained from a domain-specific dictionary, e.g.
delete, reply, read, archive, create, show, view, forward, etc.

direct object main object of the predicate which can be e-mail or calendar
related such as e-mail, folder, appointment or noun phrases

indirect object possible second object which can also be e-mail or calendar
related such as e-mail, folder, appointment or noun phrases

complement phrase information e.g. time or location

Table 4.2: Components of the Shallow Syntactic Frame

User’s Utterance: Is there any e-mail from Paul Compton

type yes/no-question

subject there

predicate is

direct object any e-mail

indirect object from Paul Compton

Table 4.3: Example Syntactic Frame

4.2.2 Domain-Specific Knowledge

In order to provide sophisticated dialogue interaction, the language vocabulary

(e.g. proper names, objects) used in the application should be unconstrained.

However, it is also impractical to build and inefficient to use a large dictionary
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(1) subject ::

<noun-phrase> * ==> [ -- a subject noun phrase

#assert(subject(^1))

#goto(predicate,^2)

]

(2) direct object ::

(a) <mail-preposition> * <time-phrase> ==> [

-- an e-mail related phrase then a complement phrase

#assert(direct object([^1,^2]))

#assert(complement,^3)

#goto(print result)

]

(b) <mail-preposition> * <folder-preposition> * ==> [

#assert(direct object([^1,^2]))

#assert(indirect object([^3,^4]))

#goto(print result)

]

Figure 4.4: Example ProBot Scripting Rules

for language understanding. Nevertheless, because the task domains are known

(i.e. e-mail and calendar management), domain-specific dictionaries can be con-

structed with reasonable effort. These dictionaries provide domain-specific key-

words which can be used as the boundary patterns for extracting unconstrained

attribute values in the user’s utterances. For example, considering a possible

phrase describing a search “Find all new messages about school meeting”, the

system does not need to understand the logical meaning of “school meeting”

because the presence of other domain-specific keywords such as find, messages

and about is sufficient to recognize the user’s search request. In this search,

the phrase “school meeting” represents the topic of interest, which can be used

for information retrieval without the system understanding the meaning of the

phrase.

The domain-specific knowledge also includes other information about the

types of tasks that are supported by each task assistant. Moreover, for each

task type, there is information about the required parameters or the kinds of ob-

jects to be manipulated. Hence in processing the user’s utterance, the Dialogue

Manager can use the domain-specific vocabularies together with a description of
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the object’s attributes to identify if any objects are mentioned in the utterance.

Other important information is also specified in the task description, such as

whether or not the task requires a confirmation. For instance, an appointment

cancellation task should be confirmed by the user to avoid mistakes.

To achieve interoperability, the domain knowledge is pre-defined for each task

assistant using a common format, then made available to the Dialogue Manager

when required. This enables the addition and removal of task assistants to and

from the SPA. In addition, this domain-specific knowledge is used to formulate

task descriptions in an appropriate format for delegation to the corresponding

task assistant. Figure 4.4 presents the data structure for defining the domain

knowledge. This domain information could be defined more formally using on-

tologies, as proposed by Paraiso and Barthès [2005].

Field Field Type Possible Values - Comments

domain String EMAIL, CALENDAR, GENERAL

defaultTask String default task type e.g. SEARCH for e-mail do-
main

tasks TaskRequest[] a set of task descriptions, each describing
a domain task including the required task
objects and the default question to be asked
for requesting confirmation from the user

keywords Keyword[] a set of domain-specific keyword description

(a) DomainKnowledgeDescription Data Type

Field Field Type Possible Values - Comments

type String type of the keyword e.g. NOUN, VERB, etc.

confidenceValue Integer a confidence value between 0 and 100 indi-
cating how likely the utterance belongs to
a particular domain given the occurrence of
this keyword

synonym String the synonym of this word in this domain

(b) Keyword Data Type

Table 4.4: Data Structure for Representing Domain Knowledge Description
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Figure 4.5 shows a part of the domain knowledge description for the e-mail

management domain, which is represented in XML format, showing the map-

ping from a verb, “move”, to a domain task, ARCHIVE. Considering the user’s

utterance (13) in Figure 4.2, “Move them to the seminars folder”, the main verb

of the utterance’s predicate component is “move”. Thus the user’s request can

be mapped to an ARCHIVE task. Moreover, from the task description, both ob-

ject types, i.e. mail and folder, must be identified. The confidence value of 50

indicates that if this word appears in the user’s utterance, there is a 50% a priori

chance (i.e. ignoring context) that the request belongs to the e-mail management

domain. The reason for this value is that the same verb can also be used in the

calendar domain to request a task of rescheduling an appointment.

<object type="DomainKnowledgeDescription">

<field name="domain">EMAIL</field>

<object type="TaskRequest">

<field name="type">ARCHIVE</field>

<field name="objects">

<list>

<object type="TaskObject">

<field name="type">MAIL</field>

</object>

<object type="TaskObject">

<field name="type">FOLDER</field>

</object>

</list>

</field>

</object>

<object type="Verb">

<field name="confidenceValue">50</field>

<field name="word">move</field>

<field name="synonym">archive</field>

<field name="mappedTask">ARCHIVE</field>

</object>

...

Figure 4.5: Example Verb-Task Mapping in Task Description

In our approach, semantic interpretation of the user’s input is performed

solely by the Dialogue Manager, with the use of the domain knowledge supplied
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by the task assistants. This could be done differently by delegating the work to

the task agents. The Dialogue Manager could first use some minimal domain

knowledge to determine the task domain, then request the appropriate task

agent to perform a complete analysis of the input [Paraiso and Barthès, 2005].

However, in the case of the SPA, semantic interpretation requires access to the

conversational context (which is maintained in the Dialogue Manager), thus

more appropriately is handled by the Dialogue Manager.

4.2.3 User Model

The Dialogue Manager agent’s belief set contains a user model for maintain-

ing the user’s current context. Different kinds of information can be modelled,

including the user’s current device, location, available modalities, etc. The Dia-

logue Manager can take into account this contextual information in responding

to the user’s requests. For example, if the user does not use speech, it is likely

that currently, the user does not want to use speech. The reason could be

that the user is in a meeting, hence the system’s responses should not include

speech output but only text and/or graphics. The user’s preferences could also

be included as a part of the user model so that more sophisticated dialogue

adaptation can be achieved by tailoring the dialogue interaction according to

both the user’s context and preferences. The Dialogue Manager could possibly

also learn the user’s preferences by observing the user’s interaction or explicitly

asking the user through the dialogue.

Currently, the user model contains information about the user’s current de-

vice and modality. In addition, the Dialogue Manager also learns and main-

tains the user’s preferences for dialogue output in the e-mail domain, thus is

able to generate adaptive dialogue responses according to the user’s devices and

preferences. In our approach, the Dialogue Manager agent can have different

plans for handling the response generation goal, thus this learning problem can

be considered the problem of learning the agent’s plan selection function. We
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have incorporated a learning mechanism into the Dialogue Manager agent which

learns plan selection strategies. If there are a number of possible plans for gen-

erating the system responses, the user is asked to choose one among them. The

chosen plan is selected and executed while the user’s preferences are obtained

and input to the learner for updating the learning model. Hence, gradually over

time, the system will be able to learn the user’s preferences and generate the sys-

tem output in different formats, layouts and modalities according to the user’s

context and preferences. Details of our work on learning adaptive dialogue will

be presented in Chapter 5.

4.2.4 Discourse Representation

Our approach to dialogue management is based on the theory of speech acts.

We consider that a dialogue participant when speaking an utterance or doing

a GUI action is performing a speech act. Moreover, the user’s intentions (e.g

requesting a task) can be identified by first recognizing the conversational act

being performed. For example, the speaker by performing a Request act likely to

express his intention of having a task done; while a Confirm act can be performed

to reassert whether the task must or must not be done (Section 3.3.1).

Table 4.5 shows the data structure for representing different types of conver-

sational acts and the underlying intentions. The sender is the one who performs

the act, which is towards the receiver. In the case of this conversational act

being the response to another act, the inResponseTo field should be set appro-

priately. A special conversational act type, Graphical, has been introduced to

capture the user’s actions on the graphical interface. The interaction between

the Dialogue Manager and other task assistants is also modelled as perform-

ing conversational acts. However, their interaction involves only Request and

Respond acts.

In the case of the SPA, conversational acts are performed to either request

for a domain task to be done, to return the results to the user, to ask for
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Field Field Type Possible Values - Comments

id String the unique id of this act

sender String User, DialogueManager, E-mailer, Calendar

receiver String User, DialogueManager, E-mailer, Calendar

inResponseTo String the id of the conversational act to which this one is
to respond to

type ActType Request, Respond, Request-Clarify, Clarify,
Request-Confirm, Confirm, Greet, Advertise,
Ack, Cancel, Graphical

content ActContent the associated intention

Table 4.5: Data Structure for Representing Conversational Acts

clarification, to clarify or simply to greet the user. Thus, the content field

of the ConversationalAct data type is modelled to represent either a task

request, a task response, a clarification request or a simple proposition. The

possible types of the conversational act’s contents are given in Table 4.6.

Table 4.7 shows the data fields that constitute the domain task’s data struc-

ture. Thus, as in Table 4.7a, each TaskRequest contains information about

the domain, the type and the objects of the task and finally whether or not a

confirmation is required. For example, if the request was a search for messages

from Paul Compton, the corresponding TaskRequest represented in XML is as

follows:

<object type="TaskRequest">

<field name="domain">EMAIL</field>

<field name="type">SEARCH</field>

<field name="field"></field>

<field name="objects"><list>

<object type="TaskObject">

<field name=type>MAIL</field>

<list><object type="Condition">

<field name="attName">From</field>

<field name="function">contains</field>

<field name="attValue">Paul Compton</field>

</object></list>

</object></list>

</field>

</object>

97



4.2 Dialogue Modelling

ActType ActContent

Type Comments

Greet SemanticStructure a proposition represents the semantics
of an utterance

Request TaskRequest represents a domain task

Respond TaskResponse represents the results of a task

Notify TaskResponse represents a notification

Request-Clarify TaskRequest represents a task with fields marked
to be clarified

Clarify TaskRequest represents a clarified task

Request-Confirm TaskRequest represents the task that requires con-
firmation

Confirm SemanticStructure a proposition represents either agree-
ment or disagreement

Cancel none to cancel the current task and thus
close the current discourse segment

Advertise AdvertiseRequest contains domain-specific vocabulary
and other domain-specific knowledge

Ack none to acknowledge the task results and
thus close the current discourse seg-
ment

Graphical GraphicalAction represents an action on the interface

Table 4.6: Conversational Acts and the Corresponding Act Contents

Discourse History

The discourse history is used for maintaining the conversational context such

as information about the current and past dialogue states, which is represented

as a hierarchy of discourse segments and conversational acts. Each discourse

segment consists of the conversational acts contributed to that segment and has

a segment purpose, which is taken to be equivalent to the user’s intention (or

requested task) for that segment. The Dialogue Manager agent makes use of

information in the discourse history such as the user’s and the system’s last

conversational acts, etc., in interpreting the user’s current request.
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Field Field Type Possible Values - Comments

domain String EMAIL, CALENDAR, GENERAL

type String type of task such as SEARCH,

DELETE, CREATE, ARCHIVE,

REPLY, etc.

confirmRequired String an optional string specifying the
question to be asked the user for con-
firmation before performing this task

field String attribute to be found such as the ar-
rival time of a message

objects TaskObject[] an array of task objects description

(a) TaskRequest Data Type

Field Field Type Possible Values - Comments

type String MAIL, FOLDER, PERSON, APPOINTMENT,
etc.

conds Condition[] general conditions applicable to this ob-
ject which is not domain-specific

objConds Condition[] domain-specific conditions such as from

contains "John"

(b) TaskObject Data Type

Field Field Type Possible Values - Comments

attName String object attribute name such as SENDER,

SUBJECT, ARRIVAL TIME, etc.

function String e.g. "contains", "equal"

attValue String object attribute value

(c) Condition Data Type

Table 4.7: Data Structure for Representing Domain Task

Discourse Segment Purpose

Utterances in a dialogue are locally related within their segments. Therefore,

interpreting the user’s current utterance requires the knowledge of the previous

utterances in the segment and their underlying conversational acts. For exam-
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ple, suppose the user’s last act was of type Request and the Dialogue Manager’s

last act was a Request-Clarify. If the user’s current utterance is a noun phrase

then it is most likely that its associated conversational act is of type Clarify.

However, if the user’s current utterance is a question, the user may have can-

celled his/her request and started a new segment requesting a new task (this

can be determined from the semantic analysis of the utterance). In other words,

the conversational act associated with the current utterance should be Request.

Moreover, identifying the dialogue structure is also essential for resolving refer-

ences such as anaphora and temporal adverbs, which is necessary for interpreting

the user’s utterances. The Dialogue Manager maintains information about all

previously performed conversational acts in the discourse history .

Discourse Structure

A discourse is taken to be composed of a hierarchy of discourse segments, in

which a number of segments may currently be “open” (commenced but not com-

pleted). Moreover, Grosz and Sidner [1986] have distinguished two structural

relations between successive discourse segments: dominance and satisfaction-

precedence. A discourse segment DS1 is considered as contributing to another

discourse segment DS2 if its discourse intention DSP1 is intended to provide part

of the satisfaction of the other, DSP2. Conversely, DS2 is said to dominate DS1.

Moreover, DSP1 is said to satisfaction-precede DSP2 if DSP1 must be satisfied

before DSP2. For our application domain, recognizing this fine-grained distinc-

tion would be computationally inefficient and unnecessary. Instead, we classify a

new segment to be either the sibling or sub-segment of a previously commenced

segment. A segment DS2 is a sub-segment of another segment DS1 if the correct

interpretation of DS2, according to the user’s intention, must require the context

provided by DS1 (and implicitly other segments that contain DS1), and in addi-

tion, this contextual information must be sufficient for the correct interpretation

of DS2. Otherwise, DS2 is a sibling of DS1. This definition enables the segment

relations to be computed by the Dialogue Manager in the course of dialogue

processing.
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1

2

3

4

5

6

SPA: Hello how can I help you.

User: How are you?

SPA: I am fine, thank you.

User: Show me all new messages.

SPA: You have twenty two new messages.

Displays all message headers.

User: Show me the messages from John.

SPA: Do you mean John Lloyd or John McAfee?

User: John Lloyd.

SPA: Here you are.

Displays headers of the messages from John Lloyd.

User: Show me the one about slides.

SPA: Displays the message from John Lloyd about slides.

User: Delete it.

SPA: Are you sure you want to delete that message?

User: Yes, delete it please.

SPA: Message has been deleted.

User: Show me the other one.

SPA: Displays the other message from John Lloyd.

Figure 4.6: Discourse Segment Hierarchy

Taking the example in Figure 4.6, assuming that the segments have already

been determined, segment (5) is a sub-segment of segment (4) because its in-

tended interpretation requires co-reference of the new message from John Lloyd

about slides, in the context set by segment (4). In contrast, segment (6) is

not a sub-segment but a sibling, of segment (4). The information provided by

segment (4), i.e. the message from John Lloyd about slides, is needed but not

sufficient for the interpretation of “the other message” in segment (6). What

must be required are the entities introduced in the context of segment (3), i.e.

the two new mesasges from John Lloyd. Therefore segment (6) is a sub-segment

of segment (3), but not of segment (4). In this example, segments (2), (3) and

(6) are open while other segments have completed.
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In our dialogue model, the discourse history contains the conversational acts

performed by the user, the Dialogue Manager and other task assistants. These

acts form a hierarchy of discourse segments, each having a discourse segment

purpose representing the user’s intention when engaging in the segment. Fig-

ure 4.6 illustrates how utterances in a dialogue constitute the hierarchy of dis-

course segments. Note that in this example we have ignored the interaction

between the Dialogue Manager and the other task assistants, and showed only

the natural language utterances exchanged between the Dialogue Manager and

the user. Discourse segment (1) has the user’s intention of greeting the SPA.

Discourse segment (2) involves the user requesting all new e-mail messages. Fur-

thermore, it contains a sub-segment, segment (3), because segment (3) uses the

contextual information, the new messages, supplied by segment (2). Segment

(3) has the user’s intention of searching for e-mail from John Lloyd among the

new messages. This discourse segment involves a sub-dialogue for clarification

of John. However, for the purpose of modelling the dialogues in applications

such as the SPA, we do not consider this sub-dialogue a sub-segment with a seg-

ment intention but rather a part of segment (3). Both segment (4) and (6) are

sub-segment of segment (3) because each involves a message from John Lloyd,

thus can only take place as part of the parent segment, segment (3). They are

also sub-segment of segment (2). Similarly, segment (4) contains segment (5) as

a sub-segment.

In many cases, it may not be possible to recognize the user’s intention from

the first utterance of the discourse segment (e.g. discourse segment (3) in Fig-

ure 4.6). It is, however, required that a sub-dialogue be opened requesting for

additional information or clarification. We consider the sub-dialogue a part

of the current discourse segment, not a sub-segment, because it relates to the

same user intention (i.e. discourse segment intention). As the Dialogue Manager

processes the user’s current utterance, the intention that has been partially rec-

ognized is kept in the corresponding discourse segment in the discourse history

and gradually revised until the recognition succeeds.
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The Dialogue Manager also maintains in each discourse segment a stack rep-

resenting the hierarchy of the conversational acts and sub-segments that con-

stitute that segment. Figure 4.7 illustrates the discourse stack of segment (4)

of the example given in Figure 4.6. Modelling the hierarchical structure of the

discourse segment stacks helps in resolving references in the user’s utterances.

Take the case of discourse segment (6), in which the user asks for “the other

one”. The previous segments, segment (5) and (4), involve the message from

John Lloyd about slides, which cannot contain the referenced object. However,

the centring objects of segment (3) are two messages from John Lloyd. Thus, by

considering the relationship among these segments, the Dialogue Manager knows

that the phrase “the other one” can be resolved by considering the remaining of

the two e-mail messages that have been mentioned in segment (3).

Request

Request

Request−Confirm

Confirm

Respond

Response

(4)

(5)

......

.....

Figure 4.7: Example Discourse Stack

Recognition of New Discourse Segments

The recognition of a new discourse segment is done by checking the type of the

user’s current conversational act and the Dialogue Manager’s last conversational

act. As in our dialogue model, each discourse segment purpose corresponds to

a domain task, a new segment most likely starts with a Request act of the

user. Also, a Notify act performed by the Dialogue Manager also creates a

new segment. The end of a discourse segment is either a Respond act from the

Dialogue Manager, or an Ack act or a Cancel act by the user.
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Recognition of Segment Relations

As discussed earlier, in our dialogue model, a new discourse segment is either

a sibling or a sub-segment of the currently open segment. These two types of

relations are identified by comparing the objects in focus of the two segments,

which is based on the centring theory by Grosz, Weinstein and Joshi [1995].

They assert that certain entities or objects in an utterance are more central

than others. Consequently, there is a close relationship among the focus of at-

tention, the choice of referring expression and the coherence of utterances within

a discourse. There are two levels of discourse focus: global and immediate. The

centring objects of the current utterance are the immediate focus of the current

discourse segment. In addition, there are other objects which are focused at

the global level because they have been mentioned previously in the discourse.

In our application domain, we propose that each discourse segment has a cen-

tring set of objects and that identifying the relation between two segments can

be done by comparing these sets. Specifically, if the centring set of the new

segment DS2 is a subset (or is the same) of the currently open segment DS1,

then DS2 is a sub-segment of DS1. Otherwise, the two segments are siblings. In

addition, the commence of DS2 immediately closes DS1. The example given in

Table 4.8 illustrates this point.

Salient List

In the case of the SPA, although the user is not expected to use complex types

of references, the use of anaphoric references and time deictic expressions is

likely for the e-mail and calendar management domain. It is necessary that

the Dialogue Manager is capable of resolving references of these types in or-

der to analyse the user’s utterances and recognize their associated intentions.

Anaphora is the use of certain words to refer back to other referring expressions

mentioned in the same or other utterances. A typical example of anaphora is

the use of pronouns while time deixis is the use of expressions that are relative

to a temporal reference point, such as “tomorrow”, “Monday next week”, etc.
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Dialogue Utterances Centring

Objects

Segment

Relation

1 Show me new e-mail from Paul

Compton?

You have one new message from Paul

Compton about workshop slides

message from

Paul Compton

not

applicable

2 Do I have any appointments with

Paul tomorrow?

You have two appointments with Paul

Compton tomorrow. One at 10am about

AI workshop and the other at 3pm

about agents course.

two

appointments

with

Paul Compton

sibling of 1

3 Cancel the appointment at 2pm.

Sorry which appointment do you want

to cancel?

The one at 3pm.

Appointment has been deleted.

appointment

with

Paul Compton

at 3pm

sub-segment

of 2

4 Show me the appointment at 10am.

Here you are.

Thanks.

appointment

with

Paul Compton

at 10am

sibling of 3

and

sub-segment

of 2

Table 4.8: Example Relation between Dialogue Segments

These temporal phrases are very likely to be used when scheduling activities or

creating appointments.

The salient list of the Dialogue Manager agent is a data structure for tracking

objects that have been mentioned previously during the course of conversation,

and is used in interpreting references such as anaphora and temporal expres-

sions. The salient list can also be used for generating context-sensitive natural

language responses. For dialogue applications such as the SPA, the Dialogue

Manager needs to keep track of only some kinds of discourse entities for refer-

ence resolution. For instance, in the e-mail management domain, the entities

or objects of interest can be the e-mail messages, the mail boxes, the senders
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and receivers of the messages and the arrival times of the e-mail messages. The

user might use pronouns to refer to people or topics, e.g. for describing the con-

tent of an e-mail message, etc. In addition, the user may also use phrases to

specify search conditions or people’s e-mail addresses, etc. Thus those phrases

should also be considered important discourse entities. Similarly, for the calen-

dar management domain, person names, appointments and to-do tasks must be

maintained. In this domain, temporal phrases such as “tomorrow”, “3 pm the

next day”, etc. are used very often, hence the salient list must also keep track

of the most recent temporal reference point.

In the SPA application, the user interacts with the system through dialogue

as well as the graphical interface on the device. Hence objects involved in the

interaction on the device are also kept in the salient list so that later references

to these objects can be resolved. Figure 4.8 shows two possible examples of

how objects on the interface could be referenced during a dialogue. In the

first example, the user highlights a person’s name on the GUI, and then asks

for e-mail messages from him. Thus, the pronoun “him” must be resolved to

“Norman Foo”. Similarly, in the second example, the user selects a message on

the interface before requesting the system to display its content.

In addition, the user may use another type of reference known technically as

homophoric reference, to refer to objects or people presumed to be of common

knowledge in a particular social context. For instance, in the request “Notify

me if I have new e-mail from the head of school”, the user has assumed that

the system understands who the head of school is because there is only one

possibility given the user’s social context. This kind of information could be

learned by asking the user and stored as a user preference for later processing.

However, such information could also be pre-defined as a part of the domain

knowledge. Currently in the SPA, the Dialogue Manager has a plan for resolving

references using person names but the capability to learn and/or resolve common

knowledge has not been implemented.
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(a) (b)

User Show other messages from him. User Show me this message.

SPA Shows other messages from SPA Displays content of

Norman Foo. the selected message.

Figure 4.8: References to Objects on the GUI

Linguistic Model of the Salient List

The model of the salient list is based on work by Strube [Strube, 1998], which

is inspired by the centring theory by Grosz, Weinstein and Joshi [1995]. The

salient list maintains references to discourse entities that are e-mail and calendar

objects. These include e-mail messages, folders, names (of contacts), appoint-

ments, time and key text phrases. In the salient list , these discourse entities

are organized as a ranked list according to their information status, i.e. their

expression types. Entities with higher ranking are more likely to be referenced in

succeeding utterances. The method for determining the ranking has been given

in Figure 2.1 (Section 2.1.3). A concrete description of the expression types is

shown in Table 4.9. Readers are referred to the work of Prince [1981] for more

detailed explanation. The inferables class was not used in the implementation of

the SPA because its use is not required for reference resolution in our application

domain.
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Expression Type

(Abbreviation)
Description

N
e
w

brand-new (BN)

Newly introduced discourse entities such as the car in the

utterance: “I’ve just bought a car”.

However, people who are mentioned using their proper

names such as John Lloyd in: “I will see John Lloyd this

Friday” are considered unused brand-new entities instead.

O
l
d

evoked (E)

Brand-new entities after being referenced in subsequent ut-

terances.

For example, John Lloyd (as “him”) in “I will see John

Lloyd this Friday. Notify me if I have new e-mail from

him”.

unused brand-new

(U)

People with proper names just after being mentioned in

the dialogue, such as John Lloyd in “I will see John Lloyd

this Friday”.

M
e
d

anchored

brand-new

(BN-A)

New discourse entities that are mediated by one of the other

evoked or unused entities because of their dependence.

An example is “his e-mail address” in “I want to contact

John some time next week. What is his e-mail address?”.

inferables (I)

Discourse entities such that the speaker assumes the hearer

can infer them.

For example, in “You are going to meet him tomorrow at

10am. The location is his office”, the location is implic-

itly assumed by both the speaker and the hearer to be the

location of the appointment.

containing

inferables (CI)

Discourse entities contained within an inferred entity.

For instance, the entities that are referred in the phrase

“One of these messages” of “You have three new e-mails.

One of these messages is from John”.

Table 4.9: Expression Types of Discourse Entities
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Anaphora resolution is performed by searching the salient list from left to

right according to the rank order. The objects in the referring expression are

checked against discourse entities in the salient list until a matched type has

been found. After that, the salient list is updated accordingly, which requires

re-positioning some elements of the list to conform with the ranking criteria. In

addition, brand-new objects mentioned in the dialogue are immediately inserted

into the salient list at their determined positions. If several objects of a same

type are mentioned together as a set, e.g. “You have three new messages from

John Lloyd”, these three messages are grouped into a set (of type e-mail) before

being stored as a single entity in the salient list . Considering the example

dialogue in Figure 4.9, the set of three e-mail objects is kept in the salient list

as a result of processing the user’s first request. Although there may be other

types of discourse entities (e.g. the Seminars folder) currently in the salient list ,

only the e-mail set entity is matched and used for resolving the reference of “the

second message” in the user’s second request.

User Show me messages from John in the Seminars folder?

SPA There are three messages from John Lloyd in the Seminars folder.

Displays the three message headers.

User Show me the second message.

SPA Here you are.

Displays content of the second message.

Figure 4.9: Dialogue Illustrating Reference Resolution Using the Salient List

4.3 Dialogue Processing

Inputs to the dialogue control process are either the syntactic frames of the

user’s utterances or the descriptions of the user’s GUI actions. The classifica-

tion of the input into a task domain is considered a part of the syntactic analysis

sub-process, however, will be discussed in this section as this is done by the Di-
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alogue Manager agent. In the main part of this section, we describe a typical

course of dialogue processing performed by the Dialogue Manager, which can be

divided into different sub-processes: analysing the semantics of the utterance,

identifying the user’s intention, processing the requested task and generating

system responses. Figure 4.10 illustrates a part of the dialogue processing’s con-

trol flow, which is derived automatically as the Dialogue Manager agent selects

and executes its dialogue plans according to the context. In the diagram, the

curved rectangles are the agent’s plans. Lines of type (1) denote access from

and update to the Dialogue Manager’s beliefs. Type (2) lines are for illustrating

flows of successful plan execution while type (3) lines indicate the dialogue pro-

cessing flow as the result of plan execution failures. The same notation will be

used in other diagrams throughout the remainder of this section. All dialogue

examples should be referred back to the complete scenario in Figure 4.2.

The Dialogue Manager agent has been implemented as a JACK agent, which

has a set of modular plans, as described previously. Figure 4.11 illustrates how

to specify a plan in JACK. The body of the plan defines the sequence of actions

that the agent must do in handling the input event. If the execution of the

plan fails at some point, the plan is immediately terminated. Nevertheless,

if the Fail reasoning method has been specified, the agent will execute this

reasoning method before terminating the plan execution. The context of the

plan is important for deciding which plan to execute: for example, in our domain

we might have two plans for displaying e-mail contents, one for use in the context

that the user is on the Desktop and another for when the user is on a PDA,

which might summarize the message first before displaying it.

4.3.1 Domain Classification

A new user input is either a spoken utterance or a graphical action. Thus the

input to the Domain Classification plan can be a syntactic frame of the ut-

terance (as processed by the Partial Parser) or a description of the graphical
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Processing
Calendar Task

Task Assistant
Calendar

Syntactic Frame

of User Utterance
Objects in Focus

on the Interface
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Task Assistant
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.....

Classification
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Handling
GraphicalAction
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Determination
Act Type
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Determination
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Determination
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Determination
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Determination
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Discourse
History
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Figure 4.10: Illustration of Dialogue Control Flow

action. If the input is an action description, an internal event will trigger the

execution of the Graphical Action Handling plan for further processing. Other-

wise, the Dialogue Manager agent performs steps in the Domain Classification

plan to calculate a ranked list of domains that the user’s current utterance is

likely to belong to. Some domain-specific knowledge and information of the

conversational context is used for the classification.
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Handle Event:

internal or external event that this plan handles

Post Event:

internal event that this plan can raise, which must be

handled by itself

Send Event:

external event that this plan can raise, which is to be

handled by another agent

Relevance:

conditions to check if this plan is a relevant option

to handle the input event

Context:

conditions to check if this plan is applicable for handling

the input event

Body: sequence of actions that the agent to carry out, which can

be one of the following:

- perform an atomic action

- post an internal event

- send an external event

- execute another reasoning method

Reasoning Method:

sequence of actions that the agent to carry out, which can

be one of the following:

- perform an atomic action

- post an internal event

- send an external event

- execute another reasoning method

Pass:

actions to carry out after successful execution of the plan

Fail:

actions to carry out if the plan execution has failed

Figure 4.11: JACK Plan Specification Schema

A ranked list of all supported domains is calculated for the input utter-

ance using the domain-specific keywords kept in the Dialogue Manager’s domain

knowledge. There is a set of keywords for each supported domain. Each key-

word has a confidence value between 0 and 100, which indicates how likely a

priori the utterance belongs to a particular domain given the occurrence of that

keyword. A word can appear as the keyword in different domains though its

confidence values in these domains are unlikely to be the same. In the SPA, the
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confidence values are pre-specified as domain-specific information. It would be

possible to use statistical methods to compute these values using training data.

However, in our implementation of the SPA, we manually pre-define the values

according to the following simple rules:

• If a word can appear in utterances of both e-mail and calendar domains,

it is given a value of 50. Examples are verbs such as “move”, “delete”,

“show”, and nouns such as “details”, etc.

• If a word is absolutely a keyword of one domain but not the other, it is

given a value of 100. For example, words such as “schedule” are given

a value of 100 in the calendar domain while words such as “archive” are

given a value of 100 in the e-mail domain.

• If a word is most likely to appear in utterances of one domain, but can also

be a keyword in another domain though less likely, it is given a value of

80. The confidence value of that word in the other domain will be 20. For

example, the occurrence of the noun “seminar” most likely indicates the

calendar domain, such as in “I am going to have a seminar this Friday”.

However, the same word can also appear in an utterance of the e-mail

domain such as “Show me the messages about seminars”.

The ranking value for a domain is the sum of the ranking values of all domain-

specific keywords that appear in the utterance. The larger the ranking value is,

the more likely that the requested task belongs to the domain. The ranked list is

maintained in the agent’s discourse history but a domain with highest ranking

value is selected first. If the ranking values are the same, the currently active

domain (domain of the last conversational act in the dialogue) is given higher

priority. The domain knowledge is indexed so that (as the result of selecting a

domain) the Dialogue Manager will automatically use the appropriate domain

knowledge in later stages of the dialogue processing. However, if the dialogue

processing fails at some later point (e.g. identification of the user’s intention
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fails), it is possible for the Dialogue Manager to roll back and select the next

highly ranked domain from the ranked list.

Considering utterance (1), “Is there any e-mail from Paul Compton”, in our

dialogue example (Figure 4.2), there are no keywords in the calendar domain

but one keyword in the e-mail domain, i.e. “e-mail”, which has a confidence

value of 100. Thus the utterance can be classified to the e-mail domain. In the

next utterance, “Show me the one about proposal”, the word “show” appears

as a keyword in both domains with the same confidence value of 50. Thus

the ranking values are the same for both domains. However, as the previous

utterance belongs to the e-mail domain, this utterance must also be classified

to the e-mail domain. In contrast, if the utterance was “Show me the one about

appointment”, the ranking value for the calendar domain would be higher, which

would first indicate that the utterance is a calendar request. Nevertheless, as the

utterance contains an anaphoric reference “the one”, this will make the dialogue

processing fail at a later stage, semantic analysis, and so the Dialogue Manager

will be able to roll back and attempt to reprocess the utterance in the e-mail

domain.

Figure 4.12 shows one part of Figure 4.10, displaying only the flows of data

and execution from and to the Domain Classification plan. Note again that the

dotted lines (1) indicate accesses from and updates to the Dialogue Manager’s

beliefs. Solid lines (2) are flows of successful plan execution while dashed lines

(3) denote dialogue processing flows as the result of plan execution failures.

If the classification succeeds, the execution of the Semantic Analysis plan is

triggered, in which the Dialogue Manager attempts to formulate a semantic

representation of the user’s utterance using specific knowledge of the classified

domain. If the Semantic Analysis plan fails, the Dialogue Manager selects the

next ranked domain and re-execute the Semantic Analysis plan. If the input is a

GUI action, an internal event is posted triggering the execution of the Graphical

Action Handling plan.
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4.3.2 Semantic Analysis

Only if the user’s utterance has been classified into a domain, the Semantic

Analysis plan can be used to formulate a semantic representation of the utter-

ance using the general linguistic knowledge encoded in the Dialogue Manager’s

beliefs and other domain-specific knowledge. This domain-specific knowledge is

selected automatically according to the classified domain. The semantic rep-

resentation of the user’s utterance is then used for identifying the underlying

intention, which can be a new request or a clarification to the system’s last

question. As we have discussed previously, if the execution of the Semantic

Analysis plan fails, the next possible domain will be selected and the Dialogue

Manager will attempt to re-do the semantic analysis using the newly selected

domain knowledge (Figure 4.12).

Syntactic Frame

of User Utterance
Objects in Focus

on the Interface

Domain & Action &

Generation
Clarification

Handling
GraphicalAction

Classification
Domain 

Analysis
Semantic

Identification
Intention

plan execution success

plan execution failure

beliefs updates/retrievals

Discourse
History

Salient
List

Domain
Knowledge

Figure 4.12: Dialogue Control for Domain Classification and Semantic Analysis

The input to the Dialogue Manager is the syntactic structure of the user’s

original utterance (e.g. Table 4.3). Using the Semantic Analysis plan, the Di-

alogue Manager attempts to convert this syntactic structure into a semantic

structure, which is either a predicate proposition, a quantifier proposition or

an operator proposition. These three types of propositions can be described as

follows and the representation of the semantic structure is formally defined in

Figure 4.13. An example semantic representation is given in Figure 4.14.
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• Predicate Proposition: consists of a predicate and a set of terms. Each

term can be a text phrase; a constant term representing a pronoun; or a

variable term that is linked to another quantifier proposition. For example,

if the utterance is “Show me new messages”, then the predicate is show and

the two terms are the constant term me and a variable term corresponding

to the phrase new messages.

• Operator Proposition: consists of an operator and a set of propositions.

The operator is used to represent either (i) the tense of a proposition if

only one single proposition is included; or (ii) a conjunction or disjunction

of the included set of propositions.

• Quantifier Proposition: consists of a quantifier, a variable and a set of

propositions. The set of propositions represent conditions or character-

istics of the variable term such as the type of the associated object, its

ordinal position within a list, etc. For example, a phrase such as “new

messages” can be represented as a quantifier proposition, which contains

two other predicate propositions: one representing the e-mail message type

of the objects and the other representing the condition of these e-mail ob-

jects, i.e. being new.

At this stage, the semantic representation of the utterance is not yet final

as it must be refined further using domain-level plans to allow the Dialogue

Manager to fully recognize the requested task. For example, a phrase such as

“messages from Paul Compton” can only be formulated as a variable term, rep-

resenting a set of e-mail objects with some additional condition. Interpreting

this additional condition, i.e. the attribute description “from Paul Compton”,

requires detailed specific-knowledge of the e-mail management domain, thus will

be further processed using the domain-level dialogue plans, e.g. E-mail Determi-

nation plan. Anaphoric references such as pronouns and definite noun phrases

are also not resolved at this stage. Nevertheless, the resulting semantic structure

is sufficient to determine the user’s conversational act and partially understand
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SemanticStructure : UtteranceType + Proposition

Proposition : Operator + Proposition[ ]
Predicate + Proposition + Term[ ]
Quantifier + Variable + Proposition[ ]

Operator : AND | NOT | OR | PRESENT | PAST | FUTURE

Predicate : Have | Be | BeingNew | BeingFine | ObjectType ...

Quantifier : MOST | MANY | ALL | ANY | THE | A | ...

Term : Constant

: Variable

: Operator + Term[ ]
Constant : You | I | Mary | John | ...

Variable : x | y | z | ...

Figure 4.13: Semantic Structure Representation

its associated intention. Taking the example utterance (3), “Show me the one

about proposal”, its semantic structure is represented in Figure 4.14.

IMPERATIVE

AND PRESENT Show("You", "I", x)

THE x: AND ObjectType(x, ONE, SINGULAR)

ObjectProperty(x, ABOUT, "proposal")

Figure 4.14: Example Semantic Structure

4.3.3 Intention Identification

In order to maintain a coherent dialogue with the user, the Dialogue Manager

needs to understand the user’s intentions when speaking an utterance or per-

forming an action on the interface. Not all user interactions are requesting tasks

but some are for clarifying ambiguities or providing more information. There-

fore recognizing the user’s intention involves, firstly, identifying what kind of

conversational act is being performed, and then, depending on the type of the
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user’s conversational act, determining the content of the act. More specifically,

if the user’s conversational act is a Request, the requested task must be rec-

ognized. Otherwise, if the user is performing a Clarify or a Confirm act, the

Dialogue Manager must determine what is being clarified or confirmed. This

requires analysing the semantic structure of the user’s utterance and accessing

the conversational context maintained in the agent’s discourse history .

Figure 4.15 illustrates a part of the course of dialogue processing, identifying

the user’s intention when speaking an utterance. Again, the dotted lines (1)

indicate accesses from and updates to the Dialogue Manager’s beliefs. Solid

lines (2) are flows of successful plan execution while dashed lines (3) denote

dialogue processing flows as the result of plan execution failures.
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Figure 4.15: Dialogue Control Flow for Intention Identification

In executing the Intention Identification plan, the Dialogue Manager first

triggers the execution of the Act Type Determination plan for handling the sub-

task of determining the user’s conversational act. This is done by considering

the syntactic and semantic features of the user’s utterance and the previous

conversational acts performed by the user and the Dialogue Manager. The

result is an ordered list of possible act types and the top result will be chosen
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for further processing. There is a plan for handling each conversational act type

such as Request Act Handling, Cancel Act Handling, etc.

If the execution of the Act Type Determination fails, causing the failure of

the Intention Identification plan, the Dialogue Manager would select the next

ranked domain from the domain classification result and continue processing

the current utterance by re-executing the Semantic Analysis plan. For example,

consider utterances (5–9) in our example dialogue (Figure 4.2):

5 User I need to make an appointment with him.

6 SPA Please specify date and time of the appointment?

7 User Monday at 11 am.

8 SPA What is the appointment title?

9 User Project archive.

In the beginning, utterance (9) is classified to the e-mail domain because it con-

tains the keyword “archive”2. However, in the previous utterance (8), the Dia-

logue Manager was performing a Request-Clarify act in a different domain, i.e.

the calendar domain. Moreover, the user’s current utterance (9) is short, having

less than three words. Hence it is more likely that the user’s current conversa-

tional act is a Clarify act in responding to the system’s Request-Clarify act,

and thus must belong to the calendar domain. As a result, the Dialogue Manager

drops the execution of the Act Type Determination plan, adjusts the classified

domain and re-does the semantic analysis of the utterance. Figure 4.16 gives

the pseudo-code illustrating the execution of the Intention Identification plan.

Body and DetermineAct are reasoning methods. The return true (or return

false) statement indicates the reasoning method has succeeded (or failed).

Once the Dialogue Manager has selected an Act from the PossibleActs set

as the user’s current conversational act, the execution of a corresponding plan

2The shallow partial parser has only a limited vocabulary to be computationally efficient,
to reduce the effects of speech recognition errors and to avoid restricting the user’s vocabulary,
so is not able to detect that the utterance is in fact just a noun phrase and the word “archive”
is a noun, not a verb.
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Handle Event: IdentifyIntentionEvent

Post Event:

DetermineActEvent, HandleActEvent,

ProcessTaskEvent, AnalyzeSemanticsEvent

Body:

if (reasoning method DetermineAct failed) then

post AnalyzeSemanticsEvent

status = false

return true

for each Act in PossibleActs do

UserAct = Act

// only one relevant plan among RequestActHandling,

// CancelActHandling, etc. will handle HandleActEvent

if (subtask HandleActEvent failed) then

UserAct = next Act

else

status = subtask result

break

DetermineAct:

if (subtask DetermineActEvent failed) then

select next classified domain

return false

else

PossibleActs = subtask result

return true

Pass:

if (status == true) then post ProcessTaskEvent

Figure 4.16: Intention Identification JACK Plan

among Request Act Handling plan, Clarify Act Handling plan, etc. is triggered

immediately. If the execution of this plan fails, the next possible conversational

act will be chosen for re-processing. If the execution of the plan succeeds and

the plan returns a true status, indicating the user’s request has been fully rec-

ognized, a ProcessTaskEvent event will be posted so that the Dialogue Manager

agent will start processing the task. However, if the act handling plan has suc-

ceeded but a false status has been returned, the request has not been fully

recognized, and so no task will be processed yet.
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Conversational Act Determination and Handling

Recognition of the user’s conversational act is based on analysing the previous

acts that are performed by the user and the Dialogue Manager. Moreover,

it also depends on the syntactic class of the user’s utterance. The Act Type

Determination plan uses an ordered set of heuristic rules to associate with each

utterance an ordered list of possible act types. The rule order is important

because it affects the order of the result list if there is more than one rule

matched. The Dialogue Manager continues processing the dialogue using the

result starting from top of the list, until the user’s intention can be successfully

identified. Some example heuristic rules for determining the act type are shown

in Table 4.10.

Rule User’s last act DM’s last act Utterance type Result

1 Request Respond imperative Request

2 Clarify Respond wh-question Request

3 Cancel Ack yes/no-question Request

4 Request Request-Clarify declaration Clarify

5 Request Request-Clarify imperative Cancel

6 Request Request-Confirm declaration Confirm

Table 4.10: Example Heuristic Rules for Act Type Determination

When the Dialogue Manager generates an internal event indicating that the

user’s conversational act has been identified, due to the execution of the agent’s

BDI interpreter, the most appropriate plan for handling that act type will au-

tomatically be selected for execution. If this plan fails, i.e. the user’s intention

cannot be determined, most likely because the recognized act type was not right,

the Dialogue Manager selects the next matched act type and re-posts the event

to try interpreting the user’s intention again. Considering the description of

the defined conversational acts, the user should only perform some of the avail-

able acts: Request, Clarify, Confirm, Cancel, Greet or Ack. There is a plan
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for handling each of these conversational acts. For example, if the user’s act

is a Request, the Task Determination plan will be selected to determine the

details of the requested task. However, if the user is performing a Cancel act,

the Handle Cancel Act plan is executed, which generates an acknowledgement

for grounding and closes the current discourse segment. Otherwise, the Handle

Clarify Act plan is selected in the case the user’s act is Clarify or Confirm. This

plan will then post a DetermineTaskEvent event so that as a result, the Task

Determination plan is executed to update the segment intention accordingly.

The control flow between the various plans for task determination is illustrated

in Figure 4.17.
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Processing
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Processing
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Generation
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.....
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Figure 4.17: Dialogue Control Flow for Task Determination

In order to determine the user’s requested task, the Dialogue Manager uses

domain knowledge to identify the type of the task and the associated objects.

In many cases, determining the task requires resolving references, which is done

by triggering the execution of the Reference Resolution plan. If the user’s cur-

rent conversational act is a Clarify, the new task information obtained from

processing the current utterance is merged with the existing information, which

is maintained as a partially recognized intention in the discourse history.
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The pseudo-code of the Task Determination plan is shown in Figure 4.18.

In executing this plan, the Dialogue Manager determines or updates the user’s

requested task including the task type and the objects, then determines if the

task has been fully recognized. If a full task description cannot be formulated,

for example, due to missing or incorrect information, a GenerateClarification-

Event event is posted, triggering the appropriate plan to generate a clarification

question. For instance, in our example scenario (Figure 4.2), the user’s utterance

(5) suggests a calendar task of creating an appointment. The attendee has been

provided, but not the time and the title of the appointment. Thus the system

responds by a question, utterance (6), requesting the appointment’s date and

time. Similarly, in utterance (13), the user provides a non-existent folder, hence

the e-mail task object cannot be identified, which causes an execution failure of

the subtask triggered by the DetermineObjectsEvent event.

Task Type Determination

Each domain task has a task type and a set of domain-specific objects. Using

available domain knowledge, the Dialogue Manager identifies the task type based

on the recognition of the main predicate of the utterance’s semantic structure.

The mapping of predicates and task types is pre-defined in the task assistants

and provided in advance to the Dialogue Manager. A special flag is included in

each mapping to indicate if the task should not be done without a confirmation

from the user. For example, deletion of an appointment should be taken with

care (e.g. utterance (19) in Figure 4.2). Thus processing of a Delete task with

appointment objects would trigger the execution of the Clarification Generation

plan to request the user to confirm the deletion (e.g. utterance (20)). Nev-

ertheless, whether a confirmation is needed depends on the user’s preferences.

Therefore there is a motivation for learning user preferences to support dialogue

adaptation. Figure 4.19 gives the pseudo-code of the Task Type Determination

JACK plan.
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Handle Event:

DetermineTaskEvent

Post Event:

DetermineTaskTypeEvent, DetermineObjectsEvent,

GenerateClarificationEvent

Body:

if (subtask DetermineTaskTypeEvent failed) then

return false

if (subtask DetermineObjectsEvent failed) then

status = false

post GenerateClarificationEvent

return true

if (reasoning method MoreInfoRequired failed) then

status = false

post GenerateClarificationEvent

return true

MoreInfoRequired:

if (TaskType not determined) then return false

get RequiredObjects from DomainKnowledge using TaskType

for each TaskObject in RequiredObjects do

if (TaskObject not determined) then

post GenerateClarificationEvent

return true

Figure 4.18: Task Determination JACK Plan

Attribute Extraction and Object Determination

Depending on the task type, certain types of objects are also required in order

to perform the task. There is a set of domain-dependent plans for recognizing

task objects mentioned in the user’s utterance. Firstly, object attributes must be

extracted from the input utterance. The current semantic structure of the utter-

ance is further expanded using additional domain knowledge so that attributes

can be extracted. Domain-specific knowledge is required because different do-

main objects require different types of attributes and are expressed differently

in natural language. For the e-mail management domain, there is an E-mail De-

termination and a Folder Determination plan for extracting e-mail and folder

attributes, respectively. For instance, text phrases such as “from Marc Hu-

ber” or “about workshop slides” must be recognized as expressing attributes of
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Handle Event:

DetermineTaskTypeEvent

Body:

if (Act == Confirm) then

if (reasoning method UpdateTaskType failed) then

status = false

set plan result = status

return true

else reasoning method DetermineTaskType

DetermineTaskType:

get MainVerb from SemanticStructure

TaskType = get MappedTask from DomainKnowledge using MainVerb

if (TaskType not found) then

TaskType = get DefaultTask from DomainKnowledge

return true

UpdateTaskType:

// user cancels current request

if (UtteranceType is Negation) then

ActType = Cancel

return false

// user confirms current request

else if (UtteranceType is Affirmation) then

return true

// user may start a new request

else

return false

Figure 4.19: Task Type Determination JACK Plan

some e-mail messages, i.e. the sender is Marc Huber and the message’s topic

is workshop slides. Similarly, appointment attributes are extracted using the

Appointment Determination plan. For example, attributes required for making

a new appointment can include a short description, the time and place of the

appointment, its category and the attendees.

Graphical Action Handling

In the SPA application, the user interacts with the system through a dialogue

as well as the system interface on the device. Hence, in order to maintain the
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Handle Event:

DetermineObjectsEvent

Post Event:

DetermineObjectEvent, GenerateClarificationEvent

Body:

if (Act == Request) then

if (reasoning method DetermineObjects failed) then

status = false

set plan result = status

return true

else

if (reasoning method UpdateObjects failed) then

status = false

set plan result = status

return true

DetermineObjects:

get RequiredObjects from DomainKnowledge using TaskType

for each ObjectType in RequiredObjects do

// the relevant plan among EmailDetermination,

// FolderDetermination, etc. plans will handle this subtask

if (subtask DetermineObjectEvent failed) then

post GenerateClarificationEvent

return false

UpdateObjects:

for each ObjectType in DeterminedObjects do

if (update ObjectType failed) then

post GenerateClarificationEvent

return false

Figure 4.20: Task Objects Determination JACK Plan

context, objects that are involved in the interaction on the device are sent to

the Dialogue Manager for updating the salient list . These updates are done

by the Graphical Action Handling plan. The data description for representing

the GUI actions is given in Table 4.11. Take the case of the user selecting an

appointment on the interface and requests the system to cancel it: “Cancel this

appointment”. The appointment object must have already been in the salient

list for the Dialogue Manager to be able to resolve the reference.
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Field Field Type Possible Values - Comments

domain String EMAIL, CALENDAR, GENERAL

action String SELECT, HIGHLIGHT, SHOW, SHOW CONTENT, etc.

objects GUIObject[] an array of graphical objects description

(a) GUI Action Data Type

Field Field Type Possible Values - Comments

type String type of the object e.g. EMAIL, FOLDER,

APPOINTMENT, PHRASE, etc.

value String the highlighted phrase or the id of the GUI object

(b) GUI Object Data Type

Table 4.11: GUI Action Data Type

Domain objects on the interface are treated as discourse entities. If they

become in focus, they are placed into the salient list . Although this method can

only support limited multimodal interaction, the e-mail and calendar domain do

not require time-sensitive fusion of multimodal information. Our agent-based

approach is also applicable for other application domains such as map-based

directory search, etc., where multimodal interaction is essential. What is re-

quired is an effective method for multimodal fusion of inputs and interpreting

this combination [Oviatt, 1999].

Reference Resolution

If there are any references to task objects, they must be resolved before the

task is fully identified. In this case, an internal event is posted within an object-

determination plan, which triggers the selection of the Reference Resolution plan

for resolving the references. The type of the referenced object and the attributes

of the reference must be passed on to the Reference Resolution plan. In addition,

temporal phrases are also resolved using this plan. However, person names or
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other person-related pronouns and definite noun phrases such as “the head of

school”, etc., are resolved by the People Determination plan. At the moment, the

plan resolves pronouns and person names using the current context. However, it

is also possible that the People Determination plan could access an address book

available at the back-end task assistants to retrieve person names that match

the reference. Moreover, if any learning mechanism can be integrated, it would

be possible to learn the user’s preferences in referring to people using definite

noun phrases, short or nick names. This interesting learning problem is one for

future work.

In executing the Reference Resolution plan, the Dialogue Manager resolves

references to task objects by looking for matched entities in the salient list (c.f.

Section 4.2.4). Pronouns can be resolved by matching both the object type

and the number of objects if the reference is to a set of objects. However, if

the reference was used to introduce a containing inferable entity, the Dialogue

Manager is required to interact with the appropriate task assistant to identify

the contained objects. An example of reference to a containing inferable entity

is illustrated in the example scenario in Figure 4.2:

1 User Is there any e-mail from Paul Compton?

2 SPA You have two messages from Paul Compton. One is about

project summary and one is about project proposal.

Displays the two message headers.

3 User Show me the one about proposal please.

4 SPA Here is your message about proposal.

Displays the message from Paul Compton about project

proposal.

After the system displays two message headers on the interface, the set of these

two messages is currently in focus, so is most likely to be referenced in the next

utterances. In the next utterance, the user refers to the message about “pro-

posal”, which should be one of the two messages. Thus the Dialogue Manager

requests the e-mail task assistant to identify which message is about “proposal”.
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Currently this is done by looking for keywords in the message’s subject and

body contents. However, it is possible that the e-mail task assistant can use the

e-mail classification results.

The Dialogue Manager agent maintains a temporal reference point in the

salient list for use in resolving temporal phrases. For instance, considering

utterance (7) in our example dialogue, the user specifies the time of the new

appointment to be Monday at 11am, which refers to next Monday, hence must

be resolved using the current date and time as the reference point:

5 User I need to make an appointment with him.

6 SPA Please specify date and time of the appointment?

7 User Monday at 11 am.

Taking another example in Figure 4.21, the original time of the appointment

can be used as the temporal reference point for resolving the new appointment

time. By default, if the user specifies only the new day, e.g. Friday as in the

example, the system interprets that the appointment should be moved to the

same time on Friday. However, it would be possible that the system asks the

user to suggest a time.

User Do I have any appointment with John this week?

SPA You have an appointment with John Lloyd about travel on

Wednesday at 3 pm.

Displays the calendar view of this Wednesday.

User Move this appointment to Friday.

SPA Are you sure you want to reschedule the appointment with

John Lloyd to 3 pm this Friday?

User Yes.

SPA Appointment has been rescheduled.

Figure 4.21: Temporal Phrase Resolution
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Clarification Request Generation and Handling

Clarification Request Generation

If the Dialogue Manager cannot determine the task type or fails to determine

the task objects, an event will be generated so that the Clarification Generation

plan is selected for execution. A Request-Clarify act will be performed by the

Dialogue Manager in this conversational situation. Depending on what infor-

mation is missing, the Dialogue Manager generates a context-sensitive question

using domain-specific knowledge. The domain knowledge contains a mapping

from the object type and attribute to a template for generating a clarification

question. As a result, to ask for an appointment’s attendee(s), a question such

as “Who are you going to meet?” is used (e.g. in the example in Figure 4.22),

while to clarify a person name for sending a message, question such as “To whom

should the message be sent?” is used as it is more appropriate.

User I need to have a meeting tomorrow at 3 pm about ARC grant.

SPA Do you want to create that appointment?

User Yes, please.

SPA Who are you going to meet?

User Paul Compton.

SPA Appointment has been created.

Figure 4.22: Clarification Request Generation and Handling

Request-Confirm acts are very similar to Request-Clarify acts, but are per-

formed by the Dialogue Manager to ask the user for a confirmation. It is required

if the performance of a task must be confirmed either to avoid irreversible mis-

takes or because the user’s desire was not certain. For instance, in the example

in Figure 4.22, the user has stated a need but not explicitly requested the system

to create a new appointment. A sophisticated dialogue requires that the user is

asked for confirmation. Again the domain knowledge is used automatically to

tailor the question according to the type of the task.
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Clarification Handling

After a clarification or confirmation request is returned to the user, the Dialogue

Manager updates the discourse history. The Dialogue Manager’s conversational

act is pushed onto the discourse stack of the current discourse segment. The

partially recognized segment intention is also maintained here. If the user returns

with a Clarify or Confirm act, the Dialogue Manager uses the conversational

context to interpret the new information in the user’s utterance and updates

the segment intention accordingly. If the intention can be fully recognized, the

corresponding task will be performed. Otherwise, additional clarification or

confirmation requests will be generated.

4.3.4 Task Processing

When a user request is identified, the Dialogue Manager posts an internal event

as an indication. The dialogue model has a number of plans for handling this

event but only the one that matches the task domain will be selected. Tasks

can be performed immediately if the necessary knowledge is available in the

Dialogue Manager’s internal beliefs, e.g. displaying the content of a message

that has been mentioned previously in the dialogue. Otherwise, the Dialogue

Manager requests more information from the relevant back-end agent or simply

delegates the tasks and waits for the results. Some tasks may require sending

more than one request, thus the interaction with the other task assistants is also

maintained in the Dialogue Manager’s discourse history . Figure 4.23 illustrates

the control flow of plan selection and execution for processing and handling

tasks.

There can be two-way information flow in the dialogue. The user can request

to be notified of particular events, which may require the Dialogue Manager to

register those events with other back-end agents. Upon receiving notification,

the Notification Handling plan processes the notification and activates another

plan, which generates the response to notify the user. The Dialogue Manager
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Processing
E−mail Task

Processing
Calendar Task

Determination
Task

Determination
Task Type

Determination
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Notification

Task Assistant
E−Mail

beliefs updates/retrievals

plan execution success

plan execution failure

Domain
Knowledge

Discourse
History

Salient
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Figure 4.23: Dialogue Control Flow for Task Processing and Handling

may choose to immediately notify the user or defer the notification because

prompt notifications might distract the user from other ongoing tasks. The

Notification Handling plan can be paused and resumed later. This is another

motivation for integrating learning into the dialogue model to learn when should

the user be interrupted, which is possibly a future work.

As the user’s task has been handled successfully, the system’s Respond act

completes the current discourse segment. Note that the discourse history is con-

tinuously updated during the processing of the segment. Table 4.12 illustrates

the discourse stack of the segment from utterances (5) to (10) in the example

scenario:

5 User I need to make an appointment with him.

6 SPA Please specify date and time of the appointment?

7 User Monday at 11 am.

8 SPA What is the appointment title?

9 User Project archive.

10 SPA Appointment has been created for next Monday 11 am.
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type id sender -

receiver

content

Request 5 User -

SPA

domain=CALENDAR, type=CREATE,

objects=[{type=APPOINTMENT,
objConds=[attendees="Paul Compton"]}]

Request-

Clarify

6 SPA -

User

domain=CALENDAR, type=CREATE,

objects=[{type=APPOINTMENT,
objConds=[time=?]}]

Clarify 7 User -

SPA

domain=CALENDAR,

objects=[{type=APPOINTMENT,
objConds=[time="Monday 11 am"]}]

Request-

Clarify

8 SPA -

User

domain=CALENDAR, type=CREATE,

objects=[{type=APPOINTMENT,
objConds=[title=?]}]

Clarify 9 User -

SPA

domain=CALENDAR,

objects=[{type=APPOINTMENT,
objConds=[title="Project archive"]}]

Request 10 SPA -

Calendar

domain=CALENDAR, type=CREATE,

objects=[{type=APPOINTMENT,
objConds=[attendees="Paul Compton",

time="11:00 10/07/06",

title="Project archive"]}]

Respond 11 Calendar

- SPA

domain=CALENDAR, objects=[{type=APPOINTMENT,
id=123, objConds=[attendees="Paul Compton",

time="11:00 10/07/06",

title="Project archive"]}]

Respond 12 SPA -

User

domain=CALENDAR, objects=[{type=APPOINTMENT,
id=123, objConds=[attendees="Paul Compton",

time="11:00 10/07/06",

title="Project archive"]}]

Table 4.12: Sample Discourse Segment’s Stack Entries

4.3.5 Response Generation

The system’s responses can be in different modalities: speech, graphical contents,

text, etc. For each domain, there is a set of Response Generation plans, which

are capable of generating the results in different formats. For example, there are

two plans for returning responses in the e-mail domain: one returns the contents
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of an e-mail message if the task result contains only one message (Figure 4.24),

the other, on the other hand, returns a list of message headers if the task result

contains more than one message. The same data structure (Table 4.11) is used

for representing GUI input and output. Example GUI output generated by these

two plans is shown in Figure 4.26.

Handle Event:

GenerateEmailResponseEvent

Relevance:

TaskDomain is EMAIL

Context:

TaskResult contains 1 message and

UserDevice is Desktop

Body:

return MessageContent to UserDevice

Figure 4.24: Return Message Content JACK Plan

Handle Event:

GenerateEmailResponseEvent

Relevance:

TaskDomain is EMAIL

Context:

TaskResult contains 1 message and

UserDevice is PDA and

MessageLength is long

Body:

generate MessageSummary

return MessageSummary to UserDevice

Fail:

return MessageContent to UserDevice

Figure 4.25: Return Message Summary JACK Plan

Because the SPA allows users to interact through a variety of devices, there

are two plans for displaying e-mail contents, one for use in the context that

the user is on the Desktop and another for when the user is on a PDA, which

summarizes the message first before displaying it. The context of the plan is
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(a) Display Message Content (b) Display List of Message Headers

Figure 4.26: GUI Output for E-Mail Displaying Task

important for deciding which plan to execute. Figure 4.25 illustrates a dialogue

plan for generating and returning the summary content of an e-mail message.

The context which makes this plan applicable is that the user is on a PDA

and the length of the message is too long to be displayed on one PDA screen.

Information about the user’s current device can be obtained from the user model.

The plan is to summarize the message content to one screenful in size and

then return the summary to the device. The Dialogue Manager could learn

to adapt its responses according to the user’s preferences such as displaying

a summary if the e-mail message is long and not important. The definition

of “long” could also be learned. This problem of learning to generate adaptive

responses motivates the integration of learning into the Dialogue Manager agent,

which will be discussed in Chapter 5.

The speech responses are generated according to the task domain, the type

of the requested task and the characteristics of the objects in the result. The Di-

alogue Manager uses domain-specific knowledge from its beliefs and pre-defined

linguistic templates for language generation. The use of domain-specific knowl-
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User Do I have appointment with Kate tomorrow.

SPA You have an appointment with Kate tomorrow about workshop.

Displays calendar view for tomorrow, Figure 4.27a.

User Cancel that appointment please.

SPA Are you sure you want to delete that appointment?

User Yes.

SPA Appointment has been deleted.

Displays the same calendar view, tomorrow, Figure 4.27b.

(a) (b)

Figure 4.27: GUI Output for Appointment Cancellation Task

edge is necessary in generating system responses, in particular, generating graph-

ical contents. For instance, Figures 4.27 and 4.28 illustrate examples of two

similar tasks in the calendar and e-mail management domains: cancelling ap-

pointments and deleting e-mail messages. For the calendar domain, after the

appointment has been cancelled, the system just needs to re-display the same

day and the correct view will be updated automatically. In the case of the e-

mail domain, the Dialogue Manager must use the discourse history to determine

what messages to show.
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User Show me my e-mail from John.

SPA You have two messages from John Lloyd.

Displays two message headers, Figure 4.28a.

User Delete the first one please.

SPA Are you sure you want to delete that message?

User Yes.

SPA Message has been deleted.

Displays the other message header, Figure 4.28b.

(a) (b)

Figure 4.28: GUI Output for E-Mail Deletion Task

4.4 Concluding Remarks

Before closing this chapter, we would like to re-emphasize that in our agent-

based approach to dialogue management, the dialogue model is based on speech

act theory and consists of a set of modular plans that specify the Dialogue Man-

ager’s actions for handling different conversational acts or performing domain

tasks. The modularity of the dialogue model, therefore, enables the reuse of

discourse-level plans in other applications. In addition, it facilitates the addi-

tion of new back-end task assistants into the system because this requires only

the development of some domain-level but not generic discourse-level plans. This
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has been evidenced by the fact that we have successfully extended without much

effort the first version of the Dialogue Manager (with only one e-mail task as-

sistant) for handling an additional calendar management domain. Importantly,

the control flow of the dialogue is derived automatically in a flexible way dur-

ing the BDI interpretation cycle using the agent’s plan selection mechanism.

Hence it is possible to integrate learning into the agent architecture for learning

plan selection mechanism, thus achieving adaptivity in dialogue interaction and

processing.
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Dialogue Manager

In this chapter, we consider the problem of dialogue adaptation in the Smart

Personal Assistant (SPA) system, more specifically enabling the system to tailor

its responses according to the conversational context, the user’s physical context

and the user’s devices and preferences. We have used a BDI agent architecture

for the development of the SPA’s Dialogue Manager, the central component that

maintains coherent dialogue with the user as well as coordinates the back-end

task assistants. The Dialogue Manager has a set of modular plans, each for

handling a particular discourse-level or domain-level goal. In addition, the in-

formation about the conversational context and other knowledge is maintained

in the agent’s internal beliefs. In this chapter, we show that achieving dialogue

adaptation in the SPA can be considered the problem of learning plan selection

strategies. We present in this chapter a general method for incorporating learn-

ing into a BDI agent architecture so that the agent can learn to select the most

suitable plan among those applicable, taking into account the current context

and other conditions. An example will be given, illustrating how dialogue adap-

tation could be used in the SPA. Because the technique is general, it can be

applied to other similar learning problems.

Firstly, in Section 5.1, we discuss our motivation for considering the dialogue

adaptation problem. As our approach to dialogue management is based on using

a BDI agent architecture, we look at the adaptation problem from two aspects:

achieving dialogue adaptation and learning in BDI agents. Existing work in
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these two areas will be discussed. Next, we present our method for incorporating

learning into the agent’s plan selection decision-making process. By learning lan

selection strategies, the agent is able to select the most appropriate plan in the

current context.

Secondly, in Section 5.2, we describe our work in applying this method to

produce adaptive dialogue responses in the case of the SPA. We have integrated

the Alkemy symbolic learner [Lloyd, 2003] into the SPA’s Dialogue Manager

agent to develop an adaptive dialogue agent, which is able to tailor the system

responses according to the conversational context and the user’s device and

preferences.

5.1 Dialogue Adaptation

Adaptation in dialogue systems is needed to provide appropriate user-system

interaction, resulting in more user satisfaction. With the use of dialogue systems

on mobile devices, the need for adaptivity is even more important. The system’s

responses must be adapted to the conversational context, the physical context

of the user, and the limitations of the device itself, taking into account the

individual user’s needs.

In different conversational contexts, the same information may need to be

presented to the user in different ways. For example, suppose the user has asked

the system to look for “new e-mail messages from John”. There are messages

from two Johns: John Lloyd and John McAfee, and the system must display the

headers of those messages on the user’s device. Thus the message headers should

be sorted by sender so that messages from different Johns can be easily seen. In

fact, it happens that both Johns are involved in the same group project, CRC.

If the user’s request was to get “all new messages from CRC group members”

then the message headers might instead be sorted by priority or arrival time.

Users of desktop PCs must stay at home or in the office in order to use

their computers; they are now able to access information from any location at
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any time using mobile devices. These devices can be used in different physical

environments. Some places are quiet enough for interaction through spoken di-

alogue, while it would be impossible in other noisy environments such as train

stations or shopping centres. In some cases, spoken dialogue might not be suit-

able because of privacy problems and/or social inappropriateness, e.g. during

a seminar. Therefore dialogue systems should be aware of the user’s physical

location (perhaps making use of their calendar) in order to adapt its interaction

accordingly.

The effectiveness of user interaction using a device with small screen and lim-

ited bandwidth can be improved by reducing the amount of information returned

to the user [Billsus et al., 2002]. E-mail messages are often too long to fit on one

PDA screen. Thus showing only a message summary could sometimes be more

desirable. Similarly, in different conversational contexts, the same information

might be presented to the user in different ways, e.g. using a different modality,

format or layout. For instance, a search result may contain so many messages

that all the headers can not be displayed on one PDA screen. The system may

offer the user to show only the first few of the results or the messages of high

priority.

In addition, dialogue adaptation can allow more appropriate dialogue strate-

gies or dialogue actions. In some cases, it may be necessary that the system

should ask the user for confirmation before performing tasks, e.g. deleting e-mail

folders, to avoid mistakes. However, whether a confirmation is needed depends

on the user’s preferences. Another question is whether and when the system

should interrupt the user to provide notifications. The system may choose to

immediately notify the user or defer the notification because prompt notifications

might distract the user from other ongoing tasks. Again the user’s preferences

should be considered in making the appropriate decision.

In the case of the SPA, in which mobile devices such as PDAs are of interest

to address the issue of mobility, we focus on the particular problem of content

adaptation to overcome the limitations of the devices, thus enhancing the sys-
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tem’s usability. Because the SPA’s Dialogue Manager uses plans for generating

responses, the problem of dialogue adaptation becomes the problem of learning

which dialogue plan should be selected and executed in a given context. The

input parameters to be considered in this learning problem include the conver-

sational context and the user’s device, physical context and preferences.

5.1.1 Existing Work in Spoken Dialogue Adaptation

There has been comparatively little work done in the area of adaptation in

spoken dialogue systems. Among the existing work, the forms of adaptation

belong to either one of two categories: the problem of adapting the system’s

questions for eliciting user preferences and the problem of learning strategies in

a game-theoretic approach to dialogue modelling.

Recent work in the first category is the Adaptive Place Advisor by

Thompson et al. [2004], a recommender system in which the system performs

database queries for domain-specific information and asks questions to eliminate

domain objects from consideration. User preferences about object attributes and

attribute values are learned from the constraints that are mentioned in the user’s

responses. Questions to the user will then be adapted to both short and long-

term preferences, and hopefully can reduce the number of interaction steps in

each dialogue. This form of adaptation is domain-specific, more towards im-

proving the system’s problem-solving performance than improving the dialogue

interaction.

An example of dialogue strategy learning is the Email Voice Interactive Sys-

tem (ELVIS) by Walker et al. [2000], which follows a simple state-machine ap-

proach for dialogue management in which each node corresponds to a dialogue

state. For each strategy type (e.g. dialogue initiative, summarization task, etc.)

there are a number of possible strategy choices leading to different state tran-

sitions. Reinforcement learning was used to learn the strategy choice selection

using a training corpus of collected dialogues. In extending the work of Walker

et al., Frampton and Lemon [2006] aimed to explore the use of reinforcement
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learning in learning dialogue strategies for frame-based dialogue systems. In

their work, slot-filling update rules are defined based on a number of dialogue

moves so that the dialogue moves and the status of the information slots can be

used as the learning features. The dialogue corpus obtained from previous work

was annotated to learn user simulations. The simulations are then used for both

training (50000 dialogues) and testing (1000 dialogues) the learning problem,

which shows a significant improvement of 65.9% using a scoring function based

on task completion and dialogue length rewards.

Similarly, Jokinen and others in the Interact project [2002] also employed

reinforcement learning to learn dialogue strategies. Interact’s dialogue model is

more complex than that of the ELVIS but less complex than that of the SPA.

It consists of a set of agents, each corresponding to a system action or dialogue

act. The system is trained to learn a table of real values which is indexed by

dialogue states. In interacting with the user, the dialogue agent with highest

value is selected for the current dialogue action.

Both the Interact and ELVIS systems rely on training dialogues to build its

adaptivity model. In case of the SPA, in addition to the conversational context,

dialogue adaptation must also take into account the user’s preferences as well as

the system’s physical context. Thus it can not be trained using a pre-collected

training corpus. The dialogue model of the SPA is more complex, with different

types of dialogue plans, and the control flow comes automatically as the result

of the agent’s plan selection. Therefore, the SPA requires an adaptivity model

that can acquire the plan selection strategies of the Dialogue Manager agent.

5.1.2 Existing Work in BDI Agent Learning

There have only been few attempts to incorporate learning within BDI models

of agency, of which none has looked at the problem of how the agent learns to

select the most appropriate plan among those applicable in a certain context.

All of the existing work provides a loose coupling of the agent architecture and
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the learner while for the problem of learning plan selection a close integration is

required.

Guerra-Hernández et al. [2004] propose an extended BDI agent architecture

that provides a mechanism for learning from past experience if a plan succeeds

given the current context. Both the agent’s beliefs and the plan context are

expressed in a first-order language. An inductive logic decision tree learner is

used to learn how the beliefs of an agent (i.e. the effective context of a plan

when instantiated) may indicate the plan execution’s success or failure. In a

multi-agent system of such agents, the agents can request or exchange training

examples. The system developer uses the learning result to modify the plan

definition accordingly. This work is perhaps the closest to ours. However, our

research problem is different as it requires the agent be able to learn why a plan

should be selected in a certain context. Moreover, the agent must be able to

learn and adapt in real-time without intervention from the agent developer.

Phung et al. [2005] present a learning model within a BDI framework, de-

veloped independently of our work, which allows the agent to choose the most

suitable strategy for achieving its goal in a simulated robotics domain. An ex-

ample strategy could be which retardant should be used in a fire extinguishing

scenario. In this work, a learner is attached to the agent that learns new virtual

beliefs from the agent’s past experience. The agent uses this learned knowledge

in selecting its plans. Our work, on the other hand, aims to achieve adaptive

plan selection using meta-reasoning.

Other research proposed the integration of case-based reasoning (CBR) with

a BDI architecture [Olivia et al., 1999; Corchado et al., 2004], in which the BDI

decision-making process is implemented using case-based reasoning. This ap-

proach is not suitable for our research problem because we do not intend to

change the BDI practical reasoning behaviour of the SPA’s Dialogue Manager

agent. Similar to the work by Phung et al., this approach is only applicable

for isolated learning problems at the level of an individual agent acting without

dynamic changes in the environment.
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5.1.3 Adaptation as Learning Plan Selection

In our agent-based approach to dialogue management (Chapters 3 and 4), the

conversation flow is controlled using the agent’s plan selection mechanism. That

is, to achieve a goal, the Dialogue Manager selects and executes appropriate di-

alogue plans according to the conversational context. Thus to build an adaptive

dialogue manager, there are two problems to be solved: (i) defining the possible

system actions in any given situation, and (ii) defining the mechanism for the

system to decide when to choose which action. Using our agent-based approach,

system modularity is facilitated through the use of plans, each handling some

dialogue aspect or domain task. Hence the possible choices of system action can

be modelled as different plans applicable in the same situation. In addition, a

learner can be integrated into the agent architecture and used for the selection

mechanism to choose the most suitable plan according to the agent’s beliefs,

which represent the user’s context and/or preferences. Thus the learner accepts

as input a set of possible plans and some of the agent’s beliefs and outputs the

most suitable plan(s). Figure 5.1 gives a high-level picture of how learning can

be incorporated into the agent’s plan selection decision-making process in the

PRS architecture (Section 3.2.1).

learner

events

revise

revise

learn
options

trigger

actions

deliberation

plan library

beliefs

intentions

Figure 5.1: Integrating Learning into the PRS Agent Architecture
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A learner is integrated into the architecture and used in an intermediate

step of the deliberation process. The knowledge of the learner is considered

as a part of the agent’s internal beliefs. External events from the environment

and the agent’s internal events trigger the selection of applicable plans from the

plan library. During the deliberation process, the agent must select one from

these plans for later execution. In order to select the most suitable plan, the

set of applicable plans and some of the agent’s beliefs such as the attributes of

the environment are used as the input to the learner. There are two cases as

follows:

• If no result can be found, an appropriate event is raised which triggers

the execution of a special plan. In executing this plan, the agent’s actions

affect the environment so that feedback can be obtained in form of new

external events. As a result, the learner revises the learning model.

• Otherwise, the resulting plan, i.e. the most appropriate choice according

to the learner’s knowledge, is adopted and added to the agent’s intention

structure.

Thus incorporating learning into the agent architecture can allow the agent

to learn to select the most appropriate plan in the given context.

5.2 An Adaptive Dialogue Agent

In this section, we describe our work in extending the SPA’s Dialogue Man-

ager by integrating learning mechanism into the agent, allowing the Dialogue

Manager to tailor the system responses according to the conversational con-

text and the user’s device and preferences [Nguyen and Wobcke, 2006a]. Not all

learning methods are suitable for dialogue management. First, learning adap-

tation strategies in dialogue systems should be conducted in an unobtrusive

manner without impacting the user’s ordinary use of the system. In addition,
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as the training data is limited, user-dependent and cannot be obtained in ad-

vance, learning methods that are statistics-based or reinforcement learning are

impractical. We have chosen Alkemy [Lloyd, 2003], a symbolic inductive learner,

for the implementation. Alkemy offers an expressive way of representing back-

ground knowledge using higher-order logic. Moreover, Alkemy also supports

online incremental learning. In comparison to other well-known symbolic ma-

chine learning techniques such as ID3 [Quinlan, 1986], FOIL [Quinlan, 1990] and

Progol [Muggleton, 1995], Alkemy allows the predicate search space (hypothesis

space) to be defined and enumerated in a clear way using a predicate rewrite

system. A brief introduction to the Alkemy learner will be given in Section 5.2.1.

The Dialogue Manager of the SPA is implemented using a Java-based PRS-

style agent platform, JACK Intelligent AgentsTM [Howden et al., 2001]. JACK

provides meta-level reasoning as a way to overwrite the agent’s plan selection

mechanism, making the integration with learning easier. In JACK, goals are

special internal events that the agent posts to itself that trigger plan selection

and execution. If there is more than one applicable plan, JACK posts a special

PlanChoice event which must be handled by a special meta-plan. The learner can

be queried during this meta-level reasoning process to select the appropriate plan

according to the response adaptation model that has been learned. Feedback

obtained from plan execution failures or from the user can be used to update

the learner, i.e. update the response adaptation model.

5.2.1 The Alkemy Learner

Alkemy is a inductive symbolic decision-tree learner which differs from other con-

ventional decision-tree learners in two respects. First, the learning individuals

are represented in a typed, higher-order logic, not feature vectors. This sup-

ports representation of domain data with complex structure. Secondly, Alkemy

provides a highly-expressive predicate rewrite system to constrain the predicate

space. Alkemy constructs a decision tree as follows. To split a tree node with
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the current corresponding set of examples S, the predicate space is searched

efficiently to find a suitable predicate p that induces the best binary partition

of S. Starting from this newly-created node, the two sub-trees will then be

constructed similarly using the corresponding partitioned subsets of S. We are

using the on-line version of Alkemy, in which training examples are given to

the learner over time. However, Alkemy considers only recent training examples

contained in a fixed-size window for retraining the decision tree. At any time

Alkemy can be asked to predict the class of some unseen individual based on

its current decision tree. Thus Alkemy is able to build the decision trees in-

crementally. This is an important feature because in the case of the SPA, it is

impossible to obtain training dialogues in advance so that the dialogue adapta-

tion model must be updated on-line and incrementally. Moreover, it is possible

for the learner to “unlearn” incorrect generalizations by providing a suitable

window size so that only “recent” examples are contained within the training

window. We use a window size of 100 training examples. Furthermore, it is also

worth mentioning that in Alkemy, numeric values cannot be learned but have

to be pre-defined in the problem specification given to the learner.

5.2.2 Adaptive Dialogue Responses

In order to show the applicability and feasibility of the proposed approach,

we aim at adapting the dialogue responses to the conversational context and

the user’s devices and preferences. We focus the learning problem on the e-

mail management task domain. The Dialogue Manager uses a set of plans (the

Response Generation plan group) for generating responses in different formats:

a message’s content or summary; a subset of message headers so that the list fits

on the PDA screen; or a full list of message headers sorted by sender, priority

or folder. In addition, knowledge of the user’s current device is kept in the

agent’s beliefs and updated when needed. Given a task result, if there are

a number of applicable plans for generating the system responses, the user is
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asked to choose one among them. The chosen plan is selected and executed,

while the user’s preferences are obtained and input to the learner for updating

the decision tree. Hence, gradually over time, the system will be able to learn

the user’s preferences and adapt the dialogue responses appropriately. It is also

possible that the user’s preferences can be obtained by observing the user-system

interaction and considering how the current user request fits with the current

context, i.e. how the current request relates to the previous completed task.

However this has not been considered in this work.

Figure 5.2 shows the interaction of the Dialogue Manager’s Response Gener-

ation plan group with the Alkemy learner. For example, the Dialogue Manager

may display the whole content of an individual e-mail message on the device

by executing the Return Message Content plan. However, it is possible that

the message is summarized first then presented to the user by using the Return

Message Summary plan. If the result is a list of messages, the dialogue manager

can display the message headers on the device and sort them by arrival time

(default), sender, folder or priority, using corresponding plans. With dialogue

adaptation enabled, the Response Generation Meta Plan is triggered whenever

the system needs to generate a response. Within the meta-plan, learning indi-

viduals are generated and sent to the Alkemy learner for prediction. Alkemy

predicts for each available Response Generation plan whether it is a possible

choice or not. If there is more than one possible choice then the Request User

Clarify Preference plan is triggered asking the user for a selection. The user’s

response is then processed by the Preference Processing plan and Alkemy is

called to update the decision tree. In other words, the Dialogue Manager agent

specifically asks the user to select one preferred action from the set of applicable

plans. However, once the selection has been made, the agent can still unlearn

that selection. If in a similar situation, the user requests the system to select a

different plan, the agent would be able to learn this new selection based on the

new positive example and the negative example associated with the previous

selection.
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. . .
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Figure 5.2: Learning Plan Selection for Response Generation

Decision tree learners are not able to learn a set of values. However, in

our learning problem, it is necessary to predict more than one possible plan.

Therefore, given the current context, for each available Response Generation

plan, a learning individual is generated which includes information of the current

context as well as the plan name. The individuals must be classified to be

either True or False. If the classification result is True, this plan is considered

an option. Otherwise, the plan does not meet the user’s preferences in this

particular context.

If there is more than one plan classified True, they are all considered options

according to the user’s preferences. The Request User Clarify Preference plan

is executed, asking the user to specify the preferred system action, i.e. the most

preferred plan. For example, the clarification request might be “Do you want to

sort the result by sender or folder?”. The user’s response is then interpreted and

processed by the Preference Processing plan to update the learner accordingly.

If there is only one plan classified True, the plan is immediately selected and
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executed for returning the response to the user. However, the selected plan may

not be the user’s preferred option. For instance, suppose the system has decided

to show the summary of an e-mail message and the user requests “No, show

me the whole message.”. New training examples will be sent to the learner for

updating the decision tree, and the previous examples which are no longer valid

will be gradually removed from the training window.

The Alkemy specification of the learning problem includes the data construc-

tors as given in Figure 5.3. The Mode element indicates the current modality of

the dialogue, where Text corresponds to typed text and None means the user is

currently using only the GUI. The Task element is used to represent the current

domain task and the Device element, the user’s current device. Similarly, plans

in the Response Generation group are defined using the Plan element. Other

elements represent different features of an e-mail message such as the sender,

the length and the priority, etc.

Each learning individual (training example) contains information of the cur-

rent context (e.g. the user’s current device, the modality of interaction, the

domain task, etc.), the task results (i.e. the set of e-mail messages) and the

name of the applicable Response Generation plan to be considered. This is pre-

computed and sent as input to the learner. The learning individual is of the

Product type and is defined as follows:

Individual = Device × Task × Mode × TaskResult × P lan;

TaskResult = Set Email;

In which, the task result is a set of e-mail messages. Each message is represented

by four components: the sender name, the number of lines in the message’s

content, its classified virtual folder and the priority:

Email = Sender × Length × Folder × Priority;

The learning problem is to predict whether the plan is an option in the current

context according to the user’s preferences. If the classification result is True,

in this situation the plan meets the user’s preferences (which have been learned)
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Individual = Device × T ask × Mode × T askResult × P lan;

T askResult = Set Email;
Email = Sender × Length × Folder × P riority;

P DA, Desktop : Device;
Speech, T ext, None : Mode;

Search, Read, Show, ..., Notify : T ask;

Low, High, Normal : P riority;
Sender = String;
Length = Int;
Folder = String;

ReturnMessageContent, ReturnMessageSummary,

ReturnMessageList, ReturnSubList,

ReturnMessagesSortedBySender, ... : P lan;

T rue, False : Class;

ResponseP lan : Individual → Class;

Figure 5.3: Data Specification for Alkemy Learning Problem

and is considered an option for the agent to select. Otherwise, the plan is

ignored. Thus the function that needs to be learned is:

ResponseP lan : Individual → Class

Alkemy uses a predicate rewrite system for constraining the hypothesis space.

Predicates are composed from basic functions called transformations. The trans-

formations are used to transform data into appropriate forms for the learning

process. For example, a transformation on Email to extract its length is a pro-

jection of its second component, as given below. The length of an e-mail message

is an important feature to determine whether the message’s content fits on one

PDA screen.

projLength : Email → Int;

projLength : project(1);

152



5.2 An Adaptive Dialogue Agent

The transformation below returns true (of type Bool) if there exists any message

in an e-mail set (of type Set Email) that satisfies some condition (specified as

Email → Bool):

setEmailExists : (Email → Bool) → (Set Email) → Bool;

setEmailExists : setexists(1);

The set of e-mail messages is defined as the fourth element of a learning indi-

vidual. The transformation projEmails below extracts this e-mail set from the

learning individual:

projEmails : Individual → SetEmail;

projEmails : project(3);

Suppose the transformation lt30 returns true if a number is less than 30. Com-

bining projEmails, setEmailExists, and projLength transformations gives the

following predicate which returns true iff there exists at least one message in the

e-mail set whose length is less than thirty lines:

projEmails ◦ setEmailExists(projLength ◦ lt30)

Applying the numOfEmails transformation to an e-mail set returns the number

of messages in that set: projEmails ◦ numOfEmails (true). The message length

is only useful if there is exactly one message in the result. The following predicate

is true iff the e-mail set contains exactly one message whose length is less than

thirty lines:

and (projEmails ◦ numOfEmails (true) ◦ eq1)

(projEmails ◦ setEmailExists (projLength ◦ lt30))

The number of distinct senders in the result e-mail set is also useful informa-

tion which can be obtained from the following transformation, in which the

setDomCard(true) transformation returns the set’s cardinality.

projEmails ◦ projSetSender ◦ setDomCard (true)
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(1) top � projDevice ◦ top;
(2) top � projMode ◦ top;
(3) top � projP lan ◦ top;

...

(4) top � and (projEmails ◦ numOfEmails (true) ◦ eq0) (top)

(5) top � and (projEmails ◦ numOfEmails (true) ◦ eq1)
(projEmails ◦ setEmailExists (projLength ◦ top));

(6) top � and (projEmails ◦ numOfEmails (true) ◦ eq1)
(projEmails ◦ setEmailExists (projP riority ◦ top));

(7) top � projEmails ◦ numOfEmails (true) ◦ top;

(8) top � projEmails ◦ projSetFolder ◦ setDomCard (true) ◦ eq1;
...

(9) top � eqDevicePDA;
(10) top � eqT askSEARCH;
(11) top � eqP lanReturnSubList;
(12) top � eqP lanReturnMessageSummary;
(13) top � eqP riorityHIGH;
(14) top � gte30;
(15) top � lt30;
(16) top � gte15;

...

Figure 5.4: The Predicate Rewrite System for Response Adaptation Problem

A part of the predicate rewrite system for our learning problem is shown

in Figure 5.4. Alkemy follows the rewrite rules and uses an information-gain

heuristic to construct the hypothesis space and build the decision tree (although

other heuristics could be used). The predicates are constructed by applying the

predicate rewrites to expand the predicate tree starting from the root. This

is done by replacing top with another predicate. For example, expanding the

predicate rewrites (1,2,3) gives predicates for the user’s device, the interaction

mode and the plan name respectively. Replacing top in (1) by (9) results in the

predicate projDevice.eqDevicePDA, which is true iff the user’s device is a PDA.

Predicate rewrite (4) is useful in case there is no e-mail message in the result.
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Expanding (5) or (6) results in predicates for checking the length or the priority

of the only e-mail message in the result. Similarly, (7) is used for constraining

the total number of messages while (8) is for the number of distinct folders.

The predicate space is efficiently searched by Alkemy to construct the decision

tree in which each node corresponds to a predicate that best partitions the

training examples at that point. Note that defining this predicate rewrite system

requires the expression of domain-specific knowledge. Furthermore, constraining

the learner’s hypothesis space is necessary because of the limited availability of

training data. In Section 1 of Appendix B, we give the full specification of the

learning problem used for Alkemy. Example training data collected is shown in

Section 2 of Appendix B. More detail on how Alkemy constructs the hypothesis

space and the decision tree can be found in [Lloyd, 2003].

User Is there any new mail from Wayne?

SPA You have one new message from Wayne Wobcke.

SPA Displays the message from Wayne Wobcke.

User Find all messages about meeting in the Inbox.

SPA There are twenty two messages about meeting in your Inbox.

Displays the headers of the twenty two messages.

User Show me the one from John.

SPA Here you are.

Shows the content of the message from John Lloyd.

Figure 5.5: An Example Dialogue without Learning

Figure 5.5 shows an example dialogue without adaptation. Assuming that

the user is using a PDA for interacting with the SPA, with dialogue adaptation

enabled, this example dialogue would be as given in Figure 5.6. Note from this

dialogue how the Dialogue Manager has learned to adapt its responses according

to the user’s preferences. The Dialogue Manager has in its plan library two

different plans for returning a response containing one e-mail message to the

user: Return Message Content for generating the whole message content and
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User Is there any new mail from Wayne?

SPA You have one new message from Wayne Wobcke. The message is

more than thirty lines, should I just show you the summary?

User Yes please.

SPA Displays the summary of message from Wayne Wobcke.

(a)

User Find all messages about meeting in the Inbox.

SPA There are twenty messages about meeting in Inbox folder.

I’m displaying the first ten messages.

Displays the first ten message headers.

(b)

User Show me the one from John.

SPA Here is the summary of the message from John Lloyd.

Displays the summary of message from John Lloyd.

(c)

User Show me the whole content.

SPA Here you are.

Displays the content of message from John Lloyd.

(d)

Figure 5.6: Dialogue with Learning

Return Message Summary for displaying only the message’s summary. In the

given scenario in example (a), both these plans are applicable because there is

only one new message from Wayne. For each plan, a query is sent to the learner

to check if the user would prefer the system to use that plan. For example, the

query for the Return Message Summary plan is as follows, in which 60 is the

length and NORMAL the priority of the message.

? ResponsePlan (PDA, SEARCH, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageSummary) ;
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The learner returns True for both queries because the system does not know the

user’s preference in this case. The system randomly chooses to use the Return

Message Summary plan, suggesting to show only the message’s summary. The

user agrees with the system’s suggestion, indicating his/her preference. The two

training examples shown below, are then formulated and sent to the learner.

ResponsePlan (PDA, SEARCH, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageSummary) = True ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageContent) = False ;

These individual learning instances are added into the training set and used for

updating the decision tree. In this case, the lt30 predicate can be used as a

hypothesis to distinguish these examples. As a result, the system has learned to

show the summary if the message body is more than thirty lines and a typical

example of a decision tree representing the user’s preferences which results in

such adaptive behaviour is given in Figure 5.7.

numOfMsgs = 1

ReturnResponse
plan =

msgLength > 30 numOfMsgs < 15

priority = HIGH

ReturnSubList
plan = 

ReturnContent
plan =

ReturnSummary
plan =

SortedBySender
plan = ReturnList

numOfMsgs = 0

yes

yes

yes

yes

yes

yes yes

yes yes

yes

no

no

nono

no

no no

no no

no

True

True True

True

False

False

False

Figure 5.7: Decision Tree Representing User’s Preferences
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The decision tree can be understood as follows: if there is no message in

the result then use the simple Return Response plan to generate the response

utterance without showing anything on the GUI; if there is exactly one message

and its length is greater than thirty lines then use the Return Summary Content

plan; however, if the message has high priority then do not use the summary;

if the total number of messages in the result is less than fifteen, sort them by

sender; otherwise, if there are more than fifteen messages, use the Return Sub

List plan to show just the first few message headers.

It is also important that the system allows the user to correct its actions.

In responding to a show e-mail task, the system is showing the user a message

summary (according to the learned user preferences), but if the user explicitly

asks to see the whole content, the system is able to adjust its response and

update the learning model. Later on in the dialogue (example (c)), the system

immediately shows the summary of the e-mail message from John Lloyd because

its length is also more than thirty lines. However, because this message is of high

priority the user asks for the whole message content, so the system displays the

content and learns a new preference (example (d)). In this case, the following

training examples are generated by the Dialogue Manager:

ResponsePlan (PDA, SHOW, SPEECH,

{("John Lloyd", 77, "Inbox", HIGH)},

ReturnMessageSummary) = False ;

ResponsePlan (PDA, SHOW, SPEECH,

{("John Lloyd", 77, "Inbox", HIGH)},

ReturnMessageContent) = True ;

Similarly, assume the SPA has learned in the past, using a similar mechanism,

to show only the first 10 message headers if there are 15 or more messages in the

result (resulted in the decision tree in Figure 5.7). Thus in example (b), only

the first 10 message headers are displayed to the user.
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5.3 Summary

In this chapter, we have discussed the problem of achieving adaptive response

generation in dialogue systems, which can be recast as the problem of learning

plan selection strategies, using our agent-based approach to dialogue manage-

ment. We have presented a general method for incorporating learning into a

BDI agent architecture, and described our work in applying this method to the

case of the SPA’s Dialogue Manager. The Alkemy learner has been integrated

into the Dialogue Manager to achieve an adaptive dialogue agent, which is able

to tailor its responses according to the conversational context and the user’s

device and preferences.

In dialogue applications such as the SPA, generating training data for learn-

ing adaptive responses is an important issue. Dialogue adaptation in the SPA

must take into account the user’s preferences as well as the system’s physical

context, thus cannot be trained using pre-collected training corpora. Currently,

the user is asked explicitly for the preference if there are a number of possible

actions. However, future work could be to obtain the training data by observing

the user’s interaction. The relation between the user’s current request and the

current context could suggest the user’s preferences. For example, suppose the

user has just asked for new e-mail from John Lloyd and there is only one mes-

sage that is of high priority. Next, the user immediately requests to read out

the message content. This may indicate that if there is one important message

from John Lloyd, the user prefers to see the message’s content as well as hear

the message read out, or the user does not want to read the message because the

PDA screen is too small. Another problem is to unlearn incorrect generaliza-

tions. The current implementation uses an on-line version of Alkemy that allows

the decision tree to be learned from a fixed-size set of recent training examples.

As old training examples are gradually discarded from the training set, it might

be possible to estimate a suitable window size to minimize generalization errors.
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In this chapter, we discuss the evaluation of the Smart Personal Assistant (SPA)

application, focusing on the evaluation of the dialogue model of the SPA. In

addition, we are interested in understanding how the performance of various

components including the speech recognizer, the Partial Parser, the back-end

applications, and importantly the Dialogue Manager, contribute to the overall

performance of the system. Firstly, in Section 6.1, we present existing frame-

works for evaluating spoken dialogue systems. Next, we describe in Section 6.2

how the evaluation of the SPA was set up, concerning the choice of the sub-

jects and the evaluation methods and metrics. The experimental results and

explanation are reported in Section 6.3. Finally, our additional observations

and comments are presented in Section 6.4.

6.1 Evaluation of Spoken Dialogue Systems

According to Bernsen and Dybkjærs [1998, p. 191], there are three types of

evaluation of spoken dialogue systems: performance evaluation for measuring

the performance of the system in terms of some quantitative parameters, di-

agnostic evaluation to detect design and implementation errors, and adequacy

evaluation for evaluating how the system meets user needs and expectations.

Perhaps for research prototypes, the performance and adequacy evaluations are

more often required in order to justify the design of the dialogue model and

to evaluate the usability of the whole system. Evaluation can be subjective,

based on the users’ opinions, or objective, to produce subject-independent as-

sessment [Dybkjær and Bernsen, 2001]. In brief, evaluating spoken dialogue sys-
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tems requires consideration about the types and purposes of the evaluation, the

methods, the subjects, and finally, what and how to evaluate. However, there is

currently a lack of a general evaluation framework, making it difficult to eval-

uate and compare dialogue systems. We now consider two existing approaches

and whether they can be adapted to suit our evaluation purposes: the PAR-

ADISE framework of Walker et al. [1997] and the three-tiered model of Stibler

and Denny [2001].

PARADISE uses a weighted function to combine the measures of individual

performance objectives, such as user satisfaction, task success, dialogue cost,

etc., into a single performance evaluation function for a whole system. The

evaluations corresponding to these performance objectives are done as follows:

• Measure of user satisfaction: The users are asked to fill in a survey. User

satisfaction is measured by calculating the mean of user ratings (between

1 and 6), specifying the degree to which the users agree with a statement

about the system.

• Measure of task success: Each task is represented using an attribute value

matrix, representing the information that must be exchanged between the

user and the system as a set of ordered pairs of attributes and possible

values. For example, in a flight booking domain, the required attributes

can be the departure city, the arrival city, the departure time-range (e.g.

morning, evening, etc.), and the departure time (e.g. 10 am, 2 pm, etc.). A

set of all possible values (for all attributes) is determined and used to build

a confusion matrix, counting how many times the system has recognized

correctly and incorrectly attribute values in the collected dialogues. The

task success performance measure is a function of the frequency of correctly

recognized attribute values, taking into account that the chance of a value

be misrecognized depends on the size of the value set.

• Measure of dialogue costs: Utterances can be classified according to some

qualitative criteria such as whether the utterance is a repair. Dialogue
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cost measures can be the total number of utterances, the number of repair

utterances, etc.

Finally, the overall system performance is calculated by combining the task

success and other the dialogue cost measures. The user satisfaction is used

as the predicted factor for working out the required coefficients using multiple

linear regression.

The PARADISE approach is not suitable for complex application domains

such as in the case of the SPA. The measure of task success in the PARADISE

approach is only suitable for simple slot-filling tasks, e.g. obtaining transport

timetables, flight schedules, etc., in which all possible slot values can be pre-

dicted. E-mail and calendar management tasks are more complex and cannot

be represented using a pre-defined set of attributes and attribute values because

the values of attributes such as appointment title, person name, e-mail topic,

etc., can be any phrase. In addition, the length of a dialogue or the number of re-

pair utterances does not necessarily reflect the efficiency of the system’s dialogue

behaviours or the user satisfaction. In evaluating spoken dialogue systems, the

contribution of various system components, importantly the speech recognition,

must be taken into account. The PARADISE framework does not support this

requirement. Finally, it is not even clear whether system performance can and

should be meaningfully indicated by a single performance value as the combina-

tion of different evaluation measures. Task completion rates/scores and dialogue

costs do not necessarily correlate with user satisfaction. In fact, an existing us-

ability study of Frøkjær et al. [2000] has suggested very low correlations between

the three usability measures: effectiveness (e.g. task completion rate), efficiency

(e.g. task completion time/cost) and satisfaction (e.g. user satisfaction). There-

fore they should be considered independent aspects in a usability evaluation.

The three-tiered evaluation methodology of Stibler and Denny [2001], in

contrast, models evaluation objectives at three levels of abstraction: user satis-

faction (subjective measures using questionnaire), system support of task success

(overall system performance based on some definition of “mission success”) and

162



6.2 Evaluation of the Smart Personal Assistant

component performance (for assessing an individual component’s contribution to

the overall system performance). The middle tier requires measurements such as

task completion, task complexity, dialogue complexity, task efficiency, dialogue

efficiency, task pace, dialogue pace, user frustration and intervention rate. For

the lowest tier, evaluation metrics include word recognition accuracy, utterance

recognition accuracy, concept recognition accuracy, component speed, process-

ing errors and language errors. We have used an adaptation of the three-tiered

methodology for evaluation of the SPA because it provides suitable methods for

evaluating the SPA’s dialogue model, allowing us to differentiate the contribu-

tion of different dialogue management factors in the overall system performance.

6.2 Evaluation of the Smart Personal Assistant

In this section, we describe our evaluation of the SPA, which can be classified

into subjective and objective evaluations1. The methods used were adapted

from the three-tiered framework. The main purpose of conducting the subjec-

tive evaluation is to answer a general question of whether users would want to

use spoken dialogue applications such as the SPA. Although the system has not

yet had a commercial deployment, it is robust enough to provide reliable infor-

mation. The objective results are more important to us, as they can be used

to quantify the performance of the Dialogue Manager, thus be used to justify

the effectiveness and robustness of the SPA’s dialogue management using our

agent-based approach.

6.2.1 Evaluation Setup

There were 10 subjects (5 male and 5 female) participating in the evaluation,

among them 5 (3 male and 2 female) with an IT background. The subjects were

1The user study of the SPA were conducted by Anna Wong, who also designed the user
questionnaire.
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native speakers of Australian English, aged between 18 and 45. The study was

divided into training and testing sessions separated by between one and three

days. In the training sessions, each subject spent about 30 minutes recording

two voice passages (used for constructing a voice model of the user with the

Dragon NaturallySpeaking speech recognition software based on the Australian

English voice profile). After a short break of 20 minutes, during which the speech

recognition profile was built, the subject was given the SPA system and asked

to perform 6 simple tasks (Appendix C, Section 1) with some guidance.

The follow-up testing session was carried out after the training and in a lab

setting environment so that the user’s interaction could be observed through

cameras and a one-way mirror. The subjects were asked to re-do the training

tasks, and then a series of test tasks (Table 6.1) for us to collect evaluation data.

Because the users had never previously interacted with any SPA-like systems,

training was essential to allow them to become familiar with the system.

The test consisted of 12 tasks with different levels of difficulty in both the

e-mail and calendar management domains, such as searching e-mail messages

or scheduling a new appointment. There are also complex tasks that involve

more than one of these primitive tasks, for example, finding e-mail messages

from a person or about a topic, then deleting these messages. The last task

requires context switching between the e-mail and calendar domains. The SPA

was configured with the same sets of e-mail messages/folders and pre-defined

appointments for all users. However, the e-mail arrival times and appointment

times were adjusted to accommodate the task requirements, for example search-

ing for e-mail messages that arrived today (the day of the test session). We

intentionally used in the tasks proper names such as “John Lloyd”, “Kate” and

“Jessica”, and phrases for representing e-mail search topics or appointment ti-

tles such as “the war with Israel”, “conference paper”, etc., to see how well the

speech recognizer could handle proper names and these kinds of phrases. For

most tasks, correct speech recognition of proper names and phrases is required

in order for users to complete the tasks successfully.
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Task Instruction Description

1 Find the e-mail from John Lloyd. E-mail
search

2 Find your appointments for next week. Appointment
search

3 Find all e-mails which were sent to you today. E-mail
search

4 View the list of e-mails in the ’Seminars’ folder. Folder search

5 Schedule a meeting with Kathy about the budget,
for tomorrow at 11 am.

Appointment
schedule

6 Check that you have an appointment on Friday at
11 am. Reschedule it to Monday next week at 2
pm.

Appointment
search, reschedule

7 Check that you have an appointment for Tuesday
next week at 3 pm. Then delete it.

Appointment
search, deletion

8 You are looking for an e-mail from Paul Compton
about the project, which you know he sent to you
last week sometime. Please find and read his e-
mail.

Complex e-mail
search

9 Find out what time your appointment with Jessica
is today.

Appointment
search

10 You have received e-mails about the war with Is-
rael. Please find and then delete all of them.

E-mail search,
deletion

11 Find all e-mails about seminars and move them to
the ’Seminars’ folder.

E-mail search,
archive

12 Find your e-mails for today. Read the message from
Kate and complete any requests that the sender has
asked of you.

E-mail search and
appointment
search, reschedule

Table 6.1: Evaluation Tasks

The users were instructed to hold the PDA at reading distance and talk into

the inbuilt microphone at their normal pace. As we are interested in evaluating

the system with speech only, the users were not allowed to use the PDA’s stylus

except for scrolling and pressing the speech button, before starting and after

stopping their utterances. The users were able to see the speech recognition

output through a text area on the PDA screen. During the testing sessions, the

user’s actual speech input was transcribed on the fly and the system processing
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logs were saved for objective analysis. The subjective measurements are derived

from collected user responses to a questionnaire of 23 questions (Appendix C,

Section 2), which the users completed after their testing session.

6.3 Evaluation Results

6.3.1 Objective Results

We consider the objective evaluation at two levels: the task and the utterance

levels. The task-level performance measures how well the system performs and

fulfils the user requests. The metrics used include dialogue length, task success

rate, etc. In addition, we want to know, if a task was not completed successfully,

which system component (or components) were the main cause(s) of the failure.

At the utterance level, we look more closely at every utterance exchange, i.e. for

each user utterance, whether the system response was appropriate, and if it was

not, which aspect of the dialogue model was mainly responsible for the problem.

Task-Level Performance

The three-tiered method defines tasks as consisting of segments, each for per-

forming an atomic operation. For instance, in the logistics domain, these oper-

ations can be signing in to the system, filling in the order form, submitting the

form and signing off. It might be thought that, in the case of the SPA, it is also

possible to divide tasks into more fine-grained primitive tasks. For example,

the task of deleting e-mail messages from Paul Compton can be considered as

consisting of a search task (for messages from Paul Compton) and a delete task

(for deleting these messages). However, in many cases, it is not possible to break

tasks into segments of primitive tasks because using the SPA, users are able to

specify their (though complex) requests in just one utterance. Therefore, our

evaluation measures are based on the 12 test tasks given to the users.
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Speech recognition accuracy has a great effect on the performance of spo-

ken dialogue systems. We measure the performance of the speech recognizer

(Dragon NatuallySpeaking software in dictation mode) by calculating the per-

centage of concept-words correctly recognized. Firstly, let us define that each

speaker utterance consists of several concepts that are required for the system to

able to fully and correctly recognize the user’s intention. In the case of the SPA,

these concepts can be the type of the requested task, the name of a folder, the

name of the appointment’s attendee, etc., or references to task objects. Concept-

words are those that denote these concepts, thus they must be present in the

speech recognizer’s output in order for the system to correctly recognize the

concepts, and so the user’s intention. For example, the utterance “Could you

show appointments with him for me please.” contains 4 concept-words: “show”,

“appointments”, “with”, “him”. Note that the SPA’s dialogue model is designed

to allow flexibility in the use of language, i.e. strictly grammatically correct ut-

terances are not required. Moreover, the Partial Parser is able to recover from

some secondary grammatical errors introduced by the speech recognizer. Thus

we consider the following two cases as “correctly recognized”: plural words mis-

recognized as their singulars, and verbs misrecognized as of different tenses, both

of which occur often. The concept-word recognition performance of the speech

recognition system is given in Figure 6.1. The concept-word recognition accu-

racy ranged between 82.61% for subject (8) and 91.51% for subject (7), with the

overall average of 86.94%. Although correct identification of the user’s intentions

requires 100% concept-word recognition accuracy, the speech recognition results

were better than we expected, which allowed the Dialogue Manager to recover

from some speech recognition errors, enabling the users to complete most of the

tasks.

Figure 6.2 shows the average dialogue length (counting only the number

of user utterances taken) of successfully completed tasks. Over all 12 tasks,

the users took 4.4 utterances on average to perform one task. Considering

the dialogue length for individual tasks, tasks (2), (3), (4) and (9), which are
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Figure 6.1: Concept-Word Recognition Accuracy

simple e-mail and calendar search tasks, required less interaction, between only

1 and 2 utterances on average. In contrast, tasks (6), (7) and (8), which are

compound tasks and more complex than the others, had greater dialogue length,

as expected. Similarly, task (12), which involves dialogue interaction in both the

e-mail and calendar domains, required an average of 8.25 user utterances. Note

that according to the chosen dialogue strategies, delete and reschedule tasks

always involve the SPA requesting the users for confirmation, thus they are

more likely to require longer dialogue interaction. It was observed that most

subjects tended to prefer breaking the tasks into primitive sub-tasks, though

some subjects were able to perform complex tasks in just one or two utterances.

Task (10), an e-mail search and deletion task, had an average dialogue length of

7.66 user utterances, which is higher than expected, because of one individual

subject who required 23 utterances to complete the task. The reason for this

long dialogue was that the speech recognizer continuously misrecognized the

word “war” in the e-mail search topic “the war with Israel” as “wall”. The

user could avoid using this word, requesting a more general search for messages

“about Israel”, but was not aware that this would give the same result.
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The maximum and minimum numbers of utterances used for each task are

also presented in the graph in Figure 6.2. Taking the example of task (1), a

search for e-mail messages from John Lloyd, the worst case was that a subject

needed 12 utterances to complete the task because the speech recognizer failed

many times to correctly recognize the family name, “Lloyd”. However, there

were other subjects, who experienced the same speech recognition error, able to

get around this problem by searching for messages from John first, e.g. “Do I

have any e-mail from John?”. As the result contains only 2 messages, in which

only one is from John Lloyd, the subjects could use the message ordering to

successfully request the message from John Lloyd, e.g. “Show me the second

message”. This shows that some users, perhaps able to gain more experience

through the training sessions with the SPA, could interact with the system in

more flexible and effective ways than others.

Task (6) is the one with the longest average dialogue length. In this task, the

users are required to reschedule a meeting from Friday 11 am to next Monday

at 2 pm. Some users did not notice from the beginning that not only the day

but the time needs to be changed, thus had to move the appointment twice,
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resulting in a longer dialogue length (when changing only the day, the SPA

keeps the same time by default). Subject (1) finished the task without realizing

that the rescheduled time was wrong. In another case, subject (8) took 26

utterances to complete the task. The speech recognizer produced several crucial

errors. Moreover, although the subject had been told in the training session to

use the keyword “about”, he/she very often referred to appointments using the

construction “the appointment regarding ...”, which is not currently supported.

Considering the case of task (8), which is a search for a message from Paul

Compton that was sent last week, while all subjects completed the task reason-

ably well, there was one who needed 20 utterances to complete this task. The

reason was that the speech recognizer consistently misrecognized the important

keyword “e-mail”2. The subject, user (2), did not think of rephrasing the re-

quest using alternative words such as “message”. After obtaining the list of

all messages from Paul Compton, the subject attempted to request the message

sent last week using the exact date sent but, unfortunately, this is not supported

by the system. Once the subject realized that he/she could use more natural

temporal phrases such as “last week”, he/she did complete the task successfully.

In another case, 20 utterances were taken by subject (4) to complete task

(12), while the average dialogue length for this task was 8.16. Task (12) is

the most complex, requiring context switching between the e-mail and calendar

domains. Firstly, it took several utterances before subject (4) could find the mes-

sage from Kate (sent today) because the proper name could not be recognized

correctly. Given that the user was able to view the list of four e-mail messages

sent today, he/she could have used the message ordering to request the message

from Kate. In the message’s content, the subject was asked to reschedule an

appointment with Kate to another time. When requested to confirm the change,

the subject had to repeat his/her confirmation, “yes”, a few times because of

speech recognition errors.

2In his/her accent, “e-mail” was pronounced more like “e-mahl”.
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Table 6.2 presents the actual number of utterances used by each individual

user for each successfully completed task. A task is considered not completed

(successfully) if either the subject gives up before finishing the task or the sys-

tem returns incorrect results. For example, subject (5) could not complete task

(12), which requires the rescheduling of an appointment with Kate. After many

attempts to get the speech recognizer to correctly recognize the proper name

“Kate”, which is essential to distinguish two appointments with different atten-

dees but the same title and time, the user finally gave up the task. Another

example of an uncompleted task was that of subject (2), who thought he/she

created the appointment as required in task (5), but in fact, the appointment’s

attendee was wrong due to a speech recognition error. We consider this case an

uncompleted task because the task result is incorrect.

We also give scores to users according to how well they were able to work out

for themselves how to interact with the system. The user scores are presented

in the right most column of Table 6.2. If the user performed a task successfully

without any guidance, the user is given 1 mark for that task. If some help with

wording was required, such as a suggestion on how to rephrase a request, the

user receives 0.5 mark for the task (indicated by a star in Table 6.2). The user

receives a mark of 0 if the task is not completed successfully (discussed below)

or if the user requires too much help (indicated by 2 stars in Table 6.2), such

as advice on how to break up a complex task into primitive tasks. The average

score for all users was 10.1 out of a possible 12, indicating a very high task

completion rate per user.

Over all users and tasks, the task completion rate was 88.3%. There were 14

task failures in the 120 tasks: 3 due to the subject giving up the tasks (indicated

by shaded cells), 10 other cases in which the subjects finished the tasks but did

not know that the task results were incorrect, and 1 case in which the subject

gave up after the system crashed. For these cases, we attribute the failure to

the first component that caused the problem. However, when in doubt, the

failure is attributed to more than one component. The sources of failure are
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also reported in Table 6.2. Among these cases of task failure, 3 were made

by the users, 8 were caused partially or fully by the Partial Parser and speech

recognition errors (important words were missed out), and 5 were because of the

Dialogue Manager. We now consider these failures in greater detail.

The common problem with three failures of task (5), scheduling a new ap-

pointment, was due to speech recognition errors. In two cases, the attendee’s

name, “Kathy”, could not be recognized correctly, resulting in incorrect task

results. None of the users were given guidance during their training session on

how to change appointment titles and attendees. Subject (9), who also had the

same problem, however, was able to successfully correct the attendee’s name

through dialogue using the construction “Change the attendees”. Subject (10)

had a similar problem in that the required title, “budget”, was misrecognized as

“by jet”. After several attempts using “Rename meeting” to change the title,

which unfortunately is not recognized by the Dialogue Manager, he/she gave

up.

Subject (1) failed to complete task (6) because he/she rescheduled the ap-

pointment from 11 am on Friday to the same time on Monday the week after,

missing a requirement that the new appointment’s time be 2 pm. On the other

hand, the failure of user (6) was due to a system crash caused by the Dialogue

Manager. Figure 6.3 shows an excerpt of his/her dialogue for task (6). Utter-

ance (5) of the user is intended to contribute to the ongoing sub-dialogue for

rescheduling the appointment, requesting to change the appointment’s time to

Monday at 2 pm. However, because of the verb “change”, the Dialogue Manager

incorrectly recognized the request as to move the appointment (to 2 pm on Mon-

day) as well as to change the appointment’s title or attendees. Utterance (7) of

the user was not understood by the Dialogue Manager, so the system asked the

user again to specify the new title or attendees. Due to an error in semantic

analysis, the new title specified in utterance (9) was incorrectly recognized as

“meeting”. As a result, the appointment’s title was changed to “meeting”, which

was not intended by the user. Realizing the system’s error, the user attempted
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to correct the title in the last utterance. The Dialogue Manager recognized

the user’s intention correctly, and formulated a domain task description to send

to the Calendar agent for resolving the appointment. However, a bug in the

Dialogue Manager caused the appointment’s time, 2 pm, to be written in an

incorrect format, which caused the Calendar agent to crash.

1 User Find appointments for Friday.

Found appointments for Friday.

2 SPA You have an appointment with Wayne about conference paper

on Friday at 11 am.

3 User Please move this appointment to Monday.

Please move this appointment to Monday.

4 SPA Are you sure you want to move appointment

about conference paper to Monday 11 am?

5 User Change to Monday 2 pm.

Change to Monday two p.m.

6 SPA Please specify new title or attendees.

7 User Conference paper.

Conference paper.

8 SPA Please specify new title or attendees.

9 User Meeting’s title is conference paper.

Meeting title is conference paper.

10 SPA Appointment has been modified.

11 User Show me the schedule for Monday at 2 pm.

Show me the scheduled for Monday.

12 SPA You have an appointment with Wayne about conference paper

on Monday at 2 pm.

13 User Change title for 2 pm meeting.

Change title for two p.m. meeting.

Figure 6.3: An Example Scenario for Task (6)
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The seven failures of task (10) and (11) were all due to incorrect task results,

i.e. all messages (in the Inbox) were deleted/moved. Task (10) requires the dele-

tion of messages about “the war with Israel”, while in task (11), messages about

“seminars” must be moved to the Seminars folder. In one case, the problem

was because subject (6) himself/herself requested: “Please delete all e-mails”

when viewing the messages about the war with Israel, and still did not realize

his/her mistake when confirming the deletion, presumably thinking the domain

of quantification to be the set of messages on the screen. The problem could

have been avoided with a clearer request for confirmation. In other cases, sim-

ilar misinterpretations occurred due to speech recognition errors or secondary

errors made by the Partial Parser or the Dialogue Manager’s semantic analysis

process. Several example dialogue excerpts between users and the SPA in per-

forming task (10) and (11) are presented in Figure 6.4, which illustrate some of

the cases. In this figure, speech recognition outputs are shown in italics. In the

example in Figure 6.4(a), the speech recognition software misrecognized “with

subject Israel”, consequently, the Partial Parser ignored “be subject Israel”. As

a result, the Dialogue Manager misinterpreted subject (3)’s request as to delete

all e-mails in the user’s Inbox. The user did not realize the problem, hence

confirmed the deletion. Again, a clearer request for confirmation would have

avoided the problem.

User Delete all e-mails with subject Israel.

Delete all e-mails be subject Israel.

SPA Are you sure you want to delete those messages?

User Yes.

Yes.

SPA Messages have been deleted.

(a) Speech Recognition and Parsing Errors

Figure 6.4: Example Failures of Task (10) and (11)
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Considering another example, Figure 6.4(b), subject (9) used the reference “all

three messages” to refer to the messages in the current context but the Dialogue

Manager received only “messages” from the Partial Parser, thus the task objects

were resolved to all e-mail messages in the Inbox (i.e. the default folder).

User Show all messages about seminars.

Show all messages about the seminar.

SPA You have 3 messages about seminar, 1 from Bruno Gaeta

and 2 from Bernhard Hengst.

User Move all three messages to seminars folder.

Moved Wamsley messages to seminars folder.

SPA The messages have been moved to seminars folder.

(b) Speech Recognition Error

User Find e-mails about Israel.

Fined e-mails about Israel.

SPA You have 4 messages about Israel .

User Delete all these e-mails.

Delete all these e-mails.

SPA Are you sure you want to delete those messages?

User Yes.

Yes.

SPA Messages have been deleted.

(c) Speech Recognition, Parsing and User Errors

Figure 6.4: Example Failures of Task (10) and (11)

In the last example, Figure 6.4(c), an error in the semantic analysis stage

of dialogue processing caused the Dialogue Manager’s misinterpretation of “all

these e-mails” as an ALL-quantifier phrase. When the user uses an ALL-phrase

and does not refer to objects in the current context (e.g. “these e-mails”), the

system considers the user’s request as opening a new context. Thus user (7)’s

request was incorrectly recognized as a new request to delete all e-mail messages.
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The failures of task (10) and (11) suggest that due to speech recognition

performance, users may not fully understand the system’s current context. Thus

better confirmation requests by the SPA are needed. For example, including the

number of e-mail messages in the requests for confirmation of deletion, e.g.

“Are you sure you want to delete those 15 messages”, would help by providing

grounding information about the system’s current context.

Considering the case of task (12), users are required to find and read an e-

mail message from Kate sent today, in which the users are asked to reschedule an

appointment with Kate to another time. However, there is another appointment

with Mark at the same time and with the same title, making the task more

difficult. Because the speech recognizer repeatedly failed to recognize “Kate”

for user (5), the user had to give up the task, since he/she could not specify

that the appointment to be rescheduled is the one with Kate, not with Mark.

Subject (1) also gave up task (12) after a few utterances. The subject kept

referring to the appointment using only the attendee’s name, “Kate”, but this

kind of reference is not handled by the Dialogue Manager.

Overall, the evaluation has shown a high completion rate (88.33%) at the

task-level. Although speech recognition performance was not perfect (86.94%

concept-word recognition), the users managed to complete most of the tasks.

Task failures were mainly due to speech recognition errors, in particular, incor-

rect recognition of proper names. In addition, some failures were because the

users did not fully understand what features are supported by the system. If

users were given more time than just the training sessions to explore the system,

the task completion rate may have been higher.

Utterance-Level Performance

At the utterance-level, we evaluate the system performance by considering the

appropriateness of the system’s responses. We distinguish two types of prob-

lem, which are not mutually exclusive: unexpected and inappropriate responses.

Our definitions and explanations of these objective measures are presented in
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Measure Definition/Explanation

Unexpected

Responses

System responses that are not expected by the user

given the user’s actual speech input and his/her inter-

pretation of the current conversational context.

For example, if the user requests “Show my Inbox

folder”, from the user’s point of view, any responses

other than the system displaying the user’s Inbox

folder are unexpected. Thus if the speech recognizer

misrecognizes “Inbox” as “Friends” and the system re-

sponds “You don’t have a folder named Friends”, then

the response is considered unexpected.

Inappropriate

Responses

Considering the speech recognizer as an external com-

ponent, given the speech recognition output as input

to the course of dialogue processing, a system response

is considered inappropriate if:

- the user’s intention could not be recognized.

- the user’s intention was incorrectly recognized.

- the back-end application failed to perform the task.

- the task was performed incorrectly.

Recovery The Dialogue Manager recovers from problems or

errors by appropriately requesting the user for

clarification.

Table 6.3: Utterance-Level Evaluation Measures

Table 6.3. Note that the system is required to respond to every user utter-

ance. In addition, we assume that the user’s expected system response can be

predicted by considering the actual speech input and is as determined by the

experimenters. The sources of unexpected and inappropriate responses can be

any system components and can also be because of the subject himself/herself.

A course of dialogue processing is done in several stages, starting from the user,

then the speech recognizer, the Partial Parser, the Dialogue Manager, and finally

the back-end applications. We consider the first component (including the user)

that causes the problem to be the source of the problem. One measure of system
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performance at this level is based on the statistical distribution of the problem

sources. Moreover, we are interested in how error recovery has been done by

the Dialogue Manager. The objective evaluation at the utterance-level helps us

understand how individual component performance contributes to the overall

system performance and to identify additional issues with the SPA’s dialogue

model.

Tables C.2 in Section 3, Appendix C reports the evaluation results for each

subject, including: the total number of spoken utterances, the number of ut-

terances whose concepts are fully and correctly recognized by the speech rec-

ognizer, the number of utterances with some concepts not recognized, and the

number of the system’s unexpected responses, inappropriate responses and cor-

responding sources of problems. The distribution of problem sources causing

unexpected and inappropriate responses is shown in Figure 6.5. Unexpected re-

sponses were caused by the user, the speech recognizer, the Partial Parser or the

Dialogue Manager. Note that unexpected responses cannot be due to failures

at the back-end domain applications because users do not know what e-mail

and calendar data is used at the back-end, thus cannot predict if the task re-

sults are correct or not. The evaluation results presented in Figure 6.5(a) shows

that most unexpected responses were due to speech recognition errors. Ignor-

ing these speech recognition errors, the Dialogue Manager is the main source of

inappropriate responses. This is expected because it is very unlikely that the

back-end applications perform tasks incorrectly. In Tables C.2 in Appendix C,

we also classify unexpected and inappropriate responses caused by the Dialogue

Manager according to different dialogue management aspects. For a more de-

tailed explanation, we now describe some specific examples obtained from the

evaluation.

An example of an unexpected response is utterance (6) in the dialogue ex-

cerpt in Figure 6.6. This is unusual in that it is caused by the user. In utterance

(1), user (9) requested to schedule a new appointment with Kathy. Because of

an error made by the Partial Parser, the Dialogue Manager did not receive the
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information about the attendee, Kathy, which the system then asked the user

to specify in utterance (2). However, the speech recognizer misrecognized the

user’s answer. Thus in utterance (5), it seemed that the user wanted to correct

the attendee’s name. However, because the user’s request was not clear, he/she

received an unexpected response, utterance (6), from the system.

1 User Schedule meeting with Kathy tomorrow at 11 am.

Scheduled meeting with Kathy tomorrow at eleven a.m.

2 SPA Who will you meet?

3 User Kathy.

The.

4 SPA Appointment has been created for tomorrow 11 am.

5 User 11 am meeting with Kathy.

eleven a.m. meeting with Kathy.

6 SPA Do you want to create that appointment?

Figure 6.6: Unexpected Response Caused by the User

Unexpected responses are also considered to be caused by users when they did

not pronounce folder names, e.g. “Seminars”, exactly as specified in the task

description. For example, some users received the response: “Folder name Sem-

inar not found”.

The user’s utterance is first processed by the speech recognizer to produce

a text string. The Partial Parser then uses pattern matching techniques to rec-

ognize domain-specific keywords and extract important concept phrases from

this speech recognition output. Correct recognition of the user’s intention re-

lies heavily on these concepts being extracted correctly. Thus errors made by

the speech recognizer and the Partial Parser are likely to cause further incor-

rect dialogue processing, resulting in unexpected and/or inappropriate system

responses. The most common error caused by speech recognition is not recog-

nizing domain-specific keywords. For instance, in one case, the user’s actual

speech input, “Show me e-mail from John Lloyd”, was recognized as “Show me
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in malls from John Noye”. The system’s response, which is not expected by the

user, was “Which one should I show?”. Another speech recognition error in this

case is that the proper name, “John Lloyd”, was not correctly recognized. In

fact, incorrect speech recognition of proper names did cause many unexpected

responses. In Figure 6.7, we show an example dialogue containing an inappro-

priate response caused by the Partial Parser, which is also unexpected from the

user’s point of view. In this example, user (6) used the temporal phrase “3 pm”

before the keyword “appointment” to specify the meeting to be cancelled. In

fact, this way of using temporal expressions was unique amongst our subjects.

The temporal information, 3 pm, was lost due to the Partial Parser. As a result,

the Dialogue Manager could not determine which appointment the user wanted

to delete. In this case, the system’s response, utterance (4), is inappropriate and

also unexpected.

1 User Delete.

Delete.

2 SPA Which one should I cancel?

3 User 3 pm appointment.

three p.m. appointment.

4 SPA Which appointment?

Figure 6.7: Unexpected/Inappropriate Response Caused by the Partial Parser

There was only one instance of an inappropriate response caused by the back-

end, which occurred with user (3). The subject requested e-mail messages about

“the project”. In processing this request, the stop-word “the” was first discarded,

next the E-mail agent called the back-end e-mail management software to search

for messages that contain the string “ project”. A single space was prepended to

the string to work around a problem that the e-mail application does not detect

word boundaries. However, as a result, the message with subject “Re:project

proposal” was not found.
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To understand in detail how performance of the Dialogue Manager affects

the overall system performance, we attribute the cause of unexpected and in-

appropriate responses to different dialogue management aspects, which include

semantic analysis, task (type) recognition, object determination, attribute ex-

traction, reference resolution, resolution of temporal expression, dialogue strat-

egy, clarification request generation and context tracking. In Table 6.4, we show

the overall result for all users (the detailed results for individual users are pre-

sented in Tables C.2 in Section 3, Appendix C).

Total Number of Responses 569

Dialogue Management Aspect Number of
Unexpected
Responses

Number of
Inappropriate
Responses

48 (8.40%) 55 (9.66%)

Semantic Analysis 3 (6.25%) 4 (7.27%)

Context Tracking /
Act Type Determination

2 (4.16%) 2 (3.63%)

Task Type Recognition 7 (14.58%) 7 (12.72%)

Object Determination 13 (27.08%) 15 (27.27%)

Object Attribute Extraction 8 (16.66%) 17 (30.9%)

Reference Resolution 5 (10.41%) 4 (7.27%)

Temporal Expression Resolution 5 (10.41%) 6 (10.90%)

Dialogue Strategy 4 (8.33%) 0 (0%)

Clarification Request Generation 1 (2.08%) 0 (0%)

Table 6.4: Performance Distribution for Different Dialogue Management Aspects

Most unexpected and inappropriate responses were because the Dialogue

Manager failed to extract attribute phrases and determine the corresponding

objects. The reason for this is that we expected the use of keywords such as

“about”, “with”, “from” for specifying appointment titles, appointment atten-

dees, e-mail message senders, etc., for example, “The e-mail message from Paul”

or “The appointment about conference paper”. Because speech recognition can-

not be 100% accurate, the presence of these keywords is used in extracting other
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unrestricted phrases. However, during the training the users were given only

brief suggestions about what keywords to use. Thus the test sessions showed a

variety of constructions for referring to appointments and e-mail messages, the

most common being to refer to appointments using only the title (e.g. “con-

ference paper”), such as in the example dialogue of user (8) in Figure 6.8. In

addition, this user also tended to use “regarding” (instead of “about”) to indi-

cate the title. In these cases, the Dialogue Manager was not able to extract the

object’s attributes correctly.

1 User Move my appointment regarding conference paper.

Move my appointment regarding conference paper.

2 SPA Which appointment should be rescheduled?

3 User Conference paper.

Conference paper.

4 SPA Which appointment should be rescheduled?

Figure 6.8: Response Problem Caused by the Dialogue Manager (a)

Another cause of unexpected responses was a dialogue strategy which re-

quires the user’s specification of domain objects for every task request. This

strategy was adopted to minimize failures caused by speech recognition errors.

In the example in Figure 6.9, the user’s speech input “Delete it” was recognized

as “Deleted”, which was a common problem. The Dialogue Manager could iden-

tify that the user requested a deletion task, however it is unclear whether it was

a request to delete the appointment in the current context or a new request to

delete some other appointments or e-mail messages. According to the chosen

strategy, the Dialogue Manager does not assume that the requested deletion

is of the current appointment, but instead asks the user for more information.

Therefore we do not consider the system’s clarification request, utterance (4),

an inappropriate response, but an unexpected response according to the user’s

perspective.
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1 User Check appointments for Tuesday next week at 3 pm.

Check appointments were Tuesday next week at three p.m.

2 SPA You have an appointment with Doctor

about health check Tuesday next week at 3 pm.

3 User Delete it.

Deleted.

4 SPA Which one should I cancel?

Figure 6.9: Response Problem Caused by the Dialogue Manager (b)

An example of an unexpected response caused by the Dialogue Manager’s

unclear clarification request is given in the dialogue excerpt in Figure 6.10. In

utterance (3), user (1) requested to reschedule the appointment with Wayne to

next Monday. However, due to speech recognition and parsing errors, concept-

words “it”, “to” and “Monday” were lost. As a result, the Dialogue Manager

interpreted the user’s utterance as a request to reschedule next week’s appoint-

ments to another time. The system switched the context to a new reschedule

task and suggested to the user to move the appointments separately. Note that

this response, utterance (4), is also an unexpected response, but this is due to the

speech recognizer and the Partial Parser, not the user or the Dialogue Manager.

However, because of the system’s unclear response, the user did not recognize

that the context had changed. Thus he/she repeated the request, hence received

another unexpected response, utterance (6). This unexpected response is there-

fore caused by the previously unclear clarification request, utterance (4), of the

Dialogue Manager. The system should have phrased the response more appro-

priately to indicate a change in context, for example using the formulation “You

have 2 appointments next week, which one do you want to reschedule?”, making

the response more clearly a clarification request.

In a number of cases, the recognized task-type of a user request was wrong

because of the use of verbs not in the system’s vocabulary and not defined in the

domain task description, such as “rename”, “find”, “check”, etc. User (8), an
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1 User Check appointments for Friday at 11 am.

Check appointments for Friday.

2 SPA You have an appointment with Wayne about conference paper

on Friday at 11 am.

3 User Move it to Monday next week.

Move it to mundane next week.

4 SPA There are 2 appointments match your condition,

please reschedule one appointment at a time.

5 User Move it to Monday next week.

Move it to Monday next week.

6 SPA Which appointment should be rescheduled?

Figure 6.10: Response Problem Caused by the Dialogue Manager (c)

administrative staff member who has to deal with people in her job, tended to

use long and polite sentences such as “Could you please schedule it in for 1 pm

tomorrow”. Although the Partial Parser is designed to perform shallow parsing,

aiming to discard redundant words, this kind of complex utterance is likely to

cause task recognition errors.

An interesting case, in which the system responded unexpectedly and inap-

propriately, was because of problems in context tracking and switching, as in

the dialogue excerpt from user (6) given in Figure 6.11. It seems that at some

point in the dialogue, the system did not switch context correctly. Considering

utterances (7) and (9), because the verb “find” is not in the Dialogue Manager’s

vocabulary and task description, these utterances are recognized as responses

to the system’s clarification requests, not as new search requests. Thus the Di-

alogue Manager considered these two utterances as contributing to the current

context of the appointment deletion task. Perhaps the user did have the same

intention in utterance (7), i.e. continuing the deletion. However, because the sys-

tem could not understand the user3, it seemed that the user wanted to switch

3As discussed before, we expect the user to use important keywords such as “about”,
“from”, etc. in referring to appointments and e-mail messages.
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1 User Show me the schedule for Tuesday.

Show me the schedule Tuesday.

2 SPA You have an appointment with Doctor

about health check on Tuesday at 3 pm.

3 User Delete.

Delete.

4 SPA Which one should I cancel?

5 User Delete health check appointment.

The leaked health check appointment.

6 SPA Which appointment?

7 User Please find health check appointment.

Please find health check appointment.

8 SPA Which appointment?

9 User Please find appointment about health check.

Please find appointment about health check.

10 SPA Are you sure you want to delete that appointment?

11 User Yes.

Yes.

12 SPA Appointment has been deleted.

Figure 6.11: Response Problem Caused by the Dialogue Manager (d)

context in utterance (9), starting a new request to search for the appointment.

Unexpectedly, the system identified the appointment and asked the user to con-

firm the deletion. So utterance (10) was both unexpected and inappropriate

even though it led to the task being completed successfully. The main evidence

for our interpretation is that the user seemed surprised when hearing utterance

(10). However, it was not clear at the time of utterance (9), even to us, whether

the user did indeed intend to switch contexts, and we can think of no method

the SPA could use to determine this based only on the input available to the

system.
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The graphs in Figure 6.12 show the total number of clarification requests

per user and per task. Table C.3 in Appendix C shows the utterance-level

performance for each user, giving the total number of utterances taken by the

user, the number of utterances that had all concepts recognized correctly by the

speech recognizer, and the number of unexpected and inappropriate responses

that the user received and their problem sources.
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Figure 6.12: Number of Clarification Requests by the Dialogue Manager

The evaluation results show that the number of clarification requests required

for the users is consistent with their concept-word speech recognition accuracy

(Figure 6.1). Users (1), (2) and (8), whose speech recognition accuracy was

below average, experienced more clarification requests from the system. An

exceptional case is user (5), who had highly accurate speech recognition but still

required an above average number of clarifications. The reason for this is that

the speech recognizer could not recognize the proper name Kate for this user.

However, the user must be able to use this proper name to complete task (12),

to be able to distinguish an appointment with Kate from another appointment

with Mark at the same time and with the same title. As the user could not

correctly specify the appointment with Kate, the system had to request the user

for clarification many times. The number of clarification requests generated per

task also agrees with the complexity of the task. Task (6), (7) and (8), which are
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more complex than the other tasks, required more clarifications. Similarly, the

system generated more clarification requests in handling task (12), a complex

combined e-mail and calendar task.

In addition, the results obtained from system logs show that the system’s

processing time (including dialogue and domain task processing) for a user in-

put was less than 1 second, which is negligible in comparison with the time

required for transferring data between the front-end device (the PDA) and the

SPA server. The users experienced at some point a small delay due to ad-hoc

wireless transmission. However, most of the time, the system’s responses were

delivered in a timely manner.

6.3.2 Subjective Results

The summary of the subjective evaluation results are reported in Table 6.5.

Table C.1 in Appendix C shows the detailed ratings for each individual user.

Overall, user comments and ratings are very positive. Most users were happy

with the performance of the SPA and would like to use such a system in future.

There are three users who thought that using the system was frustrating. This

response is predictable as one of these users (subject (8)) suffered the worst

speech recognition performance, and the other two had trouble from the very

first task, which is the simplest task for all other users. For these two users, the

speech recognizer failed many times to recognize the family name “Lloyd”, thus

it took them a large number of utterances to complete the task. The system

certainly cannot recover from all kinds of speech recognition errors, thus it is

understandable that the user’s level of frustration increases as speech recognition

performance gets worse. Moreover, as the user becomes more and more frus-

trated, the speech recognition performance deteriorates further, causing more

frustration.

Our approach to dialogue management is aimed to allow users to interact

effectively with an integrated collection of back-end domain assistants through
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Question Mean

It was easy to learn how to use the SPA 4.2

It was easy to navigate through the SPA 3.8

Feedback from the SPA is clear and easy to understand 4.3

The SPA worked the way I expected it to 3.7

The SPA understood what I asked it to do a lot of the time 4.0

It took a lot of effort to remember how to perform tasks 1.8

It was easy to ask questions and make requests that the SPA could
understand

3.7

The SPA gave reasonable responses to my questions and requests 4.1

The SPA gave appropriate responses when it didn’t understand what
I said

4.0

It was easy to recover from mistakes that I made 3.5

Using the SPA is frustrating 2.9

The SPA responded in a timely manner 4.1

The e-mail interface is clear and easy to understand 4.3

It was easy to find e-mail messages 4.2

It was easy to delete e-mail messages 4.2

It was easy to move e-mail messages 4.1

It was easy to move between e-mail and calendar in the SPA 4.5

The calendar interface is clear and easy to understand 4.5

It was easy to make appointments 3.7

It was easy to delete appointments 4.3

It was easy to change appointments 3.5

I was happy about the overall performance of the SPA 4.1

I would use a system like the SPA in future 3.8

Table 6.5: Summary of the User Survey Ratings

a single point of contact. Using the SPA, the users were able to switch back and

forth to perform tasks between the e-mail and calendar domains. We designed

the evaluation so that users are required to perform a series of tasks in both

domains. Moreover, task (12) is more complex, requiring users to combine in-

formation in these two domains. After the test sessions, all users either agreed

or strongly agreed in the survey that it is easy to switch between e-mail and

calendar using the SPA.
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6.4 Comments

As we had expected, speech recognition could not be 100% accurate although

the performance of the Dragon NaturallySpeaking software was extremely good,

considering the experimental setup. The main problem was that of the speech

recognizer not recognizing proper names, while in the e-mail and calendar man-

agement domains, this is essential to allow users to refer to their appointments

and e-mail messages. A possible improvement could be to use a phonetic dic-

tionary to match names with entries in the user’s address book. Another way

to overcome this problem could be to collect proper names in the user’s e-mail

and calendar data and add them to the user’s speech profile to improve recog-

nition accuracy, if this feature is supported by the speech recognition software.

However, a drawback of these methods is that they cannot handle new names.

A complementary solution could be supporting multimodal input so that the

user can either highlight or type in proper names using the GUI. Note that

multimodal support is available in the SPA. Nevertheless, for our user study to

evaluate the SPA’s dialogue model, the users were restricted to using only the

speech modality in their requests. Apart from problems due to incorrectly rec-

ognized proper names, the SPA was able to overcome speech recognition errors

in most cases, allowing the users to successfully complete most of the tasks.

Input Output

Yes “yet this”, “year ’s”, “guess”, “gets”, “yass”, “gas”, “US”, “next”

Yes please “yesterday ’s”, “yesterdays”, “this please”

No “none”, “Narang”, “narrow”, “know”, “naga”

Table 6.6: Example Speech Recognition Output of Yes/No

Another common speech recognition problem was the difficulty in recognizing

simple words such as “yes” and “no” (Table 6.6), which is required in confirming

the system’s requests. It might be possible to bias the system towards yes/no in

response to clarifications but this is not supported with Dragon NaturallySpeak-
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ing. With multimodal support, users will be able to interact more effectively

with the system, having the option of using the GUI to enter phrases that cannot

be recognized by the speech software. In the user study, we noticed that some

users occasionally used noun-noun compounds to refer to domain objects such

as “health check appointment”. Allowing the use of such patterns can introduce

more errors as it is more likely that the noun phrase title of the appointment

is misrecognized by the speech recognizer. In addition, most users rarely used

pronominal references to refer to objects and people. Pronouns such as “him”,

“them”, “it”, etc., and ordinal numbers such as “first”, “second”, etc., were

recognized correctly for all users almost all of the time. Thus they could make

use of the conversational context to avoid using/repeating proper names and

difficult phrases. We also observed that as the users became more familiar and

confident with the system, they interacted more naturally, and started using

more references.

Another issue with the dialogue model is tracking the conversational con-

text. If users do not pay enough attention to the system’s responses, they may

not notice that the context has been changed, moving forward according to the

system’s interpretation of the user’s recent utterance. It might be possible that

these changes are unexpected to the user due to significant speech recognition

errors. As a result, the user and the system have different interpretations of the

current context, which is likely to cause further misrecognition of the user’s in-

tentions and more system misunderstanding of the user’s current context. This

phenomenon is also common in human-human communication. In the case of

the SPA, a solution could be to provide more information in the system’s con-

firmation and clarification requests so that users can recognize that the context

has been changed. Our observation from the evaluation was that if users detect

differences between their and the system’s context, most of them resolve the

situation by introducing a new request (possibly restarting the task) to switch

to the correct context.
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Our experience was that some users were more flexible in interacting with

the system, in being able to think of different ways to recover from errors. We

allowed users to see the speech recognition output through a text area on the

PDA screen. Some users deliberately altered their language patterns to over-

come speech recognition errors. For example, a user with a speech impediment

changed from using the verb “reschedule” 4 to “move”. Another user, who had

a problem with “e-mail”, after a while changed to use “message”. In addition,

although the users were given roughly same amount of training, some of them

gained better knowledge of what the system can and cannot do than others,

regardless of whether or not they had an IT background. Apparently, users

with an IT background performed the tasks slightly better but not significantly

better. However, our observations suggested that the user’s everyday activity

strongly affected their preferred way of talking to and interacting with the sys-

tem. For instance, a subject who has to deal with a lot of people every day

talked to the SPA in a polite manner, using complex utterances. Another fe-

male subject, a secretarial assistant whose job requires careful management of

appointments, tended to use temporal expressions in referring to appointments.

In contrast, an IT male student gave the system short requests, and moreover,

used pronouns quite often.

6.5 Overall Remarks

In this user study, we were interested in evaluating the SPA’s dialogue model.

Although speech recognition using Dragon NaturallySpeaking was not perfect

(average concept-word recognition accuracy of 86.94%), the evaluation results

gave a high task completion rate (88.3%) and user scores (10.1/12). The subjec-

tive evaluation results also showed that the users are satisfied with the overall

performance of the system. These results demonstrated the effectiveness and

robustness of dialogue management in the SPA, providing evidence that our

4For this user, “reschedule” was always recognized as “rees scheduler”.
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agent-based approach allows the development of robust and sophisticated spo-

ken dialogue systems. However, note that this user study was carried out in a

quiet environment. Thus future work could be to evaluate the system in dif-

ferent settings. In addition, evaluation of the system with multimodal support

could be another area for future work.
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Conclusion

The research in this thesis concerns dialogue management in personal assistant

applications that allow user-system interaction through a spoken natural lan-

guage dialogue. Our application, the Smart Personal Assistant (SPA), is an

integrated collection of personal assistants, each specializing in a particular task

domain. Users can interact with the SPA through a variety of devices such as

PDAs, desktops, etc. Spoken dialogue systems are particularly useful for mobile

devices because effective interaction using only the traditional GUI is not pos-

sible due to the device’s limited I/O and processing capabilities. Our current

implementation of the SPA provides users with remote access to their e-mail and

calendar, allowing them to perform common e-mail and calendar tasks using a

speech interface and a graphical user interface on PDAs. The SPA was imple-

mented as a multi-agent system, in which dialogue management is performed by

the Dialogue Manager agent, acting as the central component for coordinating

the task assistants as well as maintaining a coherent spoken dialogue with the

user.

We proposed an agent-based approach to dialogue management which meets

the requirements for developing multi-domain spoken dialogue systems such as

the SPA. Most existing methods for dialogue management are suitable for simple

and highly contrained tasks. Other work on modelling dialogue for complex task

domains, however, requires a very complex domain model for problem solving,

which is unneccessarily complicated for the SPA. Spoken dialogue in complex

domains such as in the case of the SPA requires a high level of sophistication,

which is mainly user-driven, but system initiative is also essential for clarifying

195



user requests or notifying the user of important events. Dialogue management

in the SPA exhibits agent-like behaviour, requiring some degree of reactiveness

in order to fulfil the user’s requests, and at the same time, pro-activeness such

as for error recovery.

Our approach makes use of a BDI agent architecture for dialogue modelling

and control. In addition, existing work in speech act theory and discourse anal-

ysis has been applied in modelling dialogue interaction, using the concepts of

conversational acts and discourse segment intentions. We consider dialogue in-

teraction as rational action, the production of goal-directed behaviour. Thus

in our approach, the dialogue model is explicitly encoded in the Dialogue Man-

ager’s agent plans, each specifying the agent’s actions for handling a partic-

ular discourse-level or domain-level dialogue goal. The dialogue control flow

is derived automatically as the result of the BDI interpretation cycle. The

conversational context, the domain-specific knowledge and the user model are

maintained in the agent’s internal beliefs. We have implemented the Dialogue

Manager agent of the SPA using the JACK Intelligent AgentsTM a Java-based

agent development framework derived from a BDI agent architecture.

The proposed BDI approach allows a high level of abstraction in designing

and developing the dialogue model. The dialogue plans are complex but modular

units, each associated with a communicative goal or dialogue aspect. Although

individual plans might be complex, they are highly abstracted and the control

flow is derived simply and automatically by defining the appropriate triggers

for the plans. Our approach preserves the system modularity at the level of

plans, allowing domain-independent discourse-level plans to be reused in other

domains. In addition, plan-level modularity also facilitates the addition of new

plans. This enables the reuse and extension of the dialogue model in other

applications and the integration of new back-end assistants into the existing

system. By reusing the initial implementation of the SPA, which had only the

e-mail task assistant, we successfully extended the dialogue model to support

an additional calendar management domain.
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7.1 Future Research

Using our agent-based approach, the problem of achieving dialogue adapta-

tion can be considered the problem of learning which plan to select and execute

according to the current context. We proposed in this research a general method

for incorporating learning into the BDI agent architecture. The learning process

is done as the agent’s meta-reasoning for learning plan selection strategies. We

extended the SPA’s Dialogue Manager to produce a plan-based dialogue agent

capable of generate adaptive dialogue responses according to the conversational

context and the user’s device and preferences.

The strong potential of our agent-based approach for developing multi-domain

personal assistant applications has been clearly demonstrated through the eval-

uation results, which shows a high task completion rate. We have carried out

user studies of the SPA with the intention of evaluating the robustness and ef-

fectiveness of the SPA’s dialogue model. Although speech recognition accuracy

was not perfect, the system was able to recover from speech recognition errors,

allowing the users to complete most of the evaluation tasks successfully. In ad-

dition, most users were satisfied with the overall performance of the system and

indicated their willingness to use such a system in future.

7.1 Future Research

There are a number of areas of improvement for the current SPA system that

might be undertaken as future work. In Chapter 5, we described our work in

integrating learning into the agent-based dialogue model for achieving dialogue

adaptation. However, we have only considered one learning problem, learning

to generate adaptive system responses. There are other kinds of adaptivity that

can improve the system usability, such as learning adaptive dialogue strategies

according to the conversational context and the user’s preferences. In addition,

learning the user’s language usage patterns, such as the use of references (refer-

ring to people using nicknames, etc.), can help in recognizing the user’s requests.

Our current method to obtain the user’s preferences is to explicitly ask him/her
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7.1 Future Research

for the most preferred option. However, the user’s preferences might be learned

by considering the user’s course of interaction.

Our evaluation results of the SPA showed that speech recognition errors can

cause misinterpretation of the user’s requests, and as a result, the user’s misun-

derstanding about the current context. This problem can be avoided by better

dialogue strategies, such as providing clearer clarification and confirmation re-

quests. In addition, the dialogue model can be improved to be able to handle

more commonly used language patterns. This can be done by improving the

domain-specific vocabulary and domain-level dialogue plans. In Chapter 6, we

discussed several solutions to overcoming common speech recognition problems,

particularly for the recognition of proper names, including the use of a phonetic

dictionary, biasing the recognition towards names in the user’s address book,

allowing the user to add names to the vocabulary of the speech recognition sys-

tem dynamically, and allowing multimodal input for the user to select proper

names from the graphical interface.

Finally, our work also suggests possibilities for future research in dialogue

management. Current trends show an increased use of mobile devices for differ-

ent types of services such as mobile banking, information seeking, etc. Spoken

dialogue interaction would be useful for these applications in order to improve

usability. The dialogue model of the SPA could be reused and extended for

use in these other domains. In addition, there are other potential dialogue ap-

plications which require multimodal support, such as vehicle control, direction

and map services, etc. Thus multimodal dialogue management using our agent-

based approach could be another future research problem. Moreover, supporting

collaboration through a “team” of Smart Personal Assistants could also be an

interesting research area that has not been given much consideration. Lastly,

our method for incorporating learning into the BDI agent architecture can be

applied to the general problem of learning in BDI agents.
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Dialogue Management

A.1 Example ProBot Scripts

-- recognizing utterance type

<wh-type> ==> [

:Wh Question

#assert(type(’:WH_QUESTION’))

#goto(type_supplement, ^0)

]

<yesno-type> ==> [

:YesNo Question

#assert(type(’:YESNO_QUESTION’))

#goto(type_supplement, ^0)

]

<request-type> ==> [

:Request

#assert(type(’:IMPERATIVE’))

#append(subject(’you’))

#goto(predicate, ^0)

]

<noun-phrase> ==> [

:Declaration 1

#assert(type(’:DECLARATION’))

#append(subject(^1))

#print_result([])

]

<aff> ==> [

:Declaration 2

#assert(type(’:DECLARATION’))

#assert(type_supplement(’AFF’))

#print_result([])

]
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A.1 Example ProBot Scripts

<neg> ==> [

:Declaration 3

#assert(type(’:DECLARATION’))

#assert(type_supplement(’NEG’))

#print_result([])

]

-- temporal expressions

day-type-phrase :: {the next <day-type> | the following <day-type> |

the last <day-type> | the previous <day-type> | previous <day-type>

|this <day-type> | next <day-type> | last <day-type> | <day-type>};

hour-type :: { hour | minute | second | pm | am | o’clock };

hour-type-phrase :: { <cardinal-numeral> <cardinal-numeral>

<hour-type> | at <cardinal-numeral> <hour-type> |

<cardinal-numeral> <hour-type> | <cardinal-numeral>

<cardinal-numeral> | at <cardinal-numeral> };

date-type-phrase :: { <ordinal-numeral> | the <ordinal-numeral> };

other-time-type :: { now | right now | later | soon };

month-type :: { Januaray | February | March | April | May | June |

July | August | September | October | November | December | month |

months };

month-type-phrase :: {<ordinal-numeral> <month-type> | <month-type>};

time-phrase1 :: { <day-type-phrase> | <date-type-phrase> |

<hour-type-phrase> | <month-type-phrase> | <other-time-type> };

time-phrase2 :: { at <time-phrase1> | on <time-phrase1> };

time-phrase :: { <time-phrase2> <time-phrase> | <time-phrase1>

<time-phrase> | <time-phrase1> | <time-phrase2> };

appt-time-phrase :: { to <time-phrase> | for <time-phrase> |

before <time-phrase> | after <time-phrase> | <time-phrase>

forward~ | forward <time-phrase> | <time-phrase> backward~ |

back <time-phrase> | backward <time-phrase> | <time-phrase> };

-- recognizing temporal expression for calendar domain

* <appt-time-phrase> ==> [

#append(complement(^2))

#append(direct_object(^1))

#print_result([])

]
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<appt-time-phrase> <noun-phrase> * ==> [

#append(complement(^1))

#append(direct_object(^2))

#goto(indirect_object,^3)

]

* <appt-time-phrase> <noun-phrase> * ==> [

#append(complement(^2))

#append(direct_object(^1))

#append(indirect_object(^3))

#goto(indirect_object,^4)

]

* <appt-time-phrase> * ==> [

#append(complement(^2))

#append(direct_object(^1))

#goto(indirect_object,^3)

]

<appt-time-phrase> #have(direct_object) ==> [

#append(complement(^1))

#print_result([])

]

<appt-time-phrase> * #have(direct_object) ==> [

#append(complement(^1))

#goto(indirect_object, ^2)

]

<appt-time-phrase> ==> [

#append(complement(^1))

#print_result([])

]

<appt-time-phrase> * #have(direct_object) ==> [

#append(indirect_object(^2))

#append(complement(^1))

#print_result([])

]

<appt-time-phrase> * about * ==> [

#append(direct_object(^2))

#append(complement(^1))

#goto(indirect_object, [’about’| ^3])

]
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Dialogue Adaptation

B.1 Alkemy Learning Problem Specification

%% -- Data constructors for Email domain

-- the user’s current device

PDA, DESKTOP : Device ;

-- the user’s current modality

SPEECH, TEXT, NONE : Mode ;

-- the possible e-mail tasks

SEARCH, FIND, READ, SHOW, SUMMARIZE, REPLY, COMPOSE, SEND, FORWARD,

ARCHIVE, DELETE, NOTIFY : Task ;

-- the priority of the e-mail message

LOW, HIGH, NORMAL : Priority ;

-- the full sender name

Sender = String ;

-- length of the email (number of lines)

Length = Int ;

-- the folder name (virtual folder)

Folder = String ;

-- each message represented by its sender, length, folder and priority

Email = Sender * Length * Folder * Priority ;

-- possible Response Generation plans

ReturnResponse, ReturnMessageContent, ReturnMessageSummary,

ReturnMessageList, ReturnSubList, ReturnMessagesSortedBySender,

ReturnMessagesSortedByFolder, ReturnMessagesSortedByPriority : Plan ;

-- each individual case contains information about the device,

-- task, modality, the result set of e-mail messages and

-- the plan name

Individual = Device * Task * Mode * (Set Email) * Plan ;
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-- classes to be learned

True, False : Class ;

-- learn which Response Generation plan to be used

LEARN ResponsePlan : Individual -> Class ;

%% -- Initial training examples

ResponsePlan(PDA, SEARCH, SPEECH, {}, ReturnResponse) = True ;

ResponsePlan(PDA, SEARCH, SPEECH, {}, ReturnMessageContent) = False ;

ResponsePlan(PDA, SEARCH, SPEECH, {}, ReturnMessageSummary) = False ;

%% -- Transformations

-- projections to get information about the device, task, modality,

-- e-mail set and the plan name

projDevice : Individual -> Device ;

projDevice = project(0) ;

projTask : Individual -> Task ;

projTask = project(1) ;

projMode : Individual -> Mode ;

projMode = project(2) ;

projEmails : Individual -> (Set Email) ;

projEmails = project(3) ;

projPlan : Individual -> Plan ;

projPlan = project(4) ;

-- projections for the e-mail set to get sender set, folder set,

-- priority set (distinct priority values), priority list

projSetSender : (Set Email) -> (Set String) ;

projSetSender = projectSet(0) ;

projSetFolder : (Set Email) -> (Set String) ;

projSetFolder = projectSet(2) ;

projSetPriority : (Set Email) -> (Set Priority) ;

projSetPriority = projectSet(3) ;

projListPriority : (Set Email) -> (List Priority) ;

projListPriority = projectList(3) ;

-- projections for each e-mail message

projSender : Email -> String ;

projSender = project(0) ;
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projLength : Email -> Int ;

projLength = project(1) ;

projFolder : Email -> String ;

projFolder = project(2) ;

projPriority : Email -> Priority ;

projPriority = project(3) ;

-- calculate size of set

emailTrue : Email -> Bool ;

emailTrue = top() ;

numOfEmails : (Email -> Bool) -> (Set Email) -> Int ;

numOfEmails = domcard() ;

folderTrue : Folder -> Bool ;

folderTrue = top() ;

-- number comparison transformations

eq0 : Int -> Bool ;

eq0 = equality(0) ;

eq1 : Int -> Bool ;

eq1 = equality(1) ;

gt1 : Int -> Bool ;

gt1 = gt(1) ;

lt5 : Int -> Bool ;

lt5 = lt(5) ;

lt15 : Int -> Bool ;

lt15 = lt(15) ;

lt30 : Int -> Bool ;

lt30 = lt(30) ;

lt50 : Int -> Bool ;

lt50 = lt(50) ;

gte50 : Int -> Bool ;

gte50 = gte(50) ;

-- if then else

ite : (alpha -> Bool) -> (alpha -> Bool) -> (alpha -> Bool) ->

alpha -> Bool ;

ite = ite() :: symmetric;
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-- conjunctions

and2 : (Individual -> Bool) -> (Individual -> Bool) ->

Individual -> Bool ;

and2 = conjunction(2) ;

and3 : (Individual -> Bool) -> (Individual -> Bool) ->

(Individual -> Bool) -> Individual -> Bool ;

and3 = conjunction(3) ;

or2 : (Individual -> Bool) -> (Individual -> Bool) ->

Individual -> Bool ;

or2 = disjunction(2) ;

not : Bool -> Bool ;

not = negation() ;

true : alpha -> Bool ;

true = top() ;

none : Individual -> Bool ;

none = top() ;

bottom : Individual -> Bool ;

bottom = bottom() ;

-- check if some e-mail message exists

setEmailExists1 : (Email -> Bool) -> (Set Email) -> Bool ;

setEmailExists1 = setexists(1) ;

setDomCard : (alpha -> Bool) -> (Set alpha) -> Int ;

setDomCard = domcard() ;

listDomCard : (alpha -> Bool) -> (List alpha) -> Int ;

listDomCard = domcard() ;

oneEmail : alpha -> Bool ;

oneEmail = top() ;

moreThanOneEmail : alpha -> Bool ;

moreThanOneEmail = top() ;

-- default top

top : alpha -> Bool ;

top = top() ;

%% -- Rewrites

top >-> projTask . top ; -- the task

top >-> projDevice . top ; -- the device
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top >-> projMode . top ; -- the mode

top >-> and2 (projEmails . numOfEmails (emailTrue) . eq0) (top) ;

top >-> and2 (projEmails . numOfEmails (emailTrue) . eq1)

(projEmails . setEmailExists1 (projLength . gte50)) ;

top >-> and2 (projEmails.numOfEmails (emailTrue).eq1)

(projEmails.setEmailExists1(projPriority.eqPriorityHIGH)) ;

top >-> projSetPriority . setDomCard (true) . top ;

top >-> projSetFolder . setDomCard (true) . top ;

top >-> projSetSender . setDomCard (true) . top ;

top >-> projEmails . numOfEmails (emailTrue) . top ;

top >-> projPlan . top ; -- the plan used

top >-> eqDevicePDA ; -- the device

top >-> eqDeviceDESKTOP ;

top >-> eqTaskSEARCH ; -- the task

top >-> eqTaskFIND ;

top >-> eqTaskREAD ;

top >-> eqTaskSHOW ;

top >-> eqTaskSUMMARIZE ;

top >-> eqTaskREPLY ;

top >-> eqTaskCOMPOSE ;

top >-> eqTaskSEND ;

top >-> eqTaskFORWARD ;

top >-> eqTaskARCHIVE ;

top >-> eqTaskDELETE ;

top >-> eqTaskNOTIFY ;

top >-> eqModeSPEECH ; -- the modality

top >-> eqModeNONE ;

top >-> eqModeTEXT ;

top >-> eqPriorityHIGH ; -- the message priority

top >-> eqPriorityLOW ;

top >-> eqPriorityNORMAL ;

top >-> eqPlanReturnMessageContent ; -- the plan name

top >-> eqPlanReturnMessageSummary;

top >-> eqPlanReturnMessageList ;

top >-> eqPlanReturnMessagesSortedBySender ;

top >-> eqPlanReturnMessagesSortedByFolder ;

top >-> eqPlanReturnMessagesSortedByPriority ;

top >-> eqPlanReturnSubList ;

top >-> eqPlanReturnResponse ;
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top >-> gte50 ; -- numeric comparison

top >-> lt50 ;

top >-> lt30 ;

top >-> lt15 ;

top >-> lt5 ;

top >-> gt1 ;

top >-> eq1 ;

top >-> eq0 ;

lt50 >-> lt30 ;

lt30 >-> lt15 ;

lt15 >-> lt5 ;

lt5 >-> eq1 ;

lt5 >-> eq0 ;

gt1 >-> gte50 ;

%%

B.2 Alkemy Training Examples

-- Initial examples

ResponsePlan (PDA, SEARCH, SPEECH, {}, ReturnResponse) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {}, ReturnMessageList) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {}, ReturnMessageContent) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {}, ReturnMessageSummary) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {}, ReturnSubList) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {},

ReturnMessagesSortedByFolder) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {},

ReturnMessagesSortedBySender) = True ;

ResponsePlan (PDA, SEARCH, SPEECH, {},

ReturnMessagesSortedByPriority) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {}, ReturnResponse) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {}, ReturnMessageList) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {}, ReturnMessageContent) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {}, ReturnMessageSummary) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {}, ReturnSubList) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {},

ReturnMessagesSortedByFolder) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {},

ReturnMessagesSortedBySender) = True ;

ResponsePlan (PDA, SEARCH, TEXT, {},

ReturnMessagesSortedByPriority) = True ;

-- If there are more than 1 message in the result

-- show a list of the message headers

ResponsePlan (PDA, SHOW, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL),
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("Paul Compton", 8, "Research", NORMAL)},

ReturnMessageList) = True ;

ResponsePlan (PDA, SHOW, TEXT,

{("Wayne Wobcke", 60, "Inbox", NORMAL),

("Paul Compton", 8, "Research", NORMAL)},

ReturnMessageList) = True ;

-- If user asked to summarize then show the message’s summary

ResponsePlan (PDA, SUMMARIZE, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageSummary) = True ;

ResponsePlan (PDA, SUMMARIZE, TEXT,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageSummary) = True ;

-- Collected training examples

ResponsePlan (PDA, SEARCH, SPEECH,

{("Anh Nguyen", 74, "Inbox", NORMAL)},

ReturnMessageContent) = False ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Anh Nguyen", 74, "Inbox", NORMAL)},

ReturnMessageSummary) = True ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageContent) = False ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnResponse) = False ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL)},

ReturnMessageSummary) = True ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Paul Compton", 24, "Inbox", HIGH)},

ReturnMessageContent) = True ;

ResponsePlan (PDA, SEARCH, SPEECH,

{("Paul Compton", 24, "Inbox", HIGH)},

ReturnMessageSummary) = False ;

ResponsePlan (PDA, FIND, SPEECH,

{("John Lloyd",77, "CRC", HIGH),

("John Lloyd",32, "CRC", HIGH)}, ReturnMessageList) = True ;
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ResponsePlan (PDA, FIND, SPEECH,

{("John Lloyd",77, "CRC", HIGH), ("John Lloyd",32, "CRC", HIGH)},

ReturnMessagesSortedBySender) = False ;

ResponsePlan (PDA, FIND, SPEECH,

{("John Lloyd",77, "CRC", HIGH), ("John Lloyd",32, "CRC", HIGH)},

ReturnMessagesSortedByPriority) = False ;

ResponsePlan (PDA, FIND, SPEECH,

{("John Lloyd",77, "CRC", HIGH), ("John Lloyd",32, "CRC", HIGH)},

ReturnMessagesSortedByFolder) = False ;

ResponsePlan (PDA, FIND, SPEECH, {("John Lloyd",77, "CRC", HIGH),

("John Lloyd",32, "CRC", HIGH)}, ReturnResponse) = False ;

ResponsePlan (PDA, SHOW, SPEECH, {("John Lloyd",77, "CRC", HIGH)},

ReturnMessageContent) = False ;

ResponsePlan (PDA, SHOW, SPEECH, {("John Lloyd",77, "CRC", HIGH)},

ReturnMessageSummary) = True ;

ResponsePlan (PDA, SHOW, SPEECH, {("John Lloyd",77, "CRC", HIGH)},

ReturnResponse) = False ;

ResponsePlan (PDA, SHOW, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL),

("Paul Compton", 8, "Inbox", NORMAL),

("Charles Gray", 12, "Inbox", LOW),

("Amir Michail", 10, "Inbox", NORMAL),

("Harvey Tuch", 15, "Inbox", NORMAL),

("Ken Robinson", 6, "Inbox", HIGH),

("John Davis", 18, "Inbox", HIGH),

("Ralf Huuck", 34, "Inbox", HIGH),

("Kate Scully", 8, "Inbox", HIGH),

("Patrick Caldon", 28, "Inbox", HIGH),

("Janet Song", 38, "Inbox", NORMAL)}, ReturnMessageList) = True ;

ResponsePlan (PDA, SHOW, SPEECH,

{("Wayne Wobcke", 60, "Inbox", NORMAL),

("Paul Compton", 8, "Inbox", NORMAL),

("Charles Gray", 12, "Inbox", LOW),

("Amir Michail", 10, "Inbox", NORMAL),

("Harvey Tuch", 15, "Inbox", NORMAL),

("Ken Robinson", 6, "Inbox", HIGH),

("John Davis", 18, "Inbox", HIGH),

("Ralf Huuck", 34, "Inbox", HIGH),

("Kate Scully", 8, "Inbox", HIGH),

("Patrick Caldon", 28, "Inbox", HIGH),

("Janet Song", 38, "Inbox", NORMAL)}, ReturnMessageList) = True ;
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Evaluation

C.1 Training Tasks

1. Find all e-mail from Norman. Move it to the ’Friends’ folder.

2. Show me my appointments for tomorrow.

3. Do I have a meeting today at 4 pm? Delete it.

4. Schedule a meeting for Friday. Move it to next Monday.

5. Do I have any appointments about conference paper.

6. Do I have any messages from Mark today? Make an appointment with
him.

C.2 User Questionnaire

1. It was easy to learn how to use the SPA.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

2. It was easy for me to navigate through the SPA.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

3. Feedback from the SPA was clear and easy to understand.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree
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C.2 User Questionnaire

4. The SPA worked the way I expected it to.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

Could you please briefly tell us in what ways the SPA did or didn’t work
the way you expected it to?

5. I felt the SPA understood what I asked it to do.

1 2 3 4 5 6
none of a little of some of a lot of most of all of
the time the time the time the time the time the time

6. It took a lot of effort to remember how to perform tasks.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

7. It was easy for me to ask questions and make requests in a way the SPA
could understand.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

8. The SPA gave me reasonable responses to my questions and requests.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

9. The SPA gave appropriate responses when it didn’t understand what I
said.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

10. It was easy to recover from any mistakes I made while using the SPA.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree
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11. Using the SPA is frustrating.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

If you agreed with the previous statement, could you please tell us in
what ways the SPA was frustrating to use?

12. The SPA responded to my questions and requests in a timely manner.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

13. The layout of the screens in the e-mail program were clear and easy to
understand.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

14. It was easy to find the e-mails I wanted.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

15. It was easy to delete e-mails.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

16. It was easy to move e-mails.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

17. It was easy to move between my e-mail and calendar in the SPA.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree
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18. The layout of the screens in the calendar program were clear and easy to
understand.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

19. It was easy to make appointments.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

20. It was easy to delete appointments in the calendar.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

21. It was easy to change appointments in the calendar.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

22. I was happy about the overall performance of the SPA.

1 2 3 4 5
very unhappy neither happy happy very

unhappy nor unhappy agree

Could you please tell us why you were or were not happy with the overall
performance of the SPA?

23. I would use a system like the SPA in future.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

Do you have any other comments to make on what you liked about the SPA, or
how we could improve the system? If so please feel free to include them here.
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C.3 Utterance-Level Performance for Each User

C.3 Utterance-Level Performance for Each User

Subject 1 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 49

Utterances with
All Concepts
Recognized

35
(71.43%)

Unexpected
Responses

20 6 3 11 (1 context,
4 object
determination,
1 reference,
1 attribute
extraction,
3 dialogue
strategies,
1 clarification)

Inappropriate
Responses

10 3 7 (1 context,
4 object
determination,
1 reference,
1 attribute
extraction)

(a) Subject 1

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

Subject 2 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 62

Utterances With
All Concepts
Recognized

41
(66.13%)

Unexpected
Responses

22 3 16 3 (1 reference,
1 object
determination,
1 temporal)

Inappropriate
Responses

4 1 3 (1 reference,
1 object
determination,
1 temporal)

(b) Subject 2

Subject 3 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 39

Utterances With
All Concepts
Recognized

26
(66.67%)

Unexpected
Responses

9 8 1 attribute
extraction

Inappropriate
Responses

3 1 1 attribute
extraction

1

(c) Subject 3

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

Subject 4 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 48

Utterances With
All Concepts
Recognized

37
(77.08%)

Unexpected
Responses

13 6 4 3 (1 semantic
analysis, 2 task
recognition)

Inappropriate
Responses

7 4 3 (1 semantic
analysis, 2 task
recognition)

(d) Subject 4

Subject 5 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 49

Utterances With
All Concepts
Recognized

31
(63.27%)

Unexpected
Responses

16 1 12 3 (1 reference,
1 temporal,
1 object
determination)

Inappropriate
Responses

3 3 (1 reference,
1 temporal,
1 object
determination)

(e) Subject 5

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

Subject 6 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 53

Utterances With
All Concepts
Recognized

39
(73.58%)

Unexpected
Responses

20 10 3 7 (2 object
determination,
2 temporal,
1 attribute
extraction,
1 task
recognition,
1 dialogue
strategies)

Inappropriate
Responses

10 4 6 (2 object
determination,
2 temporal,
1 attribute
extraction,
1 task
recognition)

(f) Subject 6

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

Subject 7 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 39

Utterances With
All Concepts
Recognized

32
(82.05%)

Unexpected
Responses

9 1 2 6 (4 object
determination,
1 semantic
analysis,
1 attribute
extraction)

Inappropriate
Responses

7 1 6 (4 object
determination,
1 semantic
analysis,
1 attribute
extraction)

(g) Subject 7

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

Subject 8 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 107

Utterances With
All Concepts
Recognized

62
(57.94%)

Unexpected
Responses

42 26 8 8 (1 context,
3 task
recognition,
2 attribute
extraction,
1 reference,
1 semantic
analysis)

Inappropriate
Responses

25 9 16 (1 context,
3 task
recognition,
9 attribute ex-
traction,
2 semantic
analysis,
1 temporal)

(h) Subject 8

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

Subject 9 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 73

Utterances With
All Concepts
Recognized

43
(58.90%)

Unexpected
Responses

30 1 21 5 3 (1 temporal,
2 attribute
extraction)

Inappropriate
Responses

11 5 6 (1 temporal,
4 attribute
extraction,
1 object
determination)

(i) Subject 9

Subject 10 Number of Source of Problem

Utterances User Speech Parser Dialogue Back-end

Total 50

Utterances With
All Concepts
Recognized

28
(56.00%)

Unexpected
Responses

21 1 15 2 3 (1 object
determination,
1 reference,
1 task
recognition)

Inappropriate
Responses

7 3 4 (2 object
determination,
1 reference,
1 task
recognition)

(j) Subject 10

Table C.2: Performance at Utterance Level
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C.3 Utterance-Level Performance for Each User

����������

User

Task

1 2 3 4 5 6 7 8 9 10 Total
Per
Task

1 E-mail
Search

3 1 3 7

2 Appointment
Search

0

3 E-mail
Search

1 4 2 7

4 Folder
Search

2 1 1 1 5

5 Appointment
Schedule

1 2 3 6

6 Appointment
Search,
Reschedule

4 1 1 3 3 9 2 23

7 Appointment
Search,
Deletion

6 4 5 1 16

8 Complex
E-mail
Search

2 10 3 1 16

9 Appointment
Search

0

10 E-mail
Search,
Deletion

1 4 5

11 E-mail
Search,
Archive

1 3 1 1 2 8

12 E-mail and
Calendar
Combination

7 2 9 4 22

Total
Per User

20 18 3 4 15 8 8 21 10 8 115

Number of
Responses

49 62 39 48 49 53 39 107 73 50 569

Table C.3: Number of Clarification Requests by the Dialogue Manager
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