
A HOLISTIC PARADIGM FOR LARGE SCALE SCHEMA MATCHING

BY

BIN HE

B.S., Peking University, 1998
M.S. Peking University, 2000

M.S., University of Illinois, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

©2006 by Bin He. All rights reserved.

Abstract

Schema matching is a critical problem for integrating heterogeneous information sources. Traditionally,

the problem of matching multiple schemas has essentially relied on finding pairwise attribute corre-

spondences in isolation. In contrast, this thesis proposes a new matching paradigm,holistic schema

matching, to match many schemas at the same time and find all matchings at once. By handling a set of

schemas together, we can explore theircontextinformation that reflects the semantic correspondences

among attributes. Such information is not available when schemas are matched only in pairs. As the

realizations of holistic schema matching, we develop two approaches in sequence. To begin with, we

develop theMGS framework, which finds simple 1:1 matchings by viewing schema matching as hidden

model discovery. Then, to deal with complex matchings, we further develop theDCM framework by

abstracting schema matching as correlation mining. Further, to automate the entire matching process,

we incorporate theDCM framework with automatically extracted interfaces and find that the inevitable

errors in automatic interface extraction may significantly affect the matching result. To make theDCM

framework robust against such “noisy” schemas, we propose to integrate it with anensembleapproach

by randomizing the schema data into multipleDCM matchers and aggregating their ranked results by

taking majority voting. Last, as our matching algorithms require large scale schemas in the same do-

main (e.g., Books and Airfares) as input, we develop anobject-focusedcrawler for effectively collecting

query interfaces and amodel-differentiationbased clustering approach to clustering schemas into their

domain hierarchy.

iii

Table of Contents

Chapter

List of Figures . xi

1 Introduction . 1

2 Global Evaluation: Matching as Hidden Model Discovery. 7

2.1 Motivation . 7

2.1.1 Deep Web Observations . 8

2.1.2 Toward Hidden Model Discovery . 10

2.2 TheMGS Framework . 10

2.3 Synonym-Attribute Discovery . 12

2.3.1 Hypothesis Modeling . 12

2.3.2 Hypothesis Generation . 17

2.3.3 Hypothesis Selection . 22

2.3.4 Dealing With the Real World . 23

2.3.5 Putting It All Together: AlgorithmMGSac . 28

2.4 Case Studies . 30

iv

2.4.1 Experiment Setup . 30

2.4.2 Metrics . 31

2.4.3 Experimental Results . 33

2.5 Conclusion . 35

3 Local Evaluation: Matching as Correlation Mining. 37

3.1 Motivation: From Schema Matching to Correlation Mining 38

3.2 Complex matching as correlation mining . 40

3.2.1 Matching Discovery: Dual Correlation Mining 43

3.2.2 Matching Construction: Majority-based Ranking and Constraint-based Selection 44

3.3 Correlation Measure . 48

3.4 Data Preparation . 53

3.4.1 Type Recognition . 54

3.4.2 Syntactic Merging . 55

3.5 Experiments . 56

3.5.1 Metrics . 57

3.5.2 Experimental Results . 59

3.6 Conclusion . 65

4 Dealing with Noise: the EnsembleDCM Framework . 66

4.1 The EnsembleDCM Framework . 66

4.2 Analytical Modeling . 70

4.3 Sampling and Trials: Configuration . 76

4.4 Voting: Rank Aggregation . 80

v

4.5 Experiments . 85

4.6 Conclusion . 94

5 Automatic Discovery of Query Interfaces. 96

5.1 Motivation: Object-Focused Crawling . 97

5.2 System Architecture . 100

5.2.1 Motivation: Structure Locality . 100

5.2.2 Methodology: Structure-Driven Crawling . 103

5.2.3 Implementation: Architectural Design . 107

5.3 In-Site Site Searcher . 111

5.3.1 Observations and Patterns . 112

5.3.2 Strategy and Implementation . 113

5.4 In-Site Form Searcher . 116

5.4.1 Observations and Patterns . 116

5.4.2 Strategy and Implementation . 117

5.5 Experiments . 121

5.6 Conclusion . 130

6 Clustering Query Schemas into a Domain Hierarchy. 132

6.1 Motivation . 133

6.2 MD-Based Clustering . 134

6.2.1 Hypothesis Modeling . 136

6.2.2 Model-Differentiation: A New Objective Function 140

6.2.3 General HAC Algorithm and MD-Based Similarity Measure 143

vi

6.3 Clustering Query Schemas: AlgorithmMDhac . 144

6.3.1 Data Grouping . 146

6.3.2 Group Selection . 148

6.3.3 Loner Handling . 149

6.3.4 Time Complexity . 150

6.4 Experiments . 150

6.4.1 Experiment Setup . 151

6.4.2 Experimental Results . 152

6.5 Conclusion . 154

7 Related Work . 156

7.1 Schema Matching . 156

7.2 Web Crawling . 160

7.3 Source Clustering . 162

8 Conclusion . 164

Bibliography . 167

vii

List of Figures

1.1 The holistic schema matching paradigm. 3

2.1 Statistics of sources studied. 8

2.2 Analyzing schema vocabularies of deep Web sources. 8

2.3 An example of schema modelMB. 15

2.4 An example concept network. 20

2.5 AlgorithmMGSac. 30

2.6 Process of discovering schema model for the Books domain. 31

2.7 Vocabularies of the four domains. 34

2.8 Experimental results for Movies, Music Records and Automobiles. 34

3.1 Complex matching as correlation mining. 39

3.2 Algorithms for Mining Complex Matchings. 42

3.3 AlgorithmMATCHINGSELECTION. 45

3.4 Contingency table for test of correlation. 48

3.5 Attribute frequencies in the Books domain. 49

3.6 Examples of the three problems. 50

3.7 The compatibility of types. 55

viii

3.8 Running AlgorithmsN-ARYSCHEMAMATCHING and MATCHINGSELECTION on the

Books domain. 59

3.9 Experimental results for Airfares and Movies. 59

3.10 Target accuracy of 8 domains. 60

3.11 The effectiveness of reducing false matchings in the matching selection step. 62

3.12 Target accuracy of the 8 domains without data preprocessing. 63

3.13 Comparison ofH-measure andJaccard. 64

4.1 From the baseDCM framework to the ensembleDCM framework. 70

4.2 The binomial distribution ofOM, with T = 99andαM(S) = 0.55. 75

4.3 The insensitivity ofSonT. 79

4.4 An example of incorrectly extracted query interfaces. 86

4.5 The comparison of target accuracy on Books and Airfares. 87

4.6 The target precision with 100 executions on two domains (Borda’s aggregation). 89

4.7 The target recall with 100 executions on two domains (Borda’s aggregation). 89

4.8 The target precision with 100 executions on two domains (FK aggregation). 90

4.9 The target recall with 100 executions on two domains (FK aggregation). 90

4.10 The target accuracy under various sampling sizes (Borda’s aggregation). 92

4.11 The target accuracy under various sampling sizes (FK aggregation). 93

4.12 The target accuracy under various number of trials (Borda’s aggregation). 94

4.13 The target accuracy under various number of trials (FK aggregation). 94

5.1 Proportion of pages, query forms, and IPs over depth. 100

5.2 Page-based view vs. site-based view. 100

ix

5.3 Normal distribution of the mean yields. 103

5.4 System architecture of the Web Form Crawler. 107

5.5 AlgorithmGENERALINSITESEARCHER. 110

5.6 Three typical templates of the distribution of IPs within a site. 111

5.7 Adaptive crawling for finding IPs. 114

5.8 AlgorithmADAPTIVE. 115

5.9 Navigational links inBN.com. 117

5.10 More navigational links. 117

5.11 NAVMENU : navigational link detection.. 118

5.12 AlgorithmNAVMENU . 119

5.13 The output of Lynx corresponding to Figure 5.9(a). 120

5.14 Form Finder: Local study. 123

5.15 Form Finder: Selecting strategy by sampling. 124

5.16 Form Finder: Global study. 125

5.17 Site Finder: Local performance. 126

5.18 Site Finder: Global performance. 127

5.19 Evaluation of the entire system. 128

6.1 Attribute frequencies of different domains. 133

6.2 Schema vocabularies. 135

6.3 Comparison of two possible clustering results. 136

6.4 Contingency table for testing. 139

6.5 Example of model-differentiation testing. 139

6.6 General HAC algorithmGEhac. 143

x

6.7 AlgorithmMDhac. 145

6.8 Comparison of four similarity measures in HAC. 151

6.9 The domain hierarchy built byMDhac. 154

6.10 The influence of loner thresholdN. 154

7.1 The taxonomy of Web crawlers. 161

xi

Chapter 1

Introduction

Schema matching is fundamental for enabling query mediation and data exchange across information

sources [6, 61]. This thesis proposes a new matching paradigm,holistic schema matching, which is re-

alized by two approaches we developed recently with global and local evaluation strategies respectively.

Traditionally, schema matching has been approached mainly by findingpairwise attribute correspon-

dences, to construct an integrated schema for two (or some small number ofn) sources. We observe

that there are often challenges (and certainly also opportunities) to deal with large numbers of sources.

In such scenarios, the challenge of large scale can itself be an opportunity for new approaches– We can

take a holistic view of all the input schemas and find all the matchings at once.

Such scenarios arise, in particular, for integrating databases on the Internet, or the so-called “deep

Web.” A July 2000 survey [7] estimated that 96,000 “search cites” and 550 billion content pages on this

deep Web. Our recent study [16] in April 2004 estimated 450,000 online databases. With the virtually

unlimited amount of information, the deep Web is clearly an important frontier for data integration. On

this deep Web, numerous online databases provide data via theirquery interfaces, instead of static URL

links. Each query interface accepts queries over itsquery schemas(e.g., author, title, subject, ... for

1

amazon.com). Schema matching, i.e., discovering semantic correspondences of attributes, across Web

interfaces is essential for mediating queries across deep Web sources.

Matching Web interfaces in the same domain (e.g., Books, Airfares) is a particularly important

problem with broad applications. We often need to search over alternative sources in the same domain

such as purchasing a book (or flight ticket) across many online book (or airline) sources. Given a set

of Web interfaces in the same domain, this thesis solves the problem of discovering matchings among

those interfaces. In particular, our MetaQuerier project (http://metaquerier.cs.uiuc.edu) is aiming at

developing techniques to automatically build domain portals [18]. The work presented by this thesis is a

critical component of the MetaQuerier project,i.e., the schema matching subsystem of the MetaQuerier.

However, existing schema matching work mostly focuses on small scale integration by finding pair-

wise attribute correspondences between two sources. Traditionally, schema matching relies on match-

ings between pairwise attributes before integrating multiple schemas. For instance, traditional binary

or n-ary [55] schema integration methodologies (as [6] surveys) exploit pairwise attribute correspon-

dence assertions (mostly manually given) for merging two or somen sources. Further, recent work on

automatic schema matching mostly focuses on matchings between two schemas (e.g., [28, 50, 52, 47]).

Based on this fact, the latest survey [60] abstracts schema matching as pairwise similarity mappings

between two input sources.

To tackle the challenge of large scale matching, as well as to take advantage of its new opportunity,

we propose a new paradigm,holistic schema matching, to match many schemas at the same time and

find all the matchings at once, as Figure 1.1 shows. In particular, holistic schema matching takes a set

of schemas as input and outputs a semanticmodel, which contains all the matchings among the input

schemas (e.g., a model of book schemas may containauthor = writer = name, subject = category, ...).

Such a holistic view enables us to explore thecontextinformation beyond two schemas (e.g., similar

2

Holistic
Schema

Matching

S2:
writer
title
category
format

S3:
name
title
keyword
binding

S1:
author
title
subject
ISBN

Input:
a set of schemas

Output:
a semantic model,

for all matchings
author = writer = name

subject = category

format = binding

Figure 1.1: The holistic schema matching paradigm.

attributes across multiple schemas; co-occurrence patterns among attributes), which is not available

when schemas are matched only in pairs.

Compared with traditional approaches, we believe the holistic approach has several advantages:

First, scalability: By unifying a large number of input schemas holistically rather than matching at-

tributes pairwise, it addresses the scale of matching required in the new frontier of networked databases,

such as our motivating goal of the deep Web. Second,solvability: In fact, the large scale can itself be a

crucial leverage to make schema matching more solvable– in particular, it enables effective exploration

of the context information. Such context information will be more sufficient as more sources are ex-

ploited. Intuitively, we are building upon the “peer context” among schemas. Being context-based, the

holistic matching will benefit from the scale: the accuracy will “scale” with the number of sources. For

instance, our specificMGS andDCM approaches, as we will discuss, are both statistical methods, which

will thus benefit from more “observations.”

With the holistic paradigm, this thesis proposes two approaches we developed in sequence as its

realizations. To begin with, we develop theMGS framework [37] with aglobal evaluationstrategy to

deal with simple 1:1 matchings (i.e., matching between two attributes such asauthor = writer). Global

evaluation exhaustively evaluates all possible models and selects the best one among them. The best

model contains the set of matchings with the highest overall confidence to assemble the correct model.

3

In particular, theMGS framework [37] realizes such global evaluation by hypothesizing the existence

of a hidden generative model for each domain (e.g., Books, Movies) (Chapter 2). Under this hypothesis,

a schema can be viewed as an instance generated from the model with some probabilistic behavior.

Schema matching is thus transformed into the discovery of the hidden model, given a set of schema

instances. To realize such hidden model discovery, we develop theMGS framework, which discovers

matchings with statistical hypothesis testing.

While theMGS framework can effectively model simple matchings, it cannot find complex match-

ings, which generally exist across Web query interfaces (e.g., author is a synonym of the grouping of

last name andfirst name in Books domain,i.e., author = {last name, first name}). To discover complex

matchings, we further develop theDCM framework [39] with alocal evaluationstrategy. Local evalua-

tion independently assesses every single matching and then incrementally constructs the model. Instead

of exhaustively enumerating all the possible models, local evaluation approximately searches for the

best model by constructing it incrementally. For instance, among all the potential matchings in book

schemas, we may first select the most confident matchingsubject = category and consider it as part of

the best model. Then we iteratively select the next most confident matching under this partial model

result, toward eventually completing the best model.

In particular, theDCM framework [39] realizes such local evaluation based on the observation that

co-occurrence patterns across schemas often reveal the complex relationships of attributes (Chapter 3).

Specifically, we observe thatgrouping attributes(e.g., {first name, last name}) tend to be co-present in

query interfaces and thus positively correlated. In contrast,synonym attributesare negatively correlated

because they rarely co-occur. This insight motivates us to develop theDCM framework, which greedily

discovers complex matchings with a dual mining of positive and negative correlations.

4

Further, to complete an automatic matching process, which starts from raw HTML pages, we inte-

grate theDCM framework with an automatic interface extractor [72]. Such “system integration” turns

out to be non-trivial– As automatic interface extraction cannot be perfect, it will introduce “noise” (i.e.,

erroneous extraction), which challenges the performance of the subsequent matching algorithm. As

Chapter 4 will discuss, the errors in the interface extraction step may affect the correlations of match-

ings and consequently the matching result.

To make theDCM framework robust against noise, we integrate it with anensemblescheme, which

aggregates a multitude of theDCM matchers to achieve robustness, by exploiting statistical sampling and

majority voting (Chapter 4). Specifically, we randomly sample a subset of schemas (as atrial) to match,

instead of using all the schemas. Intuitively, it is likely that such a trial still contains sufficient attribute

information to match while removing certain noisy schemas. Further, we conduct multiple independent

trials. Since errors in different trials are independent, when noise is relatively few, it is likely that only a

minority of trials are affected. We thus take majority voting among the discovered matching of all trials

to achieve the robustness of holistic matching.

Last, since our matching algorithms require the input schemas (i.e., query interfaces) from the same

domain, to enable such large scale matching, we need to develop automatic techniques to discover query

interfaces on the Web (i.e., the source discovery problem) and cluster them into their domain hierarchy

(i.e., the schema clustering problem).

For the source discover problem, we develop aWeb Form Crawlerto collect query interfaces (i.e.,

query forms) across various domains in both efficient and comprehensive manners (Chapter 5). In par-

ticular, query forms, while many, when compared with the size of the Web, are sparsely scattered among

pages, which brings new challenges for crawling: First, due to the topic-neutral nature of our crawling

problem, we cannot rely on existing topic-focused crawling techniques. Second, traditional page-based

5

crawling techniques cannot achieve a good balance between crawling harvest and coverage. As a new

attempt, we propose astructure-drivencrawling framework by observingstructure localityof query

forms– That is, query forms are often close to root pages of Web sites and accessible by following navi-

gational links. Exploring this structure locality, we substantiate the structure-driven crawling framework

into a site-basedWeb Form Crawler by first collecting the site entrances, as the Site Finder, and then

searching for query forms within the scope of each site, as the Form Finder.

For the schema clustering problem, by viewing schemas as a type of categorical data, we translate the

problem into the clustering of categorical data and develop amodel-differentiationbased clustering ap-

proach (Chapter 6). Specifically, our approach pursues probabilistic model-based clustering with a new

objective function. To begin with, motivated by our real-world observations, we hypothesize that ho-

mogeneous sources share the same hidden generative model, which probabilistically generates schemas

from a finite vocabulary of attributes. This hypothesis naturally matches model-based clustering– to

form clusters from different models. Further, to realize such clustering, we propose a new objective

function: model-differentiationor MD, which seeks to maximizestatistical heterogeneityamong clus-

ters. Rather than relying on ad-hoc cluster-similarity measures,MD takes principled hypothesis testing

in statistics, calledtest of homogeneity[14], to evaluate if multiple clusters of data are generated from

homogeneous distributions.

The rest of the thesis is organized as follows: Chapter 2 presents theMGS framework and Chapter 3

the DCM framework. Chapter 4 discusses the “emsemblization” of theDCM framework. Chapter 5

presents the structure-driven crawler for query interfaces and Chapter 6 the model-differentiation based

clustering algorithm. Chapter 7 reviews related work. Chapter 8 concludes the thesis.

6

Chapter 2

Global Evaluation: Matching as Hidden

Model Discovery

As a first step toward holistic schema matching, we develop theMGS framework with specific focus

on simple 1:1 matchings. In particular, we hypothesize the existence of the hidden generative behavior

of a schema model, which captures synonym relationships of attributes. This hidden-model hypothesis

provides a principled statistical method, hypothesis testing [9], to globally evaluate the confidence of a

model (as a statistical hypothesis), given a set of schemas as observations. We thus abstract the schema

matching problem as hidden model discovery and develop theMGS framework [37] to realize such a

global evaluation strategy.

2.1 Motivation

The “wild” frontier of the deep Web is characterized by its unprecedented scale. As achallenge: we

often need to match large numbers of sources. As anopportunity: ample sources are usually available

7

domain sources all attributes non-rare
Books 55 47 12
Movies 52 44 12
Music Records 49 35 11
Automobiles 55 37 11

Figure 2.1: Statistics of sources studied.

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

V
oc

ab
ul

ar
y

S
iz

e

Number of Sources

Book Domain
Movie Domain
Music Domain

Automobile Domain

5

10

15

20

25

30

35

40

45

50

55

ti au is kw pu su ln fm pr cg fn pd
N

um
be

r
of

 O
bs

er
va

tio
ns

(a) Vocabulary growth over proliferating sources. (b) Frequencies over ranks of attributes.

Figure 2.2: Analyzing schema vocabularies of deep Web sources.

to form a useful “context” of matching. Intuitively, by holistically unifying many sources in the same

domain, our statistical approach intends to leverage the opportunity while addressing the challenge.

2.1.1 Deep Web Observations

To understand their characteristics, we performed an informal study of sources on the deep Web. From

Web directories, we drew sources in each of the four domains: Books, Music Records, Movies, and

Automobiles. In particular, we collected all of invisibleweb.com’s sources (in these 4 domains) and

most of yahoo.com’s without any bias, until reaching about 50 sources in each domain, as Figure 2.1

summarizes1.

On the one hand, we observeproliferating sources: As discussed in Chapter 1, while many Web

directories such as invisibleweb.com already list impressive numbers of online sources by manual com-

1This dataset is available as the BAMM dataset of the UIUC Web integration repository [17].

8

pilation, there are certainly many more sources out there. As the Web continues to expand, it will house

virtually unlimited numbers of sources in interesting domains.

On the other hand, we also observeconverging vocabularies: The aggregate schema vocabulary

of sources in the same domain tends to converge at a relatively small size. Figure 2.1 summarizes

(in the middle column) the sizes of the entire vocabularies of all attributes used in any sources, which

are about 40 for each domain. Figure 2.2(a) further analyzes the growth of vocabularies as sources

increase in number. The curves clearly indicate the convergence of vocabularies. For instance, for the

Books domain,92%(43/47) attributes are observed at25th sources, and98%(46/47) at35th. Since the

vocabulary growth rates (i.e., the slopes of these curves) decrease rapidly, as sources proliferate, their

vocabularies will tend to stabilize. (Note that the sources are sorted in the same order as they were

collected without any bias.)

In fact, the vocabularies will converge more rapidly if we exclude “rare” attributes. To quantify,

let the frequency of an attribute be the number of sources in which it occurs. Figure 2.2(b) orders

these frequencies for the book domain over their ranks, with attributes detailed in Figure 2.7. It is

interesting but perhaps not surprising to observe that the distribution obeys Zipf’s law: The frequencies

are inversely proportional to their ranks. Many low-ranked attributes thus rarely occur; Figure 2.2(b)

shows only the top 12 attributes (which account for 78% or 230/294 of all the attribute occurrences);

most others occur only once. In practice, these rare attributes are likely unimportant in matching since

their rareness indicates that very few other sources will find them useful. With such rare attributes (say,

below10%frequencies) excluded, the “useful” vocabularies are much smaller: about 11 attributes per

domain (Figure 2.1).

Note that, while vocabularies tend to converge, schema heterogeneity still persists. That is, although

Web query interfaces tend to share attributes, they are not universally shared– thus creating the real chal-

9

lenge of schema matching. In particular, among the top “popular” attributes for books in Figure 2.2(b)–

how many different attributes are “synonyms” for the same concepts? We found 5 ({author, last name,

first name}, {subject, category}) out of 12, or a significant42%. We observed similar levels of hetero-

geneity in other domains as well (see Figure 2.7).

2.1.2 Toward Hidden Model Discovery

These observations lead us to hypothesize the existence of a hidden schema model that probabilisti-

cally generates, from a finite vocabulary, the schemas we observed. Intuitively, such a model gives the

“structure” of the vocabulary to constrain how instances can be generated. We believe this hypothesis

reasonable, since it naturally explains our observations in Section 2.1.1.

The hypothesis sheds new light on a different way for coping with schema matching: If a hidden

model does exist, itsdiscoverywould reveal the vocabulary structure, which will in principle answer

“any” schema matching questions. (As an analogy, an English dictionary can semantically relate all

English words, subsuming the need for their pairwise correspondence.) Such model-level unification

of all attributes in the same domain will subsume their pairwise correspondence (as used in traditional

schema matching). We thus propose an approach to holistically matching schemas as hidden model

discovery.

2.2 TheMGS Framework

As just motivated, we view schema matching as a quest for an underlying model generating the input

schemas. That is, our probabilistic approach seeks to treat the schemas as being generated by a random

process following a specific distribution. Our goal is thus, given the input schemas as “observations,” to

reconstruct the hidden generative distribution.

10

To realize such hidden model discovery, we propose a general framework,MGS, consisting of hy-

pothesis modeling, generation, and selection. We believe theMGS framework is important in its own

right: In principle, by application-specific hypothesis modeling,MGS can be applied to capture different

types of semantic relationships. Specifically,

1.Hypotheses Modeling: To guide the seeking of a hypothetical model, or ahypothesis, we start by

defining the general structure of such models. Such modeling should essentially capture specific seman-

tics we want to discover. For instance, if we want to find synonyms, a model should explicitly express

the relationship of “synonyms.” Such modeling will also specify a generative behavior of how schemas

can be generated. Such behavior is mainlyprobabilistic (e.g., attributes will be drawn randomly by

their “popularity”), although it can also partially bedeterministic(e.g., no synonyms can be selected

together). Effectively, the model forms a statistical distribution, which generates a particular schema

with someinstantiation probability.

2.Hypotheses Generation: We then enumerate concrete hypotheses (in the specified abstract model)

that are consistent with the observed schemas (with non-zero probabilities). Note that, even with a

parameterized structure, there will be a large space of candidate hypotheses to search, for a vocabulary

of reasonable size. This generation step helps to focus the search to only those promising hypotheses

that are likely to generate the observed schemas.

3.Hypotheses Selection: Finally, we select hypotheses that are consistent with the observed schemas

with sufficient statistical significance. There are various statistical devices for such hypothesis test-

ing [9]. For instance, we useχ2 testing in ourMGSac algorithm.

In summary, we proposeMGS as a general framework for the hidden model discovery problem:

Given a set of schemasI as observations, hypothesize and select the schema models with sufficient

11

statistical consistency as the generative distributions ofI . We next specialize the abstract framework for

synonym discovery.

2.3 Synonym-Attribute Discovery

Finding corresponding attributes is a central problem for schema matching; in this chapter, we pursue

this problem assynonym discovery, i.e., discovering simple 1:1 matchings. The challenge is to find the

synonyms among the input attributes, typically without the semantics understanding of those attributes.

That is, across different schemas, some attributes (e.g., author and name, or subject and category)

aresynonymsfor the sameconcepts(e.g., for the “author” and “subject” concepts respectively). As

Section 2.1 motivated, we focus on matching query interfaces for sources in the same domain on the

deep Web. Thus, given such schemas, our goal is to discover all the synonym attributes.

Guided by the generalMGS framework, we develop AlgorithmMGSac (Figure 2.5), specifically

for discovery of synonym attributes as the target question.MGSac first defines the hypothetical model

structure for capturing synonym attributes (Section 2.3.1), generates the model candidates that have non-

zero probabilities (Section 2.3.2), and selects the sufficiently consistent ones (Section 2.3.3). Beyond

these essential steps, we develop techniques for coping with several real-world issues that complicate our

statistical approach (Section 2.3.4). Finally, we put all the components together to present the complete

algorithm (Section 2.3.5).

2.3.1 Hypothesis Modeling

FollowingMGS, we first define the structure of the underlying model. Specifically, we aim at answering

the target question of synonym attributes for Web interfaces. (Incidentally, our model can also capture

the target question of concept popularity.) We view a query interface as a “flat” schema, or a set of

12

attributes;e.g., amazon.com has a schema{title, author, · · ·}. This simple view is sufficient for our

purpose of synonym discovery. In particular, we do not concern complex matching (e.g., author aslast

andfirst name), which itself is another interesting target question. In particular, theDCM framework is

developed for coping with such complex matchings (Chapter 3).

To reasonably define a simple model, we make several assumptions of how our schemas are gener-

ated. (Imagine a human Web developer generates such Web interfaces to bring databases online.) First,

concept mutual-independence: A query interface contains several different concepts (e.g., “author” or

“subject”). We assume that, in generating a schema (which may not contain all concepts), different

concepts are selected independently.

Second,synonym mutual-exclusion: When multiple synonyms exist for a concept (e.g., author and

name), we assume that, in generating a schema, no two synonyms will both be selected. Such du-

plicated selections will create redundancy and perhaps confusion; our case studies (of real sources;

Section 2.1.1) in fact have found no such schemas. As Section 2.3.2 will discuss, this mutual exclusion

enables significant pruning of the hypothetical model space.

Third, non-overlapping concepts: We assume that different concepts do not overlap in semantics,

i.e., no distinct concepts will share attributes. This assumption holds in most cases, when synonyms

in the same concept are fullyequivalent: e.g., concepts{author, name} and{subject, category} do

not overlap. Thus this assumption says that all concepts will form anequivalence partitionof the

vocabulary set. However, as our case studies observed (Section 2.4), sometimes an attribute can be

a non-equivalentsynonym to others, and thus participate in distinct concepts–e.g., concepts{author,

last name} and{author, first name}, whereauthor corresponds tolast name andfirst name in different

“senses.” This assumption excludes such cases: Instead of complicating simple synonym equivalence,

13

such cases can be more systematically treated, by first grouping attributes [last name, first name] and

then finding equivalent synonym{author, [last name, first name]} (see Chapter 3).

2.3.1.1 Model Structure

Based on our assumptions, we define a simple model for capturing synonym attributes. Essentially, a

model describes how to generate schemas from a vocabulary of attributes. Figure 2.3 visualizesMB

(an example for book sources) as a two-level tree, for vocabularyVB = {author, title, ISBN, subject,

category}. To express synonyms, our model partitions all attributes into concepts, or equivalent classes

(by the non-overlapping concepts assumption):e.g., C1: {author}, · · · , C4: {subject, category} in MB.

The model will generate schemas by, first, independently selecting each conceptCi with probabilityαi

(by concept mutual-independence). For any selected concept, the model will then choose exactly one of

its member attributesA j with probabilityβ j (by synonym mutual-exclusion). The model thus generates

a schema with all the chosen attributes.

Definition 1: A schema modelM is a 4-tuple(V ,C ,Pc,Pa): The vocabularyV is a set of attributes

{A1, · · · , An}. Theconcept partitionC is a set ofconcepts{C1, · · · , Cm} that partitionV (i.e., V =

∪1≤i≤mCi andCi∩Ck = /0). Pc is theconcept probability function, which determines the probabilityαi for

including conceptCi in schema generation.Pa is theattribute probability function, which determines the

probabilityβ j for selecting attributeA j , once its concept is included. For every conceptCi : ∑A j∈Ci
β j = 1.

Notationally, we will write a model by parenthesizing attributes in concepts with probability anno-

tations,e.g.: (Figure 2.3)MB = {(author: β1): α1, (title: β2): α2, (ISBN: β3): α3, (subject: β4, category:

β5): α4}. When probabilities are not critical in the context, we will simply writeMB = {(author), (title),

(ISBN), (subject, category)}).

14

C4C3C2

author title ISBN categorysubject

MB

�
2

�
3

�
4

�
1 = 1

C1
�

1

�
5 = 1-

�
4

�
4

�
3 = 1

�
2 = 1

Figure 2.3: An example of schema modelMB.

2.3.1.2 Schema Generation and Observations

We now discuss how a modelM will generate schemas. By Definition 1,M will simply decide, for

each conceptCi , if Ci is included, and if so, select one attributeA j to representCi . This process will

generate a schema as a set of attributes.

Example 1: ForMB in Figure 2.3: Possible schemas (with non-zero probabilities) fromMB include:I1

= {author, title, subject, ISBN} andI2 = {title, category, ISBN}.

Note that a modelM , by definition, represents a generative distribution, giving probabilities for any

schema that can be generated. We now formalize such probabilities. First, to generate a schema,M

selects concepts to include: By Definition 1, a conceptCi will appear with probabilityPr(Ci |M) = αi

or otherwisePr(¬Ci |M) = 1−αi .

Next, we consider the probability of picking some attribute: By Definition 1, the probability of

selecting an individual attributeA j in schema generation fromM is:

Pr(A j |M) =





αi×β j , ∃i : A j ∈Ci

0, otherwise

How about selecting a set of attributesA1, A2,.., Am from M in any schema? Definition 1 implies

this probability as below, where the first condition represents synonym mutual-exclusion and the other

15

concept mutual-independence.

Pr(A1,A2, ..,Am|M) =





0,∃ j 6= k,∃i : A j ∈Ci ∧Ak ∈Ci

∏Pr(A j |M),otherwise

Putting this together, we can derive the probability thatM will generate some schemaI , denoted

by Pr(I |M). Definition 2 below formalizes thisinstantiation probability. Specifically,Pr(I |M) is the

probability of used attributes times the probability of unselected concepts.

Definition 2: For modelM = (V ,C ,Pc,Pa), theinstantiation probabilityof a schemaI = {A1,...,Am} is

Pr(I |M) = Pr(A1,A2, ..,Am|M)×∏{Ci |∀A j ,A j /∈Ci}Pr(¬Ci |M). We sayI can beinstantiatedfrom model

M if Pr(I |M) > 0.

Example 2: Continuing Example 1: we havePr(I1|MB) = α1×α2×α3×α4×β4, Pr(I2|MB) = (1−

α1)×α2×α3×α4×β5, where(1−α1) is the probability that the conceptC1 is not used. However, for

I3 = {author, ISBN, subject, category}, we havePr(I3|MB) = 0, sincesubject andcategory both belong

to C4. ThusI1 andI2 can be instantiated fromMB, but I3 cannot.

Our approach seeks to discover the hidden model from many schemas observed (as input). There-

fore, we will take a set of schemasI (e.g., the Web sources summarized in Figure 2.1), our input, as

schema observations. To emphasize that in our input we may observe the same schema several times,

we writeI as a set of pairs〈Ii ,Bi〉. Each〈Ii ,Bi〉 denotes the number of occurrencesBi for each schema

Ii .

To discover the hidden model, it is essential to answer: Given modelM , how likely will M generate

the schemas inI ? (Or, how likely can we observeI , if M is the hidden model?) It follows Definition 2

that this probability isPr(I |M) = ∏Pr(Ii |M)Bi . Note that, ifPr(I |M) = 0, it is impossible to observe

16

I underM . Therefore, we say modelM is consistentwith observationsI , if Pr(I |M) > 0. Thus, the

hypothesis generation finds these “consistent models” as candidate hidden models (Section 2.3.2).

Example 3: Continuing Example 2: We may have observationsI = {〈I1,3〉, 〈I2,5〉}, i.e., I1 3 times and

I2 5 times. Thus,Pr(I |MB) = Pr(I1|MB)3×Pr(I2|MB)5. NoteMB is consistent withI , sincePr(I1|MB)

andPr(I2|MB) are both non-zero (Example 2).

2.3.2 Hypothesis Generation

Guided by the second step of theMGS framework, we now generate candidate models that are likely to

be sufficiently consistent (which Section 2.3.3 will determine) with the input observationsI . It is clear

that any candidateM has to be at least consistent withI , i.e., Pr(I |M) > 0, so thatI is at least possible

underM (Section 2.3.1). This section focuses on constructing such models.

Intuitively, we want to reconstructM from our given observationsI . Using a statistical approach,

we assume the observations areunbiasedandsufficient. First, by theunbiasedassumption, we will

observe (or collect) a schemaI with a frequency proportional to how likelyI will be generated under

M , i.e., Pr(I |M). (e.g., we will not collectonly schemas that containauthor, since that would be

biased.) Second, by thesufficientassumption, our observations will be large enough so that every

possible schema is represented inI . We use these assumptions to estimate the probability parameters

(Pa andPc) of a candidate model. In practice, the sufficient assumption is likely not to be satisfied; we

discuss techniques for dealing with “the real world” in Section 2.3.4.

Our goal in hypothesis generation is, givenI , to construct modelsM = (V ,C ,Pc,Pa) so that

Pr(I |M) > 0. To begin with, we determineV : By our above assumptions,V = ∪Ii . Since every

possible schema occurs inI , so does every attribute inV . On the other hand, even if the observations

are not perfect, for our purpose of matching, we do not care about any “phantom” attributes that have

17

not occurred in any input source. Thus, our model will capture only attributes that are used by at least

one schema (inI).

Next, having determinedV , we complete the model (V , C , Pc, Pa) by constructing first the concept

partitionC (Section 2.3.2.1), and then the probabilitiesPc,Pa (Section 2.3.2.2).

2.3.2.1 Building Concept Partitions

Given the vocabulary setV , we first construct a concept partitionC for a candidate model. By Defin-

ition 1, C is a partition ofV . It is clear that, givenV , there can easily be a large number of possible

partitions. The number of partitions for ann-set is called a Bell numberB(n), which has an exponential

generating function and satisfies recursive relationB(n+1) = ∑n
k=0B(k)

(n
k

)
. A vocabulary with, say, 12

attributes will thus have 4213597 possible concept partitions (and as many possible models).

To cope with the large space, it is thus critical to focus on only concept partitions that can lead to

consistent models (M , such thatPr(I |M) > 0). These consistent models form thehypothesis space

with respect toI . Our case studies show that the “consistent” condition can prune the search space to

a very small number of models. For instance, in the book domain, we only have 20 models left in the

hypothesis space with 12 attributes.

Not all concept partitions are useful for constructing a consistent model, since not every model (with

arbitrary concept partitions) can generate a observed schema. In particular, as Example 2 showed,I3

cannot be observed underMB, or Pr(I3|MB) = 0, sincesubject andcategory are both synonyms inC4

(Figure 2.3). Thus, ifI3 is in I as part of our input schema, we will not considerMB, since it will be

inconsistent withI , i.e., Pr(I |MB) = 0 asPr(I3|MB) = 0.

We can easily generalize this idea to focus on models that will not “contradict” any observed schema

I . In such models, no concept will contain two attributesA j andAk that are used by the same schema in

18

I . (In Example 2,MB is not good forI3, sinceMB containsC4 with attributessubject andcategory both

from I3.) That is, we will construct consistent models by using onlyconsistent concepts, which do not

contain anyco-occurring attributesfrom any schema inI . Property 1 formalizes this idea.

Property 1: Given observationsI with vocabularyV , let C = {C1, · · · , Cm} be a concept partition for

vocabularyV . Any modelM constructed fromC will be inconsistent withI , or Pr(I |M) = 0, if for

some attributesA j andAk, both of the following hold:

1. ∃ schemaIi ∈ I , such thatA j ∈ Ii andAk ∈ Ii .

2. ∃ conceptCi ∈ C , such thatA j ∈Ci andAk ∈Ci .

Based on Property 1, we use a two-step process to build the hypothesis space (of consistent models)

using consistent concepts as building blocks. (For instance,MB in Figure 2.3 is built upon conceptsC1,

· · · , C4.) Step 1,CONSISTENTCONCEPTSCONSTRUCTION, will first find all consistent concepts, and

Step 2,BUILD HYPOTHESISSPACE, will then build consistent models accordingly. These two proce-

dures are used to build the initial hypothesis space in AlgorithmMGSac.

In Step 1, we can translate the problem of finding consistent concepts into finding all cliques in

an attribute “co-occurrence graph” [23]. Specifically, we construct aconcept networkfrom our obser-

vationsI : In this graph, a node represents an attribute, and an edge exists between attributesA j and

Ak if and only if they do not co-occur in any schemaI in I . Thus, non-cooccurring attributes will be

connected with an edge– Precisely such attributes will form consistent concepts. However, a concept

can be of any number of attributes. Therefore, we look for cliques for any size in the graph to construct

consistent concepts.

Example 4: Consider observationsI in Example 3. FromI , we can derive its concept network in

Figure 2.4. In particular,author andtitle do not have an edge because they co-occur inI1. Author and

category have an edge since they do not co-occur in any schema.

19

author
title

ISBN

category
subject

Figure 2.4: An example concept network.

Further, what can be consistent concepts? There are 7 cliques in Figure 2.4:{author}, {title},

{subject}, {category}, {ISBN}, {author, category}, and{subject, category}. Any clique represents a

cluster of non-cooccurring attributes, and therefore is a consistent concept (by Property 1). In particular,

some of these concepts, such as{author} and{subject, category}, are part ofMB, which is consistent

with I (as Example 3 explained).

In Step 2, we use the consistent concepts just obtained as the building blocks for constructing con-

sistent models. Since all the concepts in a model partition its vocabulary setV , this step is essentially

a classic set cover problem [23], with the covering subsets being non-overlapping. That is, given some

subsets (the consistent concepts) of setV , we want to select some non-overlapping subsets to coverV .

Below we illustrate the result of constructing all the consistent models as the hypothesis space, which

concludes our hypothesis generation step in this section.

Example 5: Given the consistent concepts in Example 4, we can construct a consistent modelM1 =

{(author), (title), (ISBN), (subject), (category)}, since the five concepts partition the vocabulary. We

can find all the other consistent models:M2 = {(author), (title), (ISBN), (subject, category)} andM3 =

{(author, category), (title), (ISBN), (subject)}. The hypothesis space is therefore{M1, M2, M3}.

2.3.2.2 Building Probability Functions

We have generated all the consistent models, which form the hypothesis space. However, these models

are still incomplete: As a 4-tuple(V ,C ,Pc,Pa), M has yet to determine the probability functionsPc

20

andPa, althoughV andC are specified. Recall our ultimate goal is to discover those hidden models

that are sufficiently consistent with inputI . So far, for each consistent modelM , by building upon only

consistent concepts, we guarantee thatPr(I |M) is notnecessarilyzero. Therefore, there existPc and

Pa assignments forM , such thatPr(I |M) > 0.

To complete each of these consistent models, we still need to specifyPc andPa– clearly these prob-

abilities should further maximizePr(I |M). The reason is that with the assumptions of unbiased and

sufficient input data, the values ofPc andPa must be the ones that make the model the most consistent

with the data. The “consistency” is reflected as the instantiation probability. So the most consistent

model is corresponding to the model with the highest probability. Thus, we have an optimization prob-

lem to find

max
Pc,Pa

Pr(I |M (V ,C ,Pc,Pa)), (2.1)

which is essentially themaximum likelihood estimationproblem, for givenV andC .

Example 6: Continue Example 5, where we showedM2 as one of the consistent models. To completely

specifyM2, we need to determinePc andPa to maximizePr(I |M2) (for I given in Example 3).

As Example 3 derives (noteM2 andMB are the same model):Pr(I |M2)= Pr(I1|M2)3×Pr(I2|M2)5 =

α3
1× (1−α1)5×α8

2×α8
3×α8

4×β3
4×β5

5. We apply maximum likelihood estimation to select thoseα’s

andβ’s that can maximizePr(I |M2). The result isα1 = 0.375,α2 = 1,α3 = 1,α4 = 1,β4 = 0.375, and

β5 = 0.625.

In maximum likelihood estimation of functionsPc andPa, we are effectively estimating parameters

αi andβ j (Definition 1). Since concepts are independently selected (the concept mutual independence

assumption of Section 2.3.1), eachαi can be estimated independently. We can also derive the solution

21

for β j based on [9], sinceβ j in a conceptCi form a multinomial distribution. Therefore, for any schema

model, Equation 2.1 has the closed-form solutions:

α∗i =
∑Aj∈Ci

O j

|I | , β∗j = O j

∑Aj∈Ci
O j

whereO j is thefrequencyof attributeA j in observationsI (i.e., the number of schemas that containA j),

and|I | is the total number of schemas inI .

2.3.3 Hypothesis Selection

Guided by the third step of theMGS framework, we need to select sufficiently consistent hypotheses.

After hypothesis generation, a hypothesis is a determined model (distribution)M = (V ,C ,Pc,Pa). We

propose to applyχ2 hypothesis testing to quantify how consistent the schema model is with the data.

Below we briefly introduceχ2 testing [9].

Suppose we haven independent observations (schemas) and in each observation, precisely one ofr

events (schemas with non-zero probability),I1, .., Ir must happen, and their respective probabilities are

p1, .., pr , with ∑r
j=1 p j = 1. Suppose thatp10, .., pr0 are the respective instantiation probabilities of the

observedI1, .., Ir with respect to the tested modelM , with ∑r
j=1 p j0 = 1. We want to test the hypothesis

p1 = p10, .., pr = pr0 by considering the statistic

D2 = ∑r
j=1

(B j−npj0)2

npj0

wheren is essentially|I |. It can be shown thatD2 has asymptotically aχ2 distribution withr−1 degrees

of freedom. Again a test of the null hypothesisH : p1 = p10, .., pr = pr0 at the100a% significance level

is obtained by choosing a numberb such thatPr{D2 > b} = a, whereD2 has theχ2 distribution with

r−1 degrees, and rejecting the hypothesis if a value ofD2 greater thanb is actually observed.

22

Example 7: Assume we have observationsI = {〈I1,6〉, 〈I2,3〉, 〈I3,1〉}, with I1 = {author, subject}, I2 =

{author, category}, andI3 = {subject}. Our goal is to select the schema model at the significance level

0.05. The hypothesis generation step will output two hypotheses (models):

M1 = {(author:1):0.6, (subject:0.7,category:0.3):1} and

M2 = {(author:1):0.6, (subject:1):0.7, (category:1):0.3}.

We first considerM1. Four schemas can be instantiated fromM1: {subject}, {category}, {author,

subject}, and{author, category} with instantiation probabilities 0.28, 0.12, 0.42, and 0.18 respectively.

Thus, the computation ofD2 is: D2(M1) = (1−10∗0.28)2

10∗0.28 + (0−10∗0.12)2

10∗0.12 + (6−10∗0.42)2

10∗0.42 + (3−10∗0.18)2

10∗0.18
.= 3.93

with freedom degree 3. Theχ2 distribution table showsPr(D2 > 7.815) = 0.05at that freedom degree.

Since3.93< 7.815, we accept this hypothesis and consider it as a sufficiently consistent schema model.

M2 is processed in the same way. Eight schemas can be instantiated fromM2: {}, {author},

{subject}, {category}, {author, subject}, {author, category}, {subject, category}, and{author, sub-

ject, category} with probabilities 0.084, 0.126, 0.196, 0.036, 0.294, 0.054, 0.084, and 0.126 respec-

tively. Then we haveD2(M2)
.= 20.20with freedom degree 7. Theχ2 distribution table showsPr(D2 >

14.067) = 0.05. Since20.20> 14.067, we should not selectM2. Therefore, hypothesis selection will

selectM1 as the schema model.

2.3.4 Dealing With the Real World

We presented the overall process of AlgorithmMGSac, guided by the general principles of theMGS

framework. Further, there are often “real-world” issues on data observations that can compromise a

statistical approach like ours. We find that, specifically for schema matching, the key challenge is the

extremely “unbalanced” attribute distribution. We observed a Zipf-like distribution (Figure 2.2b) of

attributes in our analysis of deep Web sources (Section 2.1).

23

Challenges arise on the either end of this Zipf distribution: On one hand, thehead-rankedattributes

(e.g., ti andau in Figure 2.2b) are extremely frequent, occurring in almost every schema: Their oc-

currences tend to dominate any models and thus render these models indiscriminate under hypothesis

testing (as Section 2.3.3 developed). Section 2.3.4.3 addresses dominating attributes with incremental

consensus projection to isolate their effects.

On the other hand, thetail-rankedattributes (e.g., those not shown in Figure 2.2b) are extremely

rare, often occurring only once in some schema. Their occurrences in observations (while rare) tend

to “confuse” our statistical approach that asserts sufficient samples. In principle, a rare attributeA

can appear in many concepts (by combining with other attributes in schema generation). Also, asA

being rare, these “A-schemas” are unlikely to be observed inI if it is not arbitrarily large– ThusA will

compromise a statistical approach for the lack of schemas. Section 2.3.4.1 addresses rare attributes with

attribute selection.

Together, thishead-often, tail-rareattribute distribution will imply similar non-uniformness of

schemas. Thus, some schemas (with rare attributes) will be extremely rare too. Our hypothesis test-

ing essentially relies on estimating schema frequenciesB j (Section 2.3.3). A rare schemaI occurring

only once inI tends to result in anoverestimatedfrequency, orI needs to be arbitrarily large to justify

I ’s only occurrence being sufficiently rare. Section 2.3.4.2 addresses rare schemas by “smoothing.”

2.3.4.1 Attribute Selection

Rare attributes can confuse a statistical approach, with their lack of complete schemas in our obser-

vationsI . Such rare attributes will require virtually arbitrarily largeI to give them sufficient context.

That is, for these rare attributes,I is unlikely to be sufficient to statistically “explain” their properties–

Thus, our sufficient assumption (Section 2.3.2) is unlikely to hold for such attributes. To draw valid

24

statistical results, our approach is to systematically remove rare attributes– they are effectively “noise”

in our setting.

Fortunately, these rare attributes may indeed be unimportant in schema matching. As Section 2.1.1

explained, with Zipf distribution, most rare attributes occur in only one source. Thus, few other sources

will find these attributes useful in query mediation or data exchange. (A mediator will not be likely to

support such attributes; they are neither “mediatable” nor “exchangeable.”) We believe it is naturally

justified to remove rare noise in matching.

We believe systematicattribute selectionwill be crucial for finding attribute subsets, for which

robust statistical results can be achieved. We use a frequency-based pruning to select only frequent at-

tributes into vocabularyV (Section 2.3.2), as a procedureATTRIBUTESELECTION in Algorithm MGSac

(Figure 2.5). Specifically, we select an attributeA j if its observation frequencyO j ≥ f , where f is a

given threshold set as10% in our experiments. While this empirical value works well (Section 2.4),

further investigation is clearly necessary to automate threshold selection.

2.3.4.2 Rare Schema Smoothing

Our observationsI may contain infrequent schemasI that are presumably rare, as explained earlier.

In particular, theχ2 testing (Section 2.3.3) evaluates the difference between the estimated probabilities

Pr(I |M) and the observed frequenciesB j . For infrequent schemas, such a difference will significantly

distort the closeness ofD2 to theχ2 distribution, which may influence the result of hypothesis selection.

Example 8: Suppose our observationsI = {〈I1,45〉, 〈I2,5〉, 〈I3,2〉, 〈I4,1〉}, with I1 = {author}, I2 = {last

name}, I3 = {author, price}, andI4 = {price}. The hypothesis generation will find three hypotheses:

M1={(author:.9, last name:.1):.98, (price:1):.06}

M2={(author:1):.89, (last name:.62,price:.38):.15}

25

M3={(author:1):.89, (last name:1):.09, (price:1):.06}.

The probabilities ofI4 in M1, M2, andM3 are .0012, .0064, and .0058 respectively, which indicates

I4 a rare schema. Theχ2 testing will in fact reject all three models (at the significance level 0.05).

Note that even the correct modelM1 does not pass the test, simply because the early observation of

the rare schemaI4 results in an unreliable estimation of its probability. Thus the rare schema disturbs

the result.

We cope with this problem byrare schema smoothing: Instead of regarding each possible schema

I j as an individual event (Section 2.3.3), we will aggregate infrequent schemas into a conceptual event

Irare, whose probability is the sum of the probabilities of its members. Such aggregation will smooth

the overestimation in frequency counting, thus giving a more reliable probability indication [3]. We will

then takeχ2 testing on those frequent events plusIrare.

The key issue is then how to determine whether a schemaI j is rare. Our basis is its frequency

in observationsI (with size |I |), since the real probability is hidden to be discovered. We apply two

criteria: 1) If not observed inI , I j is rare. 2) If observed,I j is rare ifPr(I j |M)×|I | < Tsmooth, where

Tsmoothis a threshold (dynamically determined).

We further develop adaptive thresholding ofTsmooth in smoothing, as a procedureDYNAMIC SE-

LECTION in Algorithm MGSac (Figure 2.5): During hypothesis selection (Section 2.3.3), we test the

hypotheses with increasing thresholds until reaching at least one qualified hypothesis. (Implicitly, we

are applying our motivating assertion that there must exist a correct hidden model.) Otherwise, it will

output all the hypotheses, since they are not distinguishable (and at least one must be correct). Empir-

ically, we start the adaptive thresholding atTsmooth= 0.2 with a step size 0.1, and stop at1.0, which

works well (Section 2.4).

26

2.3.4.3 Consensus Projection

Straightforward testing cannot always distinguish models that share a dominating “consensus” (which

makes other differences insignificant). As explained earlier, the head-ranked attributes often dominate

the testing and thus all these models may agree on the “structure” of these attributes– Suchconsensus

can be recognized (for early conclusion) and projected (for isolating dominating attributes). Note that

we assume a consensus must be correct, based on our motivating assertion that there exists at least a

correct model.

Example 9: Suppose our observations areI = {〈I1,45〉, 〈I2,6〉, 〈I3,2〉, 〈I4,4〉} with I1 = {title}, I2 =

{title, subject}, I3 = {title, subject, price}, andI4 = {title, category}. Hypothesis generation will output

three hypotheses:

M1={(title:1):1, (subject:.67,category:.33):.21, (price:1):.035}

M2={(title:1):1, (subject:1):.14, (category:.67,price:.33):.11}

M3={(title:1):1, (subject:1):.14, (category:1):.07, (price:1):.035}.

Theχ2 hypothesis testing will reject all three models at the significance level 0.05. In fact, theirD2

values are not distinguishable, due to the highly frequent attributetitle, which dominates theχ2 testing.

However, it is clear that they all share a “consensus” ontitle.

We thus proposeconsensus projectionfor recognizing and extracting consensuses (or shared con-

cepts across models), so that hypothesis testing will better focus on models’ distinctions. Note that

the soundness of such a projection (of consensus concepts) follows our concept mutual independence

assumption (Section 2.3.1).

Specifically, consensus projection will extract the consensus from all the models in the hypothesis

space. Also it will extract the consensus attributes from the observed schemas and aggregate the pro-

jected schemas that become identical. The projection and aggregation will result in a new set of input

27

schemas, which are used for the re-estimation of the parameters of the projected models. Such a pro-

jection can be repeated, since more consensuses will gradually emerge as the algorithm progresses. We

can then discover the final models incrementally by projecting consensuses in progressive iterations.

We thus structure AlgorithmMGSac as an iterative framework, as Section 2.3.5 will discuss.

Example 10: Continuing Example 9: We recognize concept (title) as the consensus. We thus perform

consensus projection to extract (title) from all hypotheses and attributetitle from all schemas inI .

So we haveH ∗ = π{subject,category,price}(H), with

M ∗
1 ={(subject:.67,category:.33):1, (price:1):.17}

M ∗
2 ={(subject:1):.67, (category:.67,price:.33):.5}

M ∗
3 ={(subject:1):.67, (category:1):.33, (price:1):.17}

andI ∗ = π{subject,category,price}(I) = {〈I∗2,6〉, 〈I∗3,2〉, 〈I∗4,4〉}with I∗2 = {subject}, I∗3 = {subject, price},

and I∗4 = {category}. I∗1 is empty after projection and thus removed. The new parameters ofM ∗ are

estimated fromI ∗ with maximum likelihood estimation. Theχ2 testing will selectM ∗
1 (and reject

others) at the significance level 0.05.

2.3.5 Putting It All Together: Algorithm MGSac

For solving the target question of synonym attributes, AlgorithmMGSac (Figure 2.5) consists of two

phases: building the initial hypothesis space and iteratively discovering the hidden models. The first

phase selects the attributes as the vocabulary (Section 2.3.4.1) and builds the hypothesis space (Sec-

tion 2.3.2.1). The iterative process is based on consensus projection (Section 2.3.4.3): In each iteration,

it projects the consensus, re-estimates the parameters (Section 2.3.2.2), and tests the hypotheses (Sec-

tion 2.3.3) with the smoothing technique (Section 2.3.4.2).

28

Example 11: Consider the Books domain sources listed in Figure 2.7. The iterative process is illus-

trated in Figure 2.6. In the first iteration, the consensus consists of concepts (ti), (is), (kw), (pr), (fm), and

(pd). TheDYNAMIC SELECTION function will select four hypotheses asselectedHwith Tsmoothas 0.5,

which are listed in the third column of the 1st iteration of Figure 2.6. In the second iteration, the con-

sensus consists of concept (pu). TheDYNAMIC SELECTION function will select two hypotheses among

the four in the 1st iteration. In the third iteration, the consensus is (su, cg) andDYNAMIC SELECTION

cannot find any passing hypothesis with all theTsmooth’s. Therefore, the algorithm will stop and output

two discovered schema models:M1 = {(ti), (is), (kw), (pr), (fm), (pd), (pu), (su, cg), (au, ln), (fn)} and

M2 = {(ti), (is), (kw), (pr), (fm), (pd), (pu), (su, cg), (au, fn), (ln)}, where the parametersα’s andβ’s are

omitted.

The time complexity ofMGSac is exponential with respect to the number of attributes. For instance,

the complexity ofCONSISTENTCONCEPTSCONSTRUCTION is exponential since the clique problem is

NP-complete. Similarly, the steps ofBUILD HYPOTHESISSPACE and DYNAMIC SELECTION are both

exponential. Since schema matching is typically done “off-line,” such computation time may still be

tolerable in most situations. For instance, in our experimental setting (Section 2.4), the running time

is typically within one minute. Further, our observation in Section 2.1 indicates that in practice the

computation is likely to scale to many sources: Even with more sources, their aggregate vocabulary

tends to converge– The growth of attributes and thus the corresponding computation cost are likely to

stop at some point. Nevertheless, it is certainly a real issue to explore more efficient algorithms, as

Section 8 discusses.

29

Algorithm: MGSac:
Input: SchemaSetI , SignificanceLevela
Output: Schema Model HypothesesH
begin:
1 /* initial hypothesis generation */
2 V = ATTRIBUTESELECTION(

S
Ii)

3 C = CONSISTENTCONCEPTSCONSTRUCTION(I)
4 H = BUILD HYPOTHESISSPACE(C)
5 /* iterative framework */
6 while true
7 conAttrs= attributes in the consensus ofH
8 if conAttrs= /0 or V = conAttrs
9 return the initial models ofH
10 else
11 /* consensus projection */
12 V = V −conAttrs; I ∗ = πV (I); H ∗ = πV (H)
13 /* maximum likelihood estimation */
14 for eachM in H ∗

15 estimate parametersα,β of M usingI ∗
16 /* hypothesis selection */
17 selectedH= DYNAMIC SELECTION(H ∗)
18 /* new hypothesis space for next iteration */
19 H = selectedH
end

Figure 2.5: Algorithm MGSac.

2.4 Case Studies

To evaluate theMGSac framework, we test it with four domains of sources on the deep Web. We design

two suites of metrics to quantify the accuracy of both the model itself and its ability to answer the target

questions. The experimental results show remarkable accuracy for both metrics.

2.4.1 Experiment Setup

We collected over 200 sources over four domains as stated in Section 2.1.1. For each source, we man-

ually extracted attributes from its query interface and did some straightforward preprocessing to merge

attributes of slight textual variations (e.g., author’s name andauthor). (This dataset is available as the

BAMM dataset in the UIUC Web Integration Repository [17].) Thus, we focus on discovering synonym

30

kth consensus hypotheses passkth iteration Tsmooth

1st (ti),(is),(kw), {(au:0.85,ln:0.15):0.98,(pu:1):0.25,(su:1):0.2,(cg:1):0.13,(fn:1):0.11} 0.5
(pr),(fm),(pd) {(au:0.85,ln:0.15):0.98,(pu:1):0.25,(su:0.61,cg:0.39):0.33,(fn:1):0.11}

{(au:0.88,fn:0.12):0.95,(pu:1):0.25,(su:1):0.2,(cg:1):0.13,(ln:1):0.15}
{(au:0.88,fn:0.12):0.95,(pu:1):0.25,(su:0.61,cg:0.39):0.33,(ln:1):0.15}

2nd (pu) {(au:0.85,ln:0.15):0.98,(su:0.61,cg:0.39):0.33,(fn:1):0.11} 0.6
{(au:0.88,fn:0.12):0.95,(su:0.61,cg:0.39):0.33,(ln:1):0.15}

3rd (su,cg) {(au:0.85,ln:0.15):1,(fn:1):0.11} 1.0
{(au:0.88,fn:0.12):0.96,(ln:1):0.15}

4th /0

Figure 2.6: Process of discovering schema model for the Books domain.

attributes and consider such attribute extraction and preprocessing as independent tasks. In particular,

in our later development, we developed automatic techniques for extracting attribute information from

query interfaces [72] and preprocessing techniques to merge syntactically similar attributes in theDCM

framework (Chapter 3).

In the experiments, we select the attributes using the approach proposed in Section 2.3.4.1 with

thresholdf = 10%. The attributes passing that threshold are listed in Figure 2.7. Also, in the experi-

ments we assume 0.05 as the significance level ofχ2 hypothesis testing. In practice, the threshold and

significance level can be specified by users.

2.4.2 Metrics

We propose two suites of metrics for different purposes. The first suite is generic since it measures how

the hypothesized schema model is close to the correct schema model written by human experts. The

second suite of metrics is specific in the sense that it measures how well the hypothesized schema model

can answer the target questions.

First, we introduce the notion ofcorrect schema model. A correct schema modelMc is a schema

model where attributes are correctly partitioned into concepts. Since it is difficult and unreliable (even

31

for human experts) to specify the ideal probability parameters, we assign them using maximum likeli-

hood estimation, which is consistent with the “unbias” and “sufficient” assumptions in Section 2.3.2.

The purpose of the first suite of metrics is to compare two models (or distributions). We view each

distribution as a set of schemas (instantiated from that distribution), associated with a probability (or

member frequency). Thus, we adopt precision and recall to measure this “member frequency”. We

define Ins(M) as the set of all schemas that can be instantiated fromM . Precision is designed to

measure the portion of the hypothesized setIns(Mh) that is correct. In our case, the correct part is the

intersection ofIns(Mh) andIns(Mc), denoted byS. So themodel precisionis:

PM(Mh,Mc) = ∑I∈SPr(I |Mh)
∑I∈Ins(Mh) Pr(I |Mh)

= ∑I∈SPr(I |Mh), where∑I∈Ins(M) Pr(I |M) = 1 for any modelM .

Similarly, model recallmeasures the portion ofMc that is contained inMh, which isRM(Mh,Mc) =

∑I∈SPr(I |Mc).

Example 12: Consider Example 7, we can see that the correct schema model is actuallyM1 and

thus both model precision and recall ofM1 are 1.0. Now considerM2, although it is rejected, we

still can measure it as an example. Example 7 has shown the schemas and instantiation probabil-

ities of Ins(M2) and Ins(Mc). So S contains four schemas:{subject}, {category}, {author, sub-

ject} and{author, category}. Then we can compute the model precision and recall asPM(M2,Mc) =

0.196+0.036+0.294+0.054= 0.58andRM(M2,Mc) = 0.28+0.12+0.42+0.18= 1.

The second suite of metrics measures how correct the model in answering the target questions. In

our case, the target question is to ask for the synonyms of attributes. Specifically, we imagine there

is a “random querier” who will ask for the synonyms of each attribute according to the probability of

that attribute. The model will answer each question by returning the set of synonyms of the queried

attribute in that model. We defineSyn(A j |M) as the set of synonyms of attributeA j in modelM . To

32

compare two synonym sets, precision and recall are again applied. Given the correct modelMc and a

hypothesized modelMh, the precision and recall of the synonym sets of attributeA j are:

PA j (Mh,Mc) = |Syn(A j |Mc)∩Syn(A j |Mh)|
|Syn(A j |Mh)| and

RA j (Mh,Mc) = |Syn(A j |Mc)∩Syn(A j |Mh)|
|Syn(A j |Mc)| .

For this “random querier,” more frequently observed attributes have higher probabilities to be asked.

Thus we compute the weighted average of all thePA j ’s and RA j ’s as thetarget precisionand target

recall. The weight is assigned as a normalized probability of the attributes. That is, for attributeA j , the

weightw j = Pr(A j |M)
∑Aj

Pr(A j |M) = αi×β j

∑Aj
αi×β j

= O j

∑Ok
(αi×β j = O j

|I | according to the formulae in Section 2.3.2.2).

Therefore,target precisionandtarget recallof Mh with respect toMc are defined as:

PT(Mh,Mc) = ∑A j∈Vh

O j

∑Ok
PA j (Mh,Mc)

RT(Mh,Mc) = ∑A j∈Vc

O j

∑Ok
RA j (Mh,Mc),

whereVh andVc are the vocabulary sets ofMh andMc.

Example 13: In Example 7, the target precision and recall ofM1 are both 1.0 sinceM1 is the correct

schema model. ForM2, we havePauthor(M2,Mc) = 1 andRauthor(M2,Mc) = 1 sinceauthor is correctly

partitioned inM2. However, forsubject, we haveSyn(subject |Mc) = {category} andSyn(subject |M2) =

/0. ThereforePsubject(M2,M1) = 1 andRsubject(M2,M1) = 0. We do the same measurement oncategory

and then compute the weighted average. The occurrences ofauthor, subject, andcategory are 9, 7, and

3 respectively. Thus, the results arePT(M2,Mc) = 9
19× 1+ 7

19× 1+ 3
19× 1 = 1 andRT(M2,Mc) =

9
19×1+ 7

19×0+ 3
19×0 = 0.47.

2.4.3 Experimental Results

We report and discuss the experimental results for the Books domain. For other domains, we only

show the input and output. Figure 2.7 lists all the selected attributes. The result shows two sufficiently

33

domain vocabulary (abbreviation)
Books title(ti),author(au),ISBN(is),keyword(kw),publisher(pu),subject(su),last name(ln),

format(fm),category(cg),price(pr),first name(fn),publication date(pd)
Movies title(ti),director(dr),actor(ac),genre(gn),format(fm),category(cg),

keyword(kw),rating(rt),price(pr),studio(sd),star(st),artist(at)
Music Records artist(at),song(sg),album(ab),title(ti),label(lb),format(fm),

genre(gn),soundtrack(sr),catalog #(ct),keyword(kw),band(bn)
Automobiles make(mk),model(md),price(pr),year(yr),type(tp),zip code(zc),

mileage(ml),style(sy),color(cl),state(st),category(cg)

Figure 2.7: Vocabularies of the four domains.

domain output models PM RM PT RT
Movies Mmovie1 = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st),(gn,cg),(at)} 0.94 1 1 0.88

Mmovie2 = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st,at),(gn),(cg)} 0.96 1 1 0.88
Mmovie3 = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st,at),(gn,cg)} 1 1 1 1

Music Mmusic1 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn),(sr),(kw),(ct)} 1 1 1 1
Records Mmusic2 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn),(sr),(kw,ct)} 1 0.99 0.94 1

Mmusic3 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn),(sr,kw),(ct)} 1 0.99 0.94 1
Mmusic4 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn,sr),(kw),(ct)} 1 0.98 0.93 1
Mmusic5 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn,sr),(kw,ct)} 1 0.97 0.86 1

Automobiles Mauto = {(mk),(md),(pr),(yr),(sy,tp,cg),(zc,cl),(st,ml)} 1 0.94 0.84 1

Figure 2.8: Experimental results for Movies, Music Records and Automobiles.

consistent models:Mbook1 = {(ti:1):.98, (is:1):.8, (kw:1):.56, (pr:1):.13, (fm:1):.13, (pd:1):.1, (pu:1):.25,

(su:.61,cg:.39):.33, (au:.85,ln:.15):.98, (fn:1):.11} andMbook2 = {(ti:1):.98, (is:1) :.8, (kw:1):.56, (pr:1):.13,

(fm:1):.13, (pd:1):.1, (pu:1):.25, (su:.61,cg:.39):.33, (au:.88, fn:.12):.95, (ln:1):.15}.

The result successfully identifies the matchings (au, ln), (au, fn) and (su, cg). Without attribute

grouping techniques (Section 2.3.1) to mergelast name andfirst name, human experts can only consider

thatMbook1 andMbook2 both are correct schema models and thus give 1.0 precision and 1.0 recall in both

model and target metrics. As stated in Section 2.3.1, attribute grouping is a different target question.

Assume another specialized frameworkMGSag has done this task. Then the result will beMbook =

{(ti:1):.98, (is:1):.8, (kw:1):.56, (pr:1):.13, (fm:1):.13, (pd:1):.1, (pu:1):.25, (su:.61,cg:.39):.33, (au:.85,

[ln,fn]:.15):.98)}, which is perfectly accurate in the sense of “equivalent synonym.” In addition, the

parameters in the results can be used to answer the question of concept popularity (Section 2.3.1),

which indicates that this model is not limited to synonym discovery.

For the other three domains: Movies, Music Records, and Automobiles, their output is summarized

in Figure 2.8. The results show that our approach can identify most concepts correctly. In Movies

34

and Music Records, the correct schema model is returned in our output models, which areMmovie3

andMmusic1 respectively. However, for Automobiles, we did not get the correct model. The incorrect

matchings are due to the small number of observations we have. If we observe more sources, we should

be able to observe some co-occurrences to remove false synonyms. For example, in the Automobile

domain, the incorrect matchings (zc, cl) and (st, ml) are because we did not observe the co-occurrences

of zip code andcolor, state andmileage. With larger observation size, we believe the result will be

better.

The measurement results in Figure 2.8 show that we do need two suites of metrics because they

evaluate different aspects. For instance, the model recall ofMmovie1 = 1 meansMmovie1 can generate all

correct instances, while the target precision ofMmovie1 = 1 denotes the synonyms answered byMmovie1

are all correct ones.

Finally, although in principle the time complexity ofMGSac is exponential in terms of the number

of attributes, in practice, the number of frequently used attributes within a domain is often not too many

(as we have illustrated in Figure 2.1) and thus the overall execution time of our matching algorithm

is quite fast,i.e., within one minute (on a Pentium-III 700GHz with 128MB memory). Therefore, we

believe that in practice the computation cost is likely to be acceptable for schema-matching as an off-line

process.

2.5 Conclusion

This chapter explores statistical schema matching, by hypothesizing and discovering hidden models that

unify input schemas. Our experience indicates high promise for moving the traditional pairwise-attribute

correspondence toward a new paradigm of holistic matching of massive sources. We propose a general

35

statistical frameworkMGS, and further specialize it to develop AlgorithmMGSac for finding synonym

attributes. Our extensive case studies motivated our approach as well as validated its effectiveness.

However, although theMGS framework can effectively model simple matchings, it cannot find

complex matchings, which generally exist across Web query interfaces (e.g., author is a synonym of

the grouping oflast name andfirst name in Books domain,i.e., author = {last name, first name}). To

discover complex matchings, we further develop theDCM framework, as we will discuss in Chapter 3.

36

Chapter 3

Local Evaluation: Matching as

Correlation Mining

While theMGS framework can effectively model simple matchings, it cannot find a more general type

of matchings:complex matching. To discover complex matchings, we further develop theDCM frame-

work [39]. Specifically, for our focus of the “deep Web,” query schemas generally form complex match-

ings between attribute groups. In contrast to simple 1:1 matching, complex matching matches a set of

m attributes to another set ofn attributes, which is thus also calledm:n matching. For instance, in

the Books domain,author is a synonym of the grouping oflast name andfirst name, i.e., {author} =

{first name, last name}; in the Airfares domain,{passengers} = {adults, seniors, children, infants}.

Motivated by our observation thatco-occurrencepatterns across schemas often reveal the complex re-

lationships of attributes, we develop theDCM framework by pursuing a correlation mining approach

with a local evaluationstrategy. Unlike global evaluation which evaluates an entire model, local evalua-

tion aims at “greedily” finding individual matchings (e.g., {author} = {first name, last name}) and then

incrementally constructs the model.

37

3.1 Motivation: From Schema Matching to Correlation Mining

Our key insight is on connecting schema matching to correlation mining. Consider a typical scenario:

suppose user Amy wants to book two flight tickets from cityA to city B, one for her and the other for

her 5-year old child. To get the best deal, she needs to query various airfare sources by filling in the

Web query interfaces. For instance, inunited.com, she fills in the query interface withfrom as cityA,

to as cityB andpassengers as 2. For the same query inflyairnorth.com, she fills indepart as cityA,

destination as cityB, adults as 1,seniors as 0,children as 1 andinfants as 0.

This scenario reveals some critical characteristics of the Web interfaces in the same domain. First,

some attributes maygroup together to form a “larger” concept. For instance, the grouping ofadults,

seniors, children and infants denotes the number of passengers. We consider such attributes that can

be grouped asgrouping attributesor having agrouping relationship, denoted by putting them within

braces (e.g., {adults, seniors, children, infants}).

Second, different sources may use different attributes for the same concept. For instance,from and

depart denote the city to leave from, andto anddestination the city to go to. We consider such semanti-

cally equivalent attributes (or attribute groups) assynonym attributesor having asynonym relationship,

denoted by “=” (e.g., {from} = {depart}, {to} = {destination}).

Grouping attributes and synonym attributes together formcomplex matchings. In complex matching,

a set ofm attributes is matched to another set ofn attributes, which is thus also calledm:n matching(in

contrast to the simple 1:1 matching). For instance,{adults, seniors, children, infants} = {passengers}

is a 4:1 matching in the above scenario.

To tackle the complex matching problem, we exploit co-occurrence patterns to match schemasholis-

tically and thus pursue a mining approach. In the holistic view of matching, all the schemas at the same

time provide the co-occurrence information of attributes across many schemas, which reveals the se-

38

n-ary complex matchings
{A} = {B} = {C, D, E}

{F, G} = {H, I}

*** ***

Data Preprocessing:
type recognition and syntactic merging

Matching Discovery:
dual correlation mining

Matching Construction:
ranking and selection

Interface Extraction

��� ������	�

Web pages with query interfaces

Figure 3.1: Complex matching as correlation mining.

mantics of complex matchings. (Such co-occurrence information cannot be observed when schemas are

matched only in pairs.) For instance, we may observe thatadults, seniors, children and infants often

co-occur with each other in schemas, while they together do not co-occur withpassengers. This insight

enables us to discover complex matchings with a correlation mining approach. In particular, in our

application, we need to handle not only positive correlations, a traditional focus, but also negative ones,

which have rarely been extensively explored or applied.

By matching many schemas together, this holistic matching naturally discovers a more general type

of complex matching– a matching may span more than two attribute groups. Reconsider the Amy

scenario. If she tries a third airline source,priceline.com, she needs to fill the interface withdeparture

city as cityA, arrival city as cityB, number of tickets as 2. We thus have the matching{adults, seniors,

children, infants} = {passengers} = {number of tickets}, which is a 4:1:1 matching. Similarly, we have

two 1:1:1 matchings{from} = {departure city} = {depart} and{to} = {arrival city} = {destination}. We

39

name this type of matchingn-ary complex matching, which can be viewed as an aggregation of several

binarym:n matchings.

These observations motivate us to develop a correlation mining abstraction of the schema match-

ing problem. Specifically, given extracted schemas from Web query interfaces, we develop a stream-

lined process, theDCM framework, for mining complex matchings, consisting ofdata preprocessing,

matching discoveryandmatching construction, as Figure 3.1 shows. Since the query schemas in Web

interfaces are not readily minable in HTML format, before executing theDCM framework, we assume

an interface extractor to extract the attribute information in the interfaces. (In this thesis, we will also

address the impact of errors made by the automatic interface extractor on our matching algorithm in

Chapter 4.) Given extracted raw schema data, we first preprocess schemas to make them ready for min-

ing as the data preprocessing step (Section 3.4). Next, the matching discovery step, the core of theDCM

framework, explores adual correlation mining algorithm to discovern-ary complex matchings, which

first mines potential attribute groups as positive correlations and then potential complex matchings as

negative correlations (Section 3.2.1). Finally, matching construction ranks and then selects the most

confident and consistent matchings from the mining result (Section 3.2.2). Meanwhile, in the heart of

correlation mining, we need to choose an appropriate correlation measure (Section 3.3).

3.2 Complex matching as correlation mining

We view a schema as atransaction, a conventional abstraction in association and correlation mining. In

data mining, a transaction is a set of items; correspondingly, in schema matching, we consider a schema

as a set ofattribute entities. An attribute entity contains attribute name, type and domain (i.e., instance

values). Before mining, the data preparation step (Section 3.4) finds syntactically similar entities among

schemas. After that, each attribute entity is assigned a uniqueattribute identifier. While the mining is

40

over the attribute entities, for simplicity of illustration, we use the attribute name of each entity, after

cleaning, as the attribute identifier.

Formally, we consider the schema matching problem as:Given the input as a set of schemasSI =

{S1, ...,Su} in the same domain, where each schemaSi is a transaction of attribute identifiers, find all

the matchingsM = {M1, ...,Mv}. EachM j is ann-ary complex matchingG j1 = G j2 = ... = G jw, where

eachG jk is an attribute group andG jk ⊆
Su

t=1Si . Semantically, eachM j should represent the synonym

relationship of attribute groupsG j1,..., G jw and eachG jk should represent the grouping relationship of

attributes inG jk.

Motivated by our observations on the schema data (Section 3.1), we develop a correlation mining

algorithm, with respect to the above abstraction (Figure 3.1), consists ofdual correlation miningand

matching construction. We will elaborate these two steps in Section 3.2.1 and Section 3.2.2 respectively.

Briefly, the dual correlation mining has two sub-steps. First,group discovery: We minepositively

correlated attributesto form potential attribute groups. A potential group may not be eventually useful

for matching; only the ones having a synonym relationship (i.e., negative correlation) with other groups

can survive. For instance, if all sources uselast name, first name, and notauthor, then the potential

group{last name, first name} is not useful because there is no matching (toauthor) needed. Second,

matching discovery: Given the potential groups (including singleton ones), we minenegatively corre-

lated attribute groupsto form potentialn-ary complex matchings. A potential matching may not be

considered as correct due to the existence of conflicts among matchings.

After group discovery, we need to add the discovered groups into the input schemasSI to mine

negative correlations among groups. (A single attribute is viewed as a group with only one attribute.)

Specifically, an attribute group is added into a schema if that schema contains any attribute in the group.

For instance, if we discover thatlast name andfirst name have a grouping relationship, we consider

41

Algorithm: N-ARYSCHEMAMATCHING:
Input: InputSchemasSI = {S1, ...,Su},

Measuresmp, mn, ThresholdsTp, Tn

Output: Potentialn-ary complex matchings
begin:
1 /* group discovery */
2 G ← APRIORICORRM INING(SI ,mp,Tp)
3 /* adding groups intoSI */
4 for eachSi ∈ SI
5 for eachGk ∈ G
6 if Si ∩Gk 6= /0 then Si ← Si ∪{Gk}
7 /* matching discovery */
8 M ← APRIORICORRM INING(SI ,mn,Tn)
9 return M
end

Algorithm: APRIORICORRM INING:
Input: InputSchemasSI = {S1, ...,Su},

Measuresm, ThresholdT
Output: Correlated items
begin:
1 X ← /0
2 V ←Su

t=1Si ,Si ∈ SI
3 for all Ap,Aq ∈ V , p 6= q
4 if m(Ap,Aq)≥ T then X ← X∪{{Ap,Aq}}
5 l ← 2
6 /* Xl : correlated items with length =l */
7 Xl ← X
8 while Xl 6= /0
9 constructXl+1 from Xl using apriori feature
10 X ← X∪Xl+1
11 Xl ← Xl+1
12 l ← l +1
13 return X
end

(a) Algorithm N-ARYSCHEMAMATCHING. (b) Algorithm APRIORICORRM INING.

Figure 3.2: Algorithms for Mining Complex Matchings.

{last name, first name} as an attribute group, denoted byGl f for simplicity, and add it to any schema

containing eitherlast name or first name, or both. The intuition is that although a schema may not

contain the entire group, it still partially covers the concept that the group denotes and thus should be

counted in matching discovery for that concept. Note that we do not remove singleton groups{last

name} and{first name} when addingGl f , becauseGl f is only a potential group and may not survive in

matching discovery.

The matching construction also has two sub-steps: First,matching ranking: To solve the conflicts,

we develop a ranking strategy to rank the confidence of each matching candidate discovered by the dual

correlation mining phase. Second,matching selection: We further develop a selection strategy to select

the most confident and consistent matchings from the mining result according to the rankings.

42

3.2.1 Matching Discovery: Dual Correlation Mining

While group discovery works on individual attributes and matching discovery on attribute groups, they

can share the same mining process. We use the term –items– to represent both attributes and groups in

the following discussion of mining algorithms.

Correlation mining, at the heart, requires a measure to gauge correlation of a set ofn items; our

observation indicates pairwise correlations among thesen items. Specifically, forn groups forming

synonyms, any two groups should be negatively correlated, since they both are synonyms by themselves

(e.g., in the matching{destination} = {to} = {arrival city}, negative correlations exist between any two

groups). We have a similar observation on the attributes with grouping relationships. Motivated by such

observations, we design the measure as:

Cmin({A1, ...,An},m) = minm(Ai ,A j),∀i 6= j, (3.1)

wherem is some correlation measure for two items (e.g., the measures surveyed in [63]). That is, we

defineCmin as the minimal value of the pairwise evaluation, thus requiring all pairs to meet this minimal

“strength.”

Cmin has several advantages: First, it satisfies the “apriori” feature and thus enables the design of an

efficient algorithm. In correlation mining, the measure for qualification should have a desirable “apriori”

property (i.e., downward closure), to develop an efficient algorithm. (In contrast, a measure for ranking

should not have this “apriori” feature, as Section 3.2.2 will discuss.)Cmin satisfies the “apriori” feature

since given any item setA and its subsetA∗, we haveCmin(A , m) ≤Cmin(A∗, m) because the minimum

of a larger set (e.g., min({1,3,5})) cannot be higher than its subset (e.g., min({3,5})). Second,Cmin

43

can incorporate any measurem for two items and thus can accommodate different tasks (e.g., mining

positive and negative correlations) and be customized to achieve good mining quality.

Leveraging the “apriori” feature ofCmin, we develop AlgorithmAPRIORICORRM INING (Figure 3.2)

for discovering complex matchings, in the spirit of the classic Apriori algorithm for association min-

ing [1]. That is, we find all the correlated items with lengthl +1 based on the ones with lengthl .

With Cmin, we can directly define positively correlated attributes in group discovery and negatively

correlated attribute groups in matching discovery. A set of attributes{A1, ...,An} is positively correlated

attributes, denoted byPC, if Cmin({A1, ...,An}, mp)≥ Tp, wheremp is a measure for positive correlation

andTp is a given threshold. Similarly, a set of attribute groups{G1, ..., Gm} is negatively correlated

attribute groups, denoted byNC, if Cmin({G1, ..., Gm}, mn) ≥ Tn, wheremn is a measure for negative

correlation andTn is another given threshold.

Algorithm N-ARYSCHEMAMATCHING shows the pseudo code of the complex matching discovery

(Figure 3.2). Line 2 (group discovery) callsAPRIORICORRM INING to mine PC. Lines 3-6 add the dis-

covered groups intoSI . Line 8 (matching discovery) callsAPRIORICORRM INING to mine NC. Similar

to [1], the time complexity ofN-ARYSCHEMAMATCHING is exponential with respect to the number of

attributes. But in practice, the execution is quite fast since correlations exist among semantically related

attributes, which is far less than arbitrary combination of all attributes.

3.2.2 Matching Construction: Majority-based Ranking and Constraint-based Selection

After the matching discovery step, we need to develop ranking and selection strategies for the matching

construction step. We notice that the matching discovery step can discover true semantic matchings

and, as expected, also false ones due to the existence of coincidental correlations. For instance, in the

Books domain, the mining result may have both{author} = {first name, last name}, denoted byM1

44

Algorithm: MATCHINGSELECTION:
Input: Potential matchingsM = {M1, ...,Mv},

Measuremn

Output: Selected matchings
begin:
1 R ← /0 /* selectedn-ary complex matchings */
2 while M 6= /0
3 /* select the matching ranked the highest */
4 Mt ← GETMATCHINGRANK FIRST(M , mn)
5 R ← R ∪{Mt}
6 for eachM j ∈M
7 /* remove the conflicting part */
8 M j ←M j −Mt

9 /* deleteM j if it contains no matching */
10 if |M j |< 2 then M ←M −{M j}
11 return R
end

Algorithm: GETMATCHINGRANK FIRST:
Input: Potential matchingsM = {M1, ...,Mv},

Measuremn

Output: The matching with the highest ranking
begin:
1 Mt ←M1
2 for eachM j ∈M ,2≤ j ≤ v
3 if s(M j ,mn) > s(Mt ,mn) then
4 Mt ←M j
5 if s(M j ,mn) = s(Mt ,mn) andM j ºMt then
6 Mt ←M j
7 return Mt

end

(a) Algorithm MATCHINGSELECTION. (b) Algorithm GETMATCHINGRANK FIRST.

Figure 3.3: Algorithm MATCHINGSELECTION.

and{subject} = {first name, last name}, denoted byM2. We can seeM1 is correct, whileM2 is not.

The reason for having the false matchingM2 is that in the schema data, it happens thatsubject rarely

co-occurs withfirst name andlast name.

The existence of false matchings may cause matching conflicts. For instance,M1 andM2 conflict in

that if one of them is correct, the other one will not. Otherwise, we get a wrong matching{author} =

{subject} by the transitivity of the synonym relationship. Since our mining algorithm does not discover

{author} = {subject}, M1 andM2 cannot be both correct.

Leveraging the conflicts, we select the most confident and consistent matchings to remove the false

ones. Intuitively, between conflicting matchings, we want to select the more negatively correlated one

because it indicates higher confidence to be synonyms. For example, our experiment shows that, as

M2 is coincidental, it is indeed thatmn(M1) > mn(M2), and thus we selectM1 and removeM2. With

larger data size, semantically correct matching is more likely to be the winner. The reason is that, with

larger sampling size, the correct matchings are still negatively correlated while the false ones will remain

coincidental and not as strong.

45

Before presenting the selection algorithm, we need to develop a strategy forranking the discovered

matchings. That is, for anyn-ary complex matchingM j : G j1 = G j2 = ... = G jw, we have a score function

s(M j ,mn) to evaluateM j under measuremn.

Section 3.2.1 discussed a measure for “qualifying” candidates. We now need to develop another

“ranking” measure as the score function. Since ranking and qualification are different problems and thus

require different properties, we cannot apply the measureCmin (Equation 3.1) for ranking. Specifically,

the goal of qualification is to ensure the correlations passing some threshold. It is desirable for the

measure to support downward closure to enable an “apriori” algorithm. In contrast, the goal of ranking

is to compare the strength of correlations. The downward closure enforces, by definition, that a larger

item set is always less correlated than its subsets, which is inappropriate for ranking correlations of

different sizes. Hence, we develop another measureCmax, the maximalmn value among pairs of groups

in a matching, as the score functions. Formally,

Cmax(M j ,mn) = maxmn(G jr ,G jt),∀G jr ,G jt , jr 6= jt . (3.2)

It is possible to get ties if only considering theCmax value; we thus develop a natural strategy for

tie breaking. We take a “top-k” approach so thats in fact is a set of sorted scores. Specifically, given

matchingsM j andMk, if Cmax(M j ,mn) = Cmax(Mk,mn), we further compare their second highestmn

values to break the tie. If the second highest values are also equal, we compare the third highest ones

and so on, until breaking the tie.

If two matchings are still tied after the “top-k” comparison, we choose the one with richer semantic

information. We consider matchingM j to semantically subsumematchingMk, denoted byM j ºMk, if

all the semantic relationships inMk are covered inM j . For instance,{arrival city} = {destination} = {to}

º {arrival city} = {destination} because the synonym relationship in the second matching is subsumed in

46

the first one. Also,{author} = {first name, last name} º {author} = {first name} because the synonym

relationship in the second matching is part of the first.

Combining the score function and semantic subsumption, we rank matchings with the following

rules: 1) If s(M j ,mn) > s(Mk,mn), M j is ranked higher thanMk. 2) If s(M j ,mn) = s(Mk,mn) and

M j º Mk, M j is ranked higher thanMk. 3) Otherwise, we rankM j and Mk arbitrarily. Algorithm

GETMATCHINGRANK FIRST (Figure 3.3) illustrates the pseudo code of choosing the highest ranked

matching with this strategy.

Algorithm MATCHINGSELECTION shows the selection algorithm. We apply a greedy selection

strategy by choosing the highest ranked matching,Mt , in each iteration. After choosingMt , we remove

the inconsistent parts in remaining matchings (lines 6 - 10). The final output is the selectedn-ary

complex matchings without conflict. Note that we need to do the ranking in each iteration instead of

sorting all the matchings in the beginning because after removing the conflicting parts, the ranking may

change. The time complexity of AlgorithmMATCHINGSELECTION is O(v2), wherev is the number of

matchings inM .

Example 14: Assume runningN-ARYSCHEMAMATCHING in the Books domain finds matchingsM

as (matchings are followed by their scores):

M1: {author} = {last name, first name}, 0.95

M2: {author} = {last name}, 0.95

M3: {subject} = {category}, 0.92

M4: {author} = {first name}, 0.90

M5: {subject} = {last name, first name} , 0.88

M6: {subject} = {last name}, 0.88 and

M7: {subject} = {first name}, 0.86.

47

Ap ¬Ap

Aq f11 f10 f1+
¬Aq f01 f00 f0+

f+1 f+0 f++

Figure 3.4: Contingency table for test of correlation.

In the first iteration,M1 is ranked the highest and thus selected. In particular, althoughs(M1,mn) =

s(M2,mn), M1 is ranked higher sinceM1 º M2. Now we remove the conflicting parts of the other

matchings. For instance,M2 conflicts withM1 on author. After removingauthor, M2 only contains one

attribute and is not a matching any more. So we removeM2 from M . Similarly, M4 andM5 are also

removed. The remaining matchings areM3, M6 andM7. In the second iteration,M3 is ranked the highest

and thus also selected.M6 andM7 are removed because they conflict withM3. Now M is empty and

the algorithm stops. The final output is thusM1 andM3.

3.3 Correlation Measure

In this section, we discuss the positive measuremp and the negative measuremn, used as the com-

ponent ofCmin (Equation 3.1) for positive and negative correlation mining respectively in Algorithm

N-ARYSCHEMAMATCHING (Section 3.2).

As discussed in [63], a correlation measure by definition is a testing on thecontingency table. Specif-

ically, given a set of schemas and two specified attributesAp andAq, there are four possible combinations

of Ap andAq in one schemaSi : Ap,Aq are co-present inSi , only Ap presents inSi , only Aq presents in

Si , andAp,Aq are co-absent inSi . The contingency table[14] of Ap andAq contains the number of

occurrences of each situation, as Figure 3.4 shows. In particular,f11 corresponds to the number of co-

presence ofAp andAq; f10, f01 and f00 are denoted similarly.f+1 is the sum off11 and f01; f+0, f0+ and

f1+ are denoted similarly.f++ is the sum off11, f10, f01 and f00.

48

0

10

20

30

40

50

60

10 20 30 40 50
N

um
be

r
of

 O
bs

er
va

tio
ns

Attributes in Books Domain

Figure 3.5: Attribute frequencies in the Books domain.

The design of a correlation measure is often empirical. To our knowledge, there is no good cor-

relation measure universally agreed upon [63]. For our matching task, in principleany measure can

be applied. However, since the semantic correctness of the mining result is of special importance for

the schema matching task, we especially care about the ability of the measures to differentiate various

correlation situations, especially the subtlety of negative correlations, which has not been extensively

studied before.

We first identify the quality requirements of measures, which are imperative for schema matching,

based on the characteristics of Web query interfaces. Specifically, we observe that, in Web interfaces,

attribute frequencies are extremely non-uniform, similar to the use of English words, showing some

Zipf-like distribution. For instance, Figure 3.5 shows the attribute frequencies in the Books domain:

First, the non-frequent attributes result in the sparseness of the schema data (e.g., there are over 50

attributes in the Books domain, but each schema only has 5 on average). Second, many attributes are

rarely used, occurring only once in the schemas. Third, there exist some highly frequent attributes,

occurring in almost every schema.

These three observations indicate that, as the quality requirements, the chosen measures should be

robust against the following problems:sparseness problemfor both positive and negative correlations,

49

Ap ¬Ap

Aq 5 5 10
¬Aq 5 85 90

10 90 100

Ap ¬Ap

Aq 1 49 50
¬Aq 1 1 2

2 50 52

Ap ¬Ap

Aq 81 9 90
¬Aq 9 1 10

90 10 100
(a1)Example of sparseness problem(b1) Example of rare attribute problem(c1) Example of frequent attribute problem

with measureLift: with measureJaccard: with measureJaccard:
Less positive correlation Ap as rare attribute Ap andAq are independent
but a higherLift = 17. andJaccard= 0.02. but a higherJaccard= 0.82.

Ap ¬Ap

Aq 55 20 75
¬Aq 20 5 25

75 25 100

Ap ¬Ap

Aq 1 25 26
¬Aq 25 1 26

26 26 52

Ap ¬Ap

Aq 8 1 9
¬Aq 1 90 91

9 91 100
(a2)Example of sparseness problem(b2) Example of rare attribute problem(c2) Example of frequent attribute problem

with measureLift: with measureJaccard: with measureJaccard:
More positive correlation no rare attribute Ap andAq are positively correlated
but a lowerLift = 0.69. andJaccard= 0.02. but a lowerJaccard= 0.8.

Figure 3.6: Examples of the three problems.

rare attribute problemfor negative correlations, andfrequent attribute problemfor positive correlations.

In this section, we discuss each of them in detail.

The Sparseness Problem

In schema matching, it is more interesting to measure whether attributes are often co-present (i.e.,

f11) or cross-present (i.e., f10 and f01) than whether they are co-absent (i.e., f00). Many correlation

measures, such asχ2 andLift, include the count of co-absence in their formulas. This may not be good

for our matching task, because the sparseness of schema data may “exaggerate” the effect of co-absence.

This problem has also been noticed by recent correlation mining work such as [63, 56, 48]. In [63], the

authors use thenull invarianceproperty to evaluate whether a measure is sensitive to co-absence. The

measures for our matching task should satisfy this null invariance property.

Example 15: Figure 3.6(a) illustrates the sparseness problem with an example. In this example, we

choose a common measure: theLift (i.e, Lift = f00 f11
f10 f01

). (Other measures consideringf00 have similar

behavior.) The value ofLift is between 0 to+∞. Li f t = 1 means independent attributes,Li f t > 1 posi-

tive correlation andLi f t < 1 negative correlation. Figure 3.6(a) shows thatLift may give a higher value

to less positively correlated attributes. In the scenario of schema matching, the table in Figure 3.6(a2)

50

should be more positively correlated than the one in Figure 3.6(a1) because in Figure 3.6(a2), the co-

presence (f11) is more frequently observed than the cross-presence (eitherf10 or f01), while in Fig-

ure 3.6(a1), the co-presence has the same number of observations as the cross-presence. However,Lift

cannot reflect such preference. In particular, Figure 3.6(a1) gets a much higherLift and Figure 3.6(a2) is

even evaluated as not positively correlated. A similar example can also be found for negative correlation

with Lift. The reasonLift gives an inappropriate answer is thatf00 incorrectly affects the result.

We explored the 21 measures in [63] and theχ2 measure in [12]. Most of these measures (including

χ2 andLift) suffer the sparseness problem. That is, they consider both co-presence and co-absence in

the evaluation and thus do not satisfy the null invariance property. The only three measures supporting

the null invariance property areConfidence, JaccardandCosine.

The Rare Attribute Problem for Negative Correlation

AlthoughConfidence, JaccardandCosinesatisfy the null invariance property, they are not robust

for the rare attribute problem, when considering negative correlations. Specifically, the rare attribute

problem can be stated as when eitherAp or Aq is rarely observed, the measure should not considerAp

andAq as highly negatively correlated because the number of observations is not convincing to make

such judgement. For instance, theJaccard(i.e., Jaccard= f11
f11+ f10+ f01

) measure will stay unchanged

when both f11 and f10 + f01 are fixed. Therefore, to some degree,Jaccardcannot differentiate the

subtlety of correlations (e.g., f10 = 49, f01 = 1 and f10 = 25, f01 = 25), as Example 16 illustrates. Other

measures such asConfidenceandCosinehave a similar problem. This problem is not so critical for

positive correlation, since attributes with strong positive correlations cannot be rare.

Example 16: Figure 3.6(b) illustrates the rare attribute problem. In this example, we choose a common

measure: theJaccard. The value ofJaccard is between 0 to1. Jaccardclose to 0 means negative

correlation andJaccardclose to 1 positive correlation. Figure 3.6(b) shows thatJaccardmay not be

51

able to distinguish the situations of rare attribute. In particular, Jaccard considers the situations in

Figure 3.6(b1) and Figure 3.6(b2) as the same. But Figure 3.6(b2) is more negatively correlated than

Figure 3.6(b1) becauseAp in Figure 3.6(b1) is more like a rare event than a true negative correlation.

To differentiate the subtlety of negative correlations, we develop a new measure,H-measure (Equa-

tion 3.3), as the negative correlationmn. The value ofH is in the range from 0 to 1. AnH value close to

0 denotes a high degree of positive correlation; anH value close to 1 denotes a high degree of negative

correlation.

mn(Ap,Aq) = H(Ap,Aq) =
f01 f10

f+1 f1+
. (3.3)

H-measure satisfies the quality requirements: On the one hand, similar toJaccard, Cosineand

Confidence, H-measure satisfies the null invariance property and thus avoids the sparseness problem by

ignoring f00. On the other hand, by multiplying the individual effect off01 (i.e., f01
f+1

) and f10 (i.e., f10
f1+

),

H-measure is more capable of reflecting subtle variation of negative correlations.

The Frequent Attribute Problem for Positive Correlation

For positive correlations, we find thatConfidence, Jaccard, CosineandH-measure are not quite

different in discovering attribute groups. However, all of them suffer from the frequent attribute problem.

This problem seems to be essential for these measures: Although they avoid the sparseness problem by

ignoring f00, as the cost, they lose the ability to differentiate highly frequent attributes from really

correlated ones. Specifically, highly frequent attributes may co-occur in most schemas just because they

are so frequently used, not because they have grouping relationship (e.g., In the Books domain,isbn and

title are often co-present because they are both very frequently used). This phenomenon may generate

uninteresting groups (i.e., false positives) in group discovery.

52

Example 17: Figure 3.6(c) illustrates the frequent attribute problem with an example, where we still

useJaccardas the measure. Figure 3.6(c) shows thatJaccardmay give a higher value to independent

attributes. In Figure 3.6(c1),Ap andAq are independent and both of them have the probabilities 0.9

to be observed, while in Figure 3.6(c2),Ap andAq are really positively correlated. However,Jaccard

considers Figure 3.6(c1) as more positively correlated than Figure 3.6(c2). In our matching task, a

measure should not give a high value for frequently observed but independent attributes.

The characteristic of false groupings is that thef11 value is very high (since both attributes are

frequent). Based on this characteristic, we add another measuref11
f++

in mp to filter out false groupings.

Specifically, we define the positive correlation measuremp as:

mp(Ap,Aq) =





1−H(Ap,Aq),
f11
f++

< Td

0, otherwise,

(3.4)

whereTd is a threshold to filter out false groupings. To be consistent withmn, we also use theH-measure

in mp.

3.4 Data Preparation

As input of theDCM framework, we assume an interface extractor (Figure 3.1) has extracted attribute

information from Web interfaces in HTML formats. (Chapter 4 will discuss the incorporation of an

automatic interface extractor [72].) The extracted raw schemas contain many syntactic variations around

the “core” concept (e.g., title) and thus are not readily minable. We thus perform a data preprocessing

step to make schemas ready for mining. The data preprocessing step consists ofattribute normalization,

type recognitionandsyntactic merging. To begin with, given extracted schema data, we perform some

standard normalization on the extracted names and domain values. We first stem attribute names and

53

domain values using the standard Porter stemming algorithm [59]. Next, we normalize irregular nouns

and verbs (e.g., “children” to “child,” “colour” to “color”). Last, we remove common stop words by a

manually built stop word list, which contains words common in English, in Web search (e.g., “search”,

“page”), and in the respective domain of interest (e.g., “book”, “movie”).

We then perform type recognition to identify attribute types. As Section 3.4.1 discusses, type infor-

mation helps to identify homonyms (i.e., two attributes may have the same name but different types) and

constrain syntactic merging and correlation-based matching (i.e., only attributes with compatible types

can be merged or matched). Since the type information is not declared in Web interfaces, we develop a

type recognizerto recognize types from domain values.

Finally, we merge attribute entities by measuring the syntactic similarity of attribute names and

domain values (e.g., we merge “title of book” to “title” by name similarity). It is a common data

cleaning technique to merge syntactically similar entities by using a linguistic approach. Section 3.4.2

discusses our merging strategy.

3.4.1 Type Recognition

While attribute names can distinguish different attribute entities, the names alone sometimes lead to

the problem of homonyms (i.e., the same name with different meanings) – we address this problem

by distinguishing entities by both names and types. For instance, the attribute namedeparting in the

Airfares domain may have two meanings: a datetime type as departing date, or a string type as departing

city. With type recognition, we can recognize that there are two different types ofdeparting: departing

(datetime) anddeparting (string), which indicate two attribute entities.

54

any

string integer

float

month day time

date

datetime

Figure 3.7: The compatibility of types.

In general, type information, as a constraint, can help the subsequent steps of syntactic merging and

correlation-based matching. In particular, if the types of two attributes are not compatible, we consider

they denote different attribute entities and thus neither merge them nor match them.

Since type information is not explicitly declared in Web interfaces, we develop atype recognizerto

recognize types from domain values of attribute entities. For example, a list of integer values denotes an

integer type. In the current implementation, type recognition supports the following types: any, string,

integer, float, month, day, date, time and datetime. (An attribute with only an input box is given an

any type since the input box can accept data with different types such as string or integer.) Two types

arecompatibleif one can subsume another (i.e., the is-a relationship). For instance, date and datetime

are compatible since date subsumes datetime. Figure 3.7 lists the compatibility of all the types in our

implementation.

3.4.2 Syntactic Merging

We clean the schemas by merging syntactically similar attribute entities, a common data cleaning tech-

nique to identify unique entities [19]. Specifically, we developname-based merginganddomain-based

mergingby measuring the syntactic similarity of attribute names and domains respectively. Syntac-

tic merging increases the observations of attribute entities, which can improve the effect of correlation

evaluation.

Name-based Merging: We merge two attribute entities if they have similar names. We observe

that the majority of deep Web sources are consistent on some concise “core” attribute names (e.g.,

55

“title”) and others are variations of the core ones (e.g., “title of book”). Therefore, we consider attribute

Ap is name-similarto attributeAq if Ap’s name⊇ Aq’s name (i.e., Ap is a variation ofAq) andAq is

more frequently used thanAp (i.e., Aq is the majority). This frequency-based strategy helps avoid false

positives. For instance, in the Books domain,last name is not merged toname becauselast name is

more popular thanname and thus we consider them as different entities.

Domain-based Merging: We then merge two attribute entities if they have similar domain values.

In particular, we only consider attributes with string types, since it is unclear how useful it is to mea-

sure the domain similarity of other types. For instance, in the Airfares domain, the integer values of

passengers andconnections are quite similar, although they denote different meanings.

We view domain values as a bag of words (i.e., counting the word frequencies). We name such a

bagaggregate values, denoted asVA for attributeA. Given a wordw, we denoteVA(w) as the frequency

of w in VA. The domain similarity of attributesAp andAq is thus the similarity ofVAp andVAq. In

principle, any reasonable similarity function is applicable here. In particular, we choosesim(Ap,Aq) =

∀w∈VAp∩VAq,VAp(w)+VAq(w)
∀w∈VAp∪VAq,VAp(w)+VAq(w) .

The above three steps, form extraction, type recognition and syntactic merging, clean the schema

data as transactions to be mined. More detailed discussion about these data cleaning steps can be found

at the extended report [38].

3.5 Experiments

We collected 447 deep Web sources in 8 popular domains in the format of raw Web pages as our testbed,

where each domain has about 20-70 deep Web sources. This dataset is available as the TEL-8 dataset in

the UIUC Web Integration Repository [17].

56

In the experiment, we assume a perfect form extractor to extract all the interfaces in the TEL-8

dataset into query capabilities by manually doing the form extraction step. The reason we do not apply

the work in [72] is that we want to isolate the mining process to study and thus fairly evaluate the

matching performance. (Chapter 4 will systematically study the impact of form extractor to matching

performance.) After extracting the raw data, we do the data cleaning according to the process explained

in Section 3.4. Then, we run the correlation mining algorithm on the prepared data in each domain.

Also, in the results, we use attribute name and type together as the attribute identifier for an attribute

entity since we incorporate type recognition in data preparation to identify homonyms (Section 3.4).

To evaluate the performance of the algorithms we have developed in this chapter, we conduct four

sets of experiment on the TEL-8 dataset. First, we test our approach on the TEL-8 dataset and the result

shows goodtarget accuracy. We also evaluate the effectiveness of the matching selection algorithm and

the data preprocessing step. Last, we compare theH-measure with other measures on the TEL-8 dataset

and the result shows thatH-measure outperforms the others in most cases.

3.5.1 Metrics

We compare experimentally discovered matchings, denoted byMh, with correct matchings written by

human experts, denoted byMc. In particular, we adopt thetarget accuracy, a metric initially devel-

oped in theMGS framework (Chapter 2), by customizing thetarget questionsto the complex matching

scenario. The idea of the target accuracy is to measure how accurately that the discovered matchings

answer the target questions. Specifically, for our complex matching task, we consider the target question

as, given any attribute, to find its synonyms (i.e., word with exactly the same meaning as another word,

e.g., subject is a synonym ofcategory in the Books domain), hyponyms (i.e., word of more specific

57

meaning,e.g., last name is a hyponym ofauthor) and hypernyms (i.e., word with a broader meaning,

e.g,author is a hypernym oflast name).

It is quite complicated to use different measures for different semantic relationships. We therefore

report an aggregate measure for simplicity and, at the same time, still reflect semantic differences. For

our discussion here, we name synonym, hyponym and hypernym together asclosenym– meaning that

they all denote some degrees of closeness in semantic meanings. Our target question now is to ask the

set of closenyms of a given attribute.

Example 18: For instance, for matching{A} = {B, C}, the closenym sets of attributesA, B, C are{B,

C}, {A}, {A} respectively. In particular, the closenym sets ofB does not haveC sinceB andC only have

grouping relationship. In contrast, for matching{A} = {B} = {C}, the closenym sets of attributesA, B,

C are{B, C}, {A, C}, {A, C} respectively. We can see that the difference of matchings can be reflected

in the corresponding closenym sets.

Except for this difference in target question, we use the same metric of target accuracy as in the

MGS framework. Specifically, we assume a “random querier” to ask for closenym set of each attribute

according to its frequency. The answer to each question is closenym set of the queried attribute in

discovered matchings. We defineCls(A j |M) as the closenym set of attributeA j . GivenMc andMh, the

precision and recall of the closenym sets of attributeA j are:

PA j (Mh,Mc) = |Cls(A j |Mc)∩Cls(A j |Mh)|
|Cls(A j |Mh)| and

RA j (Mh,Mc) = |Cls(A j |Mc)∩Cls(A j |Mh)|
|Cls(A j |Mc)| .

Since more frequently used attributes have higher probabilities to be asked in this “random querier,”

we compute the weighted average of all thePA j ’s andRA j ’s as thetarget precisionandtarget recall. The

weight is assigned asO j

∑Ok
, whereO j is the frequency of attributeA j in the dataset (i.e., its number of

58

Step Value of Result Cmin Cmax

group G G1 = {last name (unknown),first name (any)} 0.94
discovery G2 = {title (any),keyword (any)} 0.93

G3 = {last name (any),title (any)} 0.91
G4 = {first name (any),catalog (any)} 0.90
G5 = {first name (any),keyword (any)} 0.87

matching M M1: {author (any)} = {last name (any),first name (any)} 0.87 0.87
discovery M2: {author (any)} = {last name (any)} 0.87 0.87

M3: {subject (string)} = {category (string)} 0.83 0.83
M4: {author (any)} = {last name (any),catalog (any)} 0.82 0.82
M5: {author (any)} = {first name (any)} 0.82 0.82
M6: {category (string)} = {publisher (string)} 0.76 0.76

matching R R1: {author (any)} = {last name (any),first name (any)} 0.87
selection R2: {subject (string)} = {category (string)} 0.83

Figure 3.8: Running AlgorithmsN-ARYSCHEMAMATCHING and MATCHINGSELECTION on the
Books domain.

Domain Final Output After Matching Selection Correct?
Airfares {destination (string)} = {to (string)} = {arrival city (string)} Y

{departure date (datetime)} = {depart (datetime)} Y
{passenger (integer)} = {adult (integer),child (integer),infant (integer)} P
{from (string),to (string)} = {departure city (string),arrival city (string)} Y
{from (string)} = {depart (string)} Y
{return date (datetime)} = {return (datetime)} Y

Movies {artist (any)} = {actor (any)} = {star (any)} Y
{genre (string)} = {category (string)} Y
{cast & crew (any)} = {actor (any),director (any)} Y

Figure 3.9: Experimental results for Airfares and Movies.

occurrences in different schemas). Therefore,target precisionandtarget recallof Mh with respect to

Mc are:

PT(Mh,Mc) = ∑A j

O j

∑Ok
PA j (Mh,Mc)

RT(Mh,Mc) = ∑A j

O j

∑Ok
RA j (Mh,Mc).

3.5.2 Experimental Results

To illustrate the effectiveness of the mining approach, we only list and count the “semantically difficult”

matchings discovered by the correlation mining algorithm, not the simple matchings by the syntactic

59

Domain PT RT PT RT

(20%) (20%) (10%) (10%)
Books 1 1 1 1
Airfares 1 1 1 0.71
Movies 1 1 1 1
MusicRecords 1 1 0.76 1
Hotels 0.86 1 0.86 0.87
CarRentals 0.72 1 0.72 0.60
Jobs 1 0.86 0.78 0.87
Automobiles 1 1 0.93 1

Figure 3.10: Target accuracy of 8 domains.

merging in the data preparation (e.g., {title of book} to {title}). Our experiment shows that many

frequently observed matchings are in fact “semantically difficult” and thus cannot be found by syntactic

merging.

Result on the TEL-8 Dataset: In this experiment, we run our algorithm (withH-measure as the cor-

relation measure) on the TEL-8 dataset. We set the thresholdsTp to 0.85 andTd to 0.6 for positive

correlation mining andTn to 0.75 for negative correlation mining. We empirically get these numbers by

testing the algorithm with various thresholds and choose the best one. As Section 8 will discuss, a more

systematic study can investigate in choosing appropriate threshold values.

Figure 3.8 illustrates the detailed results ofn-ary complex matchings discovered in the Books do-

main. The step of group discovery found 5 likely groups (G1 to G5 in Figure 3.8). In particular,mp

gives a high value (actually the highest value) for the group oflast name (any) andfirst name (any). The

matching discovery found 6 likely complex matchings (M1 to M6 in Figure 3.8). We can see thatM1

andM3 are fully correct matchings, while others are partially correct or incorrect. Last, the matching

selection will chooseM1 andM3 (i.e., the correct ones) as the final output.

Figure 3.9 shows the results on Airfares and Movies. (The results of other domains can be found

in the extended report [38]). The third column denotes the correctness of the matching. In particular,Y

means a fully correct matching,P a partially correct one andN an incorrect one. Our mining algorithm

60

does find interesting matchings in almost every domain. For instance, in the Airfares domain, we find

5 fully correct matchings,e.g., {destination (string)} = {to (string)} = {arrival city (string)}. Also,

{passenger (integer)} = {adult (integer),child (integer),infant (integer)} is partially correct because it

missessenior (integer).

Since, as a statistical method, our approach relies on “sufficient observations” of attribute occur-

rences, it is likely to perform more favorably for frequent attributes (i.e., the head-ranked attributes in

Figure 3.5). To quantify this “observation” factor, we report the target accuracy with respect to the

attribute frequencies. In particular, we consider the attributes above afrequency thresholdT (i.e., the

number of occurrences of the attribute over the total number of schemas is aboveT) in both discovered

matchings and correct matchings to measure the target accuracy. Specifically, we run the algorithms on

all the attributes and then report the target accuracy in terms of the frequency-divided attributes. In the

experiment, we chooseT as 20% and 10%.

Consider the Airfares domain, if we only consider the attributes above 20% frequency in the match-

ing result, only 12 attributes are above that threshold. The discovered matchings in Figure 3.9 become

{destination (string)} = {to (string)}, {departure date (datetime)} = {depart (datetime)}, and{return

date (datetime) =return (datetime)}. (The other attributes are removed since they are all below 20%

frequency.) These three matchings are exactly the correct matchings the human expert can recognize

among the 12 attributes and thus we get 1.0 in both target precision and recall.

Next, we apply the 10% frequency threshold and get 22 attributes. The discovered matchings in

Figure 3.9 are unchanged since all the attributes (in the matchings) are now passing the threshold.

Compared with the correct matchings among the 22 attributes, we do miss some matchings such as

{cabin (string)} = {class (string)} and{departure (datetime) =departure date (datetime)}. Also, some

61

Domain reduced missed reduced missed
false positive false positive false positive false positive

(20%) (20%) (10%) (10%)
Books 0 0 3 0
Airfares 2 0 22 0
Movies 0 0 2 0
MusicRecords 3 0 5 1
Hotels 6 1 11 2
CarRentals 2 1 2 1
Jobs 4 0 9 1
Automobiles 0 0 2 1

Figure 3.11: The effectiveness of reducing false matchings in the matching selection step.

matchings are partially correct such as{passenger (integer)} = {adult (integer),child (integer),infant

(integer)}. Hence, we get 1.0 in target precision and 0.71 in target recall.

Figure 3.10 lists the target accuracies of the 8 domains under thresholds 20% and 10%. From the

result, we can see that our approach does perform better for frequent attributes.

Evaluating the Matching Selection Strategy: To evaluate the effectiveness of the matching selection

algorithm we developed in Section 3.2.2, which exploits conflict between matching candidates to re-

move false positives, we count the number of false matchings reduced and missed by the selection step

respectively. Figure 3.11 lists this result for the eight domains under both 20% and 10% frequency

thresholds. We can see that the greedy selection strategy based onCmax measure is quite effective in

reducing false matchings. Most false matchings are removed in the selection step. In particular, al-

though the 10% frequency threshold may result in more false matchings comparing to the 20% one,

the selection strategy can remove most of them and keep the performance good. For instance, in the

Airfares domain under 10% frequency threshold, 22 false matchings are removed and no false matching

is missed.

Evaluating the Data Preprocessing Step: To evaluate the effectiveness of the data preprocessing step,

we test theDCM algorithm over schemas without data preprocessing. In particular, we only perform the

62

Domain PT RT PT RT

(20%) (20%) (10%) (10%)
Books 0.79(-0.21) 1 0.74(-0.26) 1
Airfares 1 1 0.81(-0.19) 0.82(+0.11)
Movies 1 1 0.87(-0.13) 1
MusicRecords 0.93(-0.07) 1 0.70(-0.06) 1
Hotels 0.66(-0.20) 1 0.47(-0.39) 0.46(-0.41)
CarRentals 1 (+0.28) 0.63(-0.37) 1 (+0.28) 0.16(-0.44)
Jobs 0.70(-0.30) 1 (+0.14) 0.52(-0.26) 0.87
Automobiles 1 1 0.66(-0.27) 0.68(-0.32)

Figure 3.12: Target accuracy of the 8 domains without data preprocessing.

standard normalization sub-step in Section 3.4 for the input schemas and ignore the type recognition

and syntactic merging sub-steps. Our goal is to see the impact of these sub-steps on the accuracy of

matching.

Intuitively, although query interfaces are quite concerted in terms of the attributes they use, there

still are many syntactic variations for expressing the same attribute,e.g., title, book title, title of book and

search by title for attribute “title.” As discussed in Section 3.4, type recognition and syntactic merging

can help merge these variations into a single attribute and thus increase attribute occurrences across

query interfaces, which can improve the performance of the subsequent correlation mining algorithm.

Figure 3.12 shows the result of running theDCM algorithm with non-preprocessed schemas as input.

In Figure 3.12, we write accuracies that change after removing the data preprocessing step in italic font

and show the differences in brackets. As we can see, the accuracies for many domains are much worse

than the ones with data preprocessing in Figure 3.10. In particular, under the 10% frequency threshold,

where more attributes are considered for mining matchings, accuracies are greatly reduced. Therefore,

applying the data preprocessing step, although may itself result in some errors, is crucial for our mining-

based matching approach and can indeed significantly enhance the matching accuracy.

63

Domain PT(H) RT(H) PT(ζ) RT(ζ)
(10%) (10%) (10%) (10%)

Books 1 1 0.80(-0.20) 1
Airfares 1 0.71 0.79(-0.21) 0.61(-0.10)
Movies 1 1 0.93(-0.07) 1
MusicRecords 0.76 1 0.76 1
Hotels 0.86 0.87 0.44(-0.42) 0.95(+0.08)
CarRentals 0.72 0.60 0.68(-0.04) 0.62(+0.02)
Jobs 0.78 0.87 0.64(-0.14) 0.87
Automobiles 0.93 1 0.78(-0.15) 1

Figure 3.13: Comparison ofH-measure andJaccard.

Evaluating the H-Measure: We compare theH-measure with other measures and the result shows

thatH-measure gets better target accuracy. As an example, we chooseJaccard(ζ) as the measure we

compare to. WithJaccard, we define themp andmn as

mp(Ap,Aq) =





ζ(Ap,Aq),
f11
f++

< Td

0, otherwise,

and

mn(Ap,Aq) = 1−ζ(Ap,Aq).

We set theTp andTn for this Jaccard-basedmp andmn as 0.5 and 0.9 respectively. We compare the

target accuracy ofH-measure andJaccardin the situation of 10% frequency threshold. The result (Fig-

ure 3.13) shows thatH-measure is better in both target precision and target recall in most cases. Similar

comparisons show thatH-measure is also better than other measures such asCosineandConfidence.

64

3.6 Conclusion

This chapter explores co-occurrence patterns among attributes to tackle the complex matching problem.

Specifically, we abstract complex matching as correlation mining and develop theDCM framework.

Further, we propose a new correlation measure,H-measure, for mining negative correlations. Our

experiments validate the effectiveness of both the mining approach and theH-measure.

To complete an automatic matching process, which starts from raw HTML pages, we integrate the

DCM framework with an automatic interface extractor [72]. Such “system integration” turns out to be

non-trivial– As automatic interface extraction cannot be perfect, it will introduce “noise” (i.e., erroneous

extraction), which challenges the performance of the subsequent matching algorithm. Chapter 4 will

discuss our approach to maintaining the matching quality with the presence of errors in the interface

extraction step.

65

Chapter 4

Dealing with Noise: the EnsembleDCM

Framework

Our study on holistic matching algorithms so far has been focused on the matching task in isolation–

That is, we assume the input schemas are perfectly extracted. To complete an automatic matching

process, we must incorporate automatic techniques for interface extraction. Executing theDCM frame-

work on automatically extracted interfaces, we find that the inevitable errors in automatic interface ex-

traction may significantly affect the matching result. To make theDCM framework robust against such

“noisy” schemas, we propose to integrate it with an “ensemble” approach, which creates an ensemble

of DCM matchers, by randomizing the schema data into manytrials and aggregating their ranked results

by taking majority voting.

4.1 The EnsembleDCM Framework

To fully automate theDCM matching process, which starts from raw HTML pages as Figure 3.1 shows,

we must integrate theDCM framework (discussed in Chapter 3) with an automatic interface extractor.

66

It turns out that such integration is not trivial– As automatic interface extractorcannotbe perfect, it

will introduce “noise,” which challenges the performance of the subsequentDCM matching algorithm.

This chapter presents a refined algorithm, theensembleDCM framework, in contrast to thebaseDCM

framework in Section 3, tomaintainthe robustness ofDCM against such noisy input.

We note that such “system integration” issues have not been investigated in earlier works. Most

works on matching query interfaces, for instance ourMGS andDCM frameworks and others [41, 66], all

adopt manually extracted schema data for experiments. While these works rightfully focus on isolated

study of the matching module to gain specific insight, for our goal of constructing a fully automatic

matching process, we must now address the robustness problem in integrating the interface extraction

step and the matching algorithm.

In particular, we integrate ourDCM algorithm with the interface extractor we developed recently [72],

which tackles the problem of interface extraction with a parsing paradigm. The interface extractor as

reported in [72] can typically achieve 85-90% accuracy– thus it will make about 1-1.5 mistake for every

10 query conditions to extract. While the result is quite promising, the 10-15% errors (ornoise) may

still affect the matching quality. As our experiment shows in Section 4.5, with noisy schemas as input,

the accuracy of the baseDCM framework may degrade up to 30%.

The performance degradation results mainly from two aspects: First, noise may affect the qualifica-

tion of some correlations and decrease theirCmin values (i.e., Equation 3.1) below the given threshold.

In this case, the dual correlation mining algorithm cannot discover those matchings. Second, noise may

affect the right ranking of matchings (with respect to theCmax measure,i.e., Equation 3.2) and conse-

quently the result of greedy matching selection. Although in principle both qualification and ranking

can be affected, the influence on qualification is not as significant as on ranking. Matching qualification

will be affected when there are enough noisy schemas, which make theCmin value lower than the given

67

thresholdsTp or Tn. In many cases when only a little noise exists, the affected matchings are still above

the threshold and thus can be discovered in the qualification step. However, the ranking of matchings

usingCmax is more subtle– That is, even when there are only little noise, the ranking of matchings is

still likely to be affected (i.e., incorrect matchings maybe ranked higher than correct ones). The reason

is that other than comparing matchings to a fixed threshold, the ranking step needs to compare matching

among themselves. A single noise is often enough to change the ranking of two conflict matchings.

Consequently, the ranking is less reliable for the matching selection step to choose correct matchings.

As a result, although correct matchings may be discovered by the dual correlation mining process, they

may be pruned out by the matching selection phase due to the incorrect ranking of matchings, and thus

the final matching accuracy degrades.

While large scale schema matching brings forward the inherent problem of noisy quality in interface

extraction, the large scale also lends itself to an intriguing potential solution. An interesting question

to ask is: Do we need all input schemas in matching their attributes? In principle, since pursuing a

correlation mining approach, our matching techniques exploit “statistics-based” evaluation in nature

and thus need only “sufficient observations.” As query interfaces tend to share attributes,e.g., author,

title, subject, ISBN are repeatedly used in many book sources, a subset of schemas may still contain

sufficient information to “represent” the complete set of schemas. Thus, theDCM matcher in fact needs

only sufficient correct schemas to execute, instead of all of them. This insight is promising, but it also

brings a new challenge: As there is no way to differentiate noisy schemas from correct ones, how should

we select input schemas to guarantee the robustness of our solution?

Tackling this challenge, we propose to extendDCM in anensemblescheme with sampling and voting

techniques. (Figure 4.1 shows this extension from baseDCM framework,i.e., Figure 4.1(a), to ensemble

DCM framework,i.e., Figure 4.1(b), which we will elaborate in Section 4.2.) To begin with, we consider

68

to execute theDCM matcher on a randomly sampled subset of input schemas. Such adownsampling

has two attractive characteristics: First, when schemas are abundant, the downsampling is likely to still

contain sufficient correct schemas to be matched. Second, by sampling away some schemas, it is likely

to contain less noise and thus is more probable to sustain theDCM matcher. (Our analysis in Section 4.2

attempts to build analytic understanding of these “likelihoods.”)

Further, since a single downsampling may (or may not) achieve good result, as a randomized

scheme, its expected robustness can only be realized in a “statistical” sense– Thus, we propose to take

an ensemble ofDCM matchers, where each matcher is executed over an independent downsampling of

schemas. We expect that the majority of those ensemble matchers on randomized subsets of schemas

will perform more reliably than a single matcher on the entire set. Thus, by taking majority voting

among these matchers, we can achieve a robust matching accuracy.

We note that, our ensemble idea is inspired bybagging classifiers[11, 26] in machine learning.

Bagging is a method for maintaining the robustness of “unstable” classification algorithms where small

changes in the training set result in large changes in prediction. In particular, it creates multiple versions

of a classifier, trains each classifier on a random redistribution of the training set and finally takes a

plurality voting among all the classifiers to predict the class. Therefore, our ensemble approach has

the same foundation as bagging classifiers on exploiting majority voting to make an algorithm robust

against outlier data in the input.

However, our approach is different from bagging classifiers in several aspects. First,setting: We ap-

ply the idea of the ensemble of randomized data for unsupervised learning (e.g., in our scenario, schema

matching with statistical analysis), instead of supervised learning (i.e., human experts give the learner

direct feedback about the correctness of the performance [45]), which bagging classifiers is developed

for. Second,techniques: Our concrete techniques are different from bagging classifiers. In particular,

69

Rank Aggregation

1st trial Tth trial
Multiple Sampling

I = {Q1, Q2, …, QN}

A ranked list of matchings

I = {Q1, Q2, …, QN}

I1(S) IT(S)

Merged ranking of matchings

(a) The Base DCM Framework (b) The Ensemble DCM Framework

Data Preprocessing Data Preprocessing

Matching Selection

Dual Correlation Mining

Interface Extraction Interface Extraction

A A

Matching Selection

Matching Ranking

Base Algorithm A

A
IR

A
SIR)(1

A
SIR)(T

),...,,()()()(T21

A
SI

A
SI

A
SI RRR

� A
(S,T)
�

�
or

Figure 4.1: From the baseDCM framework to the ensembleDCM framework.

in the sampling part, we take a downsampling other than random redistribution with replacement; in

the voting part, we need to aggregate a set of ranked lists, which is more complicated than aggregate

a set of labels in bagging classifiers. Third,analytic modeling: We build an analytic modeling specific

to our matching scenario (Section 4.2), which enables us to validate the effectiveness of a particular

configuration and thus can be the basis for the design of the ensemble scheme.

We will next discuss this ensembleDCM framework in detail. In particular, we first more formally

model this framework and analyze its effectiveness (Section 4.2). Then, we aggregate the results of

multiple DCM matchers with a voting algorithm, which thus essentially captures the consensus of the

majority (Section 4.4).

4.2 Analytical Modeling

We develop a general modeling to formalize the ensembleDCM framework just motivated. Our goals

are two fold: First, based on our modeling, we can analytically judge the effectiveness of the ensemble

70

approach. Second, the modeling can be used to validate the setting of parameters in the ensemble

scheme.

We first redraw the baseDCM framework in Figure 3.1 as Figure 4.1(a) by expanding the two steps

in matching construction,i.e., matching ranking and matching selection. We view the dual correlation

mining algorithmN-ARYSCHEMAMATCHING and the matching ranking together as a black boxbase

algorithmA. As we just discussed, the performance degradation is mainly caused by the impact of noise

on A, where the output ofA, denoted byRA
I (i.e., the output ranking determined byA over inputI), is

disturbed. The goal of our ensembleDCM framework is thus to makeA still output reasonably good

ranking of matchings with the presence of noise.

Specifically, given a set ofN schemasI as input, assume there areW problematic schemas (i.e.,

noise) that affect the ranking ofM. Suppose the holistic matcherA can correctly rankM if one trial

draws no more thanK noise (K < W)– i.e., in which case,M as a correct matching can actually be

ranked higher.

Next, we need to model the ensemble framework, which consists of two steps:multiple sampling

and rank aggregation, as Figure 4.1(b) shows.First, in the multiple sampling step, we conductT

downsamplings of the input schemasI , where each downsampling is a subset of independently sampled

Sschemas fromI . We name such a downsampling as atrial and thus haveT trials in total. We denote

ith trial asIi(S) (1≤ i ≤ T). By executing the base algorithmA over each trialIi(S), we get a ranked list

of matchingsRA
Ii(S). Second, the rank aggregation step aggregates ranked matchings from all the trials,

i.e., RA
Ii(S) (1≤ i ≤ T), into a merged list of ranked matchings, which we denote asR(RA

I1(S), ...,R
A
IT(S)),

orRA
I(S,T) in short. We expect the aggregate rankingRA

I(S,T) can alleviate the impact of noise and thus is

better thanRA
I .

71

SinceW is determined by “inherent” characteristics of input schemasI andK by the holistic matcher

A, we name them asbase parameters. UnlikeW andK, the sampling sizeSand the number of trialsT

are “engineered” configurations of the ensemble framework and thus named asframework parameters.

Our goal of analysis is thus to justify, given estimation of the base parameters,W andK, which

characterize the data quality and the base algorithm, can certain configuration, in terms ofSandT, of

the ensemble framework achieve robustness? (If so, we will then ask, how to determine appropriate

settings ofSandT, which is the topic of Section 4.3.)

In particular, given our modeling, we can derive the probability to correctly rankM in a single trial,

which we name ashit probability, i.e., the chance of “hit” a correct ranking ofM in a single trial (and

as we will discuss later, we will do more trials to enhance the overall hit ratio). Given base parameters

W andK of M, hit probability is a function ofS(and notT as it is for a single trial) and thus denoted as

αM(S). To deriveαM(S), we first compute the probability that there are exactlyi noise in a single trial,

denoted byPr(k = i|S), i.e., with i noise out ofW andS− i correct ones out ofN−W:

Pr(k = i|S) =

(
W

i

)(
N−W

S− i

)

(
N

S

)

(4.1)

As our model assumes,M can be correctly ranked when there are no more thanK noise. We thus

have:

αM(S) =
K

∑
i=0

Pr(k = i|S) (4.2)

72

Next, we are interested in how many times, amongT trials, can we observeM being ranked cor-

rectly? (This derivation will help us to address the “reverse” question in Section 4.3: To observeM

in a majority of trials with a high confidence, how many trials are necessary?) This problem can be

transformed as the standard scenario of tossing an unfair coin in statistics: Given the probability of

getting a “head” in each toss asαM(S), with T tosses, how many times can we observe heads? With this

equivalent view, we know that the number of trials in whichM is correctly ranked (i.e., the number of

tosses to observe heads), denoted byOM, is a random variable that has a binomial distribution [3] with

the success probability in one trial asαM(S). We usePr(OM = t|S,T) to denote the probability thatM

is correctly ranked in exactlyt trials. According to the binomial distribution, we have

Pr(OM = t|S,T) =
T!

t!(T− t)!
αM(S)t(1−αM(S))T−t (4.3)

Since our goal is to take majority voting among all the trials (in rank aggregation), we need a

sufficient number of trials to ensure thatM is “very likely” to be correctly ranked in the relative majority

of trials. As an analogy, consider the coin tossing: Even the probability to get a head in each toss is

high, say 0.8, we may not always observe0.8×T heads inT trials; the actual number of heads may

even be a minority of trials– And our goal is to design aT such that “the number of heads” is very likely

to be the majority. We thus need a sufficient number of trials to enable the majority voting. We name

the probability thatM can be correctly ranked in the majority of trials (i.e., more than half of trials) as

voting confidence. Voting confidence is a function ofT (as just intuitively observed) andS (as it also

depends onαM(S) and thusS). We denote the voting confidence asβM(S,T). In particular, we have

βM(S,T) =
T

∑
t= T+1

2

Pr(OM = t|S,T). (4.4)

73

As a remark, in Equation 4.4, we constrainT as an odd number and thusT+1
2 is the minimum

number of trials needed to be the majority1.

Our modeling essentially captures the functional relationship of the sampling sizeSand the number

of trialsT to together achieve a desired voting confidence. There are two interpretations of Equation 4.4

in examining a framework: First, givenS andT, we can use Equation 4.4 to evaluate how effective

the framework is. In particular, we illustrate with Example 19 as a basis of understanding how the

framework works. Second, we can use Equation 4.4 to design the configuration of a framework. That

is, for an objective voting confidence to achieve, what would be the right configuration ofS andT?

Section 4.3 will focus on this configuration issue.

Example 19: Assume there are 50 input schemas (i.e., N = 50). As characteristics of the data quality

and the base algorithm, suppose a matchingM cannot be correctly ranked because of 6 noisy schemas

(i.e., W = 6); on the other hand, supposeM can be correctly ranked if there are no more than two noisy

schemas (i.e., K = 2). Also, as the configuration of the ensemble framework, suppose we want to sample

20 schemas in a single trial and conduct 99 trials (i.e., S= 20andT = 99).

According to Equation 4.1, in any single trial, we have 0.04 probability to get no noisy schema,

0.18 probability with one and 0.33 probability with two. Together, we have 0.04 + 0.18 + 0.33 = 0.55

probability to correctly rankM in one trial (i.e., αM(S) = 0.55).

Further, Figure 4.2 shows the binomial distribution ofOM. Going back to the coin tossing analogy,

this figure essentially shows, if the probability to get a head in one toss is 0.55, after tossing 99 times,

the probability of observing a certain number of heads. For instance, we havePr(OM = 50|S,T) = 0.05,

which means the probability to observe 50 heads in 99 tosses is 0.05. According to Equation 4.4, we

1WhenT is odd, the notion of majority is always well defined, as there are no ties (of equal halves). This advantage ensures
there is no ambiguous situation in comparing two matchings in the rank aggregation step in Section 4.4. Also, whenT is odd,
βM (S,T) becomes a monotonic function ofT. We use this property to derive an appropriate configuration in Section 4.3.

74

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

11 22 33 44 55 66 77 88 99

P
ro

ba
bi

lit
y

O(M)

OM

Figure 4.2: The binomial distribution ofOM, with T = 99andαM(S) = 0.55.

have 0.84 voting confidence to correctly rankM (or observe heads) in more than 49 trials (or tosses)

(i.e., βM(S,T) = 0.84). Therefore, evenαM(S) is not very high,e.g., 0.55 in this example, with sufficient

number of trails, it is still very likely thatM can be correctly ranked in the majority of trials.

Finally, while our analysis above focuses on a single matching, there are multiple matchings,M1,

M2, ..., Mn, to discover. We note that our analysis can generally assume a representative “worst-case”

matching, based on which the analysis will also cover all the matchings. Specifically, the above mod-

eling can be applied to anyMi with its correspondingWi andKi values. We then assume there is a

“worst-case” matchingM∗ with base parametersW∗ andK∗. We want to show that if we are likely to

correctly rankM∗ in the majority of trials under some setting, we are even more likely to correctly rank

all the matchingsM1, M2, ...,Mn in the majority of trials with the same setting. If this statement can be

justified, we only need to consider the “worst-case” situation in determining the ensemble configuration

in Section 4.3.

We show that the base parameters of the imaginary “worst-case” matchingM∗ can be set asW∗ =

maxWi andK∗ = minKi , 1≤ i ≤ n. Intuitively, the higherW is, the lowerαM(S) will be because we

have more noise in the input schemasI ; on the other hand, the lowerK is, the lowerαM(S) will be

because the base algorithmA is less robust against noise. More formally, we can show thatαM(S)

75

is monotonically decreasing with respect toW and monotonically increasing with respect toK. (The

derivation is straightforward and thus we do not provide a proof here.) Therefore, if we assume a

matchingM∗ with base parametersW∗ as the maximal value ofWi andK∗ the minimal value ofKi , we

haveαMi
(S)≥ α

M∗ (S) any matchingMi (1≤ i ≤ n).

Further, we can show that all the matchings also have higher voting confidence thanM∗. Intu-

itively, if a matchingM has higher hit probability,M should be more likely to be observed in the

majority of trials, which means it also has a higher voting confidence. In particular, we can show that

βM(S,T) is monotonically increasing with respect toαM(S). (Similarly, the derivation is straightfor-

ward and thus we do not provide a proof here.) Therefore, sinceαMi
(S)≥ α

M∗ (S) (1≤ i ≤ n), we have

βMi
(S,T) ≥ β

M∗ (S,T) (1≤ i ≤ n). This inequality indicates thatM∗ is indeed the “worst-case” match-

ing. Specifically, if we can find an appropriate setting ofSandT to correctly rankM∗ in the majority

of trials with high confidence, we will have even more confidence to correctly rank all the matchings in

the majority of trials with the same setting ofSandT.

4.3 Sampling and Trials: Configuration

This section focuses on the first phase of the ensemble framework: Sampling and trials. The key chal-

lenge we need to address is: GivenW andK, we need to find an appropriate configuration ofSandT to

provide guarantee on voting confidence. To begin with, we must characterize our “system environment”

by estimating the base parametersW andK. Then, we discuss our strategy to configureSandT based

on our modeling in Section 4.2.

Base Parameters:Before derivingS and T, we need to estimate the “worst-case” base parameters

W∗ andK∗ in Equations 4.1 and 4.2. In particular,W∗ andK∗ can be related to the error rate and the

tolerance threshold respectively in the modeling of error cascade. First, asW∗ characterizes the noisy

76

degree of the input schemasI , we letW∗ = N× ρ, whereN is the number of schemas andρ is the

error rate ofI . In our development, we setρ to 0.1, as the worst-case value, according to the accuracy

of current interface extraction technique, as discussed earlier. Second, since the behavior ofA is very

specific and complicated, it may be difficult to accurately obtainK∗. We thus take a conservative setting,

which will lead to a “safe” framework,e.g., setting the worst-caseK∗ as a small constant.

As just discussed, all matchings that are not worse than the worst-case setting can be guaranteed to

have higher voting confidences. Therefore, with conservative worst-case settings, we expect to correctly

rank more matchings in the aggregate resultRA
I(S,T).

Framework Parameters: In Section 4.2, we have shown that, for some matchingM with respect to

given base parametersW andK, for certain framework parametersS andT, we can derive the voting

confidenceβ
M∗ (S,T) with statistical analysis. Now we are facing the reverse problem: Given estimated

W, K, and our objective voting confidence, what are the appropriateS andT values we should take?

Formally, givenW, K, and an objective voting confidencec, what are the sampling sizeS and the

number of trialsT we should take to ensureM∗ has at least a probability ofc to be correctly ranked in

the majority of trials, i.e.,β
M∗ (S,T)≥ c?

In particular, we want to know, among all the(S,T) pairs that satisfy the above statement, which

pair is the most appropriate? To answer this question, we need to develop some criteria to evaluate

settings. Intuitively, we would like to prefer a(S,T) pair that can maximizeSand minimizeT:

On the one hand, we want to reduce unnecessary downsampling. A very smallS value may not

be able to collect enough schemas to represent the complete input data and consequently degrade the

accuracy of the base algorithmA. It may also, by overly-aggressive downsampling, remove some more

“unique” (but correct) schemas from consideration, and thus reduce the applicability of the matching

result. Thus, among all the valid(S,T) pairs, we prefer a largerS that can cover more schemas.

77

On the other hand, we want to reduce unnecessary trials. As Section 4.2 discussed, the more trials

we have, the higher voting confidence will be. We can formally show that whenT is limited to be odd,

β
M∗ (S,T) is monotonically increasing with respect toT. (Again, the derivation is straightforward and

thus we do not provide a proof here.) Considering the execution time of the ensemble framework, we

do not want to be over-tried; therefore, among all the valid(S,T) pairs, we prefer a pair with a smaller

T.

However, these two goals cannot be optimized at the same time, because as our modeling shows,S

andT are not independent– One will negatively affect the choice of another. Specifically, when we set

β
M∗ (S,T) to an objective confidencec, T can be viewed as a function ofSor vice versa. Choosing one

will thus also affect another: A largerSwill result in a lower hit probability and thus more trialsT for

the same objective confidence; on the other hand, a smallerT will demand a higher hit probability and

thus a smaller sampling sizeS. Consequently, in the space of all valid(S,T) pairs, there does not exist

one that can optimize bothSandT.

To balance these two goals, we have to choose a trade-off setting. We propose two ways to determine

SandT:

First,S→ T: In some situations, we may have a reasonable grasp ofS, so that we know the range of

input size (i.e., the degree of downsampling) that the base algorithm may demand–e.g., some statistical

approach typically requires a minimal number of observations of data to ensure its statistical confidence.

In such a case, we can start with anSvalue and setT as the minimal (odd) number that can achieve the

objective confidencec, i.e.,

T = min{t|t > 0, t is odd,β
M∗ (S,T)(S, t)≥ c} (4.5)

78

0

5

10

15

20

25

30

35

40

45

50

19 39 59 79 99 119 139 159 179 199

S

T

Figure 4.3: The insensitivity ofSonT.

Second,T → S: In other situations, we may be constrained by affordable computation time, which

determines the acceptable range ofT. In this case, we start with a desired number of trialsT and choose

the maximalS to achieve the objective confidence,i.e.,

S= max{s|1≤ s≤ N,β
M∗ (S,T)(s,T)≥ c} (4.6)

Example 20: Assume there are 50 input schemas (i.e., N = 50) and our objective confidence is 0.9 (i.e.,

c = 0.9). According to our discussion, the settings of the “worst-case” matchingM∗ areW∗ = N×ρ

= 50×0.1 = 5 andK∗ = 2. SettingK∗ to 2 is a “safe” configuration we also use in our experiments

(Section 3.5).

In theS→ T strategy, assume we setS= 20. Based on our modeling, for any odd numbert, we can

compute the voting confidenceβ
M∗ (S, t). According to Equation 4.5, we take the minimalt that satisfies

β
M∗ (S, t)≥ 0.9 and thus we getT = 11.

On the other hand, in theT → Sstrategy, assume we setT = 41. Similarly, for anys (1≤ s≤N), we

can computeβ
M∗ (s,T). According to Equation 4.6, we take the maximalS that satisfiesβ

M∗ (s,T)≥ 0.9

and thus we getS= 22.

Although bothS→ T andT → S are valid configuration strategies, as Example 20 just showed,

in practice theT → S strategy is better because it is easier to pickT. To illustrate this statement, we

79

compute the correspondingS values for all the odd numbersT between 0 to 200 using theT → S

strategy,i.e., Equation 4.6, with the same system setting as Example 20 assumed. Figure 4.3 shows

the result, from where we observe that whenT increase to some point, around 30 in this example, the

correspondingSvalues become very stable, almost insensitive to the change ofT.

On the other hand, from the same Figure 4.3, we can infer the opposite trend of theS→ T strategy.

Picking anS will significantly affect the value ofT. SomeS values may result in a very largeT,

which is not affordable in practice. In some cases, for a largeS, maybe it is even impossible to find a

correspondingT that satisfies the given objective voting confidence.

Overall, it is much easier to pickT thanS in practice. Therefore, in our experiments (Section 3.5),

we adopt theT → Sstrategy. Also, we will show that the empirical result of testing the framework with

various configuration settings is consistent with our analysis above.

4.4 Voting: Rank Aggregation

This section discusses the second phase of the ensemble framework: Aggregating rankingsRA
I1(S), ...,

RA
IT(S) from theT trials into a merged list of ranked matchingsRA

I(S,T). The main issue we are facing is

to develop a rank aggregation strategy that can reflect the majority “consensus” inRA
I(S,T).

We notice that this rank aggregation in our situation is slightly different from the traditional rank ag-

gregation problem. Traditional rank aggregation assumes all voters share the same set of candidates and

only rank them in different orders. In contrast, in our scenario, no candidate is given before executing

the base algorithm and each trial outputs its own matching result. Therefore, before aggregate rankings,

we need to have a candidate selection step to select matching candidates.

Consequently, the rank aggregation phase consists of two sub-steps: 1) Candidate selection: To

select candidates from eachRA
Ii(S) to form a common pool of candidatesC . 2) Rank aggregation: To

80

aggregate theT rankingsPRA
I1(S), ..., PRA

IT(S) into RA
I(S,T), wherePRA

Ii(S) is the “projected” ranking of

RA
Ii(S) on C , as we will discuss below.

Candidate Selection

We select candidates based on the intuition that if a matchingM is only discovered by a minority of

trials, M is more likely to be a false matching. Therefore, we consider a matching as a candidate if it

appears in the majority ofT rankings,RA
I1(S), ...,RA

IT(S). All the matchings whose number of occurrences

are less thanT+1
2 are thus pruned.

Let C denote the union of all the candidates in eachRA
Ii(S). After candidate selection, we will remove

the non-candidate matchings from eachRA
Ii(S) and meanwhile preserving the ordering of candidates; the

corresponding new ranked list, which can be viewed as a “projection” ofRA
Ii(S) on C , contains only

candidates and is denoted asPRA
Ii(S).

Example 21: Assume we execute the base algorithmA on three trials,i.e., T = 3, and the outputs are

thus three ranked listsRA
I1(S), RA

I2(S) andRA
I3(S). SupposeRA

I1(S) outputs rankingM1 > M2 > M3 > M4 in

descending order,RA
I2(S) outputsM2 > M1 > M3 > M5, andRA

I3(S) outputsM3 > M1 > M2 > M4.

SinceT+1
2 = 2, any matching that occurs only once will be pruned. In particular,M5 is pruned; other

matchings,M1, M2, M3 andM4, all at least occur twice and thus are selected as matching candidates.

Therefore, we haveC = {M1,M2,M3,M4}.

The projected rankings are thusRRA
I1(S): M1 > M2 > M3 > M4, PRA

I2(S): M2 > M1 > M3, andPRA
I3(S):

M3 > M1 > M2 > M4. In particular,M5 does not appear inPRA
I2(S) because it has been pruned.

Rank Aggregation

In rank aggregation, we need to construct an ordered listRA
I(S,T) for the candidates inC , based on

the individual ranksPRA
I1(S), ...,PRA

IT(S). This problem is essentially arank aggregationproblem, which

81

has been extensively studied as a particularvotingsystem in both social science [44, 69] and computer

science [29, 31]. In the literature, many rank aggregation strategies have been proposed, such as Borda’s

aggregation [10], Kemeny optimal aggregation [44], and footrule optimal aggregation [29]. There does

not exist an aggregation strategy that can beat other strategies in all aspects– Different strategies have

different strength and weakness.

Before discussing concrete aggregation strategies, we first need to solve the partial list problem.

Specifically, since the output of one trial may not contain all the candidates inC , PRA
Ii(S) may be only

a partially ordered list. To be able to apply the aggregation strategy (as we will discuss below), it is

necessary to also assign ranks to the candidates not in the list. In our development, given a trial with a

partial list, we assign all the uncovered candidates with the same lowest rank. Therefore, in one trial,

a covered candidate is always ranked higher than an uncovered one, and two uncovered candidates are

equally ranked.

Since essentially any rank aggregation strategy can be applied in our scenario, in our development,

we test several different aggregation strategies and our goal is to find the most appropriate one. We

first choose the widely deployed Borda’s aggregation [10] as the baseline aggregation strategy. We

then realize that to enforce the majority voting, it is important that an aggregation strategy satisfies

the Condorcet criterion[69]. We thus propose a strategy,FK aggregation, by combining Kemeny

optimal aggregation [44] and footrule optimal aggregation [29]. We will discuss these two strategies,

i.e., Borda’s aggregation and FK aggregation, in detail respectively.

Baseline: Borda Aggregation: A primary strength of Borda’s aggregation is that it is rather simple

and computationally efficient: It can be implemented in linear time. Borda’s aggregation also satisfies

some good properties such as anonymity, neutrality, and consistency [68]. Specifically, in Borda’s

aggregation, given a candidateM j , let r ji be the number of matchings ranked lower thanM j in PRA
Ii(S),

82

theborda scoreof M j , denoted asB(M j), is defined as the sum of allr ji , i.e., B(M j) = ∑T
k=1 r jk. The

aggregation resultRA
I(S,T) is thus the descending ordering of all the candidates with respect to their borda

scores.

Example 22: Continue on Example 21, after candidate selection, we first complete the partial lists.

In particular, sincePRA
I2(S) only partially ranks the four candidates, we assign the lowest rank to the

uncovered candidateM4, i.e., we rankM4 as the4th candidate inPRA
I2(S). Next, we compute the borda

score for each candidate and then apply Borda’s aggregation. In particular, sinceM1 is ranked higher

than 3 candidates inPRA
I1(S), 2 in PRA

I2(S) and 2 inPRA
I3(S), the borda score forM1 is 3 + 2 + 2 = 7.

Similarly, the borda scores forM2 to M4 are 6, 5, 0 respectively. The final rankingRA
I(S,T) is thus

M1 > M2 > M3 > M4.

Enforcing Majority by Satisfying the Condorcet Criterion: FK Aggregation: Our analysis of the ef-

fectiveness of the ensembleDCM framework in Section 4.2 is based on the assumption that when a

matching is correctly ranked in the majority of trials, it will be correctly ranked inRA
I(S,T). Therefore,

our aggregation strategy should reflect this requirement of majority– That is, if a matching can be cor-

rectly ranked in most trials, its ranking inRA
I(S,T) should also be correct.

We notice that this requirement is consistent with the classicCondorcet criterion[69]. Specifically,

the Condorcet criterion requires that, given any two candidatesMi andM j , if a majority of trials ranks

Mi higher thanM j , thenMi should be ranked higher thanM j in the aggregate listRA
I(S,T). (As we can

see here, setting the number of trialsT as an odd number, as Section 4.2 discussed, can ensure that there

will be no tie situation between any twoMi andM j .) The fact that aggregation mechanisms that satisfy

the Condorcet criterion can yield robust results has also been noticed and exploited by [29]. However,

Borda’s aggregation, although computationally very fast, does not satisfy the Condorcet criterion. To our

knowledge, the only aggregation strategy exactly satisfies the Condorcet criterion is Kemeny optimal

83

aggregation. Another strategy, footrule optimal aggregation, does not directly satisfy the Condorcet

criterion, but its ordering of matchings yields a factor-2 approximation to Kemeny optimal aggregation.

Example 23: To see how Borda’s aggregation may not satisfy the Condorcet criterion, let us see an

example, which is slightly different from Example 21. Assume after candidate selection, we have

RRA
I1(S): M1 > M2 > M3 > M4, PRA

I2(S): M1 > M2 > M4 > M3, andPRA
I3(S): M2 > M3 > M4.

With Borda’s aggregation, we have the borda scores forM1, M2, M3 andM4 as 6, 7, 3, 2 respectively.

The ranking of matchings under Borda’s aggregation is thusM2 > M1 > M3 > M4. However,M1 is

ranked higher thanM2 in the majority of trials,i.e., RRA
I1(S) and RRA

I2(S), which shows that Borda’s

aggregation violates the Condorcet criterion and therefore may not reflect the results of majority.

Although Kemeny optimal aggregation satisfies the Condorcet criterion, it is computationally expen-

sive. Kemeny optimal aggregation is to find the ordered listRA
I(S,T) that minimizes∑T

i=1K(PRA
Ii(S),R

A
I(S,T)),

whereK(PRA
Ii(S),R

A
I(S,T)) denotes theKendall taudistance. That is, it is the number of pairs of candi-

dates (Mi , M j) on which the ordered listsPRA
Ii(S) andRA

I(S,T) disagree (i.e., one ranksMi higher than

M j , while another one ranksM j higher thanMi). It has been proven that computing Kemeny optimal

aggregation is NP-Hard [29], which is not affordable in practice. Hence, we cannot only apply this

aggregation strategy.

As the approximation to Kemeny optimal aggregation, footrule optimal aggregation has good com-

putational complexity. In footrule optimal aggregation, the aggregate listRA
I(S,T) contains the median

ranks of all the matchings. Specifically, given a candidateM j , let q ji be the rank ofM j in PRA
Ii(S), the

median rankof Mi is defined asmedain(M j) = median(q j1, ...,q jT). The aggregation resultRA
I(S,T) is

thus the ordered list of median ranks of all the candidates. Footrule optimal aggregation can be com-

puted in polynomial time. Although it may not satisfy the Condorcet criterion, it has been shown that

its ordering of matchings (i.e., the footrule distance) has a factor-2 approximation to the Kendall tau

84

distance in Kemeny optimal aggregation [25]. However, footrule optimal aggregation suffers the tie

problem. That is, some matchings may have the same median rank and it is unclear how to break ties in

footrule optimal aggregation.

Combining the strength of these two aggregation strategies, in our development, we develop a hybrid

aggregation strategy,FK aggregation. In particular, we first apply footrule optimal aggregation. To

break a tie, we apply Kemeny optimal aggregation only locally for ranking the candidates that cause the

tie. Empirically, since the number of candidates result in a tie is often very few (e.g., less than 4), the

computation is very efficient.

Example 24: Let us apply FK aggregation for the case in Example 23. We first complete the partial

lists. In particular, sincePRA
I3(S) only partially rank the four candidates, we assign the lowest rank to the

uncovered candidateM1.

We then compute the median rank for each candidate and apply footrule optimal aggregation. In

particular, the median rank forM1 is median(1, 1, 4) = 1. Similarly, the median ranks forM2 to M4 are

2, 3, 3 respectively.

SinceM3 andM4 get a tie in footrule optimal aggregation, we break the tie by applying Kemeny

optimal aggregation only onM3 andM4. Since two out of the three trials preferM3 thanM4, we rank

M3 higher thanM4. The final rankingRA
I(S,T) is thusM1 > M2 > M3 > M4, which is consistent with the

result of only applying Kemeny optimal aggregation, but more efficient.

4.5 Experiments

We evaluate the ensembleDCM approach over real query interfaces. In particular, we implement all

the algorithms in Python 2.4 and test all the experiments on a Windows XP machine with Pentium M

85

Figure 4.4: An example of incorrectly extracted query interfaces.

1.6GHz CPU and 512M memory. We use two representative domains, Books and Airfares, in the TEL-8

dataset of the UIUC Web integration repository [17] as the testbed.

Our experiments is to verify the impact of noise in the interface extraction on our matching algorithm

and evaluate the performance of the ensemble approach. In particular, we conduct our evaluations on

automatically extracted interfaces in two domains: Books and Airfares. First, we directly run the base

DCM framework on automatically extracted interfaces as the baseline result that we will compare to.

Second, we measure the accuracy of the ensembleDCM framework and compare it to the baseline result.

The experiments show that the ensemble approach can significantly improve the matching accuracy of

DCM. Third, we execute the ensembleDCM framework under various parameter settings and compare

the empirical values with our theoretical analysis.

Next, we report our experimental results in detail. All the experiments are conducted with the setting

of frequency threshold as 20% (i.e., F = 20%). For more detail about the setting of frequency threshold,

please refer to Section 3.5.2 in Chapter 3.

The baseline matching result: The baseline result we will compare to is executing the baseDCM

algorithm on automatically extracted interfaces. In particular, we use the techniques in [72] to extract

interfaces in two domains, Books and Airfares. The second and third columns in Figure 4.5 show the

result, where the second column is the target precision and the third column the target recall.

We can see that the accuracies of the baseline approach degrades up to 30%, comparing to the

results in Figure 3.10. This performance degradation is mainly because the existence of noise affects

the qualification and ranking of matchings and thus the result of matching selection. For instance, in

86

Domain The base The ensembleDCM framework The ensembleDCM framework
DCM framework with Borda’s aggregation with FK aggregation
PT RT PAT RAT PFT RFT PAT RAT PFT RFT

Books 0.73 0.75 0.83 0.89 0.9 1.0 0.83 0.9 0.9 1.0
Airfares 0.67 0.68 0.79 0.79 0.71 0.82 0.91 0.73 1.0 0.73

Figure 4.5: The comparison of target accuracy on Books and Airfares.

the Books domain,author = last name is ranked higher thanauthor = {last name, first name} because

in some interfaces (e.g., the ones shown in Figure 4.4), the input box which should be associated with

“Last Name” is incorrectly associated with “Search for books by the following Author”. Such errors

lower down the negative correlation betweenauthor andfirst name and thus result in the selection of the

partially correct matchingauthor = last name.

Also, due to the greedy selection strategy, the errors caused in one iteration may cascade to its

subsequent iterations. For instance, still in the Books domain, whenauthor = {last name, first name}

is pruned out (because of the above reason), in the next iteration of selection,isbn = {last name, first

name} is selected as a correct matching, which makes the result even worse.

The performance of the ensembleDCM framework : Before running the ensemble framework, we

need to first determine its configuration. In our experiment, we choose theT → Sconfiguration strategy

developed in Section 4.3. Specifically, we set the number of trialsT as 41 and objective voting confi-

dencec as 0.9 for both Books and Airfares. (As we modeled in Section 4.2,T is set as an odd number.

We have no particular reason for choosing 41. As Section 4.3 discussed,S is insensitive toT and thus

picking otherT values will not significantly affect the final performance. We also empirically verify this

fact later.) We then setW∗ andK∗ values according to our estimation strategy of the base parameters. In

particular, for Books, we haveW∗ = 6 and for Airfares,W∗ = 5. For both domains, we setK∗ as a small

constant 2. Thus, according to Equation 4.6, we haveS= 22 for Books andS= 19 for Airfares. Also,

87

for each dataset, we test it with the two aggregation strategies we developed in Section 4.4 respectively:

The Borda’s aggregation and the FK aggregation.

As the ensemble framework is essentially a data-randomized approach (with multiple random trials),

it is “non-deterministic”– We thus measure the distribution of its performance. Specifically, we execute

the framework 100 times on Books with the same settingS = 22, T = 41. Similarly, we execute it

100 times on Airfares with the same settingS = 19, T = 41. To quantify the comparison with the

baseline result, we measure two suites of target accuracies: theaverage target accuracy(i.e., the average

precision and recall of the 100 executions, denoted asPAT andRAT respectively) and themost frequent

target accuracy(i.e., the most frequently obtained precision and recall of the 100 executions, denoted

asPFT andRFT respectively). Note that we do not use the best target accuracy (i.e., the best precision

and recall of the 100 executions) because in practice we cannot judge which result is the best without

knowledge from human experts. In contrast, most frequent accuracy is more meaningful since it can be

obtained by executing the ensemble framework multiple times and taking their majority.

The results of both average and most frequent accuracies are listed in Figure 4.5 (columns 3-6 for

Borda’s aggregation and columns 7-10 for FK aggregation). We can see that: 1) Comparing to the

baseline result, precision and recall are improved by the ensemble framework under both aggregation

strategies. 2) For the Books domain, Borda’s aggregation and FK aggregation have roughly the same

accuracy; For the Airfares domain, FK aggregation can achieve much higher precision than Borda’s

aggregation, but with slightly lower recall.

Overall, the ensemble framework is quite effective in maintaining the robustness of theDCM matcher.

The FK aggregation strategy can yield more robust results than Borda’s aggregation. We believe this

experiment shows that, while Borda is actually a reasonable baseline choice, FK is indeed more robust.

Next, we illustrate and interpret the results of the ensemble framework with more detail.

88

(a) Books. (b) Airfares.

Figure 4.6: The target precision with 100 executions on two domains (Borda’s aggregation).

(a) Books. (b) Airfares.

Figure 4.7: The target recall with 100 executions on two domains (Borda’s aggregation).

First, in most executions, the ensemble framework achieves better accuracy than the baseline result.

For instance, Figure 4.6 shows the 100 target precisions of the 100 executions over Books and Airfares

with Borda’s aggregation. To make Figure 4.6 more illustrative, we use straight horizontal lines to

denote the baseline accuracies. We can see that, although accuracies may be varying in different execu-

tions, most precisions in both Books and Airfares are better than their corresponding baseline precisions.

Similar result can also be observed in the target recall part (Figure 4.7) under Borda’s aggregation and

both precision (Figure 4.9) and recall (Figure 4.9) under FK aggregation. Hence, this experiment indi-

cates that the ensemble framework can indeed boost the matching accuracy under noisy schema input,

and thus maintain the desired robustness of a holistic matcher. Note that the recall graphs looks more

89

(a) Books. (b) Airfares.

Figure 4.8: The target precision with 100 executions on two domains (FK aggregation).

(a) Books. (b) Airfares.

Figure 4.9: The target recall with 100 executions on two domains (FK aggregation).

regular than the precision ones because for recall, only the value on numerator is changing, while for

precision, values on both numerator and denominator are changing.

Second, from Figures 4.6 to 4.9, we also observe an interesting phenomenon: It seems that there are

upper-bounds for both precision and recall, which the ensemble framework cannot exceed. The exis-

tence of such upper bounds is because, in essence, there are two types of data quality problems, noise

and missing data, and the ensemble framework can deal with noise, but not missing data. Specifically,

noise refers to some observed data that ideally should not be observed,i.e., outliers. For instance, the

extraction of a book schema,e.g., the one in Figure 4.4, may incorrectly consider “author” as an at-

tribute and thus lowers down the correlation of “author” and “first name.” Although noise may affect

90

the accuracy of the base algorithm, they are minority in quantity. Downsampling is thus a good ap-

proach to filtering them out and, consequently, the majority voting can be effective. On the other hand,

missing dataare some data that ideally should be observed, but in reality are not. For instance, the

input schemas may contain only a small number of occurrences of the attribute “last name” and thus we

cannot sufficiently identify to find the grouping of “last name” and “first name.” For this missing data

case, sampling and voting techniques will not help, since when the entire dataset has missing data, all

the trials will also have missing data and their aggregate result cannot fix the problem. The ensemble

framework, with the limit imposed by such missing data, has an upper bound for the best accuracy.

Finally, the execution time of the ensemble framework is also acceptable. The 100 executions

on Books take 118 seconds for Borda’s aggregation and 117 seconds for FK aggregation. The 100

executions on Airfares take 109 seconds for Borda’s aggregation and 128 seconds for FK aggregation.

Therefore, the average time for one execution is about only 1 second.

The result under various configuration settings:The purpose of this set of experiments is to empiri-

cally verify our analysis in Section 4.3: 1) We want to verify whether our setting ofSusing Equation 4.6

is consistent with empirical observation. 2) We want to verify whether the performance of the frame-

work is indeed insensitive toT, but sensitive toS.

First, we measure the accuracy of the ensemble framework with different sampling sizes on the two

domains. In particular, we fixT at 41 and letSprogressively increase from 10 to 55 with an increment

size 5 (i.e., 10, 15, 20, ..., 55) for Books and from 10 to 40 with an increment size 3 for Airfares. For

each sampling size, we execute the ensemble framework 30 times under the two aggregation strategies

respectively and compute the average precisions and recalls. Figure 4.10 shows the experimental result

under Borda’s aggregation and Figure 4.11 FK aggregation.

91

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45 50 55

A
cc

ur
ac

y

Sampling Size S

Target Precision
Target Recall

Target F

0

0.2

0.4

0.6

0.8

1

10 13 16 19 22 25 28 31 34 37 40

A
cc

ur
ac

y

Sampling Size S

Target Precision
Target Recall

Target F

(a) Books (T=41). (b) Airfares (T=41).

Figure 4.10: The target accuracy under various sampling sizes (Borda’s aggregation).

From Figures 4.10 and 4.11, we can observe the same trend in both domains, which seems to be

independent of the aggregation strategy we choose. Specifically, when sampling size increases, the

target precision mostly keeps on decreasing, while the target recall goes up first and then goes down

at some point. We give the explanation as below: A small sampling size may miss some attributes in

downsampling and thus discover less matchings, which results in trivially high precision but low recall.

With larger sampling size, we are able to cover more attributes and thus discover not only more correct

matchings, but also a few false matchings. Consequently, the precision decreases and recall increases.

When the sampling size is too large, a downsampling is likely to have a lot of noise and thus the recall

starts to decrease again.

The best sampling size we should take is thus some values in the middle. We choose theF-measure,

which combines precisionP and recallR as F = 2PR
P+R, to measure the overall accuracy. From Fig-

ure 4.10(a) and Figure 4.11(a), we can see the best range of sampling size for Books, according to

F-measure, is around 20. Our setting based on Equation 4.6 is 22, which is quite close to 20. Simi-

larly, from Figure 4.10(b) and Figure 4.11(b), the best range of sampling size for Airfares is around 16.

Our setting based on Equation 4.5 is 19, which is also close. Therefore, our configuration strategy of

determining the sampling size is consistent with the empirical result.

92

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45 50 55

A
cc

ur
ac

y

Sampling Size S

Target Precision
Target Recall

Target F

0

0.2

0.4

0.6

0.8

1

10 13 16 19 22 25 28 31 34 37 40

A
cc

ur
ac

y

Sampling Size S

Target Precision
Target Recall

Target F

(a) Books (T=41). (b) Airfares (T=41).

Figure 4.11: The target accuracy under various sampling sizes (FK aggregation).

Second, since we chooseT as 41 with no particular reason in the experiment, we want to verify

that the choosing otherT values is in fact not quite different, because of the insensitivity ofS on T

(Section 4.3). In particular, we fixSat 22 for Books and 19 for Airfares. We changeT from 5 to 49 with

increment size 4 for both domains. For eachT, we again execute the framework 30 times under the two

aggregation strategies and compute the average precisions and recalls. Figures 4.12 and 4.13 shows the

experimental results. From the results, we can see that, in both domains, both the precision and recall

become more and more flat and stable whenT increases. This result indicates that with otherT values

(as long as it is not too small), we can also have roughly the same performance and thus the decision on

T is not a critical factor.

Also, comparing Figure 4.12 and Figure 4.13, we can observe that the ensemble framwork with FK

aggregation generally can achieve better precision than the one with Borda’s aggregation. This result

indicates that FK aggregation is more robust than Borda’s aggregation in dealing with noisy data, since

it approximates the Condorcet criterion (Section 4.4).

Overall, from these two experiments onSandT, we can see that under the sameT, different sam-

pling sizesS will significantly affect the performance of the data-ensemble framework, while on the

other hand, under the sameS, different number of trialsT have little impact on the performance. This

93

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 9 13 17 21 25 29 33 37 41 45 49

A
cc

ur
ac

y

Number of Trials T

Target Precision
Target Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 9 13 17 21 25 29 33 37 41 45 49

A
cc

ur
ac

y

Number of Trials T

Target Precision
Target Recall

(a) Books (S=22). (b) Airfares (S=19).

Figure 4.12: The target accuracy under various number of trials (Borda’s aggregation).

0

0.2

0.4

0.6

0.8

1

5 9 13 17 21 25 29 33 37 41 45 49

A
cc

ur
ac

y

Number of Trials T

Target Precision
Target Recall

0

0.2

0.4

0.6

0.8

1

5 9 13 17 21 25 29 33 37 41 45 49

A
cc

ur
ac

y

Number of Trials T

Target Precision
Target Recall

(a) Books (S=22). (b) Airfares (S=19).

Figure 4.13: The target accuracy under various number of trials (FK aggregation).

sensitivity of performance onSbut notT indicates that theT → Sconfiguration strategy is better than

S→ T becauseT is much easier to pick in practice, which verifies our analysis in Section 4.3.

4.6 Conclusion

This chapter identifies robust quality as an inherent challenge for leveraging holistic quantity in large

scale schema matching. Such a robustness issue inevitably arises in integrating holistic schema matching

with automatic schema extraction. As the solution, we develop an ensemble scheme with sampling and

voting techniques, inspired by bagging predictors. We are essentially applying bagging techniques in a

94

new scenario of mining semantic correspondences among attributes. Both the analytic justification and

experimental result show the promise of our framework.

Since our matching algorithms require the input schemas (i.e., query interfaces) from the same

domain, to enable such large scale matching, we need to develop automatic techniques to discover

query interfaces on the Web (i.e., the source discovery problem) and cluster them into their domain

hierarchy (i.e., the schema clustering problem). Chapter 5 and Chapter 6 will discuss our solutions to

these two issues respectively.

95

Chapter 5

Automatic Discovery of Query Interfaces

To enable our matching work, the very first step is to collect a set of query interfaces (in various topic

domains). As query interfaces are sparsely scattered on the Web, it is challenging to develop effective

crawling techniques to discover query forms in both efficient and comprehensive manners: First, be-

cause of the topic-neutral nature of our crawling goal, we cannot rely on existing topic-focused crawling

techniques. Second, traditional page-based crawling techniques cannot achieve a good balance between

crawling harvest and coverage. To tackle this problem, we develop aWeb Form Crawlerwith a new

structure-drivencrawling framework. In particular, we observestructure localityof query forms. That

is, query forms are often close to root pages of Web sites and accessible by following navigational

links. Exploring this structure locality, we substantiate the structure-driven crawling framework into a

site-basedWeb Form Crawler by first collecting the site entrances and then searching for query forms

within the scope of each site.

96

5.1 Motivation: Object-Focused Crawling

Building the Web Form Crawler brings new challenges. In particular, while a large number, query

interfaces as scattered on the entire Web are rather sparse: Our estimated 1,258,000 query interfaces (as

just mentioned; in [16]) can appear anywhere in the 19.2 billion Web pages (as reported by the recent

index of Yahoo.com [67], which thus lower bounds the Web size). As a baseline, the traditionalpage-

basedcrawler (without a topic focus), which recursively follow links to traverse the entire Web, will

thus expect to find only one interface in crawling 15262 pages.

The task of Web form crawling is thus, literally, searching for a needle in a haystack. To effectively

build a database of online databases, as our “map” to the deep Web, our crawler has dual requirements:

First, to beefficient, it must have a highharvestrate, defined as# f orms−collected
#pages−crawled , to collect Web forms

without crawling many pages. Second, to becomprehensive, it must have a highcoveragerate, defined

as # f orms−collected
#total− f orms , so as to cover a reasonable snapshot of the deep Web. To motivate, the traditional

page-base crawler, as just mentioned, after crawling the entire Web (orc% pages), will in principle

result in100%(or proportionallyc%) coverage, but at the cost of a measly harvest of6.6×10−5.

For a more effective crawling, instead of traversing arbitrary links, we must develop afocused

crawling strategy tailored for finding query forms. Unlike general crawling (which generally collects all

Web pages), a focused crawler targets a specific subset of pages on certain focus, say, “virtual reality.”

Such a focused crawler, with its specific target, can often find crawling paths of certain patterns that

lead to the desired pages, and thus achieve higher harvest. As our goal is to build a focused Web Form

Crawler, we must address two new challenges:

First, our crawler isobject-focusedbut topic-neutral– the opposite of traditional focused crawlers.

That is, unlike existing settings oftopic-focusedcrawlers [15, 27, 54], which look for Webpagesof

certaintopics, our crawler targets at a certain type ofobjects, namely query forms, which can be of any

97

subject topics (e.g., Amy’s example: real-estate, cars, jobs). With their topic-focus, existing focused

crawlers are mainlycontent-driven, by exploitingcontent localityacross links: A page of certain topics

can often be reached through a path along which thecontentsof pages form some patterns. In the

simplest form, such content locality means that a page on, say, “virtual reality” may be connected from

pages of similar topics. At its core, a topic-focused crawler employs a classifier to distinguish the content

orientations (e.g., trained using keyword features) of pages to find a desirable path. Such techniques,

by assuming topic-focus and thus content-driven, are unlikely to work for our object-focused but topic-

neutral crawler.

Second, we aim at balancing both efficiency and comprehensiveness, with not only a high harvest

but also a “reasonable” coverage. (With the ever expanding and changing Web, it is well accepted that

100%coverage is unrealistic.) We note that harvest and coverage are oftenconflictingmetrics: While

focusing on only promising pages will lead to a high harvest, its narrow focus of “not going beyond”

may compromise the coverage. On the other hand, although combing through many pages will extend

the coverage, the broad reach may lead to diminishing returns and thus compromise the harvest. In

particular, most existing focused crawlers, by greedily pursuing promising paths, aim at high harvest

with no explicit notion of coverage. That is, while a crawler may start with high harvest for what ithas

crawled, how long will such harvest sustain? Can it estimate the harvest for what it hasnot crawled,

so as to bail out without wasting resources in diminishing returns that will not enhance coverage (but

actually hurt harvest)? With this sense for the “unexplored” territory, it can focus resource on achieving

reasonable coverage while maintaining high harvestthroughoutcrawling.

Overall, our goal is to develop a crawling framework that will, without assuming topic-focus, not

only give a high harvest for what it has crawled, but also estimate a low yield for what it decides not

to crawl, and thus achieve a good coverage overall. Our insight hinges on that, for our object-focused

98

crawling, there exists certainstructure localityon the Web, which can guide a “scope” for our crawling

to focus into and draw a boundary around. This concept of structure locality, in terms of how our target

objects distributes in the scope, will enable the dual goals of harvest and coverage.

Specifically, we observe that query forms indeed distribute with such structure locality:First, inde-

pendent of topic domains, query forms often appear near the entrance point,i.e., the root page, of a Web

site. Second, around the entrance point of a site, query forms also distribute in certain ways– Within

the site, they tend to appear shallowly and are often reachable throughnavigational links(i.e., links in

the navigational menus of the site). Thus, our topic-neutral crawler can focus on such structure locality:

Viewing the Web as a graph of Web sites, it will crawl each site as a separate “scope.” For each site,

starting from its entrance and following navigational links, it will achieve a high harvest rate. Further,

drilling deeper into the site, when the yield starts to diminish, it will bail out, while still maintaining

satisfactory coverage. Iterating over sites, as each site gives goodlocal harvest and coverage, our crawl-

ing will maintain the sameglobal harvest and steadily growing coverage throughout. Finally, since our

crawling assumes Web sites as independent “scopes,” it is inherently parallelizable.

We thus propose the new concept ofstructure-drivencrawling for realizing ourobject-focused

crawler. It consists of, conceptually, two phases: Phase 1 continuously finds new scopes,i.e., entry

points (or root pages) into a site, and Phase 2 searches for query forms in each site. We construct the

Web Form Crawlerwith two components:Site Finderfor collecting Web sites as scopes, andForm

Finder for in-site searching each scope. Our conceptual analysis shows that the structural-driven frame-

work will enable balancing of harvest and coverage throughout crawling, which can be configured with

different in-site search strategies. We will motivate the structure-driven architecture (Section 5.2) and

explain the design of the Site Finder (Section 5.3) and Form Finder (Section 5.4). We have implemented

the crawler, in a naturally parallel architecture, and deployed on a cluster of about 100 PC nodes. We

99

50%

40%

30%

20%

10%

0%
109876543210

P
ro

po
rt

io
n

Depth

Pages
Query Forms

IPs

Figure 5.1: Proportion of pages, query forms, and IPs over depth.

(a) page-based view of the Web (b) site-based view of the Web

site B

site A

site C

root page

inter-site link

intra-site link depth 0

depth 1

depth 2
…

Figure 5.2: Page-based view vs. site-based view.

will report large scale experiments in Section 5.5, which validate that the framework indeed crawls Web

forms effectively by maintaining steady harvest and growing coverage as it crawls.

5.2 System Architecture

As Section 1 discussed, we design the Web Form Crawler to realize the structure-driven crawling frame-

work. In this section, We will present our architectural design of the Web Form Crawler in details.

Specifically, we first observe the existence of concerted structure locality (Section 5.2.1), then motivate

the structure-driven yield-aware crawling framework (Section 5.2.2), and finally discuss the develop-

ment of the system architecture (Section 5.2.3).

5.2.1 Motivation: Structure Locality

Our object-focused crawling aims at comprehensively collecting query forms as thetarget objects. Be-

ing topic-neutral and coverage-aware, unlike traditional topic-focused crawling, our crawling cannot

100

rely on content locality (as Section 1 mentioned)– We thus wonder, is there any new type of “locality,”

as distribution patterns of the target objects, that we can resort to?

To know the answer, we attempt to take a “divide-and-conquer” approach for solving the object-

focused crawling. We first divide the Web into a set of non-overlappingscopes, where each scope

contains a unique set of pages. With appropriate partitions, we hope that each scope will contain some

type of locality, which can be explored to conquer the problem of object-focused crawling. Then our

question becomes: Can we find a good way to divide the Web into scopes with the localities we need

for the crawling task?

We notice that Web sites, as the intermediate concept between pages and the entire Web, seem to

be natural partitions for scopes. We thus conduct a survey over Web sites and the answer is positive–

Our result shows that Web sites are the appropriate scopes with a new locality feature for finding query

forms. In particular, we studied the locations of query interfaces in their Web sites. For each query

interface, we measured itsdepthas the minimum number of hops from the root page of the site to the

interface page. We randomly sampled 1 million IP addresses, from which we identified 281 Web servers,

crawled these servers up to depth 10, and identified a total of 34 databases with 129 query interfaces.

Since a database can be accessed through multiple query forms in many sites, we manually check all

the query interfaces to identify such “same-databases”.

Our study shows an interesting phenomenon: Query forms tend to locate “shallowly” in their sites

and thus havestructure locality. Figure 5.1 shows the distribution, in terms of proportion of total query

forms, at progressively deeper levels from depth 0 to 10. The result clearly shows that most query forms

can be found within depth 3 and none deeper than 5. To contrast in perspective, Figure 5.1 also shows

the distribution of pages– which growsexponentiallyfrom 0 up to 5 and decreases after. While there

are significantly more pages toward deeper in a site, most query forms are in the shallow levels. In

101

particular, the top 3 levels (form the root page to depth 3) contain only 17% of total pages but 94% of

forms.

This observation inspires us a site-based view of pages on the Web. To begin with, Figure 5.2(a)

shows the typical page-based view of the Web, in which all pages and all links are equal. On top of the

page graph, we now view the Web as a collection of Websites, as Figure 5.2(b) shows. Each site is an

HTTP server containing a subgraph (of the Web) for pages on the server, and is uniquely addressed by

a distinct IP domain name and an HTTP port number1, e.g., http://xyz.com:8080 . For brevity, we

will simply usesite, IP, or domain nameinterchangeably.

From Figure 5.2, we can see that although query forms seem to distribute sparsely and randomly on

the traditional page view, the structure locality as we observed means that, within each site as a scope,

the distribution of query forms is rather “predictable” (in a statistical sense)– they follow the pattern as

Figure 5.1 shows, in which we expect to find query forms, if any, around the entrance of each scope.

To compare, in the traditional page-based view, we essentially consider each page itself as a scope.

Under this view, since each scope is “atomic” with only one page, there is no intra-scope locality. We

can only explore the inter-scope locality,i.e., the linkage closeness among scopes (i.e., pages) with the

same topic or the so-called content locality.

On the contrary, in the site-based view, we view each site as a scope and employ structure locality

as the “maps” to guide the crawling within scopes for finding target objects. Unlike the inter-scope

content locality, structure locality, as a new type of locality, explores intra-scope information (e.g.,

the depth of links, the navigational menu links) and has two excellent features: 1) topic-neutral: By

exploring structure information, an intra-scope search strategy can equally handle any scope regardless

1With IP aliasing and virtual hosting, there is generally a many-many mapping between IP and domain names. To be
precise, a site should be recognized by (domain-name, IP, port-number).

102

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

average harvest over the random trials, each of size 100

nu
m

be
r

of
 tr

ia
ls

0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

average coverage over the random trials, each of size 100

nu
m

be
r

of
 tr

ia
ls

(a) Normal distribution of the mean harvest. (b) Normal distribution of the mean coverage.
Figure 5.3: Normal distribution of the mean yields.

of its domain. 2) coverage-aware: Equally treating any scope, an intra-scope search strategy is likely to

achieve stable harvest and coverage within scopes and further make the overall yields predictable.

5.2.2 Methodology: Structure-Driven Crawling

The observation of the structure locality motivates us a new concept,structure-drivencrawling, as a

framework for building object-focused crawlers. This concept parallels and contrasts the implicit notion

of content-drivencrawling framework behind existing topic-focused crawlers, as Section 1 introduced.

In a structure-driven framework, a crawler conceptually partitions the Web into independent scopes and

searches for target objects in each scope, with certain intra-scope search strategy that matches the object

distribution patterns. If such structure-locality patterns indeed exist, the in-scope search strategy can

explore different ways to achieve predictable harvest and coverage for the crawling.

For each scope, we crawl from its entrance to search within the scope, guided by anin-sitesearch

strategy. By matching the structure locality of the scope, different strategies will result in different

tradeoff of yield rates in this scope, orlocal harvesth andlocal coveragec%. To confidently predict the

“global” harvestH and coverageC% of the entire crawling process from our local yields, we develop a

high-level methodology for structure-driven crawling.

First,sampling phase: Suppose we have a set of alternative intra-scope search strategies of crawling

a certain type of objects. Our goal in the sampling phase is to select the best strategy by testing the

103

strategies over a randomly sampled set of scopes2. To show that such a sampling phase can indeed help

us predict the overall performance, we need to address two issues: 1) We need to show that, by choosing

an appropriate sampling size, we can guarantee a confident estimation of the local yields of a strategy.

2) We can predict the global yields from the local yields. We will discuss these two issues respectively

in this section.

Second,executing phase: We apply the selected strategy for crawling over the whole Web. With

the accurate estimation of the local yields based on the sampled scopes, we thus can accurately predict

the global yields in this phase. Our empirical study in Section 5.5 shows that the executing phase can

indeed maintain steady harvest and coverage in practice.

To illustrate why local yields can be accurately estimated and they can further imply global yields

in structure-driven crawling, let us for now consider a scope as a Web site and its entrance as the root

page. Assume we use a simple strategy,Exhaustive(3), for crawling pages in a site from the root (i.e.,

depth 0) up to depth3.

Local Harvesth and Coveragec%: As the same intra-scope crawling strategy may not generate the

same local yields for different Web sites, we wonder whether we can observe stable local yields and

further estimate them (in a statistical sense) with a randomly sampled set of sites. According to the

Central Limit Theorem [9], when the sample size is large (usually more than 30), we can calculate con-

fidence intervals of the mean values of the local harvest and local coverage using Equation 5.1. That is,

the mean valueµ of a random variableX has1−α probability to be in the range [Xn− zα/2s√
n , Xn+ zα/2s√

n],

wheren is the sampling size,Xi is theith sample,Xn = ∑n
i=1 Xi

n , ands2 = ∑n
i=1 (Xi−Xn)2

n−1 . For instance, with

a trial of sampling 1000 sites, we have that the 95% confidence intervals of the local harvest mean and

the local coverage mean ofExhaustive(3) are 0.119± 0.02 and 0.898± 0.016 respectively.

2The criterion of judging the best is specific to the crawling task. For instance, a possible criterion can be choosing the
strategy with the highest harvest among all strategies satisfying a given coverage.

104

P(Xn−
zα/2s√

n
< µ< Xn +

zα/2s√
n

) = 1−α (5.1)

To visually illustrate the above estimation of confidence intervals, we conduct 1000 trials, with each

trial sampling a different set of 100 sites. We still useExhaustive(3) as the intra-scope strategy to crawl

each site. We then compute the average harvest and coverage for each trial and draw the distribution of

the average harvest and coverage among the 1000 trials, as Figure 5.3 shows. We can clearly observe

that the mean values of both local harvest and coverage show normal distributions, with most values

(about 95%) falling into the estimated confidence intervals.

In practice, if we feel the confidence interval we get is not convincing enough to estimate the local

yields, we can enlarge the sampling size. According to Equation 5.1, by doing so, we can obtain

a smaller confidence interval for the same confidence1−α and thus a better estimation. From our

experience, Web sites tend to share the structure locality shown in Figure 5.1. Therefore, we can often

achieve accurate estimation of local harvest and coverage with a relatively small sampling size. Our

experiment in Section 5.5 will empirical verify this argument for a set of different intra-scope crawling

strategies,e.g., the approaches we developed in Section 5.4.

Global HarvestH and CoverageC%: How does the local performance imply the global yields in the

entire crawling? We build a simple analytical model for this “prediction”: We assume that query forms

can only have duplicates in the same site (e.g., Amazon.com has “product search” repeated in every

page), and we consider forms from different sites as distinct (thus a form at Amazon.com cannot be

found at BN.com). Suppose the following characteristic parameters: 1) There are totallyn Web sites.

105

2) In average, each site hasmquery forms. 3) The in-site searcher can achieve local harvesth and local

coveragec% in average in a site.

We can now derive the global performance: During the entire crawling, the crawler will findn×

m×c%, among the totaln×m forms. The number of pages crawled isn×m×c%
h , since it crawlsh times

more pages than forms. Thus:

Global harvestH =
n×m×c%

n×m×c%
h

= h (5.2)

Global coverageC% =
n×m×c%

n×m
= c% (5.3)

Although it is possible to build more sophisticated modeling to more accurately capture the rela-

tionship between local yields and global yields, our empirical study in Section 5.5 shows that the simple

modeling is pretty good in predicting the global yields.

Overall, we thus observe two desirable properties entailed by structure-driven crawling:

• Steady local yields and predictable global yields:In structure-driven crawling, we can accurately

estimate the steady local harvest and coverage with an appropriate sampling size. Such steady

local yields will help us to predict the global performance. Such features cannot be supported

by traditional topic-focused crawling. Our experiments in Section 5.5 also empirically verify this

analysis.

• Yield-guided crawler design: The analytical model, while simple, can guide the design of intra-

scope search strategies (e.g., selectingd for Exhaustive(d)). Guided by a desirableH andC%, we

can pick an intra-scope strategy that generates the corresponding localh andc%, thus allowing a

principled way of harvest-coverage tradeoff and resource allocation.

106

In-site
Form

Searcher

In-site
Form

Searcher

In-site
Form

Searcher

In-site
Form

Searcher

��� ���� ���	
��

Form Database

In-site
Site

Searcher
Site Finder
Dispatcher

new
sites

site

Site Finder

In-site
Site

Searcher

In-site
Sit

Searcher

In-site
Site

Searcher

In-site
Site

Searcher

Form Finder
Dispatcher

query
forms

site

Form Finder

Site Database

Site List

In-site
Form

Searcher

Site List

Site List

Figure 5.4: System architecture of the Web Form Crawler.

Although our analyses above assume Web sites as the scopes, we believe they are generally ap-

plicable to other scope definitions as long as some topic-neutral structure locality can be found within

scopes.

5.2.3 Implementation: Architectural Design

To realize the structure-driven crawling framework for collecting query forms, we develop theWeb

Form Crawler. Our crawler conceptually takes a site-based view of the Web, as Figure 5.2(b) shows.

In this view, each site is an independent scope, with an expected structure locality of our target objects.

(With further analysis, more refined patterns can be constructed; Section 5.4.) We thus substantiate

the concept of structure-driven crawling into asite-basedframework: Crawl each site as a scope, with

an in-sitestrategy that matches the locality, to achieve the objective of having predictable harvest and

coverage.

Figure 5.4 shows the architecture of the Web Form Crawler, with a pair of concurrent components:

Site Finderfor finding site entrances andForm Finder for searching each site for query forms. In this

site-based framework, the finding of site IPs and the subsequent in-site search will run concurrently. In

particular, the Site Finder collects new site IPs into aSite Database. From there, the Form Finder then

continuously gets a site entrance, searches for query forms, and collects them into aForm Database–

the end product of crawling.

107

Site Finding: To begin with, we need to find a set of sites in terms of entrance IP addresses. There

are multiple ways to collect site IP entrances. First,directory databases: Some Web directories provide

pre-compiled site lists. For instance, DMOZ has compiled a list containing 860,000 sites [57]. Second,

piggyback crawling: We can add site-IP discovery as a “side effect” of other crawling activities. In

particular, as our crawler searches for query forms in-site, it can also “piggyback” IP entrances found

alone the way as byproducts. Third,dynamic discovery: We can build a crawler to specifically search

for site entrances from Web pages. Our Site Finder currently supports two ways of collecting sites: from

directory databases (e.g., DMOZ) and from dynamic discovery.

Although our framework will employ multiple means of site finding, with the changing and expand-

ing nature of the Web, we believe dynamic discovery remains essential for covering comprehensive all

site-IPs. As a support, Section 5.5 will compare our dynamically discovered IPs with the DMOZ list,

which reveals that such (manually) compiled list can be rather limited.

Such dynamic discovery of IPs turns out to be itself an object-focused crawling task (with “sites” as

target objects) and can thus also be realized by structure-driven techniques. We observe the same phe-

nomenon as query forms– That is, pages containing new site IPs are close to root pages. We randomly

select 100 sites from the DMOZ site list and crawl each site up to depth 10. (We name this dataset as

Random100, which will be used throughout this chapter.) We measure the distribution at each depth, as

Figure 5.1 also shows. The result indicates that structure locality indeed exists: 95% IPs can be found

within depth 3. (Section 5.3 will further refine the locality.) Similar to finding query forms, we can

resort to structure-driven crawling for site finding. Therefore, while our site-based crawling framework

relies on the function of site finding, this function, recursively, can be realized in the same site-based

framework.

108

The Site Finder thus shares the same design as the Form Finder: Within the Site Finder, we schedule

site IPs (that are already in Site Database) to search; for each site, we devise an in-site searcher. Hence,

our discussion next on site scheduling and in-site search are applicable for both the Form Finder and the

Site Finder. (Their different in-site strategies will be explored in Sections 5.4 and 5.3).

Site Scheduling:After collecting sites as scopes, we must develop a scheduling strategy, to order these

scopes for in-site search of query forms. There are various alternatives in scheduling: To begin with,

simple iterationorders all sites arbitrarily, and crawls each till completion. This scheme requires mini-

mal scheduling logic, but may not optimize for important sites, and may not interleave crawling traffic

to a single site. To contrast, we can useranked interactionto prioritize site rankings with estimated

importance (e.g., some “PageRank”). Similarly, we can adoptround-robin iterationto go in “rounds,”

each of which crawls progressively larger part into a site (e.g., depthd in roundd), and thus interleaves

site traffic.

Our implementation currently uses simple iteration, for its simplicity. In particular, our experience

shows that the concern of site traffic is not significant: Since we aim at searching each site minimally

(by exploiting structure locality), the traffic is often rather minor. We emphasize that, for a given set of

sites to crawl, different scheduling strategies willnot affect the global yield (as Eq. 5.2 and 5.3 show),

since in principle we will eventually crawl all the sites.

Specifically, to schedule, the dispatchers in Figure 5.4 send site IPs to the concurrent in-site searchers

at parallel machines. Note that, since our structure localities suggest that target objects are connected and

reachable from their site entrances, our structure-driven framework will search a scopeindependently,

without requiring cross-site communication [20]– parallelization is thus immediate.

In-Site Search:We develop a generic in-site search logic, which is applicable for both the Form Finder

and the Site Finder. As Figure 5.5 outlines: URLs to be crawled are added into a queueQ. In each

109

Algorithm: GENERALINSITESEARCHER:
Input: a site IPip, maximal depthd
Output: a set of discovered objects from siteip
begin:
1 Q = /0 /* Q: the queue of urls to be crawled */
2 B = /0 /* B: blacklist: the set of urls already crawled */
3 I = /0 /* I : the set of objects found in siteip */
4 Q.enqueue(ip)
5 while Q 6= /0
6 /* get a url to crawl and then add it into the blacklist*/
7 url = Q.dequeue()
8 page= retrieve the page ofurl
9 B = B∪{url}
10 /* add new objects in the crawled pagepageinto I */
11 O = OBJECTEXTRACTION(page)
12 I = I ∪O
13 /* select promising intra-links to crawl */
14 L = L INK SELECTION(page)
15 for each linku∈ L andu /∈ B∪Q andDEPTH(u) ≤ d
16 Q.enqueue(u)
17 return I
end

Figure 5.5: Algorithm GENERALINSITESEARCHER.

while-loop, the searcher gets a URL fromQ to crawl and extract objects (either site entrances or query

forms in our case) from the page by callingOBJECTEXTRACTION. It then selects links to crawl by

executingL INK SELECTION and adds these links toQ. The parameter, maximal depthd, controls the

depth of crawling. The process terminates whenQ is empty.

The functionOBJECTEXTRACTION extracts target objects from a page. While this extraction is

necessary, it is not our focus in this thesis, and we only briefly explain our implementation: Extracting

site IPs is straightforward– We identify inter-site hyperlinks, extract IPs (e.g., foo.com:8080/abc.html

to bar.com:8080), and store them to the Site Database. However, extracting query forms is more

involved: For each potential form, as marked by the HTML tag<FORM>, we first decide if it is indeed

a query form, to avoid non-interesting forms (for our purpose),e.g., site searches, logins, and polls. We

implement the form-detection classifier in [22] for this decision. For each positive form, we then remove

110

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

ip
1,

 ip
2,

 ..
.

page1, page2, ...

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90

ip
1,

 ip
2,

 ..
.

page1, page2, ...

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000

ip
1,

 ip
2,

 ..
.

page1, page2, ...

(a) Link-page template. (b) Skeleton template. (c) Directory template.
Figure 5.6: Three typical templates of the distribution of IPs within a site.

duplicates (by comparing to forms already found in the same site), extract its query structure (by the

visual parser in our earlier work [72]), and store it into the Form Database.

Our remaining task is thus to design effective in-site search strategies,i.e., to substantiate the

L INK SELECTION function, as guided by the objective harvest and coverage. We study such strategies

for the In-Site Form Searcher and the In-Site Site Searcher in Sections 5.4 and 5.3, respectively. The de-

velopment of such strategies, albeit for different objects, essentially follow the same approach: First, to

explore structure locality, we will start with making deeperobservationsto find more structure locality

patterns. Second, guided by the patterns, we then formulate searchstrategiesand provide our specific

implementations. Such strategies often are configured with parameters (e.g., maximal depthd) which

will lead to different harvest and coverage. Finally, we use thesampling-and-executingmethodology

(Section 5.2.2) to select a good intra-scope strategy that leads to desirable performance.

5.3 In-Site Site Searcher

In this section, we discuss specializing the AlgorithmGENERALINSITESEARCHERfor the task of find-

ing site IPs within a site. In particular, we need to specialize theL INK SELECTION function for selecting

links that are likely to contain new sites. Similar to the procedure taken in Section 5.4, we discuss our

observations and discovered patterns for the structural locality of site entrances (Section 5.3.1), from

which we develop the link selection strategy and implementation (Section 5.3.2).

111

5.3.1 Observations and Patterns

Observations: We study the occurrences of external site IPs in a site by surveying the 100 sites in the

Random100dataset. For each site, we draw a “matrix” of IP occurrences. The x-axis is all pages in the

site in their breadth first traversal order. The y-axis is all IPs in the site ordered by their first discovery

(because an IP can occur in many pages of a site). If an IP occurs in a page, we mark the corresponding

position in the matrix with a dot.

From all the occurrence matrices, we observe that the distribution of IPs in a site has three typical

shapes, which we call “templates,” as Figure 5.6 illustrates. 1)Link-page template, in which there is

one (or a few) “link” page that contains many external IPs, while other pages have none. 2)Skeleton

template, in which some external IPs occur in almost every page, mainly because these IPs appear in

the common “skeleton” that many pages share. 3)Directory template, in which new IPs keep growing

and show a triangle shape of distribution– That is, new IPs can occur in not only shallow pages but also

deeper ones and thus form a triangle. A site with this template is often a directory site,e.g., Yahoo

directory and DMOZ directory, where each page contains IP references for a certain subject category.

Finally, some sites may show a mix of these typical templates in their distributions. Among the 100

sites, 11 sites have no new IPs, 44 sites follow only link-page template, 8 only skeleton template and 8

only directory template. There are totally 29 sites that have mixed templates.

Reachable Patterns: From our survey of templates, we summarize two patterns to reach pages contain-

ing IPs: First,target-page pattern: Some pages are important by themselves. In particular, it is crucial

to find the path to the “link” pages. Second,continuous pattern: Some sites contain external site IPs in a

“continuous” distribution across depths. That is, searching more pages in a site will either continuously

find different IPs (i.e., the directory template) or the same ones (i.e., the skeleton template).

112

5.3.2 Strategy and Implementation

Strategy: We design our link selection strategy by leveraging both reachable patterns.First, for sites of

the target-page pattern, we observe that link pages are often either close to root page (i.e., within depth

1) or contain some keywords (e.g., “ links ”, “ resources ”). We thus design our crawling strategy as:

Crawling pages up to depth 1 and then for deeper pages, we build a classifier using anchor-text keywords

as distinguishing features to reach special link pages.Second, for sites of the continuous pattern, it is

clear that we want to leverage the continuity to use the past to “predict” the future and stop early if no

more new IPs are found. We thus develop an adaptive crawling strategy, which dynamically decides

whether to further crawl or not by its current crawling yields.

Specifically, the continuous distribution of IPs indicates that if we observe enough IPs from a group

of recent pages, we are likely to see new IPs in their children. To realize this idea, we need to define

what “recent” pages are and how many IPs are “enough.” Given a page, we define recent pages as a

sliding window of a group ofS adjacent intra-site links in the page. For each window, we crawl its

pages and compute the number of new IPs found in pages of the window. If the number of new IPs is

no lower than a thresholdT, we will crawl children pages for every page in the window.

Example 25: To illustrate the adaptive crawling with an example, consider a Web site as Figure 5.7

shows. For simplicity, we alphabetically mark each page,i.e., a, b, ..., instead of using URLs. Also, for

each page, we give it the number of new IPs it yields. Suppose we set the window sizeSas 2 and the IP

thresholdT as 5.

To begin with, we crawl the root pagea and find 6 new IPs3. Since 6 is more than the threshold 5,

we will continue to crawl its children pages in depth 1,i.e., b, c, d ande.

3Note that this example is just for illustration. As we will show in AlgorithmADAPTIVE, in practice, to avoid missing the
entire site due to a low harvest rate at a single root page, we crawl all pages up to depth 1 regardless of the harvest rate of the
root page.

113

(a)
IP: 6

(b)
IP: 0

(c)
IP: 4

(d)
IP: 2

(e)
IP: 1

(h)
IP: 0

(f)
IP: 1

(g)
IP: 2

(i)
IP: 2

(j)
IP: 5

(k)
IP: 0

(l)
IP: 2

(m)
IP: 1

T = 5, S = 2

Figure 5.7: Adaptive crawling for finding IPs.

Then, we use sliding windows to decide whether to crawl pages in depth 2 or not. As our window

size is 2, the first sliding window contains pagesb andc. Since their total new IPs is 4, which is less

than 5, we will not crawl their children pages. We then move forward the sliding window. The second

sliding window contains pagesc andd, and has 6 new IPs. We thus crawl children pages of both pages

c andd, and get pagesf, ..., j. The last sliding window in this depth contains pagesd ande, which has

only 3 new IPs. We thus will not crawl pagee.

Next, we repeat the above process for each depth of pages until no pages can be selected to crawl. In

this example, we will further crawl children pages of pagesi andj, since their total new IPs is 7. Since

there are no other windows that can pass the threshold, the crawling will stop after crawling pagem.

Finally, because the above strategies are only likely but not certain, we may still miss some pages

containing new IPs. We thus introduce a random crawling behavior for pages that are originally not

selected. Specifically, when a page is not selected by any of our strategy, we still give it a chance to

be crawled with a small probabilityp, e.g., 0.05. This random behavior complements our deterministic

crawling strategies in a statistical sense.

Implementation: Putting together all the strategies we have discussed so far, we develop the overall

Algorithm ADAPTIVE(T, S, p) to realize theL INK SELECTION function for finding Web sites, as Fig-

ure 5.8 shows. In particular, lines 3-5 realize the crawling strategy for the target-page pattern. Function

114

Algorithm: ADAPTIVE (T, S, p):
Input: a pagepg, IP thresholdT, window sizeS, probabilityp
Output: a list of selected intra-site links
begin:
1 L = /0 /* L: the set of selected intra-site links */
2 W = all intra-site links inpg
3 /* deal with target-page pattern */
4 if DEPTH(pg) ≤ 1 then L = L∪ {u| for all u∈W}
5 elseL = L∪ {u| for all u∈W andL INK KEYWORDS(u) = true}
6 /* deal with continues pattern with adaptive crawling*/
7 /* get a set of pages with respect to the window sizeS*/
8 pw= GETPAGEWINDOW(pg, S)
9 E = the set of new IPs found from pages inpw
10 /* check whether there are enough IPs in the window of pages */
11 if |E| ≥ T then L = L∪ {u| for all intra-site linksu in pw}
12 /* add random crawling behavior */
13 elif we hit a probabilityp then L = L∪ {u| for all u∈W}
14 return L
end

Figure 5.8: Algorithm ADAPTIVE.

DEPTH is to return the depth of a page and functionL INK KEYWORDS is to check whether the URL

contains some keywords about link pages. Lines 6-11 realize the adaptive crawling strategy for the

continuous pattern. FunctionGETPAGEWINDOW returns a window of pages with the given pagepg as

the last page in the window. Lines 12-13 realize the random crawling behavior.

Local harvest and coverage: Our algorithm, with its parameters, allows us to control the local harvest

and coverage. We have three parameters to set: the IP thresholdT and the window sizeS in adaptive

crawling, and the random probabilityp. As our experiments in Section 5.5 show, the combination

of these three parameters affect both the local harvest and coverage. It is thus possible to choose the

parameters that are likely to have a good balance of local harvest and coverage with respect to user’s

requirements.

115

5.4 In-Site Form Searcher

In this section we develop the In-Site Form Searcher for efficiently finding query forms within a site.

Section 5.2.1 discussed the simple strategyExhaustive(d), which can already outperform the base har-

vest rate with reasonable coverage. However, can we do better? In this section we observe further struc-

ture locality (in addition to the “shallow distribution” mentioned in Section 5.2.1) specific to finding

query forms. In realizing it, as Section 5.2.3 outlined, we will discuss our observations and discovered

patterns for the structural locality of query forms (Section 5.4.1), then formulate strategies and concrete

implementations (Section 5.4.2).

5.4.1 Observations and Patterns

Observations: We observe that, as a common feature, most Web sites provide navigational menus to

guide users in browsing the sites. Such navigational menus are often presented in order to bring users

to important pages, among which of particular interests to us are those containing query forms. To be

more concrete, Figure 5.9(a) shows the navigational menu athttp://www.bn.com. By following the link

at the tag"BOOKS", we go to another navigational menu (Figure 5.9(b)) that contains a simple query

form and the link"More Search Options" to the advanced query form of the book department of

Barnes&Noble. In fact, we can reach the query forms of all major departments ofBarnes&Nobleby

similarly following the links on the tags in Figure 5.9(a). Figure 5.10 illustrates a variety of navigational

menus from real-world Web sites.

To verify that the structure locality provides high coverage in finding query forms, we surveyed 100

query forms from the UIUC Web integration repository [17]. These forms are randomly selected from

forms that are not on root pages (such root-page forms are always covered, as the In-Site Form Searcher

116

(a)

(b)

Figure 5.9: Navigational links inBN.com.

(a)

(b) (c)
Figure 5.10: More navigational links.

starts with the root page). We find that 87 out of the 100 forms can be reached from the root pages by

following navigational links4.

Reachable Patterns: First, as navigational links serve the purpose of connecting from everywhere

to the important information of a site, they naturally reach the query forms, which provide a crucial

functionality of the site.Second, as mentioned in Section 5.2.1, query forms distributed “shallowly” in

Web sites,i.e., they are close to the entrances.

5.4.2 Strategy and Implementation

Strategy: There can be hundreds of intra-site links on a Web site. How do we effectively find the

navigational links among them? Our method is based on the following two insights.

4The remaining 13 forms can mostly be reached by other simple heuristics. For example, most links to “advanced” query
forms that could not be directly reached by navigational links are around the simple query forms that can. Here we focus on
the navigational links only and do not consider other heuristics.

117

1

2

3

1

2

3
�

U
�

�

L

L

L

L
3

L
1

L
2

L
nav

Link Grouping and Ranking Link Overlapping Analysis

page P

Figure 5.11: NAVMENU : navigational link detection.

First, navigational links in a page are presented with distinguishing visual characteristics, such as

alignment, position, size, color, and font. Such characteristics enable the prominent and intuitive visual

presentation of navigational links so that users can easily identify them. This observation suggests to

analyze the visual pattern of hyperlinks to detect the navigational links. Note that suchvisual parsing

approach has also been applied in understanding Web query forms [72].

Second, navigational links are often part of a page “skeleton” of a site that will repeatedly appear in

many pages in the site. Such repeating occurrences present the navigational links as shortcuts available

everywhere in the site, thus the important information is always reachable. This observation suggests to

enforce alink overlapanalysis across multiple pages.

Implementation: Based on the above insights, we specialize theL INK SELECTION function in Fig-

ure 5.5 to an in-site search strategy, AlgorithmNAVMENU , for detecting navigational links. Given a

pagep containing a set of hyperlinksL, it returns a set of candidate navigational linksLnav⊆ L. The

details ofNAVMENU are shown in Figure 5.12. At the high level, the algorithm takes two stages, corre-

sponding to the aforementioned two insights, as illustrated in Figure 5.11.

The first stage,link grouping and ranking, explores the visual characteristics for selecting and rank-

ing navigational links. The hyperlinks inL are formed into multiple disjointlink groupsbased on visual

parsing. To begin with, a link group is a set of more than, say 3, consecutive links representing a menu,

aligned horizontally or vertically. This captures the visual characteristic of most navigational bars in

terms of alignment. Further we rank the link groups by other visual characteristics. More specifically,

118

Algorithm: NAV MENU (p):
Input: a page,p
Output: a list of selected intra-site links,links
begin:
1 /* obtain the lines of texts and the URLs byLynx*/
2 (< l1, ..., ln >, < u1, ...,um >) = lynx(p)
3 /* link grouping*/
4 t = 0 /* total number of link groups */
5 for each linel i , 1≤ i ≤ n do
6 /* NAW: non-anchortext words */
7 if line l i contains single URLu j and no NAWthen
8 if line l i−1 contains multiple URLs or NAWthen
9 t = t+1
10 gt = gt ∪ {u j}
11 /* all the words inl i are the anchor text ofu j */
12 wc[gt] = wc[gt] + number of words inl i
13 elif line l i contains multiple URLs{u j , ...,u j+k} then
14 t = t+1
15 gt = {u j , ...,u j+k}
16 /* including both anchortexts and NAW */
16 wc[gt] = number of words inl i
17 /* a group should have at least 3 links */
18 remove those groups with|gi | ≤ 2
19 /* link group ranking */
20 for each groupgi = {u j , ...,uk}, 1≤ i ≤ t do
21 total size= total size+|gi |
22 total words= total words+ wc[gi]
23 total dist = total dist + m - (j +k)/2
24 for each groupgi = {u j , ...,uk}, 1≤ i ≤ t do

25 rank[gi] = ws×|gi |
total size + ww×wc[gi]

total words + wd×(m−(j+k)/2)
total dist

27 /* link overlap analysis */
28 ls = /0
29 for each of the topk ranked groupsg do
30 ls = ls∪ {the firstx links in g}
31 P url = < u1, ...,um >
32 links = /0
33 for each linku∈ ls do
34 child = retrieve(u)
35 C url = URLs inchild
36 links = links∪ (P url ∩C url)
37 return links
end

Figure 5.12: Algorithm NAVMENU .

119

Figure 5.13: The output of Lynx corresponding to Figure 5.9(a).

we take the ranking score of a link groupg as the weighted average of three factors. That is,rankg =

ws×sizeg + ww×wordcountg + wd×distg, wheresizeg is the number of links ing , wordcountg is the

percentage of anchortext words in all the words positioned in the range ofg, anddistg is the distance

betweeng and the bottom of the page. For example, the top-3 link groups are annotated in Figure 5.11.

We note that this formula is simply to capture the important visual characteristics of a link group as a

menu, although other heuristics can be developed as well.

The second stage,link overlap analysis, identifies the links that repeatedly appear. This captures the

observation that the same navigational links are likely to appear in the page itself and the pages referred

to by the navigational links. To be more specific, given a navigational linkl ∈ L in p (e.g., Figure 5.9(a)),

the target page ofl (e.g., Figure 5.9(b)) likely containsl as well. ¿From each of the topk (e.g., k = 3

in Figure 5.11) ranked groups,x links (e.g., the first link) are followed. The links in each resulting page

(e.g., L1) are intersected withL, the links inp. The resulting intersections are unioned to form the set of

candidate navigational linksLnav.

The visual information utilized inNAVMENU can be obtained from the Web page rendering engine

of browsers such as IE and Mozilla. To ensure the high efficiency of the crawler, we use the open source

browserLynx, which renders a Web page in the text model. For instance, the dumping output of Lynx

corresponding to Figure 5.9(a) is shown in Figure 5.13. (The association of the anchortext and the URL

of each hyperlink is not shown.) The (anchortexts of) hyperlinks aligned horizontally in a graphical

browser will appear in the same line of the textual output. Similarly the hyperlinks aligned vertically

120

will appear as multiple lines. Note that althoughLynxonly provides approximate visual presentation of a

page, compared to graphical rendering engines, and our algorithm even only exploits partial information

(such as alignment, size, and distance) from the output ofLynx, the result is quite satisfactory according

to our experiments in Section 5.5. Further improvements ofNAVMENU can be made by exploring more

visual characteristics related to navigational links.

Local Harvest and Coverage of Forms:The In-Site Form Searcher captures the reachable pattern of

query forms with respect to navigational links, thus can achieve both high harvest and coverage. It only

follows navigational links, therefore crawls much less pages than the baseline approach of exhaustively

following links, and thus has higher harvest. Navigational links can lead to87%of query forms (that are

not on root pages), therefore the coverage of the form searcher can reach higher than87%since many

forms can be found on root pages.

Moreover, to capture the “shallow” distribution pattern of query forms, we combineNAVMENU with

the simple strategyExhaustive(d) in Section 5.2.2 to obtainNAVMENU (d), which follows navigational

links within the maximal depthd. The appropriated for NAVMENU (d) will be empirically determined

by the experiments in Section 5.5.

5.5 Experiments

To evaluate the Web Form Crawler, we extensively test each of the core components as well as the

entire system, for their (local and global) harvest and coverage. The experimental results verify that

1) by our sampling-then-executing strategy over a small sample of Web sites, we can compare various

in-site search strategies and select the appropriate one; and 2) compared to page-based crawling, our

best harvest rate is about 10 to 400 times difference, depending on the page traversal schemes used.

121

To begin with, we have implemented the Web From Crawler, as Figure 5.4 shows, with our control

logic built upon several modified open-source softwares. In particular, we build our implementation

of the in-site searchers (i.e., the In-Site Site Searcher and the In-Site Form Searcher) based on wget

(http://www.gnu.org/software/wget/wget.html). For the In-Site Form Searcher, we revise the text-based

browser Lynx (http://lynx.browser.org) to extract visual information of Web pages. We implement the

dispatchers in C and use PostgreSQL (http://www.postgresql.org) to support the Site Database and Form

Database.

We deployed the crawler, with its parallel architecture, on the HAL PC cluster at the University of

Illinois at Urbana-Champaign (http://hal.cs.uiuc.edu). The HAL cluster consists of 100 dual processor

machines each with two 500MHz Pentium III Xeon processors, 1 GB of memory and a 9GB SCSI drive.

The database servers are Xeon 2.80 GHz dual CPU with 2GB memory.

We extensively test the Web Form Crawler in its core components as well as the entire system:

1) Form Finder: We evaluate the local and global performance of the Form Finder in terms of its

harvest and coverage.

2) Site Finder: We briefly evaluate the performance of the Site Finder in terms of its harvest and

coverage.

3) Overall: We evaluate the Web Form Crawler with a large scale crawling and report the crawling

result. We also compare our performance with the one using traditional page-based crawlers.

1a. Local performance of the Form Finder: In this study, we measure the local harvest and coverage

of the In-Site Form Searcher under various settings. We randomly choose 100 deep Web sites from

the TEL-8 dataset of the UIUC Web Integration Repository [17] as our test set. For each site, we

run the In-Site Form Searcher in three cases: Maximal depthd as 0, 3, and 10, denoted asNavmenu(0),

122

1000000

100000

10000

1000

100

10

0
formspages

300

200

100

0

of

 p
ag

es
 (

lo
g)

of

 fo
rm

s

Exhaustive(10)
Exhaustive(3)
NavMenu(10)
NavMenu(3)

Exhaustive(0)

1

0.03

0.025

0.02

0.015

0.01

0.005

0
coverageharvest

1

0.8

0.6

0.4

0.2

0

ha
rv

es
t

co
ve

ra
ge

Exhaustive(10)
Exhaustive(3)
NavMenu(10)
NavMenu(3)

Exhaustive(0)

(a) Crawling result. (b) Performance.
Figure 5.14: Form Finder: Local study.

Navmenu(3), andNavmenu(10), respectively. For each case, we measure its local harvest and coverage.

As the baseline, we also run the simple strategy of crawling all pages with depth 0, 3 and 10, (i.e.,

Exhaustive(0), Exhaustive(3) andExhaustive(10), as Section 5.2.2 introduced). Figure 5.14(a) shows,

for each case, the number of pages crawled and the number of forms found. Figure 5.14(b) shows, for

each case, the local harvest rate and coverage. AsExhaustive(0) is effectively the same asNavmenu(0),

we only list the result ofExhaustive(0).

The result in Figure 5.14 is consistent with our analysis in Section 5.2.2: With a deeper depth, the

harvest is lower, while the coverage is higher. Meanwhile, the further structure locality,i.e., navigational

menus, developed in Section 5.4 indeed results in better performance. By following navigational menus,

we can significantly speed up the harvest while in the meantime maintain a high coverage. In particular,

Navmenu(3) is the best setting, with a good balance between harvest and coverage.

We note that as the query form classifier (developed in Section 5.2.3) may have false positives,i.e.,

some non-query forms may be classified as query forms, to have an accurate evaluation of the local

harvest and coverage in this small scale study (in contrast to the large scale global study later), we

perform a manual inspection to verify query forms and duplicates. The result in Figure 5.14 is the one

after manual inspection.

123

method mean harvest 95%CI
Exhaustive(10) 0.114 0.020
Exhaustive(3) 0.119 0.020
Navmenu(10) 0.192 0.028
Navmenu(3) 0.214 0.029
Exhaustive(0) 0.537 0.049

method mean coverage 95%CI
Exhaustive(10) 1.0 0.0
Exhaustive(3) 0.898 0.016
Navmenu(10) 0.630 0.026
Navmenu(3) 0.598 0.026
Exhaustive(0) 0.287 0.025

Figure 5.15: Form Finder: Selecting strategy by sampling.

Our manual inspection shows that the more pages we crawl, the more false positives we have in the

collected forms. For instance, in depth 0, only 9% forms are false positives, while in depth 10, 60%

to 70% forms are. Also, exhaustive crawling, as it crawls more pages, has more false positives than

navigational menu crawling. Further, as the 100 deep Web sites we choose in this local study are all

“big” sites, the harvest is likely to be underestimated, because for smaller sites, we may not need to

crawl many pages to find forms. Therefore, in practice, the global harvest in large scale crawling, where

no manual inspection is taken, may increase over 5 times, as our following experiments will show. We

believe a more accurate classifier should be and can be developed, but such a topic is beyond the scope

of this thesis.

1b. Sampling to select the strategy of the Form Finder:To select a good in-site search strategy for the

form finder, we follow the methodology of sampling-then-executing that is mentioned in Section 5.2.

In the sampling stage, we apply various strategies over a small sample of1000Web sites. For each

strategy, we compute its local harvest and coverage over each individual the Web sites. According to

the Central Limit Theorem, following the method in Section 5.2, we obtain the95%confidence interval

(CI) for the mean harvest (h) and mean coverage (c), respectively, of the underlying population over the

whole Web. The results for the five crawling strategies of the form finder are shown in Figure 5.15.

124

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

formspages
 0

 50000

 100000

 150000

 200000

 250000

 300000

of

 p
ag

es

of

 fo
rm

s

Navmenu(10)
Navmenu(3)
Navmenu(0)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10000 20000 30000 40000 50000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

H
ar

ve
st

 o
f N

av
m

en
u(

10
)

an
d

N
av

m
en

u(
3)

H
ar

ve
st

 o
f N

av
m

en
u(

0)

Sites

Navmenu(0)
Navmenu(3)

Navmenu(10)

(a) Crawling result. (b) Trend of global harvest.
Figure 5.16: Form Finder: Global study.

In the sampling procedure, the following large scale global study and the evaluation of the entire

system, we explore automatic query form detection mainly based on the rule-based classifier devel-

oped in [22]. However, this automatic detection can result in false positives in both form detection and

duplicate removal. The global harvest rate thus will be higher than the one in local study due to the

existence of false positives. For instance, one particular error is that the classifier often makes a mis-

take on considering product configuration forms as query forms, which we specifically removed in the

manual inspection. A product configuration form is an HTML form used for configuring features of

a specific product,e.g., selecting options of a specific car. For E-commerce sites, it is quite often that

each product may have a unique configuration form and thus there are a large number of such forms.

Therefore, misclassifying this type of form will result in a significant increase of harvest rate. However,

as this issue affects every strategies, we still obtain accurate comparison of the strategies. For example,

although the mean harvest obtained from the sampling procedure may not be the same as the real mean

harvest across the underlying population, the mean harvests of different strategies still indicate their

performance ranking when compared with each other.

1c. Global study of the Form Finder: We then evaluate the global performance of the Form Finder

with a large scale crawling. We execute the Form Finder in three cases: UsingNavmenu(0), Nav-

menu(3), andNavmenu(10) as the In-Site Form Searcher respectively. We crawl the same set of 50,000

125

p=0

2345678910

2
3

4
5

6
7

8
9

10

0
1
2
3
4
5
6
7

Window Size

IP Threshold

Harvest Rate

p=0.05
p=0.1

p=0

2345678910

2
3

4
5

6
7

8
9

10

0%

50%

100%

Window Size

IP Threshold

Coverage

p=0.05
p=0.1

(a) Harvest. (b) Coverage.
Figure 5.17: Site Finder: Local performance.

sites for all cases and compare their performance. Figure 5.16(a) shows, for each case, the number of

pages crawled and the number of forms found. Figure 5.16(b) shows, for each case, the trend of global

harvest rate. The result shows that, after crawling a few sites, the harvest rate of the Form Finder is

quickly stabilized. The harvest ofNavmenu(0) takes longer to get stable than the other two because it

only crawls one page from every site. This result is consistent with our analysis in Section 5.2.2– That

is, the structure-driven crawler can indeed maintain stable harvest.

2. Performance of the Site Finder:While we have given detailed analyses of the form finder above,

we briefly summarize the results of the site finder, as the main goal of our Web Form Crawler is to

collect query forms.

We first evaluate the performance of the AlgorithmADAPTIVE in the In-Site Site Searcher. As

Section 5.3 discussed, by tuning the three parameters inADAPTIVE, i.e., the IP thresholdT, the window

sizeSand the random probabilityp, we should be able to control the local performance of the In-Site

Site Searcher for finding site entrances. To verify this argument, we evaluate the In-Site Site Searcher

over theRandom100dataset with an extensive range of combination forT ∈ {2,5,10}, S∈ {2,5,10}

and p ∈ {0,0.05,0.1}. For each combination, we evaluate its local harvest and coverage. In all the

executions, we set the maximal crawling depthd (in Algorithm GENERALINSITESEARCHER) as 10,

which is deep enough to cover almost all pages. Figure 5.17 shows the performance.

126

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

U
ni

qu
e

IP
s

F
ou

nd

Pages

100 Seeds
860,000 Seeds

Figure 5.18: Site Finder: Global performance.

From Figure 5.17, we observe interesting trade offs between local harvest and local coverage. In

general, when the parameters allow more pages to be crawled (i.e., T is smaller,S is larger, andp is

higher), the coverage will be higher, while the harvest will be lower. Overall, any of three parameters

can affect the trade off between harvest and coverage. It is thus possible to choose an appropriate

parameter setting according to user’s desired crawling goal. We apply the sampling method to choose

the parameter setting,i.e.the specific in-site search strategy, similar to the procedure in Form Finder. For

example, the medium values for all the three parameters,i.e., T = 5, S= 5 and p = 0.05, can achieve

good harvest as well as reasonable coverage.

With the chosen strategy, we evaluate the performance of the Site Finder by crawling a large set of

sites. We execute the Site Finder over the HAL cluster. We test the Site Finder in two cases: Starting

from the smallRandom100dataset of 100 IPs and from the large DMOZ list of 860,000 IPs. The top

curve in Figure 5.18 shows the global harvest of starting fromRandom100and the bottom one from the

DMOZ list. Comparing the two curves, we can see that the more IPs we have in the Site Database, the

lower global harvest the Site Finder achieves. However, even with the large starting set of 860,000 IPs,

the harvest rate is still reasonably good.

The bottom curve in Figure 5.18 also indicates that the Site Finder can find many new sites that are

not indexed by the DMOZ site list. To measure the percentage of IPs we can find beyond the 860,000

IPs from DMOZ, we execute the Site Finder for a long time and collect 2,067,068 IPs, among which

127

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Web Form CrawlerForm Finder

H
ar

ve
st

 r
at

e

Navmenu(10)
Navmenu(3)
Navmenu(0)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Page-based Crawling

H
ar

ve
st

 r
at

e

Depth First
Breadth First

Random Selection

(a) Harvest of (b) Harvest of
the Web Form Crawler. page-based crawling.

Figure 5.19: Evaluation of the entire system.

703,691 overlap with the DMOZ list. That is, only 34% of IPs are indexed by DMOZ and 66% are

not. Therefore, it is crucial to develop the In-Site Site Searcher for finding sites besides directly using

pre-compiled site lists.

3. Evaluation of the entire system: We next evaluate the overall performance of the Web Form

Crawler, including both Site Finder and Form Finder. In particular, the harvest rate of the Web Form

Crawler becomes #FormsCollected
#PagesCrawledInBothFinders. Recall that, in the Site Finder, we have two ways to collect

site entrances: Importing from site lists and crawling with In-Site Site Searchers. For the first situation,

the Site Finder does not need to crawl pages and thus the harvest rate will be the same as the one in the

global study of the Form Finder. For the second situation, as Site Finder also crawls pages, the harvest

rate will be lower.

First, overall performance:We can use the result in the global study of the Site Finder to measure the

harvest rate in the second situation. Checking our crawling result according to Figure 5.18, we know that

starting with 100 sites as seeds, we crawled 110,814 pages to find 50,000 sites. By counting these pages,

we can compute the harvest of the Web Form Crawler. Figure 5.19(c) compares the harvest of Web Form

Crawler with the corresponding one of Form Finder. In all cases, after counting the pages crawled by the

128

Site Finder, we can still achieve a good harvest rate, although the harvest is more significantly affected

for the In-Site Form Searcher with smaller maximal depth.

Second, comparison to page-based crawling:We compare the harvest of site-based crawling and page-

based crawling. As we argued in Section 1, page-based crawling, without focusing on the structure

locality, may result in low harvest. We run the traditional page-based crawler to find query forms by

simply following links. We test three common link following strategies in page-based crawling: Breadth

first, depth first and random selection. For each strategy, we crawl about 50,000 to 150,000 pages and

evaluate its harvest.

Figure 5.19(d) shows the result, from which we can see that, site-based crawling achieves better

harvest than page-based crawling in finding query forms. For instance, using the depth first strategy,

page-based crawling can only find 1 query form in every 1000 pages. Our highest harvest is about

400 times better than this depth first case. Breadth first strategy can achieve better harvest because by

following external links and only crawling about 50,000 pages, the page-based crawler is very likely to

crawl in the shallow part of many distinct sites and thus behaves similar to a site-based crawler. Even so,

our highest harvest is about 10 times better than this breadth first case. Note that while the breadth first

strategy “accidentally” explores the structure locality when crawling a relatively small portion of pages,

our goal of structure-driven crawling is to formalize and explicitly explore such locality and balance

harvest and coverage.

Since the harvest we list here is the one without manual inspection of query forms. We then wonder

if the comparison is still valid. Our answer is yes. Recall that our manual inspection shows that the

more pages we crawl, the more percent of false positives we have in the collected forms. Compared

to site-based crawling, a page-based crawler will be more likely to touch the large number of pages in

129

deeper depth and thus have more false positives. Therefore, our comparison here in fact disfavors the

site-based crawling, although the result of site-based crawling is still better.

We notice that the initial harvest of page-based crawling in Figure 5.19(d) is higher than our average

estimation of6.6×10−5. There are three reasons: First, since many query forms are duplicated in a

large number of pages in their own sites,e.g., the keyword book search inBN.commay appear in many

pages, the initial chance to see a query form in page-based crawling is thus higher. When we crawl more

and more pages, the harvest of page-based crawling will slow down and become worse and worse, since

many query forms are already seen. Second, the false positive problem in the query form classifier also

makes the harvest significantly higher than it real value. Third, our survey of the scale of query forms

are done in April 2004. With the rapid growth of the deep Web, we believe there are more query forms

available on the Web now.

5.6 Conclusion

This chapter aims at building a crawler for collecting query forms on the Web. Although critical to

information search and integration over the deep Web, such a problem has not been extensively studied.

As a new attempt, we abstract this problem as object-focused, topic-neutral crawling and propose a

structure-driven crawling framework for such a crawling task by observing the existence of structure

locality of query forms. We develop the Web Form Crawler to realize the framework. The experimental

results show that our crawler can maintain stable yields in the entire crawling process and thus we can

pursue a yield-guided crawler design. Such features are not supported by existing focused crawlers.

Compared to page-based crawling, our best harvest rate is about 10 to 400 times difference, depending

on the page traversal schemes used.

130

Next, we will discuss our work on clustering deep Web sources into their domain hierarchy in

Chapter 6, which is the second requisite task to enable automatic large scale matching.

131

Chapter 6

Clustering Query Schemas into a Domain

Hierarchy

Since our holistic matching algorithms require the input schemas from the same domain, given a set

of collected schemas across various domains (from Chapter 5), we need to cluster these schemas into

their domain hierarchy. To distinguish schemas in query interfaces with traditional schemas, we name

the formerquery schemas, which contain a set of attributes in their query interfaces,e.g., {author, . . . ,

publisher} for amazon.com; {city, . . . , rent} for apartments.com. Our observations show that query

schemas are right “representatives” for structured sources: First, they are readilyavailable, on the “sur-

face” of online databases, and thus can be easily “crawled.” Second, they arediscriminative: The query

schema characterizes itsobject domain(e.g., Books, Movies) by itsquery capabilities(e.g., author, di-

rector). Such observations motivate us to propose model-differentiation as a new objective function for

clustering, which allows principled statistical measure for determining cluster homogeneity.

132

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400

N
um

be
r o

f O
bs

er
va

tio
ns

Attribute Index

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

N
um

be
r o

f O
bs

er
va

tio
ns

Attribute Index

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400

N
um

be
r o

f O
bs

er
va

tio
ns

Attribute Index

(a) Airfares. (b) Movies. (c) Hotels.

Figure 6.1: Attribute frequencies of different domains.

6.1 Motivation

Our clustering approach is motivated by our observations on the deep Web. In particular, to better

understand the characteristics of schemas in different domains, we again explore the TEL-8 dataset in

the UIUC Web Integration Repository [17]. We have two observations pertinent to our focus of schema

clustering, which we will report in this section.

First, we observe that query schemas arediscriminativerepresentatives of structured sources. Specif-

ically, we count attribute frequencies for each domain (i.e., the aggregate occurrences of an attribute

across all sources in the same domain). Figure 6.1 lists the attribute frequencies (y-axis) of 3 domains

(Airfares, Hotels and Movies) over all the attributes (x-axis) in the 8 domains. We observe that each

domain contains a dominant range of attributes, distinctive from other domains. For example, Airfares

only covers the first 53 attributes and does not overlap with Movies. Hotels has its dominant range of

attributes from index 200 to 250 (while overlapping with Airfares in some of the first 53 attributes).

Further, some attributes are only observed in one domain– Theseanchor attributesmake their do-

mains more distinguishable. For instance,make andmodel are anchor attributes for Automobiles, and

ISBN for Books. We observed that most schemas indeed contain anchor attributes. In particular, our

dataset indicates that 457 out of the total 494 interfaces, accounting for 92.5%, contain some anchor

attributes. The prevalence of anchor attributes motivates our bootstrapping techniques (Section 6.3.1).

133

We believe that the existence of anchor attributes might not be a unique phenomenon for schema data–

For other types of transactional data, it is likely that a cluster will contain someanchor itemsthat are

characteristics of the cluster.

Second, we observe that the aggregate schema vocabulary of sources in the same domain tends

to converge at a relatively small size with respect to the growth of sources. Figure 6.2 shows, for

each domain, the growth of vocabularies as sources increase in numbers. The curves clearly indicate the

convergence of vocabularies. Since the vocabulary growth rates (i.e., the slopes of these curves) decrease

rapidly, as sources proliferate, their vocabularies will tend to stabilize. This observation indicates that

homogeneous sources (in the same domain) share someconcertedvocabulary of attributes. Note that

we also exploit this observation for the task of schema matching in theMGS framework in Chapter 2.

These two observations together motivate our approach: The first “discriminative” observation sug-

gests using query schemas as “representatives” of sources in the source organization, which is essentially

a clustering problem. Our goal is thus to cluster structured Web source into their domain hierarchy. By

viewing a schema as a transaction and thus a special type of categorical data, we abstract our problem

of source organization as the clustering of categorical data. Further, the second “concerted” observation

leads us to hypothesize the existence of a hidden schema model (for each domain), which generates

the observed query schemas. We thus pursue model-based clustering (Section 6.2). Finally, the “dis-

criminative” observation further hints a novel objective function, model-differentiation, which seeks to

maximize statistical heterogeneity among models in clustering.

6.2 MD-Based Clustering

As just abstracted and motivated, we are pursuing aMD-based approach to cluster query schemas. In

the literature, model-based clustering has been widely discussed. The general idea can be stated as:

134

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

V
oc

ab
ul

ar
y

S
iz

e
Number of Sources

Airfares
Automobiles

Books
Car Rentals

Hotels
Jobs

Movies
Music Records

Figure 6.2: Schema vocabularies.

The population of interest consists ofG clusters, generated byG different models. Given a set of data

points (a set of schemas)X = {x1, ...,xn}, where eachxi is independently generated from one of theG

models,M1,...,MG, the probability of generatingxi in thekth model isPr(xi |Mk). A clustering ofX is

a partition ofX into G groups: denoted by(X;P) = (C1, ...,CG), whereP partitionsX. The objective of

model-based clustering is to identify the partitionP that allxi generated from the same modelPr(•|Mk)

are partitioned into a single group.

To realize this general model-based clustering of query schemas, we design a model as a multinomial

distribution (Section 6.2.1) and develop model-differentiation as the newobjective functionof clustering

based on statistical hypothesis testing. Specifically, guided by this objective function, we adopt the

commonly usedχ2 testing. (Section 6.2.2). Unlike the clustering work in statistic software, which also

useχ2 testing, we apply it for categorical data based on the generative model. Since we are pursuing a

hierarchical clustering approach, we apply the widely used HAC (hierarchial agglomerative clustering)

algorithm, which needs a measure to quantify the “similarity” between two clusters. In particular, we

derive a new similarity measure from theMD objective function (Section 6.2.3).

135

0

2

4

6

8

10

12

A B C D E F G H I J K L M N

N
um

be
r

of
 O

bs
er

va
tio

ns

Attribute

0

2

4

6

8

10

12

A B C D E F G H I J K L M N

N
um

be
r

of
 O

bs
er

va
tio

ns

Attribute

0

2

4

6

8

10

12

A B C D E F G H I J K L M N

N
um

be
r

of
 O

bs
er

va
tio

ns

Attribute

(a1)C<1,2>. (a2)C3. (a3)C4.

(a) Multinomial distributions of the clustering result by combiningC1 andC2.

0

2

4

6

8

10

12

A B C D E F G H I J K L M N

N
um

be
r

of
 O

bs
er

va
tio

ns

Attribute

0

2

4

6

8

10

12

A B C D E F G H I J K L M N

N
um

be
r

of
 O

bs
er

va
tio

ns

Attribute

0

2

4

6

8

10

12

A B C D E F G H I J K L M N

N
um

be
r

of
 O

bs
er

va
tio

ns

Attribute

(b1) C1. (b2) C2. (b3) C<3,4>.

(b) Multinomial distributions of the clustering result by combiningC3 andC4.

Figure 6.3: Comparison of two possible clustering results.

6.2.1 Hypothesis Modeling

To develop theMD-based clustering, we need to define the generative model. To begin with, we first

introduce our model definition as multinomial distribution. Specifically, we assume attributes are inde-

pendent each other, which is a commonly used assumption for text data [58]. Then we describe how a

model generates a schema in a statistical way and further how to generate a cluster of schemas.

First, to define the model for the task of schema clustering, we need to describe what is a schema.

We view a query schema as a set of attributes for a query interface, as we abstracted in theMGS and

DCM frameworks. For instance, foramazon.com, the query schemaQaz is {author, . . . ,publisher}. For

simplicity, in later examples, we denote attributes in lettersA, B,....

Our first attempt is to consider a schema as a set ofdistinct attributes. Therefore, we view the

generation of a schema assampling without replacement[14] from a set of attributes, which means the

result of a trial (to select an attribute) is not the same as any previous trials. (The trials are therefore

136

“stateful”.) That is, we can consider a schema withn attributes as an experiment withn trials; once one

attribute is selected, it will not be selected again in the subsequent trials. However, while this model is

accurate, its “stateful” trials result in complicated homogeneity testing.

Our second attempt is to approximate the generation process bysampling with replacement[14],

where the attributes can be repeatedly selected in a schema. With this alternative strategy, to gener-

ate a schemaQ in some clusterC, the modelM behindC is a multinomial modelwith parameters

p1,...,pN. More specifically, a multinomial modelM for C consists of an exhaustive set ofN mutually

exclusive events (In our problem, the events are in fact the attributes.)A1,...,AN (which covers all the

attributes observed inC) with associated probabilitiesp1,...,pN, ∑N
j=1 p j = 1. We denoteM asM =

{A1:p1,...,AN:pN}. Each trial ofM generates one of theN events. The probability of generating an

attributeA from M in a single trial is

Pr(A|M) =





pi , ∃i : A = Ai

0, otherwise

(6.1)

Next, we discuss the generation of a schema in clusterC from M . Under this multinomial model, a

schemaQ is characterized by its observed attributes (and their frequencies). We thus viewQ (of length

n) asQ = {A1:y1,...,AN:yk}, ∑N
i=1yi = n, whereyi is the frequency (number of occurrences) of attribute

Ai in Q. For a schema with distinct attributes,yi is either 0 or 1. For instance, for the query schema

Qaz of amazon.com, the frequency ofauthor, yauthor, is 1. (We discuss later that this model can generate

schemas with duplicate attributes.) That is, by definition of standard multinoimal distribution [14],Q

(of lengthn) is generated fromM as the result ofn independent (therefore “stateless”) trials with the

following probability:

137

Pr(Q|M ,n) = n!
N

∏
i=1

Pr(Ai |M)yi

yi !
. (6.2)

Example 26: Consider a clusterC with 4 schemas:Q1:{A,B,C}, Q2:{A,B}, Q3:{C,D}, andQ4:{C,D,E}.

The modelM contains 5 attributes (events):A, B, C, D andE, with probabilitiesp1, p2, p3, p4 andp5

respectively. Under our multinomial modeling, we view a schema as a set of attribute frequencies (i.e.,

y ji). For example,Q1 = {A:1, B:1, C:1, D:0, E:0}. In particular,y11 = 1 sinceA occurs once inQ1. The

probability of generatingQ1 is Pr(Q1|M ,3) = 6p1p2p3.

Then, we discuss how we statistically view a cluster of schemas. Consider a cluster of schemas

C = {Q1,Q2, ...,Qm}, where each schemaQ j (with lengthn j) is generated by the same modelM =

{A1:p1,...,AN:pN}. Since eachQ j is a multinomial experiment ofn j trials, we can viewC as an ex-

periment with∑m
j=1n j trials by concatenating the trials in all schemas. That is, we consider thatC is a

series of sampling from the same multinomial distributionM (i.e., the samep1,...,pN), with all these

independent trials. The theoretical explanation is as follows: Let allQ j = {A1:yj1 ,...,AN:yjN}, where

yji ’s are random variables denoting the frequencies ofAi , share the same multinomial distributionM

= {A1:p1,...,AN:pN}. For the entireC, we define new random variablesz1,...,zN as aggregate attribute

frequencies. That is,zi = ∑m
j=1yji . In our extended report [40], we show thatz1, ...,zN are also sampled

from the same multinomial distributionM with ∑m
j=1n j trials. Therefore, under this multinomial view,

we can expressC as aggregate attribute frequencies,i.e., C = {A1:z1,...,AN:zN}.

Example 27: Continue on the clusterC in Example 26, by consideringC is generated by a multinomial

distribution and computingzi as∑m
j=1y ji , we can express clusterC as{A:2, B:2, C:3, D:2, E:1}. For

example,A has frequencies 2 because it occurs once in bothQ1 andQ2.

138

A1 A2 A3 ... An sum
C1 O11 O12 O13 ... O1n X1

C2 O21 O22 O23 ... O2n X2

...
Cm Om1 Om2 Om3 ... Omn Xm

sum Y1 Y2 Y3 ... Yn S

Figure 6.4: Contingency table for testing.

A B C D E F G H I J K L M N sum
C<1,2> 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4

C3 0 0 0 0 6 6 1 1 1 1 0 0 0 0 16
C4 0 0 0 0 6 6 0 0 0 0 1 1 1 1 16
sum 1 1 1 1 12 12 1 1 1 1 1 1 1 1 36

Figure 6.5: Example of model-differentiation testing.

The simple multinomial modeling simplifies hypothesis homogeneity testing (by directly fitting the

contingency table as shown in Section 6.2.2). However, the modeling is inaccurate: It may generate

some schemas that are not observable in the real world. For instance, it may generate a schema{author,

author, title}, whereauthor is repeated twice. While the modeling seems crude (like other typical “inde-

pendent” assumptions in, say, Naive Bayes Classifier for text), our empirical study shows that the simple

model performs well.

As a remark, this modeling is much simpler than what we define in our previous work MGS [37].

The MGS work addresses matching schemas across sources in the same domain. (Therefore, the work

of this chapter is a preliminary step to provide input for MGS.) The MGS modeling assumes a two-

level model structure to capture concepts and synonyms for the goal of synonym discovery. This work

assumes a much simpler model because it is sufficient to capture the attribute frequencies across different

domains for the purpose of clustering.

In this section, we develop the generative model. Next, we introduce the new objective function,

model-differentiation, for clustering schema data and present theχ2 testing to realize theMD function.

139

6.2.2 Model-Differentiation: A New Objective Function

Clustering must be guided by someobjective functionthat specifies the property of the ideal clusters.

Regardless of the objective function, the basic idea of clustering is to put similar data together and

dissimilar data apart. For model-based clustering, similar data might be generated from the same un-

derlying model, while dissimilar data from different models. Thus, we achieve better clustering result

when the underlying models are more distinguishable.

Example 28: As a running example, assume we are given four clusters of schemas, referred to as

datasetI : C1:{A:1, B:1}, C2:{C:1, D:1}, C3:{E:6, F:6, G:1, H:1, I:1, J:1} andC4:{E:6, F:6, K:1, L:1,

M:1, N:1}. Now assume we want to generate 3 clusters (G = 3). To reduce the number of clusters to

three, we need to combine two clusters into one. We denote the combination of clustersCk andCl as

C<k,l>.

We compare two possible clustering results, as illustrated in Figure 6.3. The first result (Fig-

ure 6.3(a)) combinesC1 andC2, while the second result (Figure 6.3(b)) combinesC3 andC4. Fig-

ure 6.3(a) is not as good as Figure 6.3(b) because the distributions ofC3 (Figure 6.3(a2)) andC4 (Fig-

ure 6.3(a3)) are similar (and hence the schemas generated from these two models will also be similar).

Figure 6.3(b) is better because the attributes with non-zero frequencies in the three clusters do not over-

lap.

Therefore, we define the objective function of clustering as some functionH that characterizes the

heterogeneity of models under a partitionP, denoted byH (X;P). The goal of clustering is to find the

partitionP that maximizes functionH , i.e., argmaxP H (X;P). In statistics, the homogeneity of distri-

butions can be measured bytest of homogeneityusing statistical hypothesis testing. More specifically,

if we have a partition functionP partitioningX into clustersCk(1≤ k≤ G), we can test the hypoth-

esis “Ck(1≤ k≤ G) are sampled from the same distribution” with standard testing approaches. The

140

result of testing is a probabilistic variableλ to indicate the confidence that we accept the hypothesis that

those distributions are the same. Thus the heterogeneity of models is1−λ. Formally, theMD-based

clustering is to find

argmax
P

H (X;P) = argmax
P

H (C1, ...,CG)

= argmax
P

{1−λ(C1, ...,CG)}

= argmin
P

λ(C1, ...,CG), (6.3)

whereλ(C1, ...,CG) is the result of hypothesis testing on a partitionP with G clusters.

More specifically, given a partitionP on the observed dataX, we applyχ2 hypothesis testing to

computeλ(C1, ...,CG). In statistics,χ2 testing can be used to test the homogeneity among multiple

clusters with multinomial distributions by constructing acontingency table. Since we show that a cluster

of schemas is also generated by a multinomial distribution, we can directly apply the test of homogeneity

by fitting the attribute frequencies in the cluster into the contingency table, which reflects the fact that

our modeling simplifies the testing. For arbitrary models, it deserves further research efforts to figure

out how to fit them into the contingency table.

Formally, assume there aremclustersC1, ...,Cm, and each of them is generated from its own multino-

mial distribution (as defined in Section 6.2.1). There aren different events (attributes) altogether, de-

noted byA1, ...,An. Figure 6.4 is the contingency table to show this set of data. In particular,Oi j stands

for the attribute frequency ofA j in clusterCi . Xi is the sum of all theOi j in ith row andYj is the sum of

all theOi j in jth column. That is,Xi = ∑n
j=1Oi j andYj = ∑m

i=1Oi j . S is the sum of allOi j in the table.

ThusS= ∑m
i=1Xi = ∑n

j=1Yj .

141

We want to test the hypothesis:∀ j,1≤ j ≤ n, p j1 = p j2 = ... = p jm = Yj

S , wherep ji is the probability

of observing attributeA j in clusterCi . This hypothesis is tested by considering the random variable

D2(C1, ...,Cm) =
m

∑
i=1

n

∑
j=1

[
(Oi j −Xi× Yj

S)2

Xi× Yj

S

]. (6.4)

It can be shown thatD2 has asymptotically aχ2 distribution with(n−1)(m−1) degree of freedom,

denoted byd f [2].

We have to use bothD2 andd f to decide how similar them clusters are.D2 value itself is not a

valid indicator for the similarity of clusters without being qualified the degree of freedom. Therefore we

need to translate these two values into a single similarity measure. In statistics, we can compute theP-

value givenD2 andd f , denoted byPV(D2,d f). TheP-value is the probability valueλ in Equation 6.3,

indicating the confidence that we accept the hypothesis that them clusters are generated from the same

distribution. The objective functionH is then

H (C1, ...,CG) = 1−PV(D2,d f). (6.5)

The computation ofP-value is expensive and requires numerical integration. Therefore, in practice,

we develop an alternative measure,H̃ , by applying a normalizedD2 value. In particular, to make the

D2 values of different degrees of freedom (resulted from different clusters) comparable, we use the

D2 values with a commonly adopted significance level0.5% as the normalization factors, denoted by

D2
s(d f), with different degrees of freedom. We considerH̃ the ratio between the computedD2 value

and theD2
s with the samed f :

H̃ (C1, ...,CG) =
D2

D2
s(d f)

. (6.6)

142

Algorithm: GEhac:
Input: SchemaSetX, ObjectiveFunctionF , NumberOfClustersG
Output: G clusters
begin:
1 /* Form a list of initial V clusters */
2 Ck = Xk, (1≤ k≤V)
3 /* Derive similarity measure */
4 s= a similarity measure derived fromF
5 /* HAC main framework */
6 for K = V,V−1,...,G
7 /* Compute pairwise similarities */
8 k∗, l∗ = argmink,l s(Ck,Cl), (1≤ k < l ≤ K)
9 /* Merge the most similar two clusters*/
10 C<k∗,l∗> = MERGE(Ck∗ , Cl∗)
end

Figure 6.6: General HAC algorithmGEhac.

Example 29: Consider the first clustering result in Example 28, we want to test the hypothesis that

these three clusters are generated from the same distribution. The corresponding contingency table of

this scenario is listed in Figure 6.5. Applying Equation 6.4, we getD2(C<1,2>,C3,C4) = 34.33 and

d f(C<1,2>,C3,C4) = (14−1)×(2−1) = 13. theD2
s value for 0.5% withd f = 13is 29.82. By applying

Equation 6.6,H (C<1,2>,C3,C4) = 34.33
29.82 = 1.15.

Consider the second clustering result in Example 28 similarly, we getD2(C1,C2,C<3,4>) = 65.67

andd f(C1,C2,C<3,4>) = (14− 1)× (2− 1) = 13. We then haveH (C1,C2,C<3,4>) = 65.67
29.82 = 2.2 >

H (C<1,2>,C3,C4), which means the second clustering result is better than the first one.

6.2.3 General HAC Algorithm and MD-Based Similarity Measure

For constructing the domain hierarchy as motivated in Section 6.1, we adopt the general HAC clus-

tering approach, which is widely used for data clustering [43]. Figure 6.6 illustrates the general HAC

framework [51]. In HAC, we need to measure the similarity of clusters. That is, given a set of clusters,

C1,...,CV , we compute all the pairwise valuess(k, l), wheres is a similarity function from the objective

143

function of clustering. The criterion of defining similarity functions(k, l) is to maximize the objec-

tive function in each step. The two clusters with the smallests(k, l) are merged in each iteration. The

algorithm stops when there areG clusters left.

Specifically, for ourMD-based clustering, we derives(k, l) from H (X;P) (defined in Section 6.2.2)

as follows: In each iteration of HAC, we merge the clusters with the smallestH value (i.e., the most

similar two models) and therefore we defines(k, l) to be

s(k, l) = H (Ck,Cl). (6.7)

Example 30: Consider the datasetI in Example 28 as the input ofGEhac. Assume we want to generate

3 clusters. We compute all the pairwise similarities with Equation 6.7 and gets(1,2) = 0.43, s(1,3) =

0.96, s(1,4) = 0.96, s(2,3) = 0.96, s(2,3) = 0.96, ands(3,4) = 0.04. It is clearly to see thatC3 andC4

are most similar. Thus the clustering result isC1, C2 andC<3,4>.

6.3 Clustering Query Schemas: AlgorithmMDhac

In this section, we present the concrete algorithmMDhac (denotingMD-based HAC algorithm) by solv-

ing the difficulty of applying theMD-based clustering. To test the heterogeneity of models with hy-

pothesis testing (Section 6.2.2), we have to face one challenge: When the observations of events are not

sufficiently large, the value ofD2 may not be closely converged toχ2 distribution and thus affects the

value ofH . In particular, theχ2 test requires each event (attribute in our case) has at least 5 observations

to ensure the approximation ofχ2 distribution [2]. However, the input data are initially collected without

being grouped and thus cannot satisfy this requirement.

144

Algorithm: MDhac:
Input: SchemaSetX, NumberOfClustersG
Output: G clusters
begin:
1 /* Form the initial clusters */
2 C = DATAGROUPING(X)
3 /* Move loner interfaces into N */
4 C , N = GROUPSELECTION(C)
5 /* Standard HAC clustering with new measure */
6 C = CLUSTERINGHAC(G, C)
7 /* Classify loners into accomplished clusters */
8 C = LONERHANDLING (N , C)
9 /* Build the domain hierarchy with HAC approach */
10 BUILD HIERARCHY(C)
end

Figure 6.7: Algorithm MDhac.

To address this problem of insufficient observations, we design pre-clustering and post-classification

techniques. Pre-clustering is to pre-cluster the data into groups with sufficient observations to satisfy

the requirement of hypothesis testing. Post-classification is to classify the insufficientloner schemas

excluded by bootstrapping into the accomplished clusters.

In our development, pre-clustering consists of two steps: data grouping and group selection. Data

grouping is to merge the data into groups by using deterministic rules. After grouping, some groups con-

tain sufficient observations, while others not. Group selection only selects those groups with sufficient

observations to participate in the HAC clustering. We consider the insufficiently observed schemas as

loner schemas. Post-classification is essentially the classification of loners into the completed clusters,

which we call loner handling in our implementation.

Figure 6.7 shows AlgorithmMDhac: First, DATAGROUPING pre-clusters data into groups based on

the corollaries developed from the existence of anchor attributes (Section 6.3.1). Second,GROUPSE-

LECTION excludes the loner schemas with loner thresholdN (Section 6.3.2). Third,CLUSTERINGHAC

clusters the remaining groups with the standard HAC algorithm and Equation 6.7 as the similarity mea-

145

sure. Fourth,LONERHANDLING classifies the loner schemas into the accomplishedG clusters (Sec-

tion 6.3.3). Finally,BUILD HIERARCHY again applies the HAC algorithm to build the hierarchical tree

of domains (by considering each cluster as one domain).

6.3.1 Data Grouping

Our pre-clustering technique leverages the existence ofanchor attributesto group schemas determinis-

tically. Our exploration for the schemas of the 8 domains indicates that most schemas contain anchor

attributes (Section 3.1). Specifically, an anchor attribute is essentially an attribute with non-zero proba-

bility only for one cluster. More formally,

Definition 3: Given a clustering partitionC1, ...,CG and assume the model underCk is Mk, an attribute

A is ananchor attributeif there is only oneCk that containsA, i.e., Pr(A|Mk) > 0 andPr(A|Ml) = 0 for

l 6= k. A schema is adistinguishable schemaif it contains at least one anchor attribute.

Definition 3 implies the following corollaries:

Corollary 1: If A is an anchor attribute withPr(A|Mk) > 0 andA is observed in a schemaQ with length

n, thenQ∈Ck, Pr(Q|Mk,n) > 0 andPr(Q|Ml ,n) = 0 for any l 6= k.

Proof AssumeQ = {A1:y1,...,As:ys} of lengthn andA = At , yt > 0 sinceA is observed inQ. By

applying Equation 6.2, we havePr(Q|Ml ,n) = n! ∏s
i=1

Pr(Ai |Ml)yi

yi !
. For l 6= k, Pr(A|Ml) = 0 according to

definition of anchor attribute, thus we havePr(Q|Ml ,n) = 0. SinceQ must belong to some cluster,Q

has to be clustered intoCk, thusQ∈Ck andPr(Q|Mk,n) > 0.

Corollary 2: If Q1 is a distinguishable schema andQ1 ⊆ Q2, Q2 is also a distinguishable schema and

belongs to the same cluster asQ1.

146

Proof AssumeQ1∈Ck. Q2 must belong to some clusterCl . If l 6= k, Q1 becomes a schema containing

overlapping attributes ofCk andCl . ThusPr(Q1|Ml ,n) > 0, which contradicts the assumption thatQ1

is a distinguishable schema. Therefore we havel = k, which meansQ2 is in the same cluster asQ1.

Corollary 2 indicates that if all the schemas are distinguishable schemas, the containment relation is

correct in grouping data. Guided by Corollary 2, we group the query schemas by putting all the schemas

satisfying Corollary 2 into one cluster. More specifically, we first randomly select a schemaQ, and put

all the query schemasQi satisfyingQ⊆ Qi or Qi ⊆ Q into the same bucket ofQ. We then evaluate all

theQi just added recursively until no satisfied schema can be found. It can be shown that the output of

data grouping is not affected by the random selection of schemas.

However, Corollary 2 requires that the schemas are distinguishable schemas. Since it is difficult

to affirm whether a schema is distinguishable before clustering, we design a heuristic by observing

the difference of thecontaining setof distinguishable and indistinguishable schemas. We define the

containing set of a schemaQ, denoted byS(Q), as all theQis satisfyingQ⊆Qi in the dataset. Intuitively,

for a distinguishable schemaQ, the schemas inS(Q) are in one domain (based on Corollay 2) and hence

they should be more overlapping in attributes; While for an indistinguishable schemaQ, the schemas in

S(Q) come from multiple domains and they should be more different in attributes. Hence, we design a

step ofschema type checkingbefore grouping: For each schemaQ, we compute its containing setS(Q).

Then for anyQi andQ j in S(Q), we compute their distanced(i, j) as |Qi∩Q j |
|Qi∪Q j | . If there existsd(i, j) < θ,

whereθ is a threshold value, we considerQ an indistinguishable schema and exclude it to participate in

data grouping. (In fact, the excluded schemas effectively become loner schemas in group selection). In

our experiment, we setθ = 0.2. We assume the remaining schemas are all distinguishable schemas and

apply Corollary 2 to group them.

147

Example 31: Consider a set of 8 schemas:Q1:{C}, Q2:{A,B}, Q3:{A,B,C,E}, Q4:{A,D}, Q5:{A,B,D,E},

Q6:{C,F}, Q7:{C,F,G}, andQ8:{C,H}. First, we do the schema type checking on every schema. In par-

ticular, Q1’s containing setS(Q1)={Q3,Q6,Q7,Q8}. Computing the pairwise distance of schemas in

S(Q1), we know the minimal distance isd(3,7) = 1/6< 0.2. Therefore,Q1 is indistinguishable schema

and excluded for grouping. Similarly, we check other schemas and they all pass this checking.

Next, we start to group the remaining schemas by randomly choosing a schema, sayQ2. Then

we find Q2 ⊆ Q3 andQ2 ⊆ Q5. By recursively evaluatingQ3 andQ5, we findQ4 ⊆ Q5 and no more

schemas can be incorporated. ThereforeQ2,Q3,Q4 andQ5 are in one group. We repeat this process on

the remaining schemas and findQ6 andQ7 are in another group andQ8 itself is in the third group. The

excludedQ1 is considered as an individual group. Hence, data grouping outputs four groups.

Without schema type checking, the data grouping will output only one group with all schemas

together sinceQ1 only contains an overlapping attributeC, which is observed in all the groups.

6.3.2 Group Selection

While data grouping merge the data into groups, some groups may still have insufficient observations,

which may affect the result of hypothesis testing. Therefore, we consider those groups as loner groups,

not participating in theCLUSTERINGHAC step in AlgorithmMDhac. The criterion to judge loner groups

is to set aloner thresholdN: If the frequencies of all attributes in a group are lower thanN, we consider

it as a loner group and all the schemas in this group as loners. In statistics,N is conventionally set to 5,

which is the recommended value forχ2 hypothesis testing [2]. In our experiment, we find settingN to 3

is enough to contain sufficient observations.

Example 32: Consider the four groups in Example 31, the multinoimal expressions of these four groups

(Q2,Q3,Q4,Q5), (Q6,Q7), (Q1) and (Q8) are: (A:4, B:4, C:1, D:2, E:1), (C:2, F:2, G:1), (C:1) and (C:1,

148

H:1) respectively. If we set the thresholdN to 2, then groups (Q1) and (Q8) are considered as loner

groups.

6.3.3 Loner Handling

After the step ofCLUSTERINGHAC, we classify the loners into the accomplished clusters. As a clas-

sification problem, we classify a loner schemaQ into the cluster with the largest probability to observe

it. Formally, given a schemaQ of length n, we will classify Q into the clusterCi with the highest

Pr(Q|Mi ,n).

Some loners may have zero probabilities for all clusters. Equation 6.1 shows that when an attribute

A j does not exist in a clusterCi , Pr(A j |Mi) = 0. For a schemaQ with attributes not in any cluster, all the

probabilitiesPr(Q|Mi ,n) will be 0 and thus we cannot decide which cluster to classify it into. To avoid

this problem, in this step, we setPr(A j |Mi) to a very small valueε instead of0 if A j is not observed in

Ci . In our implementation, we setε = 10−3.

Example 33: Continue with Example 32, assume after HAC clustering, the two clusters cannot be

merged. We name group (Q2, Q3, Q4, Q5) asC1 and (Q6, Q7) asC2. From Section 6.2.1, we know

multinomial distribution ofC1 is (A:0.33, B:0.33, C:0.08, D:0.17, E:0.08) and ofC2 is (C:0.4, F:0.4,

G:0.2).

Now we need to classify lonersQ1 andQ8 into these two clusters. ForQ1, by applying Equation 6.2,

we havePr(Q1|M1,1) = 0.08 andPr(Q1|M2,1) = 0.4. Therefore,Q1 is put into clusterC2. Similarly,

Q8 is also put into clusterC2. The final result of this clustering is (Q2,Q3,Q4,Q5) and (Q1,Q6,Q7,Q8).

149

6.3.4 Time Complexity

We evaluate the time complexity ofMDhac, for each individual step. Assume we haven schemas inG

clusters with totallym attributes. Also, we assume the longest length of one schema is a constantC.

DATAGROUPINGcan be executed inO(C2n2) = O(n2) time since we need to compare one schema with

all the remaining schemas to check the containment relationship in Corollary 2.GROUPSELECTION

can be executed inO(mn) time in that for each group, we need to check the attribute frequencies.

CLUSTERINGHAC takesO(n2m) time because every time we combine two clustersCk andCl , we only

need to recompute the similarities between the remaining clusters and the new clusterC<k,l>. The

similarities between other clusters are not changed. So each iteration takesO(nm) time and there are

at mostn iterations. Hence, we have theO(n2m) upper bound for this step.LONERHANDLING takes

O(nmG) time because for each loner schema, we need to checkG clusters with the computation of

probability over at mostmattributes. The final stepBUILD HIERARCHY is similar toCLUSTERINGHAC

and takesO(G2m) time. Therefore, the time complexity altogether is bounded byO(n2m).

6.4 Experiments

To evaluate theMDhac algorithm, we test it with 8 domains of structured sources on the deep Web. We

compare our model-differentiation based approach with likelihood [51], entropy (COOLCAT) [24] and

context linkage (ROCK) [35] based approaches using HAC algorithm and analyze the results. Also, we

show the domain hierarchy built byMDhac and evaluate the influence of the loner thresholdN on the

clustering performance.

150

MDhac
Af Am Bk Cr Ht Jb Mv Mr

C1 0 101 0 0 2 4 0 0
C2 0 0 62 0 0 1 9 2
C3 0 0 0 24 0 0 0 0
C4 0 0 0 0 35 0 0 1
C5 0 0 0 0 0 50 1 0
C6 53 0 0 0 1 0 0 0
C7 0 0 0 0 0 0 8 67
C8 0 1 7 0 0 0 62 7

LKhac
Af Am Bk Cr Ht Jb Mv Mr

C1 0 100 0 0 2 8 0 0
C2 0 0 62 0 0 1 7 2
C3 0 0 0 0 35 6 0 1
C4 0 0 0 0 0 0 56 5
C5 0 2 7 0 0 0 10 2
C6 0 0 0 0 0 0 7 67
C7 53 0 0 0 1 0 0 0
C8 0 0 0 24 0 40 0 0

(a) Conditional entropy ofMDhac: 0.32. (b) Conditional entropy ofLKhac: 0.42.

EPhac
Af Am Bk Cr Ht Jb Mv Mr

C1 0 100 0 0 2 4 0 0
C2 0 0 62 0 0 0 5 2
C3 0 0 0 24 0 0 0 0
C4 0 0 0 0 35 6 0 1
C5 0 0 0 0 0 0 57 5
C6 0 0 0 0 0 0 8 67
C7 53 0 0 0 1 0 0 0
C8 0 2 7 0 0 45 10 2

CLhac
Af Am Bk Cr Ht Jb Mv Mr

C1 34 0 0 0 1 0 0 0
C2 19 0 0 0 0 0 0 0
C3 0 99 7 0 2 7 1 1
C4 0 1 62 24 0 1 4 1
C5 0 0 0 0 35 21 0 1
C6 0 0 0 0 0 26 1 0
C7 0 0 0 0 0 0 70 42
C8 0 2 0 0 0 0 4 32

(c) Conditional entropy ofEPhac: 0.38. (d) Conditional entropy ofCLhac: 0.61.

Figure 6.8: Comparison of four similarity measures in HAC.

6.4.1 Experiment Setup

We use the TEL-8 dataset in the UIUC Web Integration Repository [17] to test our clustering algorithm.

For each source, we manually extract attributes from its query interface by extracting noun phrases, and

then judge its corresponding domain. This is our ground truth of “correct” clustering. The reason we

do not apply our work in [72] for interface extraction is that we want to isolate the clustering process to

study and thus fairly evaluate the performance.

To measure the result of clustering, we adopt theconditional entropyintroduced in [8]. For a given

number of clustersG, the value of the conditional entropy is within the range from 0 tologG, where

0 denotes the 100% correct clustering,logG denotes purely random clustering result,i.e., the sources

from every single domain are evenly distributed into all clusters. Thus, the closer the conditional entropy

value is to 0, the better the result is.

151

6.4.2 Experimental Results

We design three suites of experiments.First, we compare our approachMDhac with the three existing

approaches: likelihood based approach (LKhac), entropy based approach (EPhac) and context linkage

based approach (CLhac) for clustering the sources of 8 domains. For fair comparison, we only replace

the similarity measure of test of model difference (Equation 6.6) in theCLUSTERINGHAC step with

the likelihood based measure, entropy based measure and context linkage based measure. All the rest

settings (pre-clustering and post-classification etc.) stay the same and the loner thresholdN is set to 3.

To make the other measures clear, we briefly list each of them below. Reference [51] introduces the

likelihood based similarity measure for HAC algorithm as Equation 6.8. The basic idea is that in each

merging step in HAC, the two clusters generating the maximal likelihood after merging will be merged.

s(k, l) = L(Ck)+L(Cl)−L(C<k,l>). (6.8)

COOLCAT [24] introduces entropy as the objective function, from where we derive the following

similarity measure for HAC algorithm, with the same idea as the derivation of Equation 6.8 in [51].

s(k, l) = |Ck|E(Ck)+ |Cl |E(Cl)−|C<k,l>|E(C<k,l>). (6.9)

ROCK [35] introduces context linkage as the similarity measure:

s(k, l) =
link[Ck,Cl]

(nk +nl)(1+2 f (θ))−n(1+2 f (θ))
k −n(1+2 f (θ))

j

. (6.10)

152

The result in Figure 6.8 shows the comparison of the four measures in HAC algorithm. In particular,

we present the results as the numbers of Web sources in each cluster from each domain. For example, in

Figure 6.8 (a),101stands for that there are, in clusterC1, 101Web sources from automobile domain. We

use the abbreviations Af, Am, Bk, Cr, Ht, Jb, Mv and Mr to denote the 8 domains Airfares, Automobiles,

CarRentals, Hotels, Jobs, Movies and MusicRecords respectively. Figure 6.8 illustrates two results: 1)

It is feasible to address the clustering of structured sources as the clustering of query schemas. The

matrix ofMDhac, LKhac andEPhac do show correct clustering for most data. The result of (CLhac) is not

good perhaps because its similarity measure may not fit the schema data well; 2)MDhac achieves, on

clustering Web schemas, the best performance (smallest conditional entropy) among all the measures.

In particular, compared with the second best measure,EPhac, MDhac has better clustering results for

Jobs and Movies.

Second, we show the effectiveness ofMDhac to build the domain hierarchy. After clustering 8

domains, we continue with theBUILD HIERARCHY step to build the domain hierarchy in the same way

as the HAC clustering. The result in Figure 6.9 illustrates that Automobiles and Jobs are merged in

the same subtree, MusicRecords, Books and Movies in another subtree, and Airfares, CarRentals and

Hotels in a third subtree. This hierarchy is consistent with our observation in the real world (i.e., object

domains are characterized by their query schemas): Books, MusicRecords and Movies are all media

and often sold together online, and so are Airfares, CarRentals and Hotel reservations. Automobiles and

Jobs are together because they share many location information, such ascity, state andzip code.

Finally, we design experiments to evaluate the influence of the loner thresholdN. In statistics, 5 is

the recommended for the accuracy ofχ2 hypothesis testing and thereforeN does not need to be larger

than 5. We letN range from 2 to 5 and test all the four measures (We excludeN = 1 becauseN = 1

means no group selection). The result in Figure 6.10 shows that the clustering result is not affected too

153

HotelsCarRentals

Airfares

MoviesBooks

MusicRecords

Automobiles Jobs

Figure 6.9: The domain hierarchy built byMDhac.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5

C
on

di
tio

na
l E

nt
ro

py

Loner Threshold N

Model-Differentiation
Likelihood

Entropy
Context Linkage

Figure 6.10: The influence of loner thresholdN.

much byN, whenN is ranged from 2 to 4. WhenN = 5, the result is worse because of the limited

sampling size of our dataset. SettingN to 5 will trim most groups in group selection, where some

insufficiently observed domains (e.g., CarRental) are entirely trimmed out. Hence, we expect the result

of N = 5 will be good when we have more observations. Putting in other words, when we have sufficient

observations, the setting ofN will not affect the result significantly.

6.5 Conclusion

This chapter studies the problem of organizing structured sources on the Web. Motivated by our obser-

vations of the deep Web, we propose to organize sources by their query schemas, and further abstract

the problem as the clustering of categorical data. We develop a new model-differentiation objective

function for clustering. Guided by theMD objective, we derive a new similarity measure for the gen-

eral HAC algorithm. To apply statistical hypothesis testing for clustering, we design pre-clustering and

154

post-classification techniques. Our experiments show the effectiveness of our abstraction– By cluster-

ing the query schemas, we can accurately organize sources into object domains. Also, we show that the

model-differentiation function outperforms existing ones with the hierarchical agglomerative clustering

algorithm.

155

Chapter 7

Related Work

Schema matching (which this thesis mainly focuses on) is one critical step for schema integration [6, 61].

As a complete solution to automate the processing of matching Web forms, this thesis presents both the

new idea of holistic schema matching (i.e., theMGS andDCM frameworks and the ensemble scheme to

maintain the matching quality with noisy input) and two steps to fully automate the matching process

(i.e., Web form crawling and clustering approaches). In this chapter, we thus accordingly organize

related work with respect to each individual subproblem: schema matching, Web crawling and source

clustering.

7.1 Schema Matching

We relate our holistic schema matching idea (from Chapter 2 to Chapter 4) to existing work in three

aspects: the paradigms, the techniques and the input data.

Paradigms: Traditionally, schema matching relies on matchings between pairwise attributes before

integrating multiple schemas. For instance, traditional binary orn-ary [55] schema integration method-

ologies (as [6] surveys) exploit pairwise-attribute correspondence assertions (mostly manually given)

156

for merging two or somen sources. Recent work on automatic schema matching mostly focuses on

matchings between two schemas (e.g., [28, 50, 52, 47]). Therefore, the latest survey [60] abstracts

schema matching as pairwise similarity mappings between two input sources. In contrast, we propose a

new paradigm, holistic schema matching, to match many sources at the same time and discover all the

matchings at once. Our work was motivated by integrating the deep Web, where the challenge of large

scale matching is pressing. Our framework leverages such scale to enable statistical analysis.

Further, existing schema matching work mostly focuses on simple 1:1 matchings [28, 50, 52]. Com-

plex matching has not been extensively studied, mainly due to the much more complex search space of

exploring all possible combinations of attributes. Consider two schemas withu and v attributes re-

spectively, while there are onlyu× v potential 1:1 matchings, the number of possiblem:n matchings

is exponential. The recent work iMAP [47] proposes to construct 1:n matchings between two schemas

by combining their simple 1:1 matchings. OurDCM framework (Chapter 3) also aims at finding com-

plex matchings. Although both aiming at complex matchings, our work is different from iMAP in: 1)

scenario: iMAP focuses on matching two schemas, while we targets at large scale schema matching.

2) techniques: iMAP relies on the availability of instance values to construct complex matchings from

simple 1:1 matchings, while we explore the co-occurrence information across schemas and thus develop

a correlation mining approach.

The closest idea to the holistic matching paradigm is probably the corpus-based schema matching

approach [36, 49], which suggests to use a separately-built schema corpus as a “knowledge-base” for

assisting matching of unseen sources. While sharing the same insight of statistics analysis over corpora,

our approach differs in that it leverages input schemas themselves as the corpus and assumes a generative

model to unify the corpus.

157

Techniques: Many solutions have been developed to facilitate schema matching in automatic or semi-

automatic way. The survey of [60] presents a taxonomy and comparison of these approaches. It clas-

sifies the solutions according to whether they deal with data values (called “instances”) or schemas,

whether the schema is flat or structured, and other aspects. There are many different techniques: Some

approaches apply machine learning techniques to match a data source to the mediated schema such as

the LSD system [28]. Some approaches use the structural similarity between schemas to find match-

ings, such as the flooding similarity matcher [52]. Cupid [50] presents a generic matching operation

across different data models and applies a hybrid approach by combining both linguistic and structural

similarity measurements.

In contrast, based on our observation of deep Web sources, we develop two statistical frameworks,

MGS and DCM, which contrasts with existing techniques such as machine learning [28], constraint-

based [46], structure-based [52], and hybrid approaches [50]. In theMGS framework, we hypothesize

the existence of a hidden generative model for each domain (e.g., Books, Movies). Under this hypothe-

sis, a schema can be viewed as an instance generated from the model with some probabilistic behavior.

Schema matching is thus transformed into the discovery of the hidden model, given a set of schema

instances. In theDCM framework, we observe that co-occurrence patterns across schemas often reveal

the complex relationships of attributes, which motivates us to abstract the problem of finding complex

matchings as a dual mining of positive and negative correlations.

Further, to make the holistic matching framework robust against noise, we integrate it with anen-

semblescheme, which aggregates a multitude of holistic matchers to achieve robustness, by exploiting

statistical sampling and majority voting. We note that, our ensemble idea is inspired bybagging clas-

sifiers[11, 26] in machine learning. Bagging is a method for maintaining the robustness of “unstable”

classification algorithms where small changes in the training set result in large changes in prediction.

158

In particular, it creates multiple versions of a classifier, trains each classifier on a random redistribu-

tion of the training set and finally takes a plurality voting among all the classifiers to predict the class.

Therefore, our ensemble approach has the same foundation as bagging classifiers on exploiting majority

voting to make an algorithm robust against outlier data in the input.

However, our approach is different from bagging classifiers in several aspects. First,setting: We ap-

ply the idea of the ensemble of randomized data for unsupervised learning (e.g., in our scenario, schema

matching with statistical analysis), instead of supervised learning (i.e., human experts give the learner

direct feedback about the correctness of the performance [45]), which bagging classifiers is developed

for. Second,techniques: Our concrete techniques are different from bagging classifiers. In particular, in

the sampling part, we take a downsampling other than random redistribution with replacement; in the

voting part, we need to aggregate a set of ranked lists, which is more complicated than aggregate a set

of labels in bagging classifiers. Third,analytic modeling: We build an analytic modeling specific to our

matching scenario, which enables us to validate the effectiveness of a particular configuration and thus

can be the basis for the design of the ensemble scheme.

Input Data : The previous work assumes their input as either relational or structured schemas. Those

schemas are designed internally for developers. As a consequence, the attributes of the schemas may be

named in a highly inconsistent manner, imposing many difficulties in schema matching. In contrast, our

work focuses on matching query interfaces of deep Web sources. These interfaces are designed for end

users and are likely more meaningful and consistent. Thus, we observed this distinguishing characteris-

tic of “converging vocabulary” in our deep Web studies, which motivated our statistical approach.

Some recent works are particularly focusing on matching Web databases [41, 66, 64]. WISE [41]

is a comprehensive query interface integrator, which evaluates the similarity of attributes in multiple

aspects. However, it only deals with simple 1:1 matchings. Reference [64] matches query interfaces

159

based on the results of probing some instance values from the back-end databases via interfaces. It

also only deals with simple 1:1 matchings. Comparing with other matching approaches, probing-based

matching is much more expensive due to the large number of HTTP requests sent for each interface. In

addition, it needs global model for each domain and is thus less scalable as an automatic generic solution

for handling various domains of Web sources. Reference [66] pursues a clustering-based approach

to discover 1:n matchings by exploring the “bridging” effect among query interfaces. However, its

discovery of complex matchings essentially depends on a “hierarchical” interface extractor– That is,

the grouping of attributes (e.g., the grouping oflast name and first name) must be identified, in the

first place, by the interface extractor (and not the matching algorithm). This “hierarchy-recognition”

requirement makes interface extraction a very challenging task.

In contrast, our matching algorithms only requires an interface extractor to extract a query interface

as a “flat” set of query conditions, instead of a hierarchy of attributes, which can thus be easily satisfied

(e.g., our recent work of automatic interface extraction [72] is such an extractor). In fact, even with

a simple “flat” extractor, it already introduces enough errors to impact the matching performance. In

this thesis, we study such impact and propose an ensemble approach for maintaining the robustness of

matching, which significantly extends the holistic matching idea (Chapter 4).

7.2 Web Crawling

We build a taxonomy to relate our crawling work in Chapter 5 to other Web crawling work. In particular,

we present a taxonomy of 4-quadrant of Web crawlers in Figure 7.1, which contains two dimensions.

Along the dimension ofsubject topics, crawlers are either topic-neutral onany topic or specific to

certaintopics. Along the dimension ofcrawling target, while traditional crawlers collect HTML pages,

new type of crawlers collect certain Web artifacts (which we call objects), such as Web sites, query

160

Page Object

Crawling Target

S
u

b
je

ct
 T

o
p

ic
s

Certain

Any
General
[13,21]

Topic-Focused
[15,27,54,62]

Object-Focused

Topic&Object-
Focused [30,5]

Figure 7.1: The taxonomy of Web crawlers.

forms, products (e.g., digital cameras), or addresses. This taxonomy thus classifies Web crawlers into

four categories. For example, the traditional link-following crawlers [13, 21] fall into the category of

topic-neutral and page-targeting crawlers, and the category of topic-focused crawlers [15, 27, 54, 62]

look for pages on give topics.

The focus of our crawler work is crawling certain type of objects. A recent work [30] describes a

crawler for collecting Websites related to specific topics. Given its target objects, Websites, it is natural

for [30] to crawl site by site. Thus it can be viewed as a subset of the framework of our Site Finder.

The work closest to ours is [5], in which a crawler is developed to find query forms on given topics.

While the kind of objects targeted by [30] is Website, the target object in [5] and our work is Web

form. Note that both [30] and [5] belong to the category of topic-focused and object-focused crawlers.

By exploiting content-driven techniques (e.g., content classifiers), they are not applicable in finding

topic-neutral query forms.

In contrast, to the best of our knowledge, ours is the first attempt of building a topic-neutral object-

focused Web crawler. Building upon the insight of structure-driven crawling, this new framework on the

one hand eliminates the reliance on content focus, and on the other hand enables us to balance between

high harvest (as virtually all the traditional crawlers focus on) and coverage, by exploiting the object

distribution pattern in structure locality.

161

7.3 Source Clustering

We relate our clustering work in Chapter 6 to the literature in three aspects: in terms of the Web cluster-

ing problem and our clustering technique.

First, in terms of theWeb clustering problem, existing Web clustering works mainly focus on clus-

tering Web documents by exploiting Web content and linkage information [70, 71, 65, 42]. In contrast,

our work focuses on the clustering of structured Web sources. With the observation that query schemas

are discriminative representatives of sources, we are able to translate the original problem of source

organization into the clustering of query schemas, a type of categorical data.

Second, in terms of theclustering technique, our work proposes a model-differentiation objective

function for clustering query-schema data. Clustering of general categorical data has recently been

more actively studied,e.g., STIRR [34], CACTUS [33], ROCK [35], and COOLCAT [24]. STIRR

treats clustering as a partitioning problem of hypergraph and solves it based on non-linear dynamical

systems. CACTUS considers a cluster as a set of pairwise strong connected attributes by measuring

attribute occurrences. ROCK, COOLCAT and this work pursue the same direction of defining a new

similarity measure involving theglobal context(such as properties of a entire cluster) instead of local

pairwise measure. ROCK uses context linkages between data points, and COOLCAT uses entropy

of clusters. As an alternative, we develop the model-differentiation measure, which maximizes the

statistical heterogeneity among clusters.

Our statistical approach belongs to the general idea of model-based clustering (e.g., partitional EM

algorithm [53] and hierarchical algorithms [4, 32]). Such clustering assumes that data is generated from

a mixture of distributions, each of which defines a cluster. This general approach is traditionally not spe-

cific to categorical data– More recently, reference [51] proposes a multivariate multinomial distribution

(in which each feature is an independent multinomial distribution) for categorical data. In comparison,

162

the model we propose for schema data (or transactional data) is a “joint” multinomial, where all features

are generated from a multinomial distribution.

All the existing model-based works essentially use likelihood as the objective function to maximize–

In contrast, we propose model-differentiation by maximizing the statistical heterogeneity among clus-

ters. In our extended report [40], we show that these two objective functions are in factequivalentin as-

sessing the global clustering results. However, toward their “global” objectives, they indeed implydiffer-

entgreedy “local” similarity measures. In our experiments, we also compare the model-differentiation

measure with the likelihood one on HAC algorithm.

163

Chapter 8

Conclusion

This thesis proposes to move the traditional pairwise attribute correspondence toward a new holistic

paradigm in the discovering of semantic matchings among attributes. This holistic approach is well

suited for the new frontier of massive networked databases, such as the deep Web. As the realizations of

the holistic schema matching, we develop theMGS andDCM frameworks in sequence with global and

local evaluation strategies respectively.

On the one hand, global evaluation is a systematic and principled way to evaluate models since it

exhaustively evaluates all possible models with a statistical basis. In particular, in theMGS framework,

statistical hypothesis testing can report matchings with respect to a given theoreticalsignificance level.

Also, the discovered model can naturally be employed as a unified schema to mediate queries to specific

sources. However, global evaluation can be expensive. The exploration of all the possible models can be

generally exponential. Further, modeling can be a difficult task, depending on specific target semantics

to be discovered. In particular, it is unclear how to extend the modeling in Chapter 2 to accommodate

complex matchings, which theDCM framework copes with.

164

On the other hand, local evaluation adopts a greedy strategy to incrementally construct a potentially

suboptimal model. The greedy selection is not as systematic as the exhaustive enumeration in the

global evaluation. Also, as the core of correlation mining, we need to choose an appropriate correlation

measure for our application scenario. Since the correlation measure is often empirically designed based

on heuristics, the mining result may lack a principled justification. However, our experiments show

that the matching accuracy of local evaluation is empirically good enough in discovering both simple

and complex matchings. Further, local evaluation has some other advantages that global evaluation

does not have: First, the computation of local evaluation is very efficient, since instead of exhaustively

exploring every model as a whole, we select one matching at a time as part of the best model. Second,

it is easier to accommodate complex matchings in local evaluation since it does not require formal

statistical modeling. In particular, theDCM framework supports complex matchings by considering

both positive and negative correlations. Given the respective strengthes and weaknesses of global and

local evaluations, we wonder if a hybrid of the two approaches will achieve the strength of both without

the weakness of either.

Further, to complete the automatic process of holistic schema matching, we also address two other

related issues: How to maintain the robustness of a holistic matcher when the input schemas contain

errors and how to organize schemas into their corresponding domains.

First, to make holistic matching approaches robust to noisy input from the automatic interface ex-

tractor, we integrate a holistic matcher with anensemblescheme, which aggregates a multitude of the

matchers to achieve robustness, by exploiting statistical sampling and majority voting. In this thesis, we

apply such an ensemble scheme for theDCM matcher and our empirical study shows that the ensemble

approach can significantly boost the matching accuracy under noisy schema input, and thus maintain

the desired robustness of theDCM matcher.

165

Second, to obtain a set of schemas in the same domain (as the input of our holistic matching al-

gorithms), we develop techniques for source discovery (i.e., automatically finding large scale query

interfaces on the Web) and schema clustering (i.e., automatically organize discovered schemas into a

domain hierarchy).

In particular, in source discovery, we aim at building a crawler for collecting query forms on the

Web. We abstract this problem as object-focused, topic-neutral crawling and propose a structure-driven

crawling framework for such a crawling task by observing the existence of structure locality of query

forms. We develop the Web Form Crawler to realize the framework. The experimental results show

that our crawler can not only maintain stable harvest but also steadily grow coverage throughout the

crawling. Compared to page-based crawling, our best harvest rate is about 10 to 400 times difference,

depending on the page traversal schemes used.

In schema clustering, we propose a new model-differentiation objective function for clustering.

Guided by theMD objective, we derive a new similarity measure for the general HAC algorithm. To

apply statistical hypothesis testing for clustering, we design pre-clustering and post-classification tech-

niques. Our experiments show the effectiveness of our abstraction. Also, we show that the model-

differentiation function outperforms existing ones with the hierarchical agglomerative clustering algo-

rithm.

166

Bibliography

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. InSIGMOD Conference, 1993.

[2] A. Agresti. Categorical Data Analysis. John Wiley & Sons, Inc. New Jersey, 2002.

[3] D. R. Anderson, D. J. Sweeney, and T. A. Williams.Statistics for Business and Economics (Second
Edition). West Pub. Co., 1984.

[4] J. D. Banfield and A. E. Raftery. Model-based gaussian and non-gaussian clustering.Biometrics,
49(3):803–821, 1993.

[5] L. Barbosa and J. Freire. Searching for hidden-web databases. InWebDB Workshop, pages 1–6,
2005.

[6] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for database
schema integration.ACM Computing Surveys, 18(4):323–364, 1986.

[7] M. K. Bergman. The deep web: Surfacing hidden value. Technical report, BrightPlanet LLC, Dec.
2000.

[8] P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San
Jose, CA, 2002.

[9] P. J. Bickel and K. A. Doksum.Mathematical Statistics: Basic Ideas and Selected Topics. Prentice
Hall, 2001.

[10] J. C. Borda. Ḿemoire sur leśelections au scrutin.Histoire de l’Acad́emie Royale des Sciences,
1781.

[11] L. Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.

[12] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association rules to
correlations. InSIGMOD Conference, 1997.

[13] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.Computer
Networks and ISDN Systems, 30(1–7):107–117, 1998.

[14] H. D. Brunk. An Introduction to Mathematical Statistics. New York, Blaisdell Pub. Co., 1965.

[15] S. Chakrabarti, M. van der Berg, and B. Dom. Focused crawling: a new approach to topic-specific
web resource discovery. InWWW Conference, 1999.

167

[16] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured databases on the web: Observa-
tions and implications.SIGMOD Record, 33(3), 2004.

[17] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. The UIUC web integration repos-
itory. Computer Science Department, University of Illinois at Urbana-Champaign.
http://metaquerier.cs.uiuc.edu/repository, 2003.

[18] K. C.-C. Chang, B. He, and Z. Zhang. Toward large scale integration: Building a metaquerier over
databases on the web. InCIDR Conference, 2005.

[19] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy match for online
data cleaning. InSIGMOD Conference, 2003.

[20] J. Cho and H. Garcia-Molina. Parallel crawlers. InWWW Conference, 2002.

[21] J. Cho, H. Garćıa-Molina, and L. Page. Efficient crawling through URL ordering.Computer
Networks and ISDN Systems, 30(1–7):161–172, 1998.

[22] J. Cope, N. Craswell, and D. Hawking. Automated discovery of search interfaces on the web. In
Proc. of the 14th Australasian Database Conference, pages 181–189, 2003.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Chapter 34. InIntroduction to Algo-
rithms (Section Edition), 2001.

[24] B. D., C. J., and L. Y. Coolcat: An entropy-based algorithm for categorical clustering. In11th
International Conference on Information and Knowledge Management, pages 582–589, 2002.

[25] P. Diaconis and R. Graham. Spearman’s footrule as a measure of disarray.Journal of the Royal
Statistical Society, Series B, 39(2):262–268, 1977.

[26] T. G. Dietterich. Machine-learning research: Four current directions.The AI Magazine, 18(4):97–
136, 1998.

[27] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused crawling using context
graphs. InVLDB Conference, 2000.

[28] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources: A
machine-learning approach. InSIGMOD Conference, 2001.

[29] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In
WWW 2001 Conference, 2001.

[30] M. Ester, H.-P. Kriegel, and M. Schubert. Accurate and efficient crawling for relevant websites. In
VLDB, pages 396–407, 2004.

[31] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via rank
aggregation. InSIGMOD 2003 Conference, 2003.

[32] C. Fraley. Algorithms for model-based Gaussian hierarchical clustering.SIAM Journal on Scien-
tific Computing, 20(1):270–281, 1999.

[33] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS - clustering categorical data using summaries.
In Knowledge Discovery and Data Mining, pages 73–83, 1999.

168

[34] D. Gibson, J. M. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on
dynamical systems.VLDB Journal, 8(3–4):222–236, 1998.

[35] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes.
Information Systems, 25(5):345–366, 2000.

[36] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell, and I. Tatarinov. Crossing
the structure chasm.Conf. on Innovative Database Research, 2003.

[37] B. He and K. C.-C. Chang. Statistical schema matching across web query interfaces. InSIGMOD
Conference, 2003.

[38] B. He, K. C.-C. Chang, and J. Han. Automatic complex schema matching across web query
interfaces: A correlation mining approach. Technical Report UIUCDCS-R-2003-2388, Dept. of
Computer Science, UIUC, Dec. 2003.

[39] B. He, K. C.-C. Chang, and J. Han. Discovering complex matchings across web query interfaces:
A correlation mining approach. InSIGKDD Conference, 2004.

[40] B. He, T. Tao, and K. C.-C. Chang. Clustering structured web sources: A schema-based, model-
differentiation approach. InEDBT’04 ClustWeb Workshop, 2004.

[41] H. He, W. Meng, C. Yu, and Z. Wu. Wise-integrator: An automatic integrator of web search
interfaces for e-commerce. InVLDB 2003 Conference, 2003.

[42] X. He, H. Zha, C. Ding, and H. Simon. Web document clustering using hyperlink structures.
Technical Report CSE-01-006, Dept. of Computer Science and Engineering, Pennsylvania State
University, 2001.

[43] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.ACM Computing Surveys,
31(3):264–323, 1999.

[44] J. G. Kemeny. Mathematics without numbers.Daedalus, 88:571–591, 1959.

[45] P. Langley.Elements of Machine Learning. Morgan Kaufmann, 1995.

[46] J. Larson, S. Navathe, and R. Elmasri. A theory of attributed equivalence in databases with appli-
cation to schema integration.IEEE Trans. on Software Engr., 16(4):449–463, 1989.

[47] Y. Lee, A. Doan, R. Dhamankar, A. Halevy, and P. Domingos. imap: Discovering complex map-
pings between database schemas. InSIGMOD Conference, 2004.

[48] Y.-K. Lee, W.-Y. Kim, Y. D. Cai, and J. Han. Comine: Efficient mining of correlated patterns. In
Proc. 2003 Int. Conf. Data Mining, Nov. 2003.

[49] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-based schema matching. InICDE
Conference, 2005.

[50] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid. InVLDB
Conference, 2001.

169

[51] M. Meilă and D. Heckerman. An experimental comparison of several clustering and initialization
methods. InProceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages
386–395, 1998.

[52] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. InICDE 2002 Conference, 2002.

[53] T. M. Mitchell. Machine Learning. MIT Press,McGraw-Hill, 1997.

[54] S. Mukherjea. Wtms: A system for collecting and analyzing topic-specific web information. In
WWW Conference, 2000.

[55] S. Navathe and S. Gadgil. A methodology for view integration in logical data base design. In
VLDB, 1982.

[56] E. Omiecinski. Alternative interest measures for mining associations.IEEE Trans. Knowledge
and Data Engineering, 15:57–69, 2003.

[57] OpenDirectoryProject. DMOZ site list. http://rdf.dmoz.org/rdf/content.rdf.u8.gz.

[58] J. Ponte and W. Croft. A language modelling approach to information retrieval. InProceedings of
the 21st ACM SIGIR Conference on Research and Development in Information Retrieval, 1998.

[59] M. Porter. The porter stemming algorithm. Accessible at
http://www.tartarus.org/˜martin/PorterStemmer.

[60] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.VLDB
Journal, 10(4):334–350, 2001.

[61] L. Seligman, A. Rosenthal, P. Lehner, and A. Smith. Data integration: Where does the time go?
Bulletin of the Tech. Committee on Data Engr., 25(3), 2002.

[62] S. Sizov, M. Theobald, S. Siersdorfer, G. Weikum, J. Graupmann, M. Biwer, and P. Zimmer. The
BINGO! system for information portal generation and expert web search. InCIDR, 2003.

[63] P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association
patterns. InACM SIGKDD Conference, July 2002.

[64] J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma. Instance-based schema matching for web data-
bases by domain-specific query probing. InVLDB 2004 Conference, 2004.

[65] Y. Wang and M. Kitsuregawa. Evaluating contents-link coupled web page clustering for web
search results. InProceedings of the 7th International Conference on Information and Knowledge
Management, 2002.

[66] W. Wu, C. T. Yu, A. Doan, and W. Meng. An interactive clustering-based approach to integrating
source query interfaces on the deep web. InSIGMOD Conference, 2004.

[67] YahooSearchBlog. http://www.ysearchblog.com/archives/000172.html.

[68] H. P. Young. An axiomatization of borda’s rule.J. Economic Theory, 9:43–52, 1974.

170

[69] H. P. Young. Condorcet’s theory of voting.American Political Science Review, 82:1231–1244,
1988.

[70] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration. InSIGIR Con-
ference, pages 46–54, 1998.

[71] O. Zamir, O. Etzioni, O. Madani, and R. M. Karp. Fast and intuitive clustering of web documents.
In Knowledge Discovery and Data Mining, pages 287–290, 1997.

[72] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query interfaces: Best-effort parsing
with hidden syntax. InSIGMOD Conference, 2004.

171

