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Abstract

Schema matching is a critical problem for integrating heterogeneous information sources. Traditionally,
the problem of matching multiple schemas has essentially relied on finding pairwise attribute corre-
spondences in isolation. In contrast, this thesis proposes a new matching patagligtic, schema
matching to match many schemas at the same time and find all matchings at once. By handling a set of
schemas together, we can explore tlogintextinformation that reflects the semantic correspondences
among attributes. Such information is not available when schemas are matched only in pairs. As the
realizations of holistic schema matching, we develop two approaches in sequence. To begin with, we
develop thevGS framework, which finds simple 1:1 matchings by viewing schema matching as hidden
model discovery. Then, to deal with complex matchings, we further develop@meframework by
abstracting schema matching as correlation mining. Further, to automate the entire matching process,
we incorporate th®CM framework with automatically extracted interfaces and find that the inevitable
errors in automatic interface extraction may significantly affect the matching result. To makehe
framework robust against such “noisy” schemas, we propose to integrate it wetisambl@pproach

by randomizing the schema data into multiplieM matchers and aggregating their ranked results by
taking majority voting. Last, as our matching algorithms require large scale schemas in the same do-
main (.g, Books and Airfares) as input, we developaject-focusedrawler for effectively collecting

query interfaces and model-differentiatiorbased clustering approach to clustering schemas into their

domain hierarchy.
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Chapter 1

Introduction

Schema matching is fundamental for enabling query mediation and data exchange across information
sources [6, 61]. This thesis proposes a new matching paratiigigtic schema matchingvhich is re-

alized by two approaches we developed recently with global and local evaluation strategies respectively.
Traditionally, schema matching has been approached mainly by fipdingise attribute correspon-
dencesto construct an integrated schema for two (or some small numb®rsiurces. We observe

that there are often challenges (and certainly also opportunities) to deal with large numbers of sources.
In such scenarios, the challenge of large scale can itself be an opportunity for new approaches— We can
take a holistic view of all the input schemas and find all the matchings at once.

Such scenarios arise, in particular, for integrating databases on the Internet, or the so-called “deep
Web.” A July 2000 survey [7] estimated that 96,000 “search cites” and 550 billion content pages on this
deep Web. Our recent study [16] in April 2004 estimated 450,000 online databases. With the virtually
unlimited amount of information, the deep Web is clearly an important frontier for data integration. On
this deep Web, numerous online databases provide data viathey interfacesinstead of static URL

links. Each query interface accepts queries oveqitsry schemage.g, author, title, subject, ... for



amazon.com Schema matching.e., discovering semantic correspondences of attributes, across Web
interfaces is essential for mediating queries across deep Web sources.

Matching Web interfaces in the same domaéng( Books, Airfares) is a particularly important
problem with broad applications. We often need to search over alternative sources in the same domain
such as purchasing a book (or flight ticket) across many online book (or airline) sources. Given a set
of Web interfaces in the same domain, this thesis solves the problem of discovering matchings among
those interfaces. In particular, our MetaQuerier project (http://metaquerier.cs.uiuc.edu) is aiming at
developing techniques to automatically build domain portals [18]. The work presented by this thesis is a
critical component of the MetaQuerier projeiot,, the schema matching subsystem of the MetaQuerier.

However, existing schema matching work mostly focuses on small scale integration by finding pair-
wise attribute correspondences between two sources. Traditionally, schema matching relies on match-
ings between pairwise attributes before integrating multiple schemas. For instance, traditional binary
or n-ary [55] schema integration methodologies (as [6] surveys) exploit pairwise attribute correspon-
dence assertions (mostly manually given) for merging two or soswurces. Further, recent work on
automatic schema matching mostly focuses on matchings between two scleegn§as( 50, 52, 47]).

Based on this fact, the latest survey [60] abstracts schema matching as pairwise similarity mappings
between two input sources.

To tackle the challenge of large scale matching, as well as to take advantage of its new opportunity,
we propose a new paradigimglistic schema matchingo match many schemas at the same time and
find all the matchings at once, as Figure 1.1 shows. In particular, holistic schema matching takes a set
of schemas as input and outputs a semantcie| which contains all the matchings among the input
schemasd.g, a model of book schemas may containhor = writer = name, subject = category, ...).

Such a holistic view enables us to explore tomtextinformation beyond two schemas.g, similar



Input: Output:

a set of schemas a semantic model,
ST : for all matchings
| - i thor = writer =
?:,Ilthor vsvfiier ST Holistic au (;r writer = name
itle —  subject = category
subject | title trilﬁéne :<> Schema :<>
ISBN ](‘:(i'tri%(t)ry keyword M atCh| ng ° ° °
binding —  format = binding

Figure 1.1: The holistic schema matching paradigm.
attributes across multiple schemas; co-occurrence patterns among attributes), which is not available
when schemas are matched only in pairs.

Compared with traditional approaches, we believe the holistic approach has several advantages:
First, scalability. By unifying a large number of input schemas holistically rather than matching at-
tributes pairwise, it addresses the scale of matching required in the new frontier of networked databases,
such as our motivating goal of the deep Web. Secealdability. In fact, the large scale can itself be a
crucial leverage to make schema matching more solvable— in particular, it enables effective exploration
of the context information. Such context information will be more sufficient as more sources are ex-
ploited. Intuitively, we are building upon the “peer context” among schemas. Being context-based, the
holistic matching will benefit from the scale: the accuracy will “scale” with the number of sources. For
instance, our specifidGS andDCM approaches, as we will discuss, are both statistical methods, which
will thus benefit from more “observations.”

With the holistic paradigm, this thesis proposes two approaches we developed in sequence as its
realizations. To begin with, we develop thisS framework [37] with aglobal evaluationstrategy to
deal with simple 1:1 matchings €., matching between two attributes suchaaghor = writer). Global
evaluation exhaustively evaluates all possible models and selects the best one among them. The best

model contains the set of matchings with the highest overall confidence to assemble the correct model.



In particular, theviGS framework [37] realizes such global evaluation by hypothesizing the existence
of a hidden generative model for each domairg( Books, Movies) (Chapter 2). Under this hypothesis,

a schema can be viewed as an instance generated from the model with some probabilistic behavior.
Schema matching is thus transformed into the discovery of the hidden model, given a set of schema
instances. To realize such hidden model discovery, we develog@seframework, which discovers
matchings with statistical hypothesis testing.

While theMGS framework can effectively model simple matchings, it cannot find complex match-
ings, which generally exist across Web query interfaeeg, (author is a synonym of the grouping of
last name andfirst name in Books domaini.e., author = {last name, first name}). To discover complex
matchings, we further develop tiecM framework [39] with docal evaluationstrategy. Local evalua-
tion independently assesses every single matching and then incrementally constructs the model. Instead
of exhaustively enumerating all the possible models, local evaluation approximately searches for the
best model by constructing it incrementally. For instance, among all the potential matchings in book
schemas, we may first select the most confident matchibjgct = category and consider it as part of
the best model. Then we iteratively select the next most confident matching under this partial model
result, toward eventually completing the best model.

In particular, theDCM framework [39] realizes such local evaluation based on the observation that
co-occurrence patterns across schemas often reveal the complex relationships of attributes (Chapter 3).
Specifically, we observe thgtouping attributege.g, {first name, last name}) tend to be co-present in
query interfaces and thus positively correlated. In contsgstonym attributeare negatively correlated
because they rarely co-occur. This insight motivates us to develdpdieframework, which greedily

discovers complex matchings with a dual mining of positive and negative correlations.



Further, to complete an automatic matching process, which starts from raw HTML pages, we inte-
grate theDCM framework with an automatic interface extractor [72]. Such “system integration” turns
out to be non-trivial- As automatic interface extraction cannot be perfect, it will introduce “naise” (
erroneous extraction), which challenges the performance of the subsequent matching algorithm. As
Chapter 4 will discuss, the errors in the interface extraction step may affect the correlations of match-
ings and consequently the matching result.

To make thedCM framework robust against noise, we integrate it witreasemblescheme, which
aggregates a multitude of tbe&&M matchers to achieve robustness, by exploiting statistical sampling and
majority voting (Chapter 4). Specifically, we randomly sample a subset of schemasiéhsta match,
instead of using all the schemas. Intuitively, it is likely that such a trial still contains sufficient attribute
information to match while removing certain noisy schemas. Further, we conduct multiple independent
trials. Since errors in different trials are independent, when noise is relatively few, it is likely that only a
minority of trials are affected. We thus take majority voting among the discovered matching of all trials
to achieve the robustness of holistic matching.

Last, since our matching algorithms require the input scheissguery interfaces) from the same
domain, to enable such large scale matching, we need to develop automatic techniques to discover query
interfaces on the Wel.¢., the source discovery problem) and cluster them into their domain hierarchy
(i.e., the schema clustering problem).

For the source discover problem, we develdfWeb Form Crawlelto collect query interfaces.€.,
query forms) across various domains in both efficient and comprehensive manners (Chapter 5). In par-
ticular, query forms, while many, when compared with the size of the Web, are sparsely scattered among
pages, which brings new challenges for crawling: First, due to the topic-neutral nature of our crawling

problem, we cannot rely on existing topic-focused crawling techniques. Second, traditional page-based



crawling techniques cannot achieve a good balance between crawling harvest and coverage. As a hew
attempt, we propose structure-drivencrawling framework by observingtructure localityof query
forms— That is, query forms are often close to root pages of Web sites and accessible by following navi-
gational links. Exploring this structure locality, we substantiate the structure-driven crawling framework
into asite-basedNeb Form Crawler by first collecting the site entrances, as the Site Finder, and then
searching for query forms within the scope of each site, as the Form Finder.

For the schema clustering problem, by viewing schemas as a type of categorical data, we translate the
problem into the clustering of categorical data and develowdel-differentiatiorbased clustering ap-
proach (Chapter 6). Specifically, our approach pursues probabilistic model-based clustering with a new
objective function. To begin with, motivated by our real-world observations, we hypothesize that ho-
mogeneous sources share the same hidden generative model, which probabilistically generates schemas
from a finite vocabulary of attributes. This hypothesis naturally matches model-based clustering— to
form clusters from different models. Further, to realize such clustering, we propose a new objective
function: model-differentiatioror MD, which seeks to maximizgtatistical heterogeneitgmong clus-
ters. Rather than relying on ad-hoc cluster-similarity measii€stakes principled hypothesis testing
in statistics, calledest of homogeneitj14], to evaluate if multiple clusters of data are generated from
homogeneous distributions.

The rest of the thesis is organized as follows: Chapter 2 presenisadramework and Chapter 3
the DCM framework. Chapter 4 discusses the “emsemblization” ofii# framework. Chapter 5
presents the structure-driven crawler for query interfaces and Chapter 6 the model-differentiation based

clustering algorithm. Chapter 7 reviews related work. Chapter 8 concludes the thesis.



Chapter 2

Global Evaluation: Matching as Hidden

Model Discovery

As a first step toward holistic schema matching, we developviag framework with specific focus

on simple 1:1 matchings. In particular, we hypothesize the existence of the hidden generative behavior
of a schema model, which captures synonym relationships of attributes. This hidden-model hypothesis
provides a principled statistical method, hypothesis testing [9], to globally evaluate the confidence of a
model (as a statistical hypothesis), given a set of schemas as observations. We thus abstract the schema
matching problem as hidden model discovery and develop/itag framework [37] to realize such a

global evaluation strategy.

2.1 Motivation

The “wild” frontier of the deep Web is characterized by its unprecedented scale.challange we

often need to match large numbers of sources. Aspgortunity ample sources are usually available
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to form a useful “context” of matching. Intuitively, by holistically unifying many sources in the same

domain, our statistical approach intends to leverage the opportunity while addressing the challenge.
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2.1.1 Deep Web Observations

To understand their characteristics, we performed an informal study of sources on the deep Web. From
Web directories, we drew sources in each of the four domains: Books, Music Records, Movies, and
Automobiles. In particular, we collected all of invisibleweb.com’s sources (in these 4 domains) and

most of yahoo.com’s without any bias, until reaching about 50 sources in each domain, as Figure 2.1

summarizes

On the one hand, we obserpeoliferating sources As discussed in Chapter 1, while many Web

directories such as invisibleweb.com already list impressive numbers of online sources by manual com-

IThis dataset is available as the BAMM dataset of the UIUC Web integration repository [17].




pilation, there are certainly many more sources out there. As the Web continues to expand, it will house
virtually unlimited numbers of sources in interesting domains.

On the other hand, we also obse@nverging vocabulariesThe aggregate schema vocabulary
of sources in the same domain tends to converge at a relatively small size. Figure 2.1 summarizes
(in the middle column) the sizes of the entire vocabularies of all attributes used in any sources, which
are about 40 for each domain. Figure 2.2(a) further analyzes the growth of vocabularies as sources
increase in number. The curves clearly indicate the convergence of vocabularies. For instance, for the
Books domain92% (43/47) attributes are observed2&" sources, an88% (46/47) at35". Since the
vocabulary growth rates.¢€., the slopes of these curves) decrease rapidly, as sources proliferate, their
vocabularies will tend to stabilize. (Note that the sources are sorted in the same order as they were
collected without any bias.)

In fact, the vocabularies will converge more rapidly if we exclude “rare” attributes. To quantify,
let the frequency of an attribute be the number of sources in which it occurs. Figure 2.2(b) orders
these frequencies for the book domain over their ranks, with attributes detailed in Figure 2.7. It is
interesting but perhaps not surprising to observe that the distribution obeys Zipf's law: The frequencies
are inversely proportional to their ranks. Many low-ranked attributes thus rarely occur; Figure 2.2(b)
shows only the top 12 attributes (which account for 78% or 230/294 of all the attribute occurrences);
most others occur only once. In practice, these rare attributes are likely unimportant in matching since
their rareness indicates that very few other sources will find them useful. With such rare attributes (say,
below 10%frequencies) excluded, the “useful” vocabularies are much smaller: about 11 attributes per
domain (Figure 2.1).

Note that, while vocabularies tend to converge, schema heterogeneity still persists. That s, although

Web query interfaces tend to share attributes, they are not universally shared— thus creating the real chal-



lenge of schema matching. In particular, among the top “popular” attributes for books in Figure 2.2(b)—
how many different attributes are “synonyms” for the same concepts? We foymdtbd, last name,
first name}, {subject, category}) out of 12, or a significard2% We observed similar levels of hetero-

geneity in other domains as well (see Figure 2.7).

2.1.2 Toward Hidden Model Discovery

These observations lead us to hypothesize the existence of a hidden schema model that probabilisti-
cally generates, from a finite vocabulary, the schemas we observed. Intuitively, such a model gives the
“structure” of the vocabulary to constrain how instances can be generated. We believe this hypothesis
reasonable, since it naturally explains our observations in Section 2.1.1.

The hypothesis sheds new light on a different way for coping with schema matching: If a hidden
model does exist, itdiscoverywould reveal the vocabulary structure, which will in principle answer
“any” schema matching questions. (As an analogy, an English dictionary can semantically relate all
English words, subsuming the need for their pairwise correspondence.) Such model-level unification
of all attributes in the same domain will subsume their pairwise correspondence (as used in traditional
schema matching). We thus propose an approach to holistically matching schemas as hidden model

discovery.

2.2 TheMGS Framework

As just motivated, we view schema matching as a quest for an underlying model generating the input
schemas. That is, our probabilistic approach seeks to treat the schemas as being generated by a random
process following a specific distribution. Our goal is thus, given the input schemas as “observations,” to

reconstruct the hidden generative distribution.

10



To realize such hidden model discovery, we propose a general framev®8s, consisting of hy-
pothesis mdeling, gneration, andedection. We believe th#GS framework is important in its own
right: In principle, by application-specific hypothesis modeliM@S can be applied to capture different

types of semantic relationships. Specifically,

1 Hypotheses ModelingTo guide the seeking of a hypothetical model, dnygothesiswe start by
defining the general structure of such models. Such modeling should essentially capture specific seman-
tics we want to discover. For instance, if we want to find synonyms, a model should explicitly express
the relationship of “synonyms.” Such modeling will also specify a generative behavior of how schemas
can be generated. Such behavior is mapigbabilistic (e.g, attributes will be drawn randomly by

their “popularity”), although it can also partially leterministic(e.g, no synonyms can be selected
together). Effectively, the model forms a statistical distribution, which generates a particular schema

with someinstantiation probability

2 Hypotheses GeneratiodMe then enumerate concrete hypotheses (in the specified abstract model)
that are consistent with the observed schemas (with non-zero probabilities). Note that, even with a
parameterized structure, there will be a large space of candidate hypotheses to search, for a vocabulary
of reasonable size. This generation step helps to focus the search to only those promising hypotheses

that are likely to generate the observed schemas.

3.Hypotheses Selectiorrinally, we select hypotheses that are consistent with the observed schemas
with sufficient statistical significance. There are various statistical devices for such hypothesis test-
ing [9]. For instance, we use testing in outMGS,. algorithm.

In summary, we proposeiGS as a general framework for the hidden model discovery problem:

Given a set of schemak as observations, hypothesize and select the schema models with sufficient
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statistical consistency as the generative distributions dfle next specialize the abstract framework for

synonym discovery.

2.3 Synonym-Attribute Discovery

Finding corresponding attributes is a central problem for schema matching; in this chapter, we pursue
this problem asynonym discovery.e., discovering simple 1:1 matchings. The challenge is to find the
synonyms among the input attributes, typically without the semantics understanding of those attributes.
That is, across different schemas, some attribuges, @uthor and name, or subject and category)
are synonymdor the sameconceptge.g, for the “author” and “subject” concepts respectively). As
Section 2.1 motivated, we focus on matching query interfaces for sources in the same domain on the
deep Web. Thus, given such schemas, our goal is to discover all the synonym attributes.

Guided by the generallGS framework, we develop AlgorithnMGS,c (Figure 2.5), specifically
for discovery of synonym attributes as the target questidS,. first defines the hypothetical model
structure for capturing synonym attributes (Section 2.3.1), generates the model candidates that have non-
zero probabilities (Section 2.3.2), and selects the sufficiently consistent ones (Section 2.3.3). Beyond
these essential steps, we develop techniques for coping with several real-world issues that complicate our
statistical approach (Section 2.3.4). Finally, we put all the components together to present the complete

algorithm (Section 2.3.5).

2.3.1 Hypothesis Modeling

FollowingMGS, we first define the structure of the underlying model. Specifically, we aim at answering
the target question of synonym attributes for Web interfaces. (Incidentally, our model can also capture

the target question of concept popularity.) We view a query interface as a “flat” schema, or a set of
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attributes;e.g, amazon.com has a scherftitle, author, ---}. This simple view is sufficient for our
purpose of synonym discovery. In particular, we do not concern complex mateh@athor aslast
andfirst name), which itself is another interesting target question. In particularpte framework is
developed for coping with such complex matchings (Chapter 3).

To reasonably define a simple model, we make several assumptions of how our schemas are gener-
ated. (Imagine a human Web developer generates such Web interfaces to bring databases online.) First,
concept mutual-independench query interface contains several different conceptg,(“author” or
“subject”). We assume that, in generating a schema (which may not contain all concepts), different
concepts are selected independently.

Secondsynonym mutual-exclusiolVhen multiple synonyms exist for a conceptd, author and
name), we assume that, in generating a schema, no two synonyms will both be selected. Such du-
plicated selections will create redundancy and perhaps confusion; our case studies (of real sources;
Section 2.1.1) in fact have found no such schemas. As Section 2.3.2 will discuss, this mutual exclusion
enables significant pruning of the hypothetical model space.

Third, non-overlapping conceptdVe assume that different concepts do not overlap in semantics,

i.e, no distinct concepts will share attributes. This assumption holds in most cases, when synonyms
in the same concept are fulgguivalent e.g, concepts{author, name} and {subject, category} do

not overlap. Thus this assumption says that all concepts will fornecarivalence partitiorof the
vocabulary set. However, as our case studies observed (Section 2.4), sometimes an attribute can be
a non-equivalensynonym to others, and thus participate in distinct concepig;-concepts{author,

last name} and{author, first name}, whereauthor corresponds téast name andfirst name in different

“senses.” This assumption excludes such cases: Instead of complicating simple synonym equivalence,
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such cases can be more systematically treated, by first grouping attrilastesae, first name] and

then finding equivalent synony#rauthor, [last name, first name] } (see Chapter 3).

2.3.1.1 Model Structure

Based on our assumptions, we define a simple model for capturing synonym attributes. Essentially, a
model describes how to generate schemas from a vocabulary of attributes. Figure 2.3 visuglizes

(an example for book sources) as a two-level tree, for vocabulary {author, title, ISBN, subject,
category}. To express synonyms, our model partitions all attributes into concepts, or equivalent classes
(by the non-overlapping concepts assumptiany, C;: {author}, ---, Cs4: {subject, category} in Mg.

The model will generate schemas by, first, independently selecting each cGnuétit probability a;

(by concept mutual-independence). For any selected concept, the model will then choose exactly one of
its member attributed; with probability 3; (by synonym mutual-exclusion). The model thus generates

a schema with all the chosen attributes.

Definition 1: A schema modeM is a 4-tuple(?, C,P;,P,): Thevocabulary?’ is a set of attributes
{A1, ---, An}. Theconcept partitionC is a set ofconcepts{Cy, ---, Cy} that partition?’ (i.e, V =
U1<i<mCi andC; NCy = 0). P is theconcept probability functiorwhich determines the probability for
including concep€; in schema generatioR;, is theattribute probability functionwhich determines the

probability[3; for selecting attributé;, once its concept s included. For every con€&pp a, ¢, Bj = 1.

Notationally, we will write a model by parenthesizing attributes in concepts with probability anno-
tations,e.g: (Figure 2.3)Mg = {(author: B1): a, (title: B2): a2, (ISBN: B3): a3, (subject: B4, category:
Bs): a4}. When probabilities are not critical in the context, we will simply weiigg = { (author), (title),

(ISBN), (subject, category)}).
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| author || title || ISBN || subject | | category |
p,=1 p,=1 Bs=1 Ps Ps=1-B,

Figure 2.3 An example of schema modéfs.

2.3.1.2 Schema Generation and Observations

We now discuss how a mod@l’ will generate schemas. By Definition 4/ will simply decide, for
each concep;, if G is included, and if so, select one attribtgto represenC;. This process will

generate a schema as a set of attributes.

Example 1: For Mg in Figure 2.3: Possible schemas (with non-zero probabilities) fidgrinclude: 1;

= {author, title, subject, ISBN} andl; = {title, category, ISBN}.

Note that a modelM, by definition, represents a generative distribution, giving probabilities for any
schema that can be generated. We now formalize such probabilities. First, to generate a 3¢hema,
selects concepts to include: By Definition 1, a concgpwill appear with probabilityPr(Ci| M) = a;
or otherwisePr(—-Gi|M) = 1—q;.

Next, we consider the probability of picking some attribute: By Definition 1, the probability of
selecting an individual attribut®; in schema generation frof is:

ai x By, Ji:AjeC
Pr(Aj|M) =

0, otherwise

How about selecting a set of attribut&g, Az,.., Am from M in any schema? Definition 1 implies

this probability as below, where the first condition represents synonym mutual-exclusion and the other
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concept mutual-independence.

0,3j £k, Ji: Aj eGAAEC
PI’(A]_,AQ,..,M|M) =

[Pr(Aj|M),otherwise
Putting this together, we can derive the probability thatwill generate some schemadenoted
by Pr(1|91). Definition 2 below formalizes thigstantiation probability Specifically,Pr(I|2) is the

probability of used attributes times the probability of unselected concepts.

Definition 2: For modelM = (V, C, P, Pa), theinstantiation probabilityof a schema = {A1,... An} is
Pr(l{M) = Pr(Aq, Az, ... Am| M) X [Ncva; A ¢y Pr(=Ci|M). We sayl can beinstantiatedfrom model

M if Pr(l1|M) > 0.

Example 2: Continuing Example 1: we hawer(l1|Mg) = 01 X 02 X O3 X 04 X Ba, Pr(la|Mg) = (1—
01) X Oz X 03 X 04 X Bs, Where(1—aj) is the probability that the conceti is not used. However, for
I3 = {author, ISBN, subject, category}, we havePr(l3|Mg) = O, sincesubject andcategory both belong

to C4. Thusly andl, can be instantiated frorg, butls cannot.

Our approach seeks to discover the hidden model from many schemas observed (as input). There-
fore, we will take a set of schemds(e.g, the Web sources summarized in Figure 2.1), our input, as
schema observation§o emphasize that in our input we may observe the same schema several times,
we write I as a set of pair§l;,B;). Each(l;,B;) denotes the number of occurren@&sdor each schema
li.

To discover the hidden model, it is essential to answer: Given midéiow likely will M generate
the schemas ii? (Or, how likely can we observg if A is the hidden model?) It follows Definition 2

that this probability ir(1|M) = [ Pr(l; ]M)B‘. Note that, ifPr(I|M) = 0, it is impossible to observe
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I underM . Therefore, we say modélf is consistentvith observationd, if Pr(1|%) > 0. Thus, the

hypothesis generation finds these “consistent models” as candidate hidden models (Section 2.3.2).

Example 3: Continuing Example 2: We may have observatioms{(l1,3), (I2,5)}, i.e, I1 3 times and
I, 5 times. ThusPr(I|Mg) = Pr(l1|Mg)3 x Pr(I2|Mg)°. Note Mg is consistent with, sincePr (11| Mg)

andPr(l2|Mg) are both non-zero (Example 2).

2.3.2 Hypothesis Generation

Guided by the second step of thisS framework, we now generate candidate models that are likely to
be sufficiently consistent (which Section 2.3.3 will determine) with the input observatidhss clear
that any candidat@/ has to be at least consistent withi.e,, Pr(1|2) > 0, so that! is at least possible
underM (Section 2.3.1). This section focuses on constructing such models.

Intuitively, we want to reconstruc¥ from our given observations. Using a statistical approach,
we assume the observations ambiasedand sufficient First, by theunbiasedassumption, we will
observe (or collect) a schenmhawith a frequency proportional to how likelywill be generated under
M, i.e, Pr(l|M). (e.g, we will not collectonly schemas that contaiuthor, since that would be
biased.) Second, by theufficientassumption, our observations will be large enough so that every
possible schema is represented/ inWe use these assumptions to estimate the probability parameters
(P; andP;) of a candidate model. In practice, the sufficient assumption is likely not to be satisfied; we
discuss techniques for dealing with “the real world” in Section 2.3.4.

Our goal in hypothesis generation is, givénto construct models = (v, C,P;,P,) so that
Pr(Z|M) > 0. To begin with, we determing’: By our above assumptiong/ = Ul;. Since every
possible schema occurs in so does every attribute #Y. On the other hand, even if the observations

are not perfect, for our purpose of matching, we do not care about any “phantom” attributes that have
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not occurred in any input source. Thus, our model will capture only attributes that are used by at least
one schema (ir).
Next, having determined’, we complete the modefl{, C, P, P,) by constructing first the concept

partition C (Section 2.3.2.1), and then the probabilitisP; (Section 2.3.2.2).

2.3.2.1 Building Concept Partitions

Given the vocabulary se¥’, we first construct a concept partitighfor a candidate model. By Defin-
ition 1, C is a partition of V. It is clear that, giver/, there can easily be a large number of possible
partitions. The number of partitions for arset is called a Bell numbd(n), which has an exponential
generating function and satisfies recursive relaBm+ 1) = y7_,B(Kk) (). A vocabulary with, say, 12
attributes will thus have 4213597 possible concept partitions (and as many possible models).

To cope with the large space, it is thus critical to focus on only concept partitions that can lead to
consistent models, such thatPr(7|M) > 0). These consistent models form thgpothesis space
with respect tol. Our case studies show that the “consistent” condition can prune the search space to
a very small number of models. For instance, in the book domain, we only have 20 models left in the
hypothesis space with 12 attributes.

Not all concept partitions are useful for constructing a consistent model, since not every model (with
arbitrary concept partitions) can generate a observed schema. In particular, as Example 2 Ishowed,
cannot be observed und@fg, or Pr(l3|?Mg) = 0, sincesubject andcategory are both synonyms i€,4
(Figure 2.3). Thus, ifz is in I as part of our input schema, we will not consid#g, since it will be
inconsistent withZ, i.e., Pr(I|Mg) = 0 asPr(I3|Mg) = 0.

We can easily generalize this idea to focus on models that will not “contradict” any observed schema

I. In such models, no concept will contain two attribubgsandA, that are used by the same schema in
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[. (In Example 22g is not good foil3, sinceMg containsC, with attributessubject andcategory both
from I3.) That is, we will construct consistent models by using aupsistent conceptsvhich do not

contain anyco-occurring attributegsrom any schema id. Property 1 formalizes this idea.

Property 1: Given observationg with vocabulary?’, let C = {Cy, ---, Cy} be a concept partition for
vocabulary?’. Any modelM constructed fronT will be inconsistent withl, or Pr(I|M) = 0, if for

some attributed; andAy, both of the following hold:
1. 3schemd; € I, such tha#\; € |; andA, € I;.

2. 3 concepC; € C, such tha®; € G andA, € G,.

Based on Property 1, we use a two-step process to build the hypothesis space (of consistent models)
using consistent concepts as building blocks. (For instaifgan Figure 2.3 is built upon concepis,

.-+, C4.) Step 1,CONSISTENTCONCEPTSCONSTRUCTION will first find all consistent concepts, and
Step 2,BUILDHYPOTHESISSPACE, will then build consistent models accordingly. These two proce-
dures are used to build the initial hypothesis space in Algorith@dc.

In Step 1, we can translate the problem of finding consistent concepts into finding all cliques in
an attribute “co-occurrence graph” [23]. Specifically, we construsiracept networltrom our obser-
vationsI: In this graph, a node represents an attribute, and an edge exists between attartds
A if and only if they do not co-occur in any scherhén 7. Thus, non-cooccurring attributes will be
connected with an edge— Precisely such attributes will form consistent concepts. However, a concept
can be of any number of attributes. Therefore, we look for cliques for any size in the graph to construct

consistent concepts.

Example 4: Consider observations in Example 3. Fromi, we can derive its concept network in
Figure 2.4. In particularauthor andtitle do not have an edge because they co-occly.iruthor and

category have an edge since they do not co-occur in any schema.
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Figure 2.4: An example concept network.

Further, what can be consistent concepts? There are 7 cliques in Figurgatdor}, {title},
{subject}, {category}, {ISBN}, {author, category}, and{subject, category}. Any clique represents a
cluster of non-cooccurring attributes, and therefore is a consistent concept (by Property 1). In particular,
some of these concepts, such{asthor} and{subject, category}, are part ofMg, which is consistent

with I (as Example 3 explained).

In Step 2, we use the consistent concepts just obtained as the building blocks for constructing con-
sistent models. Since all the concepts in a model partition its vocabulafly,sbts step is essentially
a classic set cover problem [23], with the covering subsets being non-overlapping. That is, given some
subsets (the consistent concepts) ofBetve want to select some non-overlapping subsets to cbver
Below we illustrate the result of constructing all the consistent models as the hypothesis space, which

concludes our hypothesis generation step in this section.

Example 5: Given the consistent concepts in Example 4, we can construct a consistent iodel
{(author), (title), (ISBN), (subject), (category)}, since the five concepts partition the vocabulary. We
can find all the other consistent modef#, = {(author), (title), (ISBN), (subject, category)} and M3 =

{(author, category), (title), (ISBN), (subject)}. The hypothesis space is therefdt&;, Mo, Mz}.

2.3.2.2 Building Probability Functions

We have generated all the consistent models, which form the hypothesis space. However, these models

are still incomplete: As a 4-tupleV, C,P;,Pa), M has yet to determine the probability functioRs
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andP,, although?’ and C are specified. Recall our ultimate goal is to discover those hidden models
that are sufficiently consistent with inpiit So far, for each consistent mod#, by building upon only
consistent concepts, we guarantee gt/ |2 ) is notnecessarilyzero. Therefore, there exiBt and

P, assignments fofM, such thaPr(1|M) > 0.

To complete each of these consistent models, we still need to speeifidP,— clearly these prob-
abilities should further maximizBr(I|M). The reason is that with the assumptions of unbiased and
sufficient input data, the values Bf andP; must be the ones that make the model the most consistent
with the data. The “consistency” is reflected as the instantiation probability. So the most consistent
model is corresponding to the model with the highest probability. Thus, we have an optimization prob-

lem to find

Q%xPr(ﬂM(‘V, C,Pe,Pa)), (2.2)

cra

which is essentially thenaximum likelihood estimatigoroblem, for given?’ andC.

Example 6: Continue Example 5, where we show®f as one of the consistent models. To completely
specify M5, we need to determin@, andP, to maximizePr(1|94) (for I given in Example 3).

As Example 3 derives (not&l, andMg are the same modelpr (1| M) = Pr(11|Mz)2 x Pr(lo|Mz)° =
a3 x (1—0a1)° x ad x a8 x a8 x B x B2. We apply maximum likelihood estimation to select thase
andp’s that can maximiz®r(I|M>). The result iy =0.3750a, = 1,03 =1,04 = 1,34 = 0.375 and

Bs = 0.625

In maximum likelihood estimation of functior’d andP;, we are effectively estimating parameters
aj andp; (Definition 1). Since concepts are independently selected (the concept mutual independence

assumption of Section 2.3.1), eaghcan be estimated independently. We can also derive the solution
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for Bj based on [9], sincB; in a concepC; form a multinomial distribution. Therefore, for any schema

model, Equation 2.1 has the closed-form solutions:

ar = 2acG; O Bt = o] -
‘I‘ J ZAJECi J

whereQ;j is thefrequencyof attributeA; in observationd (i.e., the number of schemas that contain,

and|| is the total number of schemasin

2.3.3 Hypothesis Selection

Guided by the third step of thdGS framework, we need to select sufficiently consistent hypotheses.
After hypothesis generation, a hypothesis is a determined model (distrib@ica)( v, C, P, Pa). We
propose to applk? hypothesis testing to quantify how consistent the schema model is with the data.
Below we briefly introduce? testing [9].

Suppose we haveindependent observations (schemas) and in each observation, precisely one of
events (schemas with non-zero probability),., |, must happen, and their respective probabilities are
P1,--, Pr, With 25:1 pj = 1. Suppose thapo, .., pro are the respective instantiation probabilities of the
observeds, .., |, with respect to the tested mod&f, with 25:1 pjo = 1. We want to test the hypothesis

P1 = P10, --, Pr = Pro by considering the statistic

2 _ <r (Bj—npp)?
D _ijl npjo

wherenis essentially I|. It can be shown thdd? has asymptotically g? distribution withr — 1 degrees
of freedom. Again a test of the null hypothebis p; = pio, .., Pr = pro at the100a% significance level
is obtained by choosing a numbesuch thatPr{D? > b} = a, whereD? has thex? distribution with

r — 1 degrees, and rejecting the hypothesis if a valub%greater tham is actually observed.
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Example 7: Assume we have observations: {(l1,6), (I2,3), (I3,1)}, with |1 = {author, subject}, |, =
{author, category}, andls = {subject}. Our goal is to select the schema model at the significance level
0.05. The hypothesis generation step will output two hypotheses (models):

M = {(author:1):0.6, 6ubject:0.7,category:0.3):1} and

M = {(author:1):0.6, 6ubject:1):0.7, category:1):0.3}.

We first considerM;. Four schemas can be instantiated frafit {subject}, {category}, {author,
subject}, and{author, category} with instantiation probabilities 0.28, 0.12, 0.42, and 0.18 respectively.

Thus, the computation @? is: D?(M;) = (1_1£>6%§8)2 + <°‘1£‘gf_’i122>2 + (6_1&%2)2 + (3_1%)%%8)2 =3.93

with freedom degree 3. The® distribution table showBr(D? > 7.815) = 0.05 at that freedom degree.

Since3.93 < 7.815 we accept this hypothesis and consider it as a sufficiently consistent schema model.
M, is processed in the same way. Eight schemas can be instantiatedMsord }, {author},

{subject}, {category}, {author, subject}, {author, category}, {subject, category}, and{author, sub-

ject, category} with probabilities 0.084, 0.126, 0.196, 0.036, 0.294, 0.054, 0.084, and 0.126 respec-

tively. Then we hav®?(M) = 20.20 with freedom degree 7. The distribution table showBr(D? >

14.067) = 0.05. Since20.20 > 14.067, we should not select,. Therefore, hypothesis selection will

selectM; as the schema model.

2.3.4 Dealing With the Real World

We presented the overall process of AlgoritihiS,c, guided by the general principles of tMGS
framework. Further, there are often “real-world” issues on data observations that can compromise a
statistical approach like ours. We find that, specifically for schema matching, the key challenge is the
extremely “unbalanced” attribute distribution. We observed a Zipf-like distribution (Figure 2.2b) of

attributes in our analysis of deep Web sources (Section 2.1).

23



Challenges arise on the either end of this Zipf distribution: On one hantetd rankedttributes
(e.g, ti andau in Figure 2.2b) are extremely frequent, occurring in almost every schema: Their oc-
currences tend to dominate any models and thus render these models indiscriminate under hypothesis
testing (as Section 2.3.3 developed). Section 2.3.4.3 addresses dominating attributes with incremental
consensus projection to isolate their effects.

On the other hand, thiil-ranked attributes €.g, those not shown in Figure 2.2b) are extremely
rare, often occurring only once in some schema. Their occurrences in observations (while rare) tend
to “confuse” our statistical approach that asserts sufficient samples. In principle, a rare afiribute
can appear in many concepts (by combining with other attributes in schema generation). Aso, as
being rare, theseA~schemas” are unlikely to be observediiif it is not arbitrarily large— Thu will
compromise a statistical approach for the lack of schemas. Section 2.3.4.1 addresses rare attributes with
attribute selection.

Together, thishead-often, tail-rareattribute distribution will imply similar non-uniformness of
schemas. Thus, some schemas (with rare attributes) will be extremely rare too. Our hypothesis test-
ing essentially relies on estimating schema frequerjeSection 2.3.3). A rare schenhaccurring
only once in! tends to result in anverestimatedrequency, orl needs to be arbitrarily large to justify

I's only occurrence being sufficiently rare. Section 2.3.4.2 addresses rare schemas by “smoothing.”

2.3.4.1 Attribute Selection

Rare attributes can confuse a statistical approach, with their lack of complete schemas in our obser-
vationsI. Such rare attributes will require virtually arbitrarily lardeto give them sufficient context.
That is, for these rare attributesjs unlikely to be sufficient to statistically “explain” their properties—

Thus, our sufficient assumption (Section 2.3.2) is unlikely to hold for such attributes. To draw valid
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statistical results, our approach is to systematically remove rare attributes— they are effectively “noise”
in our setting.

Fortunately, these rare attributes may indeed be unimportant in schema matching. As Section 2.1.1
explained, with Zipf distribution, most rare attributes occur in only one source. Thus, few other sources
will find these attributes useful in query mediation or data exchange. (A mediator will not be likely to
support such attributes; they are neither “mediatable” nor “exchangeable.”) We believe it is naturally
justified to remove rare noise in matching.

We believe systematiattribute selectiorwill be crucial for finding attribute subsets, for which
robust statistical results can be achieved. We use a frequency-based pruning to select only frequent at-
tributes into vocabularg’ (Section 2.3.2), as a procedweTRIBUTESELECTION in Algorithm MGS;¢
(Figure 2.5). Specifically, we select an attribdtgif its observation frequenc®; > f, wheref is a
given threshold set as0% in our experiments. While this empirical value works well (Section 2.4),

further investigation is clearly necessary to automate threshold selection.

2.3.4.2 Rare Schema Smoothing

Our observationd may contain infrequent schembaghat are presumably rare, as explained earlier.
In particular, thex? testing (Section 2.3.3) evaluates the difference between the estimated probabilities
Pr(l|#) and the observed frequenciBs For infrequent schemas, such a difference will significantly

distort the closeness @F to thex? distribution, which may influence the result of hypothesis selection.

Example 8: Suppose our observatiods: {(l1,45), (12,5), (I3,2), (l2,1) }, with I; = {author}, |2 = {last
name}, I3 = {author, price}, andl, = {price}. The hypothesis generation will find three hypotheses:
Mi={(author:.9, last name:.1):.98, price:1):.06}

Mo={(author:1):.89, (ast name:.62,price:.38):.15
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Mz={(author:1):.89, (ast name:1):.09, price:1):.06}.

The probabilities of4 in M, Mo, andMz are .0012, .0064, and .0058 respectively, which indicates
I4 a rare schema. The? testing will in fact reject all three models (at the significance level 0.05).

Note that even the correct mod&f; does not pass the test, simply because the early observation of
the rare schemh, results in an unreliable estimation of its probability. Thus the rare schema disturbs

the result.

We cope with this problem bgare schema smoothindnstead of regarding each possible schema
I as an individual event (Section 2.3.3), we will aggregate infrequent schemas into a conceptual event
lrare, Whose probability is the sum of the probabilities of its members. Such aggregation will smooth
the overestimation in frequency counting, thus giving a more reliable probability indication [3]. We will
then takex? testing on those frequent events plig.

The key issue is then how to determine whether a schignsarare. Our basis is its frequency
in observationd (with size|I|), since the real probability is hidden to be discovered. We apply two
criteria: 1) If not observed i, | is rare. 2) If observed, is rare if Pr(1j|M) x |I| < Tsmooth Where
TsmoothiS @ threshold (dynamically determined).

We further develop adaptive thresholding Tfoothin Smoothing, as a procedumey NAMIC SE-
LECTION in Algorithm MGSg¢ (Figure 2.5): During hypothesis selection (Section 2.3.3), we test the
hypotheses with increasing thresholds until reaching at least one qualified hypothesis. (Implicitly, we
are applying our motivating assertion that there must exist a correct hidden model.) Otherwise, it will
output all the hypotheses, since they are not distinguishable (and at least one must be correct). Empir-
ically, we start the adaptive thresholdingTaooth= 0.2 with a step size 0.1, and stop B0, which

works well (Section 2.4).
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2.3.4.3 Consensus Projection

Straightforward testing cannot always distinguish models that share a dominating “consensus” (which
makes other differences insignificant). As explained earlier, the head-ranked attributes often dominate
the testing and thus all these models may agree on the “structure” of these attributesoiaisus

can be recognized (for early conclusion) and projected (for isolating dominating attributes). Note that
we assume a consensus must be correct, based on our motivating assertion that there exists at least a

correct model.

Example 9: Suppose our observations afe= {(11,45), (I2,6), (I3,2), (l4,4)} with 11 = {title}, I> =
{title, subject}, I3 = {title, subject, price}, andl, = {title, category}. Hypothesis generation will output
three hypotheses:

My={(title:1):1, (Subject:.67,category:.33):.21, price:1):.035

Mo={(title:1):1, (Subject:1):.14, category:.67,price:.33):.11

Mz={(title:1):1, (Subject:1):.14, category:1):.07, price:1):.035}.

Thex? hypothesis testing will reject all three models at the significance level 0.05. In factDtheir
values are not distinguishable, due to the highly frequent attrilletewhich dominates thg? testing.

However, it is clear that they all share a “consensustiten

We thus proposeonsensus projectiofor recognizing and extracting consensuses (or shared con-
cepts across models), so that hypothesis testing will better focus on models’ distinctions. Note that
the soundness of such a projection (of consensus concepts) follows our concept mutual independence
assumption (Section 2.3.1).

Specifically, consensus projection will extract the consensus from all the models in the hypothesis
space. Also it will extract the consensus attributes from the observed schemas and aggregate the pro-

jected schemas that become identical. The projection and aggregation will result in a new set of input
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schemas, which are used for the re-estimation of the parameters of the projected models. Such a pro-
jection can be repeated, since more consensuses will gradually emerge as the algorithm progresses. We
can then discover the final models incrementally by projecting consensuses in progressive iterations.

We thus structure AlgorithiiGS,c as an iterative framework, as Section 2.3.5 will discuss.

Example 10: Continuing Example 9: We recognize concejle] as the consensus. We thus perform
consensus projection to extratti€) from all hypotheses and attribuige from all schemas if.

So we haveH ™ = Tgupject category.price} (), With

M;={(subject:.67, category:.33):1, price:1):.17}

M ={(subject:1):.67, category:.67, price:.33):.5

M5 ={(subject:1):.67, category:1):.33, price:1):.17}

and ™ = Tsupject,category.price} (1) = 1(13,6), (13,2), (13,4) } with 13 = {subject}, |3 = {subject, price},
andl; = {category}. |] is empty after projection and thus removed. The new parametebé oére
estimated fromZ* with maximum likelihood estimation. Thg? testing will selectM;* (and reject

others) at the significance level 0.05.

2.3.5 Putting It All Together: Algorithm MGSgc

For solving the target question of synonym attributes, AlgoritaS,. (Figure 2.5) consists of two

phases: building the initial hypothesis space and iteratively discovering the hidden models. The first
phase selects the attributes as the vocabulary (Section 2.3.4.1) and builds the hypothesis space (Sec-
tion 2.3.2.1). The iterative process is based on consensus projection (Section 2.3.4.3): In each iteration,

it projects the consensus, re-estimates the parameters (Section 2.3.2.2), and tests the hypotheses (Sec-

tion 2.3.3) with the smoothing technique (Section 2.3.4.2).
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Example 11: Consider the Books domain sources listed in Figure 2.7. The iterative process is illus-
trated in Figure 2.6. In the first iteration, the consensus consists of conte s ( (kw), (pr), (fm), and

(pd). ThepyNAMIC SELECTION function will select four hypotheses aslectedHwith Tgmgothas 0.5,
which are listed in the third column of the 1st iteration of Figure 2.6. In the second iteration, the con-
sensus consists of concepti). TheDYNAMIC SELECTION function will select two hypotheses among

the four in the 1st iteration. In the third iteration, the consensusuiscj) andDYNAMIC SELECTION
cannot find any passing hypothesis with all lagqotrs. Therefore, the algorithm will stop and output
two discovered schema modelsf; = {(ti), (is), (kw), (pr), (fm), (pd), (pu), (su, cg), (au, In), (fn)} and

M, = {(ti), (is), (kw), (pr), (fm), (pd), (pu), (su, cg), (au, fn), (In)}, where the parameteess andf’s are

omitted.

The time complexity oMGS4c is exponential with respect to the number of attributes. For instance,
the complexity ofcONSISTENTCONCEPTSCONSTRUCTIONIS exponential since the clique problem is
NP-complete. Similarly, the steps 8tJILDHYPOTHESISSPACE and DYNAMIC SELECTION are both
exponential. Since schema matching is typically done “off-line,” such computation time may still be
tolerable in most situations. For instance, in our experimental setting (Section 2.4), the running time
is typically within one minute. Further, our observation in Section 2.1 indicates that in practice the
computation is likely to scale to many sources: Even with more sources, their aggregate vocabulary
tends to converge— The growth of attributes and thus the corresponding computation cost are likely to
stop at some point. Nevertheless, it is certainly a real issue to explore more efficient algorithms, as

Section 8 discusses.
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Algorithm: MGSgc:
Input: SchemasSet, SignificancelLeveh
Output: Schema Model Hypothesé&$

begin:

1 /*initial hypothesis generatign */

2 7V =ATTRIBUTESELECTION( I;)

3 C=CONSISTENTCONCEPTSCONSTRUCTION)
4 H =BUILDHYPOTHESISSPACE(C)

5 [*iterative framework */

6 while true

7 conAttrs= attributes in the consensus &f

8 if conAttrs= 0 or ¥ = conAttrs

9 return the initial models of#

10 else

11  /* consensus projection */

12 V=9 —conAttrs I =1, (I); H* =T11)(H)
13  /* maximum likelihood estimation */

14 for eachM in H*

15 estimate parametensf3 of M usingI*

16  /* hypothesis selection */

17 selectedH= DYNAMIC SELECTION(H™)

18 /* new hypothesis space for next iteration */
19 4#H =selectedH

end

2.4 Case Studies

Figure 2.5 Algorithm MGSgc.

To evaluate th&/1GS,4 framework, we test it with four domains of sources on the deep Web. We design
two suites of metrics to quantify the accuracy of both the model itself and its ability to answer the target

guestions. The experimental results show remarkable accuracy for both metrics.

2.4.1 Experiment Setup

We collected over 200 sources over four domains as stated in Section 2.1.1. For each source, we man-
ually extracted attributes from its query interface and did some straightforward preprocessing to merge
attributes of slight textual variationg.g, author's name andauthor). (This dataset is available as the

BAMM dataset in the UIUC Web Integration Repository [17].) Thus, we focus on discovering synonym
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kth | consensus | hypotheses pagsh iteration Tsmooth
Ist | (ti),(is),(kw), | {(au:0.85]n:0.15):0.98,0u:1):0.25,6u:1):0.2,€9:1):0.13,(n:1):0.11} | 0.5

(pr),(fm),(pd) | {(au:0.85Jn:0.15):0.98 §u:1):0.25,6u:0.61¢g:0.39):0.33,in:1):0.11
{(au:0.88fn:0.12):0.95,4u:1):0.25,6u:1):0.2,€9:1):0.13,(n:1):0.15
{(au:0.88fn:0.12):0.95u:1):0.25,6u:0.61¢g:0.39):0.33,0:1):0.15

2nd | (pu) {(au:0.85|n:0.15):0.98 §u:0.61¢g:0.39):0.33,{n:1):0.1L 0.6
{(au:0.88fn:0.12):0.95,§u:0.61¢g:0.39):0.33,0:1):0.15
3rd | (su,cq) {(au:0.85|n:0.15):1,n:1):0.11 1.0

{(au:0.88fn:0.12):0.96 ,0:1):0.15

4th | 0

Figure 2.6. Process of discovering schema model for the Books domain.

attributes and consider such attribute extraction and preprocessing as independent tasks. In particular,
in our later development, we developed automatic techniques for extracting attribute information from
query interfaces [72] and preprocessing techniques to merge syntactically similar attributeB@nthe
framework (Chapter 3).

In the experiments, we select the attributes using the approach proposed in Section 2.3.4.1 with
thresholdf = 10% The attributes passing that threshold are listed in Figure 2.7. Also, in the experi-
ments we assume 0.05 as the significance levgl dfypothesis testing. In practice, the threshold and

significance level can be specified by users.

2.4.2 Metrics

We propose two suites of metrics for different purposes. The first suite is generic since it measures how
the hypothesized schema model is close to the correct schema model written by human experts. The
second suite of metrics is specific in the sense that it measures how well the hypothesized schema model
can answer the target questions.

First, we introduce the notion aforrect schema modelA correct schema modeélf; is a schema

model where attributes are correctly partitioned into concepts. Since it is difficult and unreliable (even
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for human experts) to specify the ideal probability parameters, we assign them using maximum likeli-
hood estimation, which is consistent with the “unbias” and “sufficient” assumptions in Section 2.3.2.

The purpose of the first suite of metrics is to compare two models (or distributions). We view each
distribution as a set of schemas (instantiated from that distribution), associated with a probability (or
member frequency). Thus, we adopt precision and recall to measure this “member frequency”. We
definelns(M) as the set of all schemas that can be instantiated fddm Precision is designed to
measure the portion of the hypothesizedlsst/M,) that is correct. In our case, the correct part is the
intersection olns(M;,) andIns(4M;), denoted bys. So themodel precisions:

Pu (Mh, M) = w = ¥ 1esPr(l| M), wherey ingar) Pr(1|M) = 1 for any model.

o ZlElnS{Mh) Pr(l| My

Similarly, model recallmeasures the portion &ff; that is contained iy, which is Ry (M, M) =

SiesPr(l|M).

Example 12: Consider Example 7, we can see that the correct schema model is actiabiynd

thus both model precision and recall 8f; are 1.0. Now considefif,, although it is rejected, we

still can measure it as an example. Example 7 has shown the schemas and instantiation probabil-
ities of Ins(M2) and Ins(M:). So S contains four schemas{subject}, {category}, {author, sub-

ject} and{author, category}. Then we can compute the model precision and recafds\z, M) =

0.196+ 0.036+ 0.294+ 0.054= 0.58 andRy (M2, M) = 0.28+4 0.12+0.42+0.18 = 1.

The second suite of metrics measures how correct the model in answering the target questions. In
our case, the target question is to ask for the synonyms of attributes. Specifically, we imagine there
is a “random querier” who will ask for the synonyms of each attribute according to the probability of
that attribute. The model will answer each question by returning the set of synonyms of the queried

attribute in that model. We defiryr(A;j|9) as the set of synonyms of attribute in model /. To
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compare two synonym sets, precision and recall are again applied. Given the correctipaael a

hypothesized modelf,, the precision and recall of the synonym sets of attrildytare:

 |SyrAy M Sy A4
Pay (M, Me) = =gramgy— and

__ [Syr(A|8)nSyr(A 34|
Ra, (Mh, Mc) = J\Syr(Aj\Mc)IJ '

For this “random querier,” more frequently observed attributes have higher probabilities to be asked.
Thus we compute the weighted average of all Bags andRa,’s as thetarget precisionand target

recall. The weight is assigned as a normalized probability of the attributes. That is, for atéhuibe

Pr(Aj[M) _ _ dixB,
a; Pr(A[[M) 7 Za; 0ixBj

weightw; = = % (aj xBj = % according to the formulae in Section 2.3.2.2).

Thereforetarget precisiorandtarget recallof M, with respect taM; are defined as:
Pr(Mh, Mo) = 5 a,cap, 55 Pay (M, M)
O.

where4, and 1, are the vocabulary sets 8, and 2.

Example 13: In Example 7, the target precision and recalbdf are both 1.0 sincé/; is the correct
schema model. Fais, we havePyimor (Mo, Mc) = 1 andRyyinor (M2, Mc) = 1 sinceauthor is correctly
partitioned in,. However, forsubject, we haveSyr(subject | Mc) = {category} andSyr(subject | M>) =
0. ThereforePspject (M2, M1) = 1 andRsypject (M2, M1) = 0. We do the same measurementcategory
and then compute the weighted average. The occurreneeshof, subject, andcategory are 9, 7, and
3 respectively. Thus, the results @e(Mo, Mc) = 55 % 1+ 15 x 1+ 35 x 1 =1 and Ry (M, M) =

5 % 1+ 5 x 0+ %5 x 0= 0.47.

2.4.3 Experimental Results

We report and discuss the experimental results for the Books domain. For other domains, we only

show the input and output. Figure 2.7 lists all the selected attributes. The result shows two sufficiently
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domain vocabulary (abbreviation)

Books title(ti),author(au),ISBN(is),keyword(kw),publisher(pu),subject(su),last name(In),
format(fm),category(cg),price(pr),first name(fn),publication date(pd)
Movies title(ti),director(dr),actor(ac),genre(gn),format(fm),category(cg),

keyword(kw),rating(rt),price(pr),studio(sd),star(st),artist(at)
Music Records| artist(at),song(sg),album(ab),title(ti) label(Ib),format(fm),
genre(gn),soundtrack(sr),catalog #(ct),keyword(kw),band(bn)
Automobiles make(mk),model(md),price(pr),year(yr),type(tp),zip code(zc),
mileage(ml),style(sy),color(cl),state(st),category(cg)

Figure 2.7: Vocabularies of the four domains.

domain output models Pwv Rwm Py Rt
Movies Mmovia = { (1), (dr),(fm),(rt),(pr),(sd),(kw),(ac,st),(gn,cg),(at)} | 0.94 | 1 1 0.88
Mmovie = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st,at),(gn),(cg)} | 0.96 | 1 1 0.88
Mmovies = {(ti),(dr),(fm), (1), (pr),(sd), (kw), (ac,st.at),(gn,cg)} | 1 1 1 1
Music Mmusia = {(sg),(Ib),(fm),(at,bn), (ab,ti),(gn),(sr), (kw),(ct) } 1 1 1 1
Records Mmusie = {(sg),(Ib),(fm),(at,bn),(ab,ti),(gn),(sr), (kw,ct) } 1 099|094 1
Mmusis = {(sg),(Ib),(fm),(at,bn), (ab,ti),(gn),(sr,kw),(ct) } 1 099|094 1
Mmusiar = {(sg),(Ib),(fm), (at,bn), (ab,ti),(gn,sr),(kw),(ct) } 1 098] 0931
Mmusis = {(sg),(Ib),(fm),(at,bn), (ab,ti),(gn,sr),(kw,ct) } 1 097 086 | 1
Automobiles | Mauto = {(mk),(md),(pr),(yr),(sy,tp,cg),(zc,cl),(st,ml) } 1 094|084 1

Figure 2.8 Experimental results for Movies, Music Records and Automobiles.

consistent modelsMpoon = {(ti:1):.98, (s:1):.8, kw:1):.56, pr:1):.13, (m:1):.13, pd:1):.1, (u:1):.25,
(su:.61,cg:.39):.33, Au:.85,In:.15):.98, (n:1):.11} andMpeowe = {(ti:1):.98, (s:1) :.8, kw:1):.56, pr:1):.13,
(fm:1):.13, pd:1):.1, (u:1):.25, 6u:.61,cg:.39):.33, fu:.88,fn:.12):.95, (n:1):.15}.

The result successfully identifies the matchings, (n), (au, fn) and 6u, cg). Without attribute
grouping techniques (Section 2.3.1) to mdegename andfirst name, human experts can only consider
that Moo and Mpookre both are correct schema models and thus give 1.0 precision and 1.0 recall in both
model and target metrics. As stated in Section 2.3.1, attribute grouping is a different target question.
Assume another specialized framewdGS,g has done this task. Then the result will Béook =
{(ti:1):.98, (s:1):.8, kw:1):.56, pr:1):.13, m:1):.13, pd:1):.1, (u:1):.25, 6u:.61,cg:.39):.33, Au:.85,
[In,fn]:.15):.98), which is perfectly accurate in the sense of “equivalent synonym.” In addition, the
parameters in the results can be used to answer the question of concept popularity (Section 2.3.1),
which indicates that this model is not limited to synonym discovery.

For the other three domains: Movies, Music Records, and Automobiles, their output is summarized

in Figure 2.8. The results show that our approach can identify most concepts correctly. In Movies
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and Music Records, the correct schema model is returned in our output models, whith,ae

and Mnusia respectively. However, for Automobiles, we did not get the correct model. The incorrect
matchings are due to the small number of observations we have. If we observe more sources, we should
be able to observe some co-occurrences to remove false synonyms. For example, in the Automobile
domain, the incorrect matchingac( cl) and 6t, ml) are because we did not observe the co-occurrences

of zip code andcolor, state andmileage. With larger observation size, we believe the result will be
better.

The measurement results in Figure 2.8 show that we do need two suites of metrics because they
evaluate different aspects. For instance, the model recall,@f i« = 1 meansMmyqia Can generate all
correct instances, while the target precisiomfovia = 1 denotes the synonyms answeredMy,ovia
are all correct ones.

Finally, although in principle the time complexity MGS,c is exponential in terms of the number
of attributes, in practice, the number of frequently used attributes within a domain is often not too many
(as we have illustrated in Figure 2.1) and thus the overall execution time of our matching algorithm
is quite fast,j.e., within one minute (on a Pentium-Ill 700GHz with 128MB memory). Therefore, we
believe that in practice the computation cost is likely to be acceptable for schema-matching as an off-line

process.

2.5 Conclusion

This chapter explores statistical schema matching, by hypothesizing and discovering hidden models that
unify input schemas. Our experience indicates high promise for moving the traditional pairwise-attribute

correspondence toward a new paradigm of holistic matching of massive sources. We propose a general
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statistical frameworlGS, and further specialize it to develop AlgorithhGS,. for finding synonym
attributes. Our extensive case studies motivated our approach as well as validated its effectiveness.

However, although th&1GS framework can effectively model simple matchings, it cannot find
complex matchings, which generally exist across Web query interfaogsdauthor is a synonym of
the grouping ofast name andfirst name in Books domainj.e., author = {last name, first name}). To

discover complex matchings, we further developiaav framework, as we will discuss in Chapter 3.
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Chapter 3

Local Evaluation: Matching as

Correlation Mining

While theMGS framewaork can effectively model simple matchings, it cannot find a more general type
of matchings.complex matchingTo discover complex matchings, we further developilaa frame-

work [39]. Specifically, for our focus of the “deep Web,” query schemas generally form complex match-
ings between attribute groups. In contrast to simple 1:1 matching, complex matching matches a set of
m attributes to another set of attributes, which is thus also calledn matching For instance, in

the Books domainauthor is a synonym of the grouping ddst name andfirst name, i.e., {author} =

{first name, last name}; in the Airfares domain{passengers} = {adults, seniors, children, infants}.
Motivated by our observation thab-occurrenceatterns across schemas often reveal the complex re-
lationships of attributes, we develop tbeM framework by pursuing a correlation mining approach
with alocal evaluatiorstrategy. Unlike global evaluation which evaluates an entire model, local evalua-
tion aims at “greedily” finding individual matchinge.@, {author} = {first name, last name}) and then

incrementally constructs the model.
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3.1 Motivation: From Schema Matching to Correlation Mining

Our key insight is on connecting schema matching to correlation mining. Consider a typical scenario:
suppose user Amy wants to book two flight tickets from éityo city B, one for her and the other for
her 5-year old child. To get the best deal, she needs to query various airfare sources by filling in the
Web query interfaces. For instance,tnited.comshe fills in the query interface witihom as city A,
to as cityB andpassengers as 2. For the same query ftyairnorth.com she fills indepart as city A,
destination as cityB, adults as 1,seniors as 0,children as 1 andnfants as 0.

This scenario reveals some critical characteristics of the Web interfaces in the same domain. First,
some attributes magroup together to form a “larger” concept. For instance, the groupingdafts,
seniors, children andinfants denotes the number of passengers. We consider such attributes that can
be grouped agrouping attributesor having agrouping relationship denoted by putting them within
braces €.g, {adults, seniors, children, infants}).

Second, different sources may use different attributes for the same concept. For irfstanaad
depart denote the city to leave from, amslanddestination the city to go to. We consider such semanti-
cally equivalent attributes (or attribute groupskgaonym attributesr having asynonym relationship
denoted by “=" .9, {from} = {depart}, {to} = {destination}).

Grouping attributes and synonym attributes together fmsmplex matchingsn complex matching,
a set ofmattributes is matched to another sendttributes, which is thus also calledn matching(in
contrast to the simple 1:1 matching). For instani@elults, seniors, children, infants} = {passengers}
is a 4:1 matching in the above scenario.

To tackle the complex matching problem, we exploit co-occurrence patterns to match sbioémas
tically and thus pursue a mining approach. In the holistic view of matching, all the schemas at the same

time provide the co-occurrence information of attributes across many schemas, which reveals the se-
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Web pages with query interfaces

[ I nterface Extraction ]

DCM Framework
Data Preprocessing:
type recognition and syntactic merging

Matching Discovery:

dual correlation mining

Matching Construction:
ranking and selection

s

n-ary complex matchings
{A} ={B} ={C,D,E}
{F.G} = {H,1}

Figure 3.1 Complex matching as correlation mining.

mantics of complex matchings. (Such co-occurrence information cannot be observed when schemas are
matched only in pairs.) For instance, we may observedhaits, seniors, children andinfants often
co-occur with each other in schemas, while they together do not co-occusasitbngers. This insight

enables us to discover complex matchings with a correlation mining approach. In particular, in our
application, we need to handle not only positive correlations, a traditional focus, but also negative ones,
which have rarely been extensively explored or applied.

By matching many schemas together, this holistic matching naturally discovers a more general type
of complex matching— a matching may span more than two attribute groups. Reconsider the Amy
scenario. If she tries a third airline sourgeiceline.comshe needs to fill the interface witleparture
city as cityA, arrival city as cityB, number of tickets as 2. We thus have the matchifiadults, seniors,
children, infants} = {passengers} = {number of tickets}, which is a 4:1:1 matching. Similarly, we have

two 1:1:1 matchinggfrom} = {departure city} = {depart} and{to} = {arrival city} = {destination}. We
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name this type of matchingrary complex matchingvhich can be viewed as an aggregation of several
binary m:n matchings.

These observations motivate us to develop a correlation mining abstraction of the schema match-
ing problem. Specifically, given extracted schemas from Web query interfaces, we develop a stream-
lined process, th&@CM framework, for mining complex matchings, consistingdafta preprocessing
matching discovergndmatching constructionas Figure 3.1 shows. Since the query schemas in Web
interfaces are not readily minable in HTML format, before executingbt®l framework, we assume
an interface extractor to extract the attribute information in the interfaces. (In this thesis, we will also
address the impact of errors made by the automatic interface extractor on our matching algorithm in
Chapter 4.) Given extracted raw schema data, we first preprocess schemas to make them ready for min-
ing as the data preprocessing step (Section 3.4). Next, the matching discovery step, the caewf the
framework, explores dual correlation nining algorithm to discoven-ary complex matchings, which
first mines potential attribute groups as positive correlations and then potential complex matchings as
negative correlations (Section 3.2.1). Finally, matching construction ranks and then selects the most
confident and consistent matchings from the mining result (Section 3.2.2). Meanwhile, in the heart of

correlation mining, we need to choose an appropriate correlation measure (Section 3.3).

3.2 Complex matching as correlation mining

We view a schema asteansaction a conventional abstraction in association and correlation mining. In
data mining, a transaction is a set of items; correspondingly, in schema matching, we consider a schema
as a set oattribute entities An attribute entity contains attribute name, type and doniaan instance

values). Before mining, the data preparation step (Section 3.4) finds syntactically similar entities among

schemas. After that, each attribute entity is assigned a umitfileute identifier While the mining is
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over the attribute entities, for simplicity of illustration, we use the attribute name of each entity, after
cleaning, as the attribute identifier.

Formally, we consider the schema matching problentzgen the input as a set of schemgs=
{S1,...,S} in the same domain, where each schefnis a transaction of attribute identifiers, find all
the matchings\ = {Mg,...,M,}. EachMj is ann-ary complex matchinG;, = G;, = ... = Gj,, where
eachG;, is an attribute group an@;, C S{*:ls. Semantically, eacM; should represent the synonym
relationship of attribute grougs;j,,..., Gj,, and eacltG;, should represent the grouping relationship of
attributes inG;, .

Motivated by our observations on the schema data (Section 3.1), we develop a correlation mining
algorithm, with respect to the above abstraction (Figure 3.1), consistsabfcorrelation miningand
matching constructionWe will elaborate these two steps in Section 3.2.1 and Section 3.2.2 respectively.

Briefly, the dual correlation mining has two sub-steps. Fgstup discovery We minepositively
correlated attributego form potential attribute groups. A potential group may not be eventually useful
for matching; only the ones having a synonym relationsh@ fiegative correlation) with other groups
can survive. For instance, if all sources usst name, first name, and notauthor, then the potential
group {last name, first name} is not useful because there is no matchingafithor) needed. Second,
matching discoveryGiven the potential groups (including singleton ones), we miggatively corre-
lated attribute groupgo form potentialn-ary complex matchings. A potential matching may not be
considered as correct due to the existence of conflicts among matchings.

After group discovery, we need to add the discovered groups into the input scsertmsnine
negative correlations among groups. (A single attribute is viewed as a group with only one attribute.)
Specifically, an attribute group is added into a schema if that schema contains any attribute in the group.

For instance, if we discover th&tst name andfirst name have a grouping relationship, we consider
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Algorithm: N-ARY SCHEMAMATCHING: Algorithm: APRIORICORRMINING:

Input: InputSchemas; = {S, ..., S}, Input: InputSchemas; ={S,...,S},
Measuresn,, My, ThresholdsTp, Ty Measuresn, ThresholdT

Output: Potentialn-ary complex matchings Output: Correlated items

begin: begin:

1 /*group discovery */ X

1
2 G < APRIORICORRMINING (S, mp, Tp) 2 Ve {,S5,5€5
3 /*adding groups int&; */ 3 forall Ap,Aqe V,p#q
4 for eachS € $; 4 it m(Ap,Aq) > T then X — XU {{Ap,Aq}}
5 for eachGy e G 5 1«2
6 if SNGk#0thenS — SU{Gy} 6 /* X correlated items with length ¥/
7 [* matching discovery */ 7 XX
8 M — APRIORICORRMINING (S7,Mn, Tn) 8 while X #0
9 return M 9 construct . from X, using apriori feature
end 10 X —XUXy1
11 X X1
12 l«—1+1
13 return X
end
(a) Algorithm N-ARY SCHEMAMATCHING. (b) Algorithm APRIORICORRMINING.

Figure 3.2 Algorithms for Mining Complex Matchings.

{last name, first name} as an attribute group, denoted By for simplicity, and add it to any schema
containing eitheltast name or first name, or both. The intuition is that although a schema may not
contain the entire group, it still partially covers the concept that the group denotes and thus should be
counted in matching discovery for that concept. Note that we do not remove singleton gtasips
name} and{first name} when adding, becaus&; is only a potential group and may not survive in
matching discovery.

The matching construction also has two sub-steps: Firatching ranking To solve the conflicts,
we develop a ranking strategy to rank the confidence of each matching candidate discovered by the dual
correlation mining phase. Secomdatching selectionWe further develop a selection strategy to select

the most confident and consistent matchings from the mining result according to the rankings.
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3.2.1 Matching Discovery: Dual Correlation Mining

While group discovery works on individual attributes and matching discovery on attribute groups, they
can share the same mining process. We use the tétems— to represent both attributes and groups in
the following discussion of mining algorithms.

Correlation mining, at the heart, requires a measure to gauge correlation of ansig¢rof; our
observation indicates pairwise correlations among tmeems. Specifically, fom groups forming
synonyms, any two groups should be negatively correlated, since they both are synonyms by themselves
(e.g, in the matching{destination} = {to} = {arrival city}, negative correlations exist between any two
groups). We have a similar observation on the attributes with grouping relationships. Motivated by such

observations, we design the measure as:

Cmin({Ad,...,An},m) = minm(A;, A;j), Vi # |, (3.1)

wherem is some correlation measure for two itenesg(, the measures surveyed in [63]). That is, we
defineCnin as the minimal value of the pairwise evaluation, thus requiring all pairs to meet this minimal
“strength.”

Cmin has several advantages: First, it satisfies the “apriori” feature and thus enables the design of an
efficient algorithm. In correlation mining, the measure for qualification should have a desirable “apriori”
property {.e., downward closure), to develop an efficient algorithm. (In contrast, a measure for ranking
should not have this “apriori” feature, as Section 3.2.2 will discuSg;) satisfies the “apriori” feature
since given any item se? and its subsefl*, we haveCnin(A4, M) < Cyin(A4*, m) because the minimum

of a larger setd.g, min({1,3,5})) cannot be higher than its subsetd, min({3,5})). SecondCmin
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can incorporate any measurefor two items and thus can accommodate different taskg, (nining
positive and negative correlations) and be customized to achieve good mining quality.

Leveraging the “apriori” feature @min, we develop AlgorithmAPRIORICORRMINING (Figure 3.2)
for discovering complex matchings, in the spirit of the classic Apriori algorithm for association min-
ing [1]. That is, we find all the correlated items with lengith 1 based on the ones with lendth

With Cqin, we can directly define positively correlated attributes in group discovery and negatively
correlated attribute groups in matching discovery. A set of attriblAes..., A, } is positively correlated
attributes denoted byPC, if Crin({A1, -..,An}, Mp) > Tp, wherem, is a measure for positive correlation
andT, is a given threshold. Similarly, a set of attribute groy, ..., Gm} is negatively correlated
attribute groups denoted byNC, if Cin({Gg, ..., Gm}, M) > Ty, wherem, is a measure for negative
correlation andr, is another given threshold.

Algorithm N-ARY SCHEMAMATCHING shows the pseudo code of the complex matching discovery
(Figure 3.2). Line 2 (group discovery) cal’seRIORICORRMINING to mine PC. Lines 3-6 add the dis-
covered groups intg;. Line 8 (matching discovery) calPRIORICORRMINING to mine NC. Similar
to [1], the time complexity oN-ARY SCHEMAMATCHING is exponential with respect to the number of
attributes. But in practice, the execution is quite fast since correlations exist among semantically related

attributes, which is far less than arbitrary combination of all attributes.

3.2.2 Matching Construction: Majority-based Ranking and Constraint-based Selection

After the matching discovery step, we need to develop ranking and selection strategies for the matching
construction step. We notice that the matching discovery step can discover true semantic matchings
and, as expected, also false ones due to the existence of coincidental correlations. For instance, in the

Books domain, the mining result may have bégtluthor} = {first name, last name}, denoted byM;
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Algorithm: MATCHINGSELECTION: Algorithm: GETMATCHINGRANK FIRST:
Input: Potential matching®/ = {My, ..., My}, Input: Potential matching$/ = {M1, ..., My},
Measuram, Measuram,
Output: Selected matchings Output: The matching with the highest ranking
begin: begin:
1 R < 0 /*selectedn-ary complex matchings * 1 M{<— My
2 while M #0 2 foreachMje M,2<j<v
3 [*select the matching ranked the highest */ 3 if s(Mj,my) > s(M¢,my) then
4 Mt < GETMATCHINGRANK FIRST(M, my) 4 M; — M;
5 R — RU{M} 5 if S(Mj,mn) =s(M¢,my) andM;j > M then
6 for eachMj e M 6 M — M;
7 /* remove the conflicting part */ 7 return M
8 Mj —M;j — M end
9 I* deleteM; if it contains no matching */
10 if [Mj| <2then M — M — {Mj}
11 return R
end
(a) Algorithm MATCHINGSELECTION. (b) Algorithm GETMATCHINGRANK FIRST.

Figure 3.3 Algorithm MATCHINGSELECTION.

and {subject} = {first name, last name}, denoted byM,. We can sed/; is correct, whileM; is not.
The reason for having the false matchidg is that in the schema data, it happens thdfect rarely
co-occurs withfirst name andlast name.

The existence of false matchings may cause matching conflicts. For indtéyaedM, conflict in
that if one of them is correct, the other one will not. Otherwise, we get a wrong matittepr} =
{subject} by the transitivity of the synonym relationship. Since our mining algorithm does not discover
{author} = {subject}, M1 andM, cannot be both correct.

Leveraging the conflicts, we select the most confident and consistent matchings to remove the false
ones. Intuitively, between conflicting matchings, we want to select the more negatively correlated one
because it indicates higher confidence to be synonyms. For example, our experiment shows that, as
M is coincidental, it is indeed tham,(M1) > my(Mz), and thus we seled¥l; and removeM,. With
larger data size, semantically correct matching is more likely to be the winner. The reason is that, with
larger sampling size, the correct matchings are still negatively correlated while the false ones will remain

coincidental and not as strong.
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Before presenting the selection algorithm, we need to develop a strategynkimgthe discovered
matchings. Thatis, for anyary complex matchinyl;: G;, = G, = ... = Gj,,, we have a score function
s(Mj,m,) to evaluatéM; under measurgt,.

Section 3.2.1 discussed a measure for “qualifying” candidates. We now need to develop another
“ranking” measure as the score function. Since ranking and qualification are different problems and thus
require different properties, we cannot apply the meaSyre(Equation 3.1) for ranking. Specifically,
the goal of qualification is to ensure the correlations passing some threshold. It is desirable for the
measure to support downward closure to enable an “apriori” algorithm. In contrast, the goal of ranking
is to compare the strength of correlations. The downward closure enforces, by definition, that a larger
item set is always less correlated than its subsets, which is inappropriate for ranking correlations of
different sizes. Hence, we develop another meaSpgg the maximalm, value among pairs of groups

in a matching, as the score functianFormally,

CmaX(Mhrrh) - maxrrh(GjHGjt)?\v/Gijjt? jl' 7& jt- (32)

It is possible to get ties if only considering tligax value; we thus develop a natural strategy for
tie breaking. We take a “top-k” approach so tkam fact is a set of sorted scores. Specifically, given
matchingsM; and My, if CnaxMj, M) = Cmax Mk, M), we further compare their second highest
values to break the tie. If the second highest values are also equal, we compare the third highest ones
and so on, until breaking the tie.

If two matchings are still tied after the “top-k” comparison, we choose the one with richer semantic
information. We consider matchirlg; to semantically subsumaatchingMy, denoted byM; = My, if
all the semantic relationships My are covered i;. For instance{arrival city} = {destination} = {to}

» {arrival city} = {destination} because the synonym relationship in the second matching is subsumed in
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the first one. Also{author} = {first name, last name} > {author} = {first name} because the synonym
relationship in the second matching is part of the first.

Combining the score function and semantic subsumption, we rank matchings with the following
rules: 1) If s(Mj,my) > s(Mg,my), Mj is ranked higher thaivli. 2) If s(Mj,m,) = s(My,m,) and
M; = M, M; is ranked higher thaMy. 3) Otherwise, we ranll; and M arbitrarily. Algorithm
GETMATCHINGRANK FIRST (Figure 3.3) illustrates the pseudo code of choosing the highest ranked
matching with this strategy.

Algorithm MATCHINGSELECTION shows the selection algorithm. We apply a greedy selection
strategy by choosing the highest ranked matchifg,n each iteration. After choosirg;, we remove
the inconsistent parts in remaining matchings (lines 6 - 10). The final output is the sefeated
complex matchings without conflict. Note that we need to do the ranking in each iteration instead of
sorting all the matchings in the beginning because after removing the conflicting parts, the ranking may
change. The time complexity of Algorithi ATCHING SELECTION is O(V?), wherev is the number of

matchings inf\.

Example 14: Assume runningN-ARY SCHEMAMATCHING in the Books domain finds matchingd
as (matchings are followed by their scores):

Mji: {author} = {last name, first name}, 0.95

My: {author} = {last name}, 0.95

M3: {subject} = {category}, 0.92

Mg: {author} = {first name}, 0.90

Ms: {subject} = {last name, first name} , 0.88

Me: {subject} = {last name}, 0.88 and

M7: {subject} = {first name}, 0.86.
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Ap | ~Ap
Aq | fua | fio | foy
—Aq | for | foo | for
fia | fio | Fis
Figure 3.4: Contingency table for test of correlation.

In the first iterationM; is ranked the highest and thus selected. In particular, althsidh m,) =
S(M2,m,), M1 is ranked higher sincé1; = Ma. Now we remove the conflicting parts of the other
matchings. For instanc#), conflicts withM1 on author. After removingauthor, M, only contains one
attribute and is not a matching any more. So we remdydrom . Similarly, M4 andMs are also
removed. The remaining matchings Mg, Mg andMy. In the second iteratioMs is ranked the highest
and thus also selectetllg andM7 are removed because they conflict wils. Now M is empty and

the algorithm stops. The final output is thds andMas.

3.3 Correlation Measure

In this section, we discuss the positive measugeand the negative measun&, used as the com-
ponent ofCnin (Equation 3.1) for positive and negative correlation mining respectively in Algorithm
N-ARY SCHEMAMATCHING (Section 3.2).

As discussed in [63], a correlation measure by definition is a testing @otitimgency tableSpecif-
ically, given a set of schemas and two specified attribdtendAg, there are four possible combinations
of A, andAq in one schem&: Ap, Aq are co-present iy, only A, presents irf, only Aq presents in
S, andAp, Aq are co-absent il§. The contingency tablg¢14] of A, and Aq contains the number of
occurrences of each situation, as Figure 3.4 shows. In partidylarorresponds to the number of co-
presence oA, andAy; f1o, for and foo are denoted similarlyf. ; is the sum offy; andfo; .o, for and

f1, are denoted similarlyf, , is the sum offy1, f1g, fo1 and foo.
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Figure 3.5 Attribute frequencies in the Books domain.

The design of a correlation measure is often empirical. To our knowledge, there is no good cor-
relation measure universally agreed upon [63]. For our matching task, in prirgiglmeasure can
be applied. However, since the semantic correctness of the mining result is of special importance for
the schema matching task, we especially care about the ability of the measures to differentiate various
correlation situations, especially the subtlety of negative correlations, which has not been extensively
studied before.

We first identify the quality requirements of measures, which are imperative for schema matching,
based on the characteristics of Web query interfaces. Specifically, we observe that, in Web interfaces,
attribute frequencies are extremely non-uniform, similar to the use of English words, showing some
Zipf-like distribution. For instance, Figure 3.5 shows the attribute frequencies in the Books domain:
First, the non-frequent attributes result in the sparseness of the schema.datdhdre are over 50
attributes in the Books domain, but each schema only has 5 on average). Second, many attributes are
rarely used, occurring only once in the schemas. Third, there exist some highly frequent attributes,
occurring in almost every schema.

These three observations indicate that, as the quality requirements, the chosen measures should be

robust against the following problemsparseness problefor both positive and negative correlations,
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Ap | ~Ap Ap | ~Ap Ap | “Ap
Aq 5 5 10 Aq 1 49 | 50 Aq | 81 9 90
“Aq| 5 85 90 Ag | 1 1 2 “Aq | 9 1 10
10 | 90 | 100 2 50 | 52 90 | 10 | 100
(al) Example of sparseness probleth1) Example of rare attribute problenfcl) Example of frequent attribute problem
with measureift: with measurelaccard with measurelaccard
Less positive correlation Ap as rare attribute Ap andAq are independent
but a highelLift = 17. andJaccard= 0.02. but a highedaccard= 0.82.
Ap | ~Ap Ap | ~Ap Ap | “Ap
Ag | 55| 20 75 Aq 1 25 | 26 Aq 8 1 9
-Aq | 20 5 25 -Aq | 25 1 26 “Ag | 1 90 91
75| 25 | 100 26 | 26 | 52 9 91 | 100
(a2) Example of sparseness proble(h2) Example of rare attribute problenfc2) Example of frequent attribute problem
with measureift: with measurelaccard with measurelaccard
More positive correlation no rare attribute Ap andAq are positively correlated
but a lowerLift = 0.69. andlaccard= 0.02. but a lowedaccard=0.8.

Figure 3.6. Examples of the three problems.

rare attribute problenfor negative correlations, aricequent attribute problerfor positive correlations.

In this section, we discuss each of them in detail.

The Sparseness Problem

In schema matching, it is more interesting to measure whether attributes are often co-pesent (
f11) or cross-preseni.€., fig and fp1) than whether they are co-abseng( fgp). Many correlation
measures, such &8 andLift, include the count of co-absence in their formulas. This may not be good
for our matching task, because the sparseness of schema data may “exaggerate” the effect of co-absence.
This problem has also been noticed by recent correlation mining work such as [63, 56, 48]. In [63], the
authors use thaull invarianceproperty to evaluate whether a measure is sensitive to co-absence. The

measures for our matching task should satisfy this null invariance property.

Example 15: Figure 3.6(a) illustrates the sparseness problem with an example. In this example, we

choose a common measure: th# (i.e, Lift = Eg%i) (Other measures consideririgh have similar
behavior.) The value dfift is between 0 te+. Lift = 1 means independent attributésft > 1 posi-
tive correlation and.ift < 1 negative correlation. Figure 3.6(a) shows thifit may give a higher value

to less positively correlated attributes. In the scenario of schema matching, the table in Figure 3.6(a2)
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should be more positively correlated than the one in Figure 3.6(al) because in Figure 3.6(a2), the co-
presence f1) is more frequently observed than the cross-presence (either fo1), while in Fig-

ure 3.6(al), the co-presence has the same number of observations as the cross-presence LHowever,
cannot reflect such preference. In particular, Figure 3.6(al) gets a much hifglzerd Figure 3.6(a2) is

even evaluated as not positively correlated. A similar example can also be found for negative correlation

with Lift. The reasouhift gives an inappropriate answer is thgg incorrectly affects the result.

We explored the 21 measures in [63] andxfeneasure in [12]. Most of these measures (including
x? andLift) suffer the sparseness problem. That is, they consider both co-presence and co-absence in
the evaluation and thus do not satisfy the null invariance property. The only three measures supporting

the null invariance property afeonfidenceJaccardandCosine

The Rare Attribute Problem for Negative Correlation

Although ConfidenceJaccardand Cosinesatisfy the null invariance property, they are not robust
for the rare attribute problem, when considering negative correlations. Specifically, the rare attribute
problem can be stated as when eitAgror A is rarely observed, the measure should not congigder
andAq as highly negatively correlated because the number of observations is not convincing to make
such judgement. For instance, thaccard(i.e., Jaccard= m) measure will stay unchanged
when bothfi; and fig+ fo1 are fixed. Therefore, to some degrdaccardcannot differentiate the
subtlety of correlationse(g, fi0 = 49, fo1 = 1 andfig = 25, fo; = 25), as Example 16 illustrates. Other

measures such d@onfidenceand Cosinehave a similar problem. This problem is not so critical for

positive correlation, since attributes with strong positive correlations cannot be rare.

Example 16: Figure 3.6(b) illustrates the rare attribute problem. In this example, we choose a common
measure: thdaccard The value ofJaccardis between 0 tdl. Jaccardclose to 0 means negative

correlation andlaccardclose to 1 positive correlation. Figure 3.6(b) shows thatcardmay not be
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able to distinguish the situations of rare attribute. In particular, Jaccard considers the situations in
Figure 3.6(b1) and Figure 3.6(b2) as the same. But Figure 3.6(b2) is more negatively correlated than

Figure 3.6(b1) becauss, in Figure 3.6(b1) is more like a rare event than a true negative correlation.

To differentiate the subtlety of negative correlations, we develop a new mebisurteasure (Equa-
tion 3.3), as the negative correlatioR. The value oH is in the range from 0 to 1. AR value close to
0 denotes a high degree of positive correlationHavalue close to 1 denotes a high degree of negative

correlation.

M(Ap, Aq) = H (Ap, Ag) = 110

= . 3.3
frofiy 33)

H-measure satisfies the quality requirements: On the one hand, simiJactard Cosineand
ConfidencgH-measure satisfies the null invariance property and thus avoids the sparseness problem by
ignoring fgo. On the other hand, by multiplying the individual effect fgi (i.e.,%) and fyo (i.e, f%o),

H-measure is more capable of reflecting subtle variation of negative correlations.

The Frequent Attribute Problem for Positive Correlation

For positive correlations, we find th@onfidenceJaccard Cosineand H-measure are not quite
differentin discovering attribute groups. However, all of them suffer from the frequent attribute problem.
This problem seems to be essential for these measures: Although they avoid the sparseness problem by
ignoring fgg, as the cost, they lose the ability to differentiate highly frequent attributes from really
correlated ones. Specifically, highly frequent attributes may co-occur in most schemas just because they
are so frequently used, not because they have grouping relatioegiipn(the Books domairisbn and
titte are often co-present because they are both very frequently used). This phenomenon may generate

uninteresting groups.€., false positivesin group discovery.

52



Example 17: Figure 3.6(c) illustrates the frequent attribute problem with an example, where we still
useJaccardas the measure. Figure 3.6(c) shows tlaicardmay give a higher value to independent
attributes. In Figure 3.6(c1Ap andAq are independent and both of them have the probabilities 0.9
to be observed, while in Figure 3.6(c2), andAq are really positively correlated. Howevedaccard
considers Figure 3.6(cl) as more positively correlated than Figure 3.6(c2). In our matching task, a

measure should not give a high value for frequently observed but independent attributes.

The characteristic of false groupings is that the value is very high (since both attributes are
frequent). Based on this characteristic, we add another meéﬁuh& my, to filter out false groupings.

Specifically, we define the positive correlation measuges:

1-H(ApAg), {2 <T.
(A, Aq) = SR (3.4)

0, otherwise
whereTy is a threshold to filter out false groupings. To be consistentmuitfwe also use thel-measure

in mp.

3.4 Data Preparation

As input of theDCM framework, we assume an interface extractor (Figure 3.1) has extracted attribute
information from Web interfaces in HTML formats. (Chapter 4 will discuss the incorporation of an
automatic interface extractor [72].) The extracted raw schemas contain many syntactic variations around
the “core” conceptd.g, title) and thus are not readily minable. We thus perform a data preprocessing
step to make schemas ready for mining. The data preprocessing step coraisiisuié normalization

type recognitiorandsyntactic mergingTo begin with, given extracted schema data, we perform some

standard normalization on the extracted names and domain values. We first stem attribute names and
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domain values using the standard Porter stemming algorithm [59]. Next, we normalize irregular nouns
and verbs€.g, “children” to “child,” “colour” to “color”). Last, we remove common stop words by a
manually built stop word list, which contains words common in English, in Web seargh“6earch”,
“page”), and in the respective domain of interesg( “book”, “movie”).

We then perform type recognition to identify attribute types. As Section 3.4.1 discusses, type infor-
mation helps to identify homonymgd., two attributes may have the same name but different types) and
constrain syntactic merging and correlation-based matchiagdnly attributes with compatible types
can be merged or matched). Since the type information is not declared in Web interfaces, we develop a
type recognizeto recognize types from domain values.

Finally, we merge attribute entities by measuring the syntactic similarity of attribute names and
domain valuesd.g, we merge “title of book” to “title” by name similarity). It is a common data
cleaning technique to merge syntactically similar entities by using a linguistic approach. Section 3.4.2

discusses our merging strategy.

3.4.1 Type Recognition

While attribute names can distinguish different attribute entities, the names alone sometimes lead to
the problem of homonymsd.€., the same name with different meanings) — we address this problem

by distinguishing entities by both names and types. For instance, the attributedapaniing in the

Airfares domain may have two meanings: a datetime type as departing date, or a string type as departing
city. With type recognition, we can recognize that there are two different typéspafting: departing

(datetime) anddeparting (string), which indicate two attribute entities.
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Figure 3.7: The compatibility of types.

In general, type information, as a constraint, can help the subsequent steps of syntactic merging and
correlation-based matching. In particular, if the types of two attributes are not compatible, we consider
they denote different attribute entities and thus neither merge them nor match them.

Since type information is not explicitly declared in Web interfaces, we devetgpearecognizeto
recognize types from domain values of attribute entities. For example, a list of integer values denotes an
integer type. In the current implementation, type recognition supports the following types: any, string,
integer, float, month, day, date, time and datetime. (An attribute with only an input box is given an
any type since the input box can accept data with different types such as string or integer.) Two types
arecompatibleif one can subsume anothere(, theis-arelationship). For instance, date and datetime
are compatible since date subsumes datetime. Figure 3.7 lists the compatibility of all the types in our

implementation.

3.4.2 Syntactic Merging

We clean the schemas by merging syntactically similar attribute entities, a common data cleaning tech-
nique to identify unique entities [19]. Specifically, we devel@me-based mergirgnddomain-based
mergingby measuring the syntactic similarity of attribute names and domains respectively. Syntac-
tic merging increases the observations of attribute entities, which can improve the effect of correlation
evaluation.

Name-based Merging We merge two attribute entities if they have similar names. We observe

that the majority of deep Web sources are consistent on some concise “core” attribute eamnes (
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“title”) and others are variations of the core onegy( “title of book”). Therefore, we consider attribute
Ap is name-similarto attributeAq if Ay’'s name> Aq's name {.e., Ay is a variation ofAg) and Aq is
more frequently used thak, (i.e., Aq is the majority). This frequency-based strategy helps avoid false
positives. For instance, in the Books domdirst name is not merged tmame becauséast name is
more popular thaname and thus we consider them as different entities.

Domain-based Merging We then merge two attribute entities if they have similar domain values.
In particular, we only consider attributes with string types, since it is unclear how useful it is to mea-
sure the domain similarity of other types. For instance, in the Airfares domain, the integer values of
passengers andconnections are quite similar, although they denote different meanings.

We view domain values as a bag of worde.( counting the word frequencies). We name such a
bagaggregate valuesienoted a¥, for attributeA. Given a wordw, we denoté/a(w) as the frequency
of win Va. The domain similarity of attributed, and Aq is thus the similarity oVa, andVa,. In

principle, any reasonable similarity function is applicable here. In particular, we csood,, Aq) =

YWEVA, MVag Vap (W) +Vaq (W)
YWeVap WVag Vap (W) +Vag (W) *

The above three steps, form extraction, type recognition and syntactic merging, clean the schema
data as transactions to be mined. More detailed discussion about these data cleaning steps can be found

at the extended report [38].

3.5 Experiments

We collected 447 deep Web sources in 8 popular domains in the format of raw Web pages as our testbed,
where each domain has about 20-70 deep Web sources. This dataset is available as the TEL-8 dataset in

the UIUC Web Integration Repository [17].
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In the experiment, we assume a perfect form extractor to extract all the interfaces in the TEL-8
dataset into query capabilities by manually doing the form extraction step. The reason we do not apply
the work in [72] is that we want to isolate the mining process to study and thus fairly evaluate the
matching performance. (Chapter 4 will systematically study the impact of form extractor to matching
performance.) After extracting the raw data, we do the data cleaning according to the process explained
in Section 3.4. Then, we run the correlation mining algorithm on the prepared data in each domain.
Also, in the results, we use attribute name and type together as the attribute identifier for an attribute
entity since we incorporate type recognition in data preparation to identify homonyms (Section 3.4).

To evaluate the performance of the algorithms we have developed in this chapter, we conduct four
sets of experiment on the TEL-8 dataset. First, we test our approach on the TEL-8 dataset and the result
shows goodarget accuracyWe also evaluate the effectiveness of the matching selection algorithm and
the data preprocessing step. Last, we comparkltheeasure with other measures on the TEL-8 dataset

and the result shows thet-measure outperforms the others in most cases.

3.5.1 Metrics

We compare experimentally discovered matchings, denotetiihywith correct matchings written by
human experts, denoted .. In particular, we adopt th&arget accuracy a metric initially devel-

oped in theMGS framework (Chapter 2), by customizing tteeget questionso the complex matching
scenario. The idea of the target accuracy is to measure how accurately that the discovered matchings
answer the target questions. Specifically, for our complex matching task, we consider the target question
as, given any attribute, to find its synonynme ( word with exactly the same meaning as another word,

e.g, subject is a synonym otategory in the Books domain), hyponymsd., word of more specific

57



meaning.e.g, last name is a hyponym ofauthor) and hypernymsi., word with a broader meaning,
e.g,author is a hypernym ofast name).

It is quite complicated to use different measures for different semantic relationships. We therefore
report an aggregate measure for simplicity and, at the same time, still reflect semantic differences. For
our discussion here, we name synonym, hyponym and hypernym togettiesasym- meaning that
they all denote some degrees of closeness in semantic meanings. Our target question now is to ask the

set of closenyms of a given attribute.

Example 18: For instance, for matchinga} = {B, C}, the closenym sets of attributesB, C are{B,
C}, {A}, {A} respectively. In particular, the closenym set8afoes not have sinceB andC only have
grouping relationship. In contrast, for matchify} = {B} = {C}, the closenym sets of attributasB,
C are{B, C}, {A, C}, {A, C} respectively. We can see that the difference of matchings can be reflected

in the corresponding closenym sets.

Except for this difference in target question, we use the same metric of target accuracy as in the
MGS framework. Specifically, we assume a “random querier” to ask for closenym set of each attribute
according to its frequency. The answer to each question is closenym set of the queried attribute in
discovered matchings. We defi@és(A;j| M) as the closenym set of attribuke. Given M, and M, the

precision and recall of the closenym sets of attritAitare:

__ [CIS(A|[94)"CIS(A] |94

PAJ- (M, M) = [CEES] and
_ [CIs(Aj|2Mc)NCIs(A] |M5) |
Ra, (Mh, Mc) = J\CIS(AJ'\Mcﬂ] -

Since more frequently used attributes have higher probabilities to be asked in this “random querier,”
we compute the weighted average of all Bag's andRa,’s as thetarget precisiorandtarget recall The

weight is assigned a%, whereQ;j is the frequency of attributd; in the datasetif., its number of
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Step Value of | Result Cimin | Cmax
group G G; = {last name (unknown) first name (any)} 0.94
discovery G, = {title (any),keyword (any)} 0.93
G3 = {last name (any),title (any)} 0.91
G4 = {first name (any),catalog (any)} 0.90
Gs = {first name (any),keyword (any)} 0.87
matching M Mj: {author (any)} = {last name (any),first name (any)} | 0.87 | 0.87
discovery Maz: {author (any)} = {last name (any)} 0.87| 0.87
Ms: {subject (string)} = {category (string)} 0.83] 0.83
My: {author (any)} = {last name (any),catalog (any)} 0.82| 0.82
Ms: {author (any)} = {first name (any)} 0.82] 0.82
Msg: {category (string)} = {publisher (string)} 0.76| 0.76
matching R Ri: {author (any)} = {last name (any),first name (any)} 0.87
selection Ry: {subject (string)} = {category (string)} 0.83

Figure 3.8 Running AlgorithmsN-ARY SCHEMAMATCHING and MATCHINGSELECTION on the
Books domain.

Domain | Final Output After Matching Selection Correct?
Airfares | {destination (string)} = {to (string)} = {arrival city (string)}

{departure date (datetime} = {depart (datetime}

{passenger (integer)} = {adult (integer),child (integer),infant (integer)
{from (string),to (string)} = {departure city (string),arrival city (string)}
{from (string)} = {depart (string)}

{return date (datetime} = {return (datetime}

Movies | {artist (any)} = {actor (any)} = {star (any)}

{genre (string)} = {category (string)}
{cast & crew (any)} = {actor (any),director (any)}

<| <|<|<|<| <|0|<|<

Figure 3.9 Experimental results for Airfares and Movies.

occurrences in different schemas). Thereftaeget precisionandtarget recallof M, with respect to

M. are:

Pr(Mh, Mo) = S, 50 Pay (M, )
Rr (M, M) = 3 a5 Ray (Mo, 36).

3.5.2 Experimental Results

To illustrate the effectiveness of the mining approach, we only list and count the “semantically difficult”

matchings discovered by the correlation mining algorithm, not the simple matchings by the syntactic
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Domain Pr Ry Pr Rr
(20%) | (20%) | (10%) | (10%)

Books 1 1 1 1
Airfares 1 1 1 0.71
Movies 1 1 1 1
MusicRecords 1 1 076 |1
Hotels 086 |1 0.86 | 0.87
CarRentals 072 |1 0.72 | 0.60
Jobs 1 0.86 | 0.78 | 0.87
Automobiles | 1 1 093 |1

Figure 3.1Q Target accuracy of 8 domains.

merging in the data preparation.g, {title of book} to {title}). Our experiment shows that many
frequently observed matchings are in fact “semantically difficult” and thus cannot be found by syntactic

merging.

Result on the TEL-8 Dataset In this experiment, we run our algorithm (with-measure as the cor-
relation measure) on the TEL-8 dataset. We set the thresfigltts 0.85 andTy to 0.6 for positive
correlation mining and,, to 0.75 for negative correlation mining. We empirically get these numbers by
testing the algorithm with various thresholds and choose the best one. As Section 8 will discuss, a more
systematic study can investigate in choosing appropriate threshold values.

Figure 3.8 illustrates the detailed resultsnefiry complex matchings discovered in the Books do-
main. The step of group discovery found 5 likely grou@s (o Gs in Figure 3.8). In particulann,
gives a high value (actually the highest value) for the groupsvhame (any) andirst name (any). The
matching discovery found 6 likely complex matchind4;(to Mg in Figure 3.8). We can see thit;
andMs are fully correct matchings, while others are partially correct or incorrect. Last, the matching
selection will choos&11 andMgs (i.e., the correct ones) as the final output.

Figure 3.9 shows the results on Airfares and Movies. (The results of other domains can be found
in the extended report [38]). The third column denotes the correctness of the matching. In paxticular,

means a fully correct matching,a partially correct one and an incorrect one. Our mining algorithm
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does find interesting matchings in almost every domain. For instance, in the Airfares domain, we find
5 fully correct matchingse.g, {destination (string)} = {to (string)} = {arrival city (string)}. Also,
{passenger (integer) = {adult (integer),child (integer),infant (integer} is partially correct because it
missessenior (integer).

Since, as a statistical method, our approach relies on “sufficient observations” of attribute occur-
rences, it is likely to perform more favorably for frequent attribuies, (the head-ranked attributes in
Figure 3.5). To quantify this “observation” factor, we report the target accuracy with respect to the
attribute frequencies. In particular, we consider the attributes ab&reg@ency threshold (i.e., the
number of occurrences of the attribute over the total number of schemas isT@doveoth discovered
matchings and correct matchings to measure the target accuracy. Specifically, we run the algorithms on
all the attributes and then report the target accuracy in terms of the frequency-divided attributes. In the
experiment, we choosk as 20% and 10%.

Consider the Airfares domain, if we only consider the attributes above 20% frequency in the match-
ing result, only 12 attributes are above that threshold. The discovered matchings in Figure 3.9 become
{destination (string)} = {to (string)}, {departure date (datetime} = {depart (datetime}, and{return
date (datetime) =return (datetime}. (The other attributes are removed since they are all below 20%
frequency.) These three matchings are exactly the correct matchings the human expert can recognize
among the 12 attributes and thus we get 1.0 in both target precision and recall.

Next, we apply the 10% frequency threshold and get 22 attributes. The discovered matchings in
Figure 3.9 are unchanged since all the attributes (in the matchings) are now passing the threshold.
Compared with the correct matchings among the 22 attributes, we do miss some matchings such as

{cabin (string)} = {class (string)} and{departure (datetime) =departure date (datetime}. Also, some
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Domain reduced missed reduced missed
false positive| false positive| false positive| false positive
(20%) (20%) (10%) (10%)
Books 0 0 3 0
Airfares 2 0 22 0
Movies 0 0 2 0
MusicRecords 3 0 5 1
Hotels 6 1 11 2
CarRentals 2 1 2 1
Jobs 4 0 9 1
Automobiles 0 0 2 1

Figure 3.11 The effectiveness of reducing false matchings in the matching selection step.
matchings are partially correct such fgsssenger (integer} = {adult (integer),child (integer),infant
(integer}. Hence, we get 1.0 in target precision and 0.71 in target recall.

Figure 3.10 lists the target accuracies of the 8 domains under thresholds 20% and 10%. From the

result, we can see that our approach does perform better for frequent attributes.

Evaluating the Matching Selection Strategy To evaluate the effectiveness of the matching selection
algorithm we developed in Section 3.2.2, which exploits conflict between matching candidates to re-
move false positives, we count the number of false matchings reduced and missed by the selection step
respectively. Figure 3.11 lists this result for the eight domains under both 20% and 10% frequency
thresholds. We can see that the greedy selection strategy basgg,omeasure is quite effective in
reducing false matchings. Most false matchings are removed in the selection step. In particular, al-
though the 10% frequency threshold may result in more false matchings comparing to the 20% one,
the selection strategy can remove most of them and keep the performance good. For instance, in the
Airfares domain under 10% frequency threshold, 22 false matchings are removed and no false matching

is missed.

Evaluating the Data Preprocessing StepTo evaluate the effectiveness of the data preprocessing step,

we test theDCM algorithm over schemas without data preprocessing. In particular, we only perform the
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Domain Pr Rr Pr Rr

(20%) (20%) (10%) (10%)
Books 0.79(-0.2) | 1 0.74(-0.26 | 1
Airfares 1 1 0.81(-0.19 | 0.82(+0.11)
Movies 1 1 0.87(-0.13 | 1
MusicRecords 0.93(-0.07) | 1 0.70(-0.09 | 1
Hotels 0.66(-0.20 | 1 0.47(-0.39 | 0.46(-0.4)
CarRentals 1(+0.28) 0.63(-0.37) | 1(+0.28) 0.16(-0.49
Jobs 0.70(-0.30 | 1(+0.14) 0.52(-0.26 | 0.87
Automobiles | 1 1 0.66(-0.27) | 0.68(-0.32

Figure 3.12 Target accuracy of the 8 domains without data preprocessing.

standard normalization sub-step in Section 3.4 for the input schemas and ignore the type recognition
and syntactic merging sub-steps. Our goal is to see the impact of these sub-steps on the accuracy of
matching.

Intuitively, although query interfaces are quite concerted in terms of the attributes they use, there
still are many syntactic variations for expressing the same attribiggtitle, book title, title of book and
search by title for attribute “title.” As discussed in Section 3.4, type recognition and syntactic merging
can help merge these variations into a single attribute and thus increase attribute occurrences across
query interfaces, which can improve the performance of the subsequent correlation mining algorithm.

Figure 3.12 shows the result of running heM algorithm with non-preprocessed schemas as input.
In Figure 3.12, we write accuracies that change after removing the data preprocessing step in italic font
and show the differences in brackets. As we can see, the accuracies for many domains are much worse
than the ones with data preprocessing in Figure 3.10. In particular, under the 10% frequency threshold,
where more attributes are considered for mining matchings, accuracies are greatly reduced. Therefore,
applying the data preprocessing step, although may itself result in some errors, is crucial for our mining-

based matching approach and can indeed significantly enhance the matching accuracy.
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Domain Pr(H) | Rr(H) | Pr(Q) Rr(Q)

(10%) | (10%) | (10%) (10%)
Books 1 1 0.80(-0.20 | 1
Airfares 1 0.71 | 0.79(-0.21) | 0.61(-0.10
Movies 1 1 0.93(-0.07 | 1
MusicRecords 0.76 | 1 0.76 1
Hotels 0.86 | 0.87 | 0.44(-0.42 | 0.95(+0.08)
CarRentals 0.72 | 0.60 | 0.68(-0.09 | 0.62(+0.02)
Jobs 0.78 | 0.87 | 0.64(-0.19 | 0.87
Automobiles | 0.93 | 1 0.78(-0.15 | 1

Figure 3.13 Comparison oH-measure andaccard
Evaluating the H-Measure We compare théd-measure with other measures and the result shows
thatH-measure gets better target accuracy. As an example, we chaosad(() as the measure we

compare to. Withlaccard we define then, andm, as

Z(A ?AQ)a % < Td
Mp(Ap, Ag) = ’ f

0, otherwise

and

M(Ap,Aq) = 1—{(Ap,Aq).

We set theT, andT;, for this Jaccardbasedm, andm, as 0.5 and 0.9 respectively. We compare the
target accuracy dfi-measure andaccardin the situation of 10% frequency threshold. The result (Fig-
ure 3.13) shows thai-measure is better in both target precision and target recall in most cases. Similar

comparisons show th&t-measure is also better than other measures suClosiseandConfidence
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3.6 Conclusion

This chapter explores co-occurrence patterns among attributes to tackle the complex matching problem.
Specifically, we abstract complex matching as correlation mining and develdpttieframework.
Further, we propose a new correlation meastttaneasure, for mining negative correlations. Our
experiments validate the effectiveness of both the mining approach ahidrtresasure.

To complete an automatic matching process, which starts from raw HTML pages, we integrate the
DCM framework with an automatic interface extractor [72]. Such “system integration” turns out to be
non-trivial- As automatic interface extraction cannot be perfect, it will introduce “noise’drroneous
extraction), which challenges the performance of the subsequent matching algorithm. Chapter 4 will
discuss our approach to maintaining the matching quality with the presence of errors in the interface

extraction step.
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Chapter 4

Dealing with Noise: the EnsemblebCM

Framework

Our study on holistic matching algorithms so far has been focused on the matching task in isolation—
That is, we assume the input schemas are perfectly extracted. To complete an automatic matching
process, we must incorporate automatic techniques for interface extraction. Execut@MHtieame-

work on automatically extracted interfaces, we find that the inevitable errors in automatic interface ex-
traction may significantly affect the matching result. To maketii& framework robust against such
“noisy” schemas, we propose to integrate it with an “ensemble” approach, which creates an ensemble
of DCM matchers, by randomizing the schema data into ntidalg and aggregating their ranked results

by taking majority voting.

4.1 The EnsembleDCM Framework

To fully automate thé&@CM matching process, which starts from raw HTML pages as Figure 3.1 shows,

we must integrate thBCM framework (discussed in Chapter 3) with an automatic interface extractor.
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It turns out that such integration is not trivial— As automatic interface extraeonotbe perfect, it
will introduce “noise,” which challenges the performance of the subsedqu@mtmatching algorithm.
This chapter presents a refined algorithm, éheemblédCM framework, in contrast to theaseDCM
framework in Section 3, tmaintainthe robustness @dCM against such noisy input.

We note that such “system integration” issues have not been investigated in earlier works. Most
works on matching query interfaces, for instance@sS andDCM frameworks and others [41, 66], all
adopt manually extracted schema data for experiments. While these works rightfully focus on isolated
study of the matching module to gain specific insight, for our goal of constructing a fully automatic
matching process, we must now address the robustness problem in integrating the interface extraction
step and the matching algorithm.

In particular, we integrate olCM algorithm with the interface extractor we developed recently [72],
which tackles the problem of interface extraction with a parsing paradigm. The interface extractor as
reported in [72] can typically achieve 85-90% accuracy— thus it will make about 1-1.5 mistake for every
10 query conditions to extract. While the result is quite promising, the 10-15% errongié®y may
still affect the matching quality. As our experiment shows in Section 4.5, with noisy schemas as input,
the accuracy of the baggcM framework may degrade up to 30%.

The performance degradation results mainly from two aspects: First, noise may affect the qualifica-
tion of some correlations and decrease tl&gj#, values {.e., Equation 3.1) below the given threshold.

In this case, the dual correlation mining algorithm cannot discover those matchings. Second, noise may
affect the right ranking of matchings (with respect to @y« measurej.e., Equation 3.2) and conse-
quently the result of greedy matching selection. Although in principle both qualification and ranking
can be affected, the influence on qualification is not as significant as on ranking. Matching qualification

will be affected when there are enough noisy schemas, which mak,thealue lower than the given
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thresholdsT,, or Tn. In many cases when only a little noise exists, the affected matchings are still above
the threshold and thus can be discovered in the qualification step. However, the ranking of matchings
usingCnax is more subtle— That is, even when there are only little noise, the ranking of matchings is
still likely to be affectedi(e., incorrect matchings maybe ranked higher than correct ones). The reason

is that other than comparing matchings to a fixed threshold, the ranking step needs to compare matching
among themselves. A single noise is often enough to change the ranking of two conflict matchings.
Consequently, the ranking is less reliable for the matching selection step to choose correct matchings.
As a result, although correct matchings may be discovered by the dual correlation mining process, they
may be pruned out by the matching selection phase due to the incorrect ranking of matchings, and thus
the final matching accuracy degrades.

While large scale schema matching brings forward the inherent problem of noisy quality in interface
extraction, the large scale also lends itself to an intriguing potential solution. An interesting question
to ask is: Do we need all input schemas in matching their attrib@tda principle, since pursuing a
correlation mining approach, our matching techniques exploit “statistics-based” evaluation in nature
and thus need only “sufficient observations.” As query interfaces tend to share attrébgtesjthor,
title, subject, ISBN are repeatedly used in many book sources, a subset of schemas may still contain
sufficient information to “represent” the complete set of schemas. ThubGkematcher in fact needs
only sufficient correct schemas to execute, instead of all of them. This insight is promising, but it also
brings a new challenge: As there is no way to differentiate noisy schemas from correct ones, how should
we select input schemas to guarantee the robustness of our solution?

Tackling this challenge, we propose to ext®&@M in anensemblscheme with sampling and voting
techniques. (Figure 4.1 shows this extension from beé framework,i.e., Figure 4.1(a), to ensemble

DCM framework,i.e., Figure 4.1(b), which we will elaborate in Section 4.2.) To begin with, we consider
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to execute th&CM matcher on a randomly sampled subset of input schemas. SdeWwrasampling

has two attractive characteristics: First, when schemas are abundant, the downsampling is likely to still
contain sufficient correct schemas to be matched. Second, by sampling away some schemas, it is likely
to contain less noise and thus is more probable to sustab@hematcher. (Our analysis in Section 4.2
attempts to build analytic understanding of these “likelihoods.”)

Further, since a single downsampling may (or may not) achieve good result, as a randomized
scheme, its expected robustness can only be realized in a “statistical” sense— Thus, we propose to take
an ensemble dbCM matchers, where each matcher is executed over an independent downsampling of
schemas. We expect that the majority of those ensemble matchers on randomized subsets of schemas
will perform more reliably than a single matcher on the entire set. Thus, by taking majority voting
among these matchers, we can achieve a robust matching accuracy.

We note that, our ensemble idea is inspiredbagging classifiergll, 26] in machine learning.
Bagging is a method for maintaining the robustness of “unstable” classification algorithms where small
changes in the training set result in large changes in prediction. In particular, it creates multiple versions
of a classifier, trains each classifier on a random redistribution of the training set and finally takes a
plurality voting among all the classifiers to predict the class. Therefore, our ensemble approach has
the same foundation as bagging classifiers on exploiting majority voting to make an algorithm robust
against outlier data in the input.

However, our approach is different from bagging classifiers in several aspectsséitiag We ap-
ply the idea of the ensemble of randomized data for unsupervised leaeningn(our scenario, schema
matching with statistical analysis), instead of supervised learmiag lffuman experts give the learner
direct feedback about the correctness of the performance [45]), which bagging classifiers is developed

for. Secondtechniques Our concrete techniques are different from bagging classifiers. In particular,
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Figure 4.1: From the bas®CM framework to the ensemblzCM framework.

in the sampling part, we take a downsampling other than random redistribution with replacement; in
the voting part, we need to aggregate a set of ranked lists, which is more complicated than aggregate
a set of labels in bagging classifiers. Thiathalytic modeling We build an analytic modeling specific
to our matching scenario (Section 4.2), which enables us to validate the effectiveness of a particular
configuration and thus can be the basis for the design of the ensemble scheme.

We will next discuss this ensembibecM framework in detail. In particular, we first more formally
model this framework and analyze its effectiveness (Section 4.2). Then, we aggregate the results of
multiple DCM matchers with a voting algorithm, which thus essentially captures the consensus of the

majority (Section 4.4).

4.2 Analytical Modeling

We develop a general modeling to formalize the ensermbi@ framework just motivated. Our goals

are two fold: First, based on our modeling, we can analytically judge the effectiveness of the ensemble
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approach. Second, the modeling can be used to validate the setting of parameters in the ensemble
scheme.

We first redraw the bageCM framework in Figure 3.1 as Figure 4.1(a) by expanding the two steps
in matching constructioni,e., matching ranking and matching selection. We view the dual correlation
mining algorithmN-ARY SCHEMAMATCHING and the matching ranking together as a black bage
algorithmA. As we just discussed, the performance degradation is mainly caused by the impact of noise
on A, where the output oA, denoted byR (i.e., the output ranking determined yover inputl), is
disturbed. The goal of our ensemiidM framework is thus to maka still output reasonably good
ranking of matchings with the presence of noise.

Specifically, given a set dil schemasg as input, assume there ané problematic schemas.€.,
noise) that affect the ranking ®1. Suppose the holistic match&rcan correctly rankv if one trial
draws no more thaK noise K < W)-i.e, in which caseM as a correct matching can actually be
ranked higher.

Next, we need to model the ensemble framework, which consists of two steyiple sampling
andrank aggregation as Figure 4.1(b) showsFirst, in the multiple sampling step, we conduEtt
downsamplings of the input schemasvhere each downsampling is a subset of independently sampled
Sschemas fronh. We name such a downsampling agial and thus havé trials in total. We denote
ith trial asli(S) (1 <i < T). By executing the base algorithover each trial;(S), we get a ranked list
of matchingsR?(S). Secondthe rank aggregation step aggregates ranked matchings from all the trials,
ie., F\f(s) (1<i<T), into a merged list of ranked matchings, which we denotR(&“l(s),..., RAT(S)),
or ]RHA(ST) in short. We expect the aggregate ranHRﬁgST) can alleviate the impact of noise and thus is

better tharR.
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SinceW is determined by “inherent” characteristics of input schehawK by the holistic matcher
A, we name them dsase parameterdJnlike W andK, the sampling siz&and the number of trial$
are “engineered” configurations of the ensemble framework and thus narfrachasvork parameters

Our goal of analysis is thus to justify, given estimation of the base paraméfeasd K, which
characterize the data quality and the base algorithm, can certain configuration, in t&ausddf, of
the ensemble framework achieve robustness? (If so, we will then ask, how to determine appropriate
settings ofSandT, which is the topic of Section 4.3.)

In particular, given our modeling, we can derive the probability to correctly Kk a single trial,
which we name akit probability, i.e., the chance of “hit” a correct ranking ™ in a single trial (and
as we will discuss later, we will do more trials to enhance the overall hit ratio). Given base parameters
W andK of M, hit probability is a function o (and notT as it is for a single trial) and thus denoted as
a,, (S). To deriveq,, (S), we first compute the probability that there are exactigise in a single trial,

denoted byPr(k =i|9), i.e., with i noise out oW andS—i correct ones out dll —W:

W  N-W

Pr(k=i|S) = (4.1)

As our model assumeb) can be correctly ranked when there are no more tamise. We thus

have:

K

a,, () = _;Pr(k: i) (4.2)
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Next, we are interested in how many times, amadntyials, can we observ® being ranked cor-
rectly? (This derivation will help us to address the “reverse” question in Section 4.3: To obbderve
in a majority of trials with a high confidence, how many trials are necessary?) This problem can be
transformed as the standard scenario of tossing an unfair coin in statistics: Given the probability of
getting a “head” in each toss ag (S), with T tosses, how many times can we observe heads? With this
equivalent view, we know that the number of trials in whMhs correctly rankedife., the number of
tosses to observe heads), denote®ky is a random variable that has a binomial distribution [3] with
the success probability in one trial ag(S). We usePr(Oy =t|S, T) to denote the probability tha
is correctly ranked in exactlytrials. According to the binomial distribution, we have

T!

mow(s)t(l—ow(s))”t (4.3)

Pr(Ovw =t|ST) =

Since our goal is to take majority voting among all the trials (in rank aggregation), we need a
sufficient number of trials to ensure thdtis “very likely” to be correctly ranked in the relative majority
of trials. As an analogy, consider the coin tossing: Even the probability to get a head in each toss is
high, say 0.8, we may not always obsef¥8 x T heads inT trials; the actual number of heads may
even be a minority of trials— And our goal is to desigh auch that “the number of heads” is very likely
to be the majority. We thus need a sufficient number of trials to enable the majority voting. We name
the probability thatvl can be correctly ranked in the majority of triale(, more than half of trials) as
voting confidenceVoting confidence is a function &f (as just intuitively observed) arfd(as it also

depends o, (S) and thusS). We denote the voting confidence[®sS T). In particular, we have

.
Bu(ST) = Pr(Om =t[ST). (4.4)

_I+1
t_2
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As a remark, in Equation 4.4, we constrdinas an odd number and thLI%l is the minimum
number of trials needed to be the majotity

Our modeling essentially captures the functional relationship of the samplin§ aimethe number
of trials T to together achieve a desired voting confidence. There are two interpretations of Equation 4.4
in examining a framework: First, giveBand T, we can use Equation 4.4 to evaluate how effective
the framework is. In particular, we illustrate with Example 19 as a basis of understanding how the
framework works. Second, we can use Equation 4.4 to design the configuration of a framework. That
is, for an objective voting confidence to achieve, what would be the right configuratiSrad T ?

Section 4.3 will focus on this configuration issue.

Example 19: Assume there are 50 input schemias.(N = 50). As characteristics of the data quality
and the base algorithm, suppose a matciihgannot be correctly ranked because of 6 noisy schemas
(i.e., W = 6); on the other hand, suppobktcan be correctly ranked if there are no more than two noisy
schemasif(e., K = 2). Also, as the configuration of the ensemble framewaork, suppose we want to sample
20 schemas in a single trial and conduct 99 triats,(S= 20andT = 99).

According to Equation 4.1, in any single trial, we have 0.04 probability to get no noisy schema,
0.18 probability with one and 0.33 probability with two. Together, we have 0.04 + 0.18 + 0.33 = 0.55
probability to correctly rani in one trial {.e., a,,(S) = 0.55).

Further, Figure 4.2 shows the binomial distributiorQpf. Going back to the coin tossing analogy,
this figure essentially shows, if the probability to get a head in one toss is 0.55, after tossing 99 times,
the probability of observing a certain number of heads. For instance, wéh@g = 50/S,T) = 0.05,

which means the probability to observe 50 heads in 99 tosses is 0.05. According to Equation 4.4, we

1WhenT is odd, the notion of majority is always well defined, as there are no ties (of equal halves). This advantage ensures
there is no ambiguous situation in comparing two matchings in the rank aggregation step in Section 4.4. AlJojsnduzh
B, (S T) becomes a monotonic function &f We use this property to derive an appropriate configuration in Section 4.3.
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Figure 4.2 The binomial distribution 0Oy, with T = 99 anda,, (S) = 0.55.

have 0.84 voting confidence to correctly rak(or observe heads) in more than 49 trials (or tosses)
(i.e, B, (S T) =0.84). Therefore, evem, (S) is not very highe.g, 0.55 in this example, with sufficient

number of trails, it is still very likely thal can be correctly ranked in the majority of trials.

Finally, while our analysis above focuses on a single matching, there are multiple matdhings,
Mo, ..., Mp, to discover. We note that our analysis can generally assume a representative “worst-case”
matching, based on which the analysis will also cover all the matchings. Specifically, the above mod-
eling can be applied to any; with its corresponding\d andK; values. We then assume there is a
“worst-case” matching/* with base paramete* andK*. We want to show that if we are likely to
correctly rankM* in the majority of trials under some setting, we are even more likely to correctly rank
all the matching®, Mo, ..., My, in the majority of trials with the same setting. If this statement can be
justified, we only need to consider the “worst-case” situation in determining the ensemble configuration
in Section 4.3.

We show that the base parameters of the imaginary “worst-case” matdtiegn be set a¢/* =
max\ andK* = minkK;, 1 <i < n. Intuitively, the higheW is, the lowera,, (S) will be because we
have more noise in the input schemasn the other hand, the lowds is, the lowera,, (S) will be

because the base algorithinis less robust against noise. More formally, we can show dh&6)
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is monotonically decreasing with respectitband monotonically increasing with respectko (The
derivation is straightforward and thus we do not provide a proof here.) Therefore, if we assume a
matchingM* with base parameteW* as the maximal value & andK* the minimal value oK;, we
havea,, (S) > a,,. (S) any matchingvli (1 <i <n).

Further, we can show that all the matchings also have higher voting confidenc# thamtu-
itively, if a matchingM has higher hit probabilityM should be more likely to be observed in the
majority of trials, which means it also has a higher voting confidence. In particular, we can show that
B, (S T) is monotonically increasing with respect dg,(S). (Similarly, the derivation is straightfor-
ward and thus we do not provide a proof here.) Therefore, smi((éS) >0,.(5 (A <i<n), we have
Bu (ST) = B,.(ST) (1 <i<n). This inequality indicates thal* is indeed the “worst-case” match-
ing. Specifically, if we can find an appropriate settingS&#nd T to correctly rankM* in the majority
of trials with high confidence, we will have even more confidence to correctly rank all the matchings in

the majority of trials with the same setting 8andT.

4.3 Sampling and Trials: Configuration

This section focuses on the first phase of the ensemble framework: Sampling and trials. The key chal-
lenge we need to address is: GiwdnandK, we need to find an appropriate configuratiors@ndT to

provide guarantee on voting confidence. To begin with, we must characterize our “system environment”
by estimating the base parametéfsandK. Then, we discuss our strategy to config8r@nd T based

on our modeling in Section 4.2.

Base Parameters:Before derivingS and T, we need to estimate the “worst-case” base parameters
W* andK* in Equations 4.1 and 4.2. In particul&y* andK* can be related to the error rate and the

tolerance threshold respectively in the modeling of error cascade. Fikt; aharacterizes the noisy
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degree of the input scheméaswe letW* = N x p, whereN is the number of schemas apds the
error rate ofl. In our development, we setto 0.1, as the worst-case value, according to the accuracy
of current interface extraction technique, as discussed earlier. Second, since the behavsoverfy
specific and complicated, it may be difficult to accurately obkginWe thus take a conservative setting,
which will lead to a “safe” frameworlke.g, setting the worst-cad€* as a small constant.
As just discussed, all matchings that are not worse than the worst-case setting can be guaranteed to
have higher voting confidences. Therefore, with conservative worst-case settings, we expect to correctly

rank more matchings in the aggregate reRﬁégT).

Framework Parameters: In Section 4.2, we have shown that, for some matchihgith respect to
given base parametevg andK, for certain framework parameteSand T, we can derive the voting
confidenceB,,. (S T) with statistical analysis. Now we are facing the reverse problem: Given estimated
W, K, and our objective voting confidence, what are the approp8ated T values we should take?
Formally, givenW, K, and an objective voting confidence what are the sampling siz8 and the
number of trialsT we should take to ensuM* has at least a probability of to be correctly ranked in
the majority of trials, i.e.3,. (ST) > c?

In particular, we want to know, among all thi§, T) pairs that satisfy the above statement, which
pair is the most appropriate? To answer this question, we need to develop some criteria to evaluate
settings. Intuitively, we would like to prefer(&, T) pair that can maximiz&€and minimizeT :

On the one hand, we want to reduce unnecessary downsampling. A verySwvadlie may not
be able to collect enough schemas to represent the complete input data and consequently degrade the
accuracy of the base algorithfn It may also, by overly-aggressive downsampling, remove some more
“unique” (but correct) schemas from consideration, and thus reduce the applicability of the matching

result. Thus, among all the val{&, T) pairs, we prefer a large&that can cover more schemas.
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On the other hand, we want to reduce unnecessary trials. As Section 4.2 discussed, the more trials
we have, the higher voting confidence will be. We can formally show that Wwhierimited to be odd,

B, (ST) is monotonically increasing with respectTo (Again, the derivation is straightforward and
thus we do not provide a proof here.) Considering the execution time of the ensemble framework, we
do not want to be over-tried; therefore, among all the vgdid) pairs, we prefer a pair with a smaller

T.

However, these two goals cannot be optimized at the same time, because as our modelin§ shows,
andT are not independent— One will negatively affect the choice of another. Specifically, when we set
B, (ST) to an objective confidenag T can be viewed as a function 8for vice versa. Choosing one
will thus also affect another: A larg&will result in a lower hit probability and thus more trialsfor
the same objective confidence; on the other hand, a smalMl demand a higher hit probability and
thus a smaller sampling si& Consequently, in the space of all val(i T) pairs, there does not exist
one that can optimize bothandT.

To balance these two goals, we have to choose a trade-off setting. We propose two ways to determine
SandT:

First,S— T: In some situations, we may have a reasonable graSpsofthat we know the range of
input size (.e., the degree of downsampling) that the base algorithm may denwmgdsome statistical
approach typically requires a minimal number of observations of data to ensure its statistical confidence.
In such a case, we can start with@ualue and set as the minimal (odd) number that can achieve the

objective confidence, i.e.,

T =min{t[t > 0,tisoddf,.(ST)(St) > c} (4.5)
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Figure 4.3 The insensitivity ofSonT.
Second,T — S In other situations, we may be constrained by affordable computation time, which
determines the acceptable rangd oin this case, we start with a desired number of triand choose

the maximalSto achieve the objective confidende,,

S=max{s|l1 <s<N,B,.(ST)(sT)>c} (4.6)

Example 20: Assume there are 50 input schemias.,(N = 50) and our objective confidence is 0i%(,

¢ =0.9). According to our discussion, the settings of the “worst-case” matddihgreW* = N x p
=50x 0.1 =5andK* = 2. SettingK* to 2 is a “safe” configuration we also use in our experiments
(Section 3.5).

IntheS— T strategy, assume we st 20. Based on our modeling, for any odd numbeve can
compute the voting confiden@s. (Sit). According to Equation 4.5, we take the mininhahat satisfies
B, (St) > 0.9 and thus we get = 11.

On the other hand, in tHE — Sstrategy, assume we skt 41. Similarly, for anys (1 < s< N), we
can computg, . (s, T). According to Equation 4.6, we take the maxirSdhat satisfie,. (s,T) > 0.9

and thus we geb= 22

Although bothS — T andT — Sare valid configuration strategies, as Example 20 just showed,

in practice thel — S strategy is better because it is easier to gickTo illustrate this statement, we
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compute the correspondirgvalues for all the odd numberiB between 0 to 200 using the — S
strategy,i.e., Equation 4.6, with the same system setting as Example 20 assumed. Figure 4.3 shows
the result, from where we observe that whiemcrease to some point, around 30 in this example, the
corresponding values become very stable, almost insensitive to the change of

On the other hand, from the same Figure 4.3, we can infer the opposite trendSof-tflestrategy.
Picking anS will significantly affect the value off. SomeS values may result in a very largg,
which is not affordable in practice. In some cases, for a [&geaaybe it is even impossible to find a
corresponding that satisfies the given objective voting confidence.

Overall, it is much easier to pick thanSin practice. Therefore, in our experiments (Section 3.5),
we adopt thel — Sstrategy. Also, we will show that the empirical result of testing the framework with

various configuration settings is consistent with our analysis above.

4.4 Voting: Rank Aggregation

This section discusses the second phase of the ensemble framework: Aggregating |1a1’fl'1(lggmgs,
Rﬁ(s) from theT trials into a merged list of ranked matchin]@%sn. The main issue we are facing is
to develop a rank aggregation strategy that can reflect the majority “consenﬂ%m.

We notice that this rank aggregation in our situation is slightly different from the traditional rank ag-
gregation problem. Traditional rank aggregation assumes all voters share the same set of candidates and
only rank them in different orders. In contrast, in our scenario, no candidate is given before executing
the base algorithm and each trial outputs its own matching result. Therefore, before aggregate rankings,
we need to have a candidate selection step to select matching candidates.

Consequently, the rank aggregation phase consists of two sub-steps: 1) Candidate selection: To

select candidates from eaéﬁ(s) to form a common pool of candidatgs 2) Rank aggregation: To
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aggregate th@ rankingsPR’i(S), PF\AT(S) into RHA(ST), wherePR’?(S) is the “projected” ranking of

R’?(S) on C, as we will discuss below.

Candidate Selection

We select candidates based on the intuition that if a matd¥lirgyonly discovered by a minority of
trials, M is more likely to be a false matching. Therefore, we consider a matching as a candidate if it
appears in the majority af rankings,Rﬁ(s), Rﬁ(s). All the matchings whose number of occurrences
are less tha-* are thus pruned.

Let C denote the union of all the candidates in eR@&. After candidate selection, we will remove
the non-candidate matchings from e&fj?s) and meanwhile preserving the ordering of candidates; the
corresponding new ranked list, which can be viewed as a “projectiorﬁ#i\gg on C, contains only

candidates and is denotedl%af(s).

Example 21: Assume we execute the base algoritAron three trialsj.e., T = 3, and the outputs are
thus three ranked Iisla‘;(s), RQ(S) and RQ(S). SupposeR,‘l(S) outputs rankingvly > M > Mz > My in
descending ordeRg(S) outputsMy, > M1 > M3z > Ms, andRQ(S) outputsMsz > M1 > Mz > My.

Since% = 2, any matching that occurs only once will be pruned. In particiaiis pruned; other
matchingsM1, M2, M3 andMy, all at least occur twice and thus are selected as matching candidates.
Therefore, we have = {M1,M2,M3,M4}.

The projected rankings are thR:Eﬁ(S): M1 > Mo > Mz > My, PF?Q(S): My > M1 > Mg, andPR“S(S:

M3 > M1 > M, > Mg. In particular,Ms does not appear iFIRAZ(S) because it has been pruned.

Rank Aggregation

In rank aggregation, we need to construct an orderedRﬁgT) for the candidates i, based on

the individual ranksPF?ﬁ(S), PF(;“T(S). This problem is essentiallyrank aggregatiorproblem, which
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has been extensively studied as a particutding system in both social science [44, 69] and computer
science [29, 31]. In the literature, many rank aggregation strategies have been proposed, such as Borda’s
aggregation [10], Kemeny optimal aggregation [44], and footrule optimal aggregation [29]. There does
not exist an aggregation strategy that can beat other strategies in all aspects— Different strategies have
different strength and weakness.

Before discussing concrete aggregation strategies, we first need to solve the partial list problem.
Specifically, since the output of one trial may not contain all the candidat€s I?rRﬁ(S) may be only
a partially ordered list. To be able to apply the aggregation strategy (as we will discuss below), it is
necessary to also assign ranks to the candidates not in the list. In our development, given a trial with a
partial list, we assign all the uncovered candidates with the same lowest rank. Therefore, in one trial,
a covered candidate is always ranked higher than an uncovered one, and two uncovered candidates are
equally ranked.

Since essentially any rank aggregation strategy can be applied in our scenario, in our development,
we test several different aggregation strategies and our goal is to find the most appropriate one. We
first choose the widely deployed Borda’s aggregation [10] as the baseline aggregation strategy. We
then realize that to enforce the majority voting, it is important that an aggregation strategy satisfies
the Condorcet criterion[69]. We thus propose a stratedyK aggregation by combining Kemeny
optimal aggregation [44] and footrule optimal aggregation [29]. We will discuss these two strategies,

i.e,, Borda’'s aggregation and FK aggregation, in detail respectively.

Baseline: Borda AggregationA primary strength of Borda’s aggregation is that it is rather simple
and computationally efficient: It can be implemented in linear time. Borda’s aggregation also satisfies
some good properties such as anonymity, neutrality, and consistency [68]. Specifically, in Borda's

aggregation, given a candidawg, letr; be the number of matchings ranked lower tiénin PF{\(S),
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the borda scoreof M;, denoted a8(M;), is defined as the sum of alj;, i.e, B(Mj) = S1_;r k. The
aggregation resuIEHA(ST) is thus the descending ordering of all the candidates with respect to their borda

scores.

Example 22: Continue on Example 21, after candidate selection, we first complete the partial lists.
In particular, sincePF{;(S) only partially ranks the four candidates, we assign the lowest rank to the
uncovered candidatdy, i.e., we rankM, as thedth candidate irPF?ﬁz(S). Next, we compute the borda
score for each candidate and then apply Borda’s aggregation. In particularMsiiseanked higher

than 3 candidates iﬁ'R“l(S), 2 in PF{;(S) and 2 inPR“s(S), the borda score foM; is3 +2 + 2 = 7.

Similarly, the borda scores fdvl, to M4 are 6, 5, O respectively. The final rankim*( ) is thus

ST

M1 > Mz > M3 > My.

Enforcing Majority by Satisfying the Condorcet Criterion: FK Aggregati@ur analysis of the ef-
fectiveness of the ensembieCM framework in Section 4.2 is based on the assumption that when a
matching is correctly ranked in the majority of trials, it will be correctly rankeRﬁ&T). Therefore,
our aggregation strategy should reflect this requirement of majority— That is, if a matching can be cor-
rectly ranked in most trials, its ranking RQST) should also be correct.

We notice that this requirement is consistent with the claSsitdorcet criterior{69]. Specifically,
the Condorcet criterion requires that, given any two candiddfendM;, if a majority of trials ranks
M; higher thanM;, thenM; should be ranked higher thaw; in the aggregate IiﬁkﬂA(ST). (As we can
see here, setting the number of tridlas an odd number, as Section 4.2 discussed, can ensure that there
will be no tie situation between any twd; andM;.) The fact that aggregation mechanisms that satisfy
the Condorcet criterion can yield robust results has also been noticed and exploited by [29]. However,
Borda’s aggregation, although computationally very fast, does not satisfy the Condorcet criterion. To our

knowledge, the only aggregation strategy exactly satisfies the Condorcet criterion is Kemeny optimal
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aggregation. Another strategy, footrule optimal aggregation, does not directly satisfy the Condorcet

criterion, but its ordering of matchings yields a factor-2 approximation to Kemeny optimal aggregation.

Example 23: To see how Borda’s aggregation may not satisfy the Condorcet criterion, let us see an
example, which is slightly different from Example 21. Assume after candidate selection, we have
RR) (g M1> Mz > Mz > Ma, PR} g M1 > M > Mg > Mg, andPR}, o1 Mz > M3 > Mj.

With Borda’s aggregation, we have the borda scorebgiM,, M3 andM4 as 6, 7, 3, 2 respectively.
The ranking of matchings under Borda’s aggregation is ps> M1 > M3 > M4. However,M; is
ranked higher thaM; in the majority of trials,i.e, RFﬁ(S) and RF\’Z(S), which shows that Borda’'s

aggregation violates the Condorcet criterion and therefore may not reflect the results of majority.

Although Kemeny optimal aggregation satisfies the Condorcet criterion, it is computationally expen-
sive. Kemeny optimal aggregation is to find the orderedﬁf&w that minimizesy;|_; K(PR?(S),RHA(ST)),
whereK(PR?(S),RﬁST)) denotes th&endall taudistance. That is, it is the number of pairs of candi-
dates i, M;) on which the ordered Iist§R?(S) andRﬁST) disagreei(e., one rankdVi; higher than
M;, while another one rankdl; higher thanM;). It has been proven that computing Kemeny optimal
aggregation is NP-Hard [29], which is not affordable in practice. Hence, we cannot only apply this
aggregation strategy.

As the approximation to Kemeny optimal aggregation, footrule optimal aggregation has good com-
putational complexity. In footrule optimal aggregation, the aggregaté&ﬂgtr) contains the median
ranks of all the matchings. Specifically, given a candidafelet g; be the rank oM;j in PR?(S), the
median rankof M; is defined asnedair{M;) = mediar{q;s,...,q;7). The aggregation resURﬁSU is
thus the ordered list of median ranks of all the candidates. Footrule optimal aggregation can be com-

puted in polynomial time. Although it may not satisfy the Condorcet criterion, it has been shown that

its ordering of matchingsi.€., the footrule distance) has a factor-2 approximation to the Kendall tau
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distance in Kemeny optimal aggregation [25]. However, footrule optimal aggregation suffers the tie
problem. That is, some matchings may have the same median rank and it is unclear how to break ties in
footrule optimal aggregation.

Combining the strength of these two aggregation strategies, in our development, we develop a hybrid
aggregation strategfK aggregation In particular, we first apply footrule optimal aggregation. To
break a tie, we apply Kemeny optimal aggregation only locally for ranking the candidates that cause the
tie. Empirically, since the number of candidates result in a tie is often verydayy kess than 4), the

computation is very efficient.

Example 24: Let us apply FK aggregation for the case in Example 23. We first complete the partial
lists. In particular, sinc@R’;(S) only partially rank the four candidates, we assign the lowest rank to the
uncovered candidatd;.

We then compute the median rank for each candidate and apply footrule optimal aggregation. In
particular, the median rank fol; is median(l, 1, 4) = 1. Similarly, the median ranks Kby to M4 are
2, 3, 3 respectively.

SinceM3 and M, get a tie in footrule optimal aggregation, we break the tie by applying Kemeny
optimal aggregation only ollz andM,. Since two out of the three trials prefiet; thanMy, we rank
M3 higher tharM,. The final rankingRif(ST) is thusM; > M, > M3 > Mg, which is consistent with the

result of only applying Kemeny optimal aggregation, but more efficient.

4.5 Experiments

We evaluate the ensemhbiecM approach over real query interfaces. In particular, we implement all

the algorithms in Python 2.4 and test all the experiments on a Windows XP machine with Pentium M
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Search for books by the following Author:

| |

Last Name First Mame

Figure 4.4. An example of incorrectly extracted query interfaces.
1.6GHz CPU and 512M memory. We use two representative domains, Books and Airfares, in the TEL-8
dataset of the UIUC Web integration repository [17] as the testbed.

Our experiments is to verify the impact of noise in the interface extraction on our matching algorithm
and evaluate the performance of the ensemble approach. In particular, we conduct our evaluations on
automatically extracted interfaces in two domains: Books and Airfares. First, we directly run the base
DCM framework on automatically extracted interfaces as the baseline result that we will compare to.
Second, we measure the accuracy of the ensebtNeframework and compare it to the baseline result.

The experiments show that the ensemble approach can significantly improve the matching accuracy of
DCM. Third, we execute the ensemideM framework under various parameter settings and compare
the empirical values with our theoretical analysis.

Next, we report our experimental results in detail. All the experiments are conducted with the setting
of frequency threshold as 20%«(, F = 20%). For more detail about the setting of frequency threshold,

please refer to Section 3.5.2 in Chapter 3.

The baseline matching result The baseline result we will compare to is executing the xGK
algorithm on automatically extracted interfaces. In particular, we use the techniques in [72] to extract
interfaces in two domains, Books and Airfares. The second and third columns in Figure 4.5 show the
result, where the second column is the target precision and the third column the target recall.

We can see that the accuracies of the baseline approach degrades up to 30%, comparing to the
results in Figure 3.10. This performance degradation is mainly because the existence of noise affects

the qualification and ranking of matchings and thus the result of matching selection. For instance, in
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Domain The base The ensemblBCM framework || The ensemblBCM framework
DCM framework with Borda’s aggregation with FK aggregation
Pr Ry Patr | Rat | Pe7 Ret Patr | Rat | Pet ReT
Books || 0.73 0.75 0.83|/0.89| 0.9 1.0 0.83| 0.9 | 0.9 1.0
Airfares || 0.67 0.68 0.79] 0.79| 0.71 0.82 0.91]0.73| 1.0 0.73

Figure 4.5 The comparison of target accuracy on Books and Airfares.

the Books domainauthor = last name is ranked higher thaauthor = {last name, first name} because
in some interfacese(g, the ones shown in Figure 4.4), the input box which should be associated with
“Last Name” is incorrectly associated with “Search for books by the following Author”. Such errors
lower down the negative correlation betweeithor andfirst name and thus result in the selection of the
partially correct matchinguthor = last name.

Also, due to the greedy selection strategy, the errors caused in one iteration may cascade to its
subsequent iterations. For instance, still in the Books domain, watnenr = {last name, first name}
is pruned out (because of the above reason), in the next iteration of seléstiior, {last name, first

name} is selected as a correct matching, which makes the result even worse.

The performance of the ensemblédCM framework: Before running the ensemble framework, we
need to first determine its configuration. In our experiment, we chooske thé configuration strategy
developed in Section 4.3. Specifically, we set the number of ffias 41 and objective voting confi-
dencec as 0.9 for both Books and Airfares. (As we modeled in Section®ig,set as an odd number.

We have no particular reason for choosing 41. As Section 4.3 discuUs&ehsensitive tol' and thus
picking otherT values will not significantly affect the final performance. We also empirically verify this
fact later.) We then s&V* andK* values according to our estimation strategy of the base parameters. In
particular, for Books, we havw&/* = 6 and for AirfaresW* = 5. For both domains, we skt as a small

constant 2. Thus, according to Equation 4.6, we Hawe22 for Books ands = 19 for Airfares. Also,
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for each dataset, we test it with the two aggregation strategies we developed in Section 4.4 respectively:
The Borda’s aggregation and the FK aggregation.

As the ensemble framework is essentially a data-randomized approach (with multiple random trials),
it is “non-deterministic’- We thus measure the distribution of its performance. Specifically, we execute
the framework 100 times on Books with the same set®g 22, T = 41. Similarly, we execute it
100 times on Airfares with the same settiSg= 19, T = 41. To quantify the comparison with the
baseline result, we measure two suites of target accuracieavéinage target accurady.e., the average
precision and recall of the 100 executions, denoteBhasandRat respectively) and themost frequent
target accuracy(i.e., the most frequently obtained precision and recall of the 100 executions, denoted
asPet andRet respectively). Note that we do not use the best target accuiracyttfe best precision
and recall of the 100 executions) because in practice we cannot judge which result is the best without
knowledge from human experts. In contrast, most frequent accuracy is more meaningful since it can be
obtained by executing the ensemble framework multiple times and taking their majority.

The results of both average and most frequent accuracies are listed in Figure 4.5 (columns 3-6 for
Borda’s aggregation and columns 7-10 for FK aggregation). We can see that: 1) Comparing to the
baseline result, precision and recall are improved by the ensemble framework under both aggregation
strategies. 2) For the Books domain, Borda'’s aggregation and FK aggregation have roughly the same
accuracy; For the Airfares domain, FK aggregation can achieve much higher precision than Borda’s
aggregation, but with slightly lower recall.

Overall, the ensemble framework is quite effective in maintaining the robustnesgtthmatcher.

The FK aggregation strategy can yield more robust results than Borda’s aggregation. We believe this
experiment shows that, while Borda is actually a reasonable baseline choice, FK is indeed more robust.

Next, we illustrate and interpret the results of the ensemble framework with more detalil.
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Figure 4.6. The target precision with 100 executions on two domains (Borda’s aggregation).
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Figure 4.7: The target recall with 100 executions on two domains (Borda’s aggregation).

First, in most executions, the ensemble framework achieves better accuracy than the baseline result.
For instance, Figure 4.6 shows the 100 target precisions of the 100 executions over Books and Airfares
with Borda’s aggregation. To make Figure 4.6 more illustrative, we use straight horizontal lines to
denote the baseline accuracies. We can see that, although accuracies may be varying in different execu-
tions, most precisions in both Books and Airfares are better than their corresponding baseline precisions.
Similar result can also be observed in the target recall part (Figure 4.7) under Borda’s aggregation and
both precision (Figure 4.9) and recall (Figure 4.9) under FK aggregation. Hence, this experiment indi-
cates that the ensemble framework can indeed boost the matching accuracy under noisy schema input,

and thus maintain the desired robustness of a holistic matcher. Note that the recall graphs looks more
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Figure 4.8 The target precision with 100 executions on two domains (FK aggregation).
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Figure 4.9 The target recall with 100 executions on two domains (FK aggregation).

regular than the precision ones because for recall, only the value on numerator is changing, while for

precision, values on both numerator and denominator are changing.

Second, from Figures 4.6 to 4.9, we also observe an interesting phenomenon: It seems that there are

upper-bounds for both precision and recall, which the ensemble framework cannot exceed. The exis-

tence of such upper bounds is because, in essence, there are two types of data quality problems, noise

and missing data, and the ensemble framework can deal with noise, but not missing data. Specifically,

noise refers to some observed data that ideally should not be obseevealjtliers For instance, the

extraction of a book schema,g, the one in Figure 4.4, may incorrectly consider “author” as an at-

tribute and thus lowers down the correlation of “author” and “first name.” Although noise may affect
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the accuracy of the base algorithm, they are minority in quantity. Downsampling is thus a good ap-
proach to filtering them out and, consequently, the majority voting can be effective. On the other hand,
missing dataare some data that ideally should be observed, but in reality are not. For instance, the
input schemas may contain only a small number of occurrences of the attribute “last name” and thus we
cannot sufficiently identify to find the grouping of “last name” and “first name.” For this missing data
case, sampling and voting technigues will not help, since when the entire dataset has missing data, all
the trials will also have missing data and their aggregate result cannot fix the problem. The ensemble
framework, with the limit imposed by such missing data, has an upper bound for the best accuracy.
Finally, the execution time of the ensemble framework is also acceptable. The 100 executions
on Books take 118 seconds for Borda’s aggregation and 117 seconds for FK aggregation. The 100
executions on Airfares take 109 seconds for Borda’s aggregation and 128 seconds for FK aggregation.

Therefore, the average time for one execution is about only 1 second.

The result under various configuration settings: The purpose of this set of experiments is to empiri-
cally verify our analysis in Section 4.3: 1) We want to verify whether our settirgusing Equation 4.6
is consistent with empirical observation. 2) We want to verify whether the performance of the frame-
work is indeed insensitive td, but sensitive t@®.

First, we measure the accuracy of the ensemble framework with different sampling sizes on the two
domains. In particular, we fiX at 41 and leS progressively increase from 10 to 55 with an increment
size 5 (.e, 10, 15, 20, ..., 55) for Books and from 10 to 40 with an increment size 3 for Airfares. For
each sampling size, we execute the ensemble framework 30 times under the two aggregation strategies
respectively and compute the average precisions and recalls. Figure 4.10 shows the experimental result

under Borda'’s aggregation and Figure 4.11 FK aggregation.
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Figure 4.1Q0 The target accuracy under various sampling sizes (Borda’s aggregation).

From Figures 4.10 and 4.11, we can observe the same trend in both domains, which seems to be
independent of the aggregation strategy we choose. Specifically, when sampling size increases, the
target precision mostly keeps on decreasing, while the target recall goes up first and then goes down
at some point. We give the explanation as below: A small sampling size may miss some attributes in
downsampling and thus discover less matchings, which results in trivially high precision but low recall.
With larger sampling size, we are able to cover more attributes and thus discover not only more correct
matchings, but also a few false matchings. Consequently, the precision decreases and recall increases.
When the sampling size is too large, a downsampling is likely to have a lot of noise and thus the recall
starts to decrease again.

The best sampling size we should take is thus some values in the middle. We chdesedhsure,
which combines precisio” and recallR asF = %, to measure the overall accuracy. From Fig-
ure 4.10(a) and Figure 4.11(a), we can see the best range of sampling size for Books, according to
F-measure, is around 20. Our setting based on Equation 4.6 is 22, which is quite close to 20. Simi-
larly, from Figure 4.10(b) and Figure 4.11(b), the best range of sampling size for Airfares is around 16.

Our setting based on Equation 4.5 is 19, which is also close. Therefore, our configuration strategy of

determining the sampling size is consistent with the empirical result.
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(a) Books (T=41). (b) Airfares (T=41).
Figure 4.11 The target accuracy under various sampling sizes (FK aggregation).

Secongdsince we choos& as 41 with no particular reason in the experiment, we want to verify
that the choosing othéF values is in fact not quite different, because of the insensitivitg oh T
(Section 4.3). In particular, we fi®at 22 for Books and 19 for Airfares. We changérom 5 to 49 with
increment size 4 for both domains. For edclwe again execute the framework 30 times under the two
aggregation strategies and compute the average precisions and recalls. Figures 4.12 and 4.13 shows the
experimental results. From the results, we can see that, in both domains, both the precision and recall
become more and more flat and stable whiencreases. This result indicates that with otfieralues
(aslong as it is not too small), we can also have roughly the same performance and thus the decision on
T is not a critical factor.

Also, comparing Figure 4.12 and Figure 4.13, we can observe that the ensemble framwork with FK
aggregation generally can achieve better precision than the one with Borda’s aggregation. This result
indicates that FK aggregation is more robust than Borda'’s aggregation in dealing with noisy data, since
it approximates the Condorcet criterion (Section 4.4).

Overall, from these two experiments 8andT, we can see that under the samedifferent sam-
pling sizesS will significantly affect the performance of the data-ensemble framework, while on the

other hand, under the sarSedifferent number of trial§ have little impact on the performance. This
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Figure 4.12 The target accuracy under various number of trials (Borda’s aggregation).
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Figure 4.13 The target accuracy under various number of trials (FK aggregation).

sensitivity of performance o8 but notT indicates that thd — Sconfiguration strategy is better than

S— T becausd is much easier to pick in practice, which verifies our analysis in Section 4.3.

4.6 Conclusion

This chapter identifies robust quality as an inherent challenge for leveraging holistic quantity in large
scale schema matching. Such arobustness issue inevitably arises in integrating holistic schema matching
with automatic schema extraction. As the solution, we develop an ensemble scheme with sampling and

voting techniques, inspired by bagging predictors. We are essentially applying bagging techniques in a
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new scenario of mining semantic correspondences among attributes. Both the analytic justification and
experimental result show the promise of our framework.

Since our matching algorithms require the input schemas ¢uery interfaces) from the same
domain, to enable such large scale matching, we need to develop automatic techniques to discover
query interfaces on the Weld,, the source discovery problem) and cluster them into their domain
hierarchy {.e., the schema clustering problem). Chapter 5 and Chapter 6 will discuss our solutions to

these two issues respectively.
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Chapter 5

Automatic Discovery of Query Interfaces

To enable our matching work, the very first step is to collect a set of query interfaces (in various topic
domains). As query interfaces are sparsely scattered on the Web, it is challenging to develop effective
crawling techniques to discover query forms in both efficient and comprehensive manners: First, be-
cause of the topic-neutral nature of our crawling goal, we cannot rely on existing topic-focused crawling
techniques. Second, traditional page-based crawling techniques cannot achieve a good balance between
crawling harvest and coverage. To tackle this problem, we develdpaForm Crawlemwith a new
structure-drivercrawling framework. In particular, we obsersgucture localityof query forms. That

is, query forms are often close to root pages of Web sites and accessible by following navigational
links. Exploring this structure locality, we substantiate the structure-driven crawling framework into a
site-basedNeb Form Crawler by first collecting the site entrances and then searching for query forms

within the scope of each site.
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5.1 Motivation: Object-Focused Crawling

Building the Web Form Crawler brings new challenges. In particular, while a large number, query
interfaces as scattered on the entire Web are rather sparse: Our estimated 1,258,000 query interfaces (as
just mentioned; in [16]) can appear anywhere in the 19.2 billion Web pages (as reported by the recent
index of Yahoo.com [67], which thus lower bounds the Web size). As a baseline, the traditgeal
basedcrawler (without a topic focus), which recursively follow links to traverse the entire Web, will
thus expect to find only one interface in crawling 15262 pages.

The task of Web form crawling is thus, literally, searching for a needle in a haystack. To effectively

build a database of online databases, as our “map” to the deep Web, our crawler has dual requirements:

forms—collected

bages crawled » 10 collect Web forms

First, to beefficient it must have a higlharvestrate, defined a

without crawling many pages. Second, todmnprehensivat must have a higleoveragerate, defined

#forms—collected

aS “Hrora—forms + SO as to cover a reasonable snapshot of the deep Web. To motivate, the traditional

page-base crawler, as just mentioned, after crawling the entire Wet3q@ages), will in principle
result in100%(or proportionallyc%) coverage, but at the cost of a measly harve§t ®# 10~°.

For a more effective crawling, instead of traversing arbitrary links, we must devefopuaed
crawling strategy tailored for finding query forms. Unlike general crawling (which generally collects all
Web pages), a focused crawler targets a specific subset of pages on certain focus, say, “virtual reality.”
Such a focused crawler, with its specific target, can often find crawling paths of certain patterns that
lead to the desired pages, and thus achieve higher harvest. As our goal is to build a focused Web Form
Crawler, we must address two new challenges:

First, our crawler isobject-focusedbut topic-neutral— the opposite of traditional focused crawlers.
That is, unlike existing settings @bpic-focuseccrawlers [15, 27, 54], which look for Wepagesof

certaintopics our crawler targets at a certain typealfjects namely query forms, which can be of any
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subject topics€.g, Amy’s example: real-estate, cars, jobs). With their topic-focus, existing focused
crawlers are mainlgontent-drivenby exploitingcontent localityacross links: A page of certain topics

can often be reached through a path along whichcthrgentsof pages form some patterns. In the
simplest form, such content locality means that a page on, say, “virtual reality” may be connected from
pages of similar topics. Atits core, a topic-focused crawler employs a classifier to distinguish the content
orientations €.g, trained using keyword features) of pages to find a desirable path. Such techniques,
by assuming topic-focus and thus content-driven, are unlikely to work for our object-focused but topic-
neutral crawler.

Second, we aim at balancing both efficiency and comprehensiveness, with not only a high harvest
but also a “reasonable” coverage. (With the ever expanding and changing Web, it is well accepted that
100%coverage is unrealistic.) We note that harvest and coverage arecoftéiictingmetrics: While
focusing on only promising pages will lead to a high harvest, its narrow focus of “not going beyond”
may compromise the coverage. On the other hand, although combing through many pages will extend
the coverage, the broad reach may lead to diminishing returns and thus compromise the harvest. In
particular, most existing focused crawlers, by greedily pursuing promising paths, aim at high harvest
with no explicit notion of coverage. That is, while a crawler may start with high harvest for wihas it
crawled, how long will such harvest sustain? Can it estimate the harvest for whatribhamwled,

S0 as to bail out without wasting resources in diminishing returns that will not enhance coverage (but
actually hurt harvest)? With this sense for the “unexplored” territory, it can focus resource on achieving
reasonable coverage while maintaining high hartlestughoutcrawling.

Overall, our goal is to develop a crawling framework that will, without assuming topic-focus, not
only give a high harvest for what it has crawled, but also estimate a low yield for what it decides not

to crawl, and thus achieve a good coverage overall. Our insight hinges on that, for our object-focused
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crawling, there exists certagtructure localityon the Web, which can guide a “scope” for our crawling
to focus into and draw a boundary around. This concept of structure locality, in terms of how our target
objects distributes in the scope, will enable the dual goals of harvest and coverage.

Specifically, we observe that query forms indeed distribute with such structure lo&aty:inde-
pendent of topic domains, query forms often appear near the entrance.pgitite root page, of a Web
site. Second, around the entrance point of a site, query forms also distribute in certain ways— Within
the site, they tend to appear shallowly and are often reachable thnawigational links(i.e., links in
the navigational menus of the site). Thus, our topic-neutral crawler can focus on such structure locality:
Viewing the Web as a graph of Web sites, it will crawl each site as a separate “scope.” For each site,
starting from its entrance and following navigational links, it will achieve a high harvest rate. Further,
drilling deeper into the site, when the yield starts to diminish, it will bail out, while still maintaining
satisfactory coverage. Iterating over sites, as each site givedgraddharvest and coverage, our crawl-
ing will maintain the samglobal harvest and steadily growing coverage throughout. Finally, since our
crawling assumes Web sites as independent “scopes,” it is inherently parallelizable.

We thus propose the new conceptstfucture-drivencrawling for realizing ourobject-focused
crawler. It consists of, conceptually, two phases: Phase 1 continuously finds new sepesiry
points (or root pages) into a site, and Phase 2 searches for query forms in each site. We construct the
Web Form Crawlemwith two componentsSite Finderfor collecting Web sites as scopes, dram
Finder for in-site searching each scope. Our conceptual analysis shows that the structural-driven frame-
work will enable balancing of harvest and coverage throughout crawling, which can be configured with
different in-site search strategies. We will motivate the structure-driven architecture (Section 5.2) and
explain the design of the Site Finder (Section 5.3) and Form Finder (Section 5.4). We have implemented

the crawler, in a naturally parallel architecture, and deployed on a cluster of about 100 PC nodes. We
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will report large scale experiments in Section 5.5, which validate that the framework indeed crawls Web

forms effectively by maintaining steady harvest and growing coverage as it crawls.

5.2 System Architecture

As Section 1 discussed, we design the Web Form Crawler to realize the structure-driven crawling frame-
work. In this section, We will present our architectural design of the Web Form Crawler in details.
Specifically, we first observe the existence of concerted structure locality (Section 5.2.1), then motivate
the structure-driven yield-aware crawling framework (Section 5.2.2), and finally discuss the develop-

ment of the system architecture (Section 5.2.3).

5.2.1 Motivation: Structure Locality

Our object-focused crawling aims at comprehensively collecting query forms tergle¢ objects Be-

ing topic-neutral and coverage-aware, unlike traditional topic-focused crawling, our crawling cannot
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rely on content locality (as Section 1 mentioned)— We thus wonder, is there any new type of “locality,”
as distribution patterns of the target objects, that we can resort to?

To know the answer, we attempt to take a “divide-and-conquer” approach for solving the object-
focused crawling. We first divide the Web into a set of non-overlapgtapes where each scope
contains a unique set of pages. With appropriate partitions, we hope that each scope will contain some
type of locality, which can be explored to conquer the problem of object-focused crawling. Then our
question becomes: Can we find a good way to divide the Web into scopes with the localities we need
for the crawling task?

We notice that Web sites, as the intermediate concept between pages and the entire Web, seem to
be natural partitions for scopes. We thus conduct a survey over Web sites and the answer is positive—
Our result shows that Web sites are the appropriate scopes with a new locality feature for finding query
forms. In particular, we studied the locations of query interfaces in their Web sites. For each query
interface, we measured itlepthas the minimum number of hops from the root page of the site to the
interface page. We randomly sampled 1 million IP addresses, from which we identified 281 Web servers,
crawled these servers up to depth 10, and identified a total of 34 databases with 129 query interfaces.
Since a database can be accessed through multiple query forms in many sites, we manually check all
the query interfaces to identify such “same-databases”.

Our study shows an interesting phenomenon: Query forms tend to locate “shallowly” in their sites
and thus havstructure locality Figure 5.1 shows the distribution, in terms of proportion of total query
forms, at progressively deeper levels from depth 0 to 10. The result clearly shows that most query forms
can be found within depth 3 and none deeper than 5. To contrast in perspective, Figure 5.1 also shows
the distribution of pages— which grovesponentiallyfrom O up to 5 and decreases after. While there

are significantly more pages toward deeper in a site, most query forms are in the shallow levels. In
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particular, the top 3 levels (form the root page to depth 3) contain only 17% of total pages but 94% of
forms.

This observation inspires us a site-based view of pages on the Web. To begin with, Figure 5.2(a)
shows the typical page-based view of the Web, in which all pages and all links are equal. On top of the
page graph, we now view the Web as a collection of \&lgds as Figure 5.2(b) shows. Each site is an
HTTP server containing a subgraph (of the Web) for pages on the server, and is uniquely addressed by
a distinct IP domain name and an HTTP port numbex.g, http://xyz.com:8080 . For brevity, we
will simply usesite, IP, or domain naménterchangeably.

From Figure 5.2, we can see that although query forms seem to distribute sparsely and randomly on
the traditional page view, the structure locality as we observed means that, within each site as a scope,
the distribution of query forms is rather “predictable” (in a statistical sense)— they follow the pattern as
Figure 5.1 shows, in which we expect to find query forms, if any, around the entrance of each scope.

To compare, in the traditional page-based view, we essentially consider each page itself as a scope.
Under this view, since each scope is “atomic” with only one page, there is no intra-scope locality. We
can only explore the inter-scope localitg., the linkage closeness among scopes, pages) with the
same topic or the so-called content locality.

On the contrary, in the site-based view, we view each site as a scope and employ structure locality
as the “maps” to guide the crawling within scopes for finding target objects. Unlike the inter-scope
content locality, structure locality, as a new type of locality, explores intra-scope informatign (
the depth of links, the navigational menu links) and has two excellent features: 1) topic-neutral: By

exploring structure information, an intra-scope search strategy can equally handle any scope regardless

lwith IP aliasing and virtual hosting, there is generally a many-many mapping between IP and domain names. To be
precise, a site should be recognized by (domain-name, IP, port-number).
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of its domain. 2) coverage-aware: Equally treating any scope, an intra-scope search strategy is likely to

achieve stable harvest and coverage within scopes and further make the overall yields predictable.

5.2.2 Methodology: Structure-Driven Crawling

The observation of the structure locality motivates us a new consgptture-drivencrawling, as a
framework for building object-focused crawlers. This concept parallels and contrasts the implicit notion

of content-drivercrawling framework behind existing topic-focused crawlers, as Section 1 introduced.

In a structure-driven framework, a crawler conceptually partitions the Web into independent scopes and
searches for target objects in each scope, with certain intra-scope search strategy that matches the object
distribution patterns. If such structure-locality patterns indeed exist, the in-scope search strategy can
explore different ways to achieve predictable harvest and coverage for the crawling.

For each scope, we crawl from its entrance to search within the scope, guidedrbgitasearch
strategy. By matching the structure locality of the scope, different strategies will result in different
tradeoff of yield rates in this scope, loical harvest andlocal coveragee%. To confidently predict the
“global” harvestH and coverag€% of the entire crawling process from our local yields, we develop a
high-level methodology for structure-driven crawling.

First,sampling phaseSuppose we have a set of alternative intra-scope search strategies of crawling

a certain type of objects. Our goal in the sampling phase is to select the best strategy by testing the
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strategies over a randomly sampled set of scép@&e show that such a sampling phase can indeed help
us predict the overall performance, we need to address two issues: 1) We need to show that, by choosing
an appropriate sampling size, we can guarantee a confident estimation of the local yields of a strategy.
2) We can predict the global yields from the local yields. We will discuss these two issues respectively
in this section.

Secondexecuting phaseWe apply the selected strategy for crawling over the whole Web. With
the accurate estimation of the local yields based on the sampled scopes, we thus can accurately predict
the global yields in this phase. Our empirical study in Section 5.5 shows that the executing phase can
indeed maintain steady harvest and coverage in practice.

To illustrate why local yields can be accurately estimated and they can further imply global yields
in structure-driven crawling, let us for now consider a scope as a Web site and its entrance as the root
page. Assume we use a simple stratdgyhaustivé3), for crawling pages in a site from the roo,

depth 0) up to deptB.

Local Harvesth and Coverage%: As the same intra-scope crawling strategy may not generate the

same local yields for different Web sites, we wonder whether we can observe stable local yields and
further estimate them (in a statistical sense) with a randomly sampled set of sites. According to the
Central Limit Theorem [9], when the sample size is large (usually more than 30), we can calculate con-
fidence intervals of the mean values of the local harvest and local coverage using Equation 5.1. That is,

the mean valug of a random variablX hasl — o probability to be in the rangex}, — Z‘%S, Xn+ Z“#25],

wheren is the sampling size; is theith sampleX,, = ZILTM ands® = z'nzl(nx'fzy”)z

. For instance, with
a trial of sampling 1000 sites, we have that the 95% confidence intervals of the local harvest mean and

the local coverage mean &xhaustivé3) are 0.11% 0.02 and 0.898 0.016 respectively.

2The criterion of judging the best is specific to the crawling task. For instance, a possible criterion can be choosing the
strategy with the highest harvest among all strategies satisfying a given coverage.
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P(Xn—z(’%<u<xn+z°%) = 1-qa (5.1)

To visually illustrate the above estimation of confidence intervals, we conduct 1000 trials, with each
trial sampling a different set of 100 sites. We still usehaustiv€3d) as the intra-scope strategy to crawl
each site. We then compute the average harvest and coverage for each trial and draw the distribution of
the average harvest and coverage among the 1000 trials, as Figure 5.3 shows. We can clearly observe
that the mean values of both local harvest and coverage show normal distributions, with most values
(about 95%) falling into the estimated confidence intervals.

In practice, if we feel the confidence interval we get is not convincing enough to estimate the local
yields, we can enlarge the sampling size. According to Equation 5.1, by doing so, we can obtain
a smaller confidence interval for the same confideheea and thus a better estimation. From our
experience, Web sites tend to share the structure locality shown in Figure 5.1. Therefore, we can often
achieve accurate estimation of local harvest and coverage with a relatively small sampling size. Our
experiment in Section 5.5 will empirical verify this argument for a set of different intra-scope crawling

strategiese.g, the approaches we developed in Section 5.4.

Global HarvestH and Coverag€%: How does the local performance imply the global yields in the

entire crawling? We build a simple analytical model for this “prediction”: We assume that query forms
can only have duplicates in the same sggy( Amazon.com has “product search” repeated in every
page), and we consider forms from different sites as distinct (thus a form at Amazon.com cannot be

found at BN.com). Suppose the following characteristic parameters: 1) There are nofédly sites.
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2) In average, each site hasquery forms. 3) The in-site searcher can achieve local hamnestl local
coverage% in average in a site.

We can now derive the global performance: During the entire crawling, the crawler wilhfind
mx c%, among the totah x mforms. The number of pages crawleoﬂi%*}f—c‘)/", since it crawldh times

more pages than forms. Thus:

nx mx c%
“h
Vs
Global coverag€% = DXMXCA _ c% (5.3)
nxm

Although it is possible to build more sophisticated modeling to more accurately capture the rela-
tionship between local yields and global yields, our empirical study in Section 5.5 shows that the simple
modeling is pretty good in predicting the global yields.

Overall, we thus observe two desirable properties entailed by structure-driven crawling:

e Steady local yields and predictable global yieldstn structure-driven crawling, we can accurately
estimate the steady local harvest and coverage with an appropriate sampling size. Such steady
local yields will help us to predict the global performance. Such features cannot be supported
by traditional topic-focused crawling. Our experiments in Section 5.5 also empirically verify this

analysis.

¢ Yield-guided crawler design: The analytical model, while simple, can guide the design of intra-
scope search strategiesd, selectingd for Exhaustivéd)). Guided by a desirable andC%, we
can pick an intra-scope strategy that generates the correspondindp lacdc%, thus allowing a

principled way of harvest-coverage tradeoff and resource allocation.
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Although our analyses above assume Web sites as the scopes, we believe they are generally ap-
plicable to other scope definitions as long as some topic-neutral structure locality can be found within

scopes.

5.2.3 Implementation: Architectural Design

To realize the structure-driven crawling framework for collecting query forms, we develop/ehe

Form Crawler Our crawler conceptually takes a site-based view of the Web, as Figure 5.2(b) shows.
In this view, each site is an independent scope, with an expected structure locality of our target objects.
(With further analysis, more refined patterns can be constructed; Section 5.4.) We thus substantiate
the concept of structure-driven crawling intsite-basedramework: Crawl each site as a scope, with
anin-site strategy that matches the locality, to achieve the objective of having predictable harvest and
coverage.

Figure 5.4 shows the architecture of the Web Form Crawler, with a pair of concurrent components:
Site Finderfor finding site entrances arfébrm Finderfor searching each site for query forms. In this
site-based framework, the finding of site IPs and the subsequent in-site search will run concurrently. In
particular, the Site Finder collects new site IPs intBite DatabaseFrom there, the Form Finder then
continuously gets a site entrance, searches for query forms, and collects thenfranto Batabase

the end product of crawling.
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Site Finding: To begin with, we need to find a set of sites in terms of entrance IP addresses. There
are multiple ways to collect site IP entrances. Fuggctory databasesSome Web directories provide
pre-compiled site lists. For instance, DMOZ has compiled a list containing 860,000 sites [57]. Second,
piggyback crawling We can add site-IP discovery as a “side effect” of other crawling activities. In
particular, as our crawler searches for query forms in-site, it can also “piggyback” IP entrances found
alone the way as byproducts. Thidiynamic discoveryWe can build a crawler to specifically search

for site entrances from Web pages. Our Site Finder currently supports two ways of collecting sites: from
directory databasesg.g, DMOZ) and from dynamic discovery.

Although our framework will employ multiple means of site finding, with the changing and expand-
ing nature of the Web, we believe dynamic discovery remains essential for covering comprehensive all
site-IPs. As a support, Section 5.5 will compare our dynamically discovered IPs with the DMOZ list,
which reveals that such (manually) compiled list can be rather limited.

Such dynamic discovery of IPs turns out to be itself an object-focused crawling task (with “sites” as
target objects) and can thus also be realized by structure-driven techniques. We observe the same phe-
nomenon as query forms— That is, pages containing new site IPs are close to root pages. We randomly
select 100 sites from the DMOZ site list and crawl each site up to depth 10. (We name this dataset as
Random100which will be used throughout this chapter.) We measure the distribution at each depth, as
Figure 5.1 also shows. The result indicates that structure locality indeed exists: 95% IPs can be found
within depth 3. (Section 5.3 will further refine the locality.) Similar to finding query forms, we can
resort to structure-driven crawling for site finding. Therefore, while our site-based crawling framework
relies on the function of site finding, this function, recursively, can be realized in the same site-based

framework.
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The Site Finder thus shares the same design as the Form Finder: Within the Site Finder, we schedule
site IPs (that are already in Site Database) to search; for each site, we devise an in-site searcher. Hence,
our discussion next on site scheduling and in-site search are applicable for both the Form Finder and the

Site Finder. (Their different in-site strategies will be explored in Sections 5.4 and 5.3).

Site Scheduling:After collecting sites as scopes, we must develop a scheduling strategy, to order these
scopes for in-site search of query forms. There are various alternatives in scheduling: To begin with,
simple iterationorders all sites arbitrarily, and crawls each till completion. This scheme requires mini-
mal scheduling logic, but may not optimize for important sites, and may not interleave crawling traffic
to a single site. To contrast, we can use@ked interactionto prioritize site rankings with estimated
importance €.g, some “PageRank”). Similarly, we can adeoptind-robin iterationto go in “rounds,”

each of which crawls progressively larger part into a tg,(depthd in roundd), and thus interleaves

site traffic.

Our implementation currently uses simple iteration, for its simplicity. In particular, our experience
shows that the concern of site traffic is not significant: Since we aim at searching each site minimally
(by exploiting structure locality), the traffic is often rather minor. We emphasize that, for a given set of
sites to crawl, different scheduling strategies wit affect the global yield (as Eq. 5.2 and 5.3 show),
since in principle we will eventually crawl all the sites.

Specifically, to schedule, the dispatchers in Figure 5.4 send site IPs to the concurrent in-site searchers
at parallel machines. Note that, since our structure localities suggest that target objects are connected and
reachable from their site entrances, our structure-driven framework will search aisdependently

without requiring cross-site communication [20]- parallelization is thus immediate.

In-Site Search: We develop a generic in-site search logic, which is applicable for both the Form Finder

and the Site Finder. As Figure 5.5 outlines: URLs to be crawled are added into aQuédnesach
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Algorithm: GENERALINSITESEARCHER
Input: a site IPip, maximal depthd

Output: a set of discovered objects from sife
begin:

1 Q=0 /* Q: the queue of urls to be crawled */

2 B=0 /* B: blacklist: the set of urls already crawled *
3 1 =0 /*I: the set of objects found in sitp */

4 Q.enqueuefp)

5 whileQ#0

6  /*getaurlto crawl and then add it into the blacklist*/
7  url = Q.dequeue()

8  page= retrieve the page afrl

9 B=BuU{url}

10 /* add new objects in the crawled pagageinto | */
11 O = OBJECTEXTRACTION(page

12 1=1U0O

13  /*select promising intra-links to crawl */

14 L =LINKSELECTION(page

15 for eachlinkue L andu¢ BUQ andDEPTH(U) <d
16 Q.enqueuay)

17 return |

end

Figure 5.5 Algorithm GENERALINSITESEARCHER

while-loop, the searcher gets a URL frapto crawl and extract objects (either site entrances or query
forms in our case) from the page by calli@BJECTEXTRACTION. It then selects links to crawl by
executingL INK SELECTION and adds these links Q. The parameter, maximal depdh controls the
depth of crawling. The process terminates wkis empty.

The functionOBJECTEXTRACTION extracts target objects from a page. While this extraction is
necessary, it is not our focus in this thesis, and we only briefly explain our implementation: Extracting
site IPs is straightforward— We identify inter-site hyperlinks, extractéRs 00.com:8080/abc.html
to bar.com:8080 ), and store them to the Site Database. However, extracting query forms is more
involved: For each potential form, as marked by the HTML4dORM>, we first decide if it is indeed
a query form, to avoid non-interesting forms (for our purposea), site searches, logins, and polls. We

implement the form-detection classifier in [22] for this decision. For each positive form, we then remove
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(a) Link-page template. (b) Skeleton template. (c) Directory template.
Figure 5.6: Three typical templates of the distribution of IPs within a site.

duplicates (by comparing to forms already found in the same site), extract its query structure (by the
visual parser in our earlier work [72]), and store it into the Form Database.

Our remaining task is thus to design effective in-site search stratdgiesto substantiate the
LINK SELECTION function, as guided by the objective harvest and coverage. We study such strategies
for the In-Site Form Searcher and the In-Site Site Searcher in Sections 5.4 and 5.3, respectively. The de-
velopment of such strategies, albeit for different objects, essentially follow the same approach: First, to
explore structure locality, we will start with making deepéservationgo find more structure locality
patterns Second, guided by the patterns, we then formulate sestrategiesand provide our specific
implementations Such strategies often are configured with parametegs (haximal depthd) which
will lead to different harvest and coverage. Finally, we usestmmpling-and-executingiethodology

(Section 5.2.2) to select a good intra-scope strategy that leads to desirable performance.

5.3 In-Site Site Searcher

In this section, we discuss specializing the Algorit@BNERALINSITESEARCHERTor the task of find-
ing site IPs within a site. In particular, we need to specializd-tinex SELECTION function for selecting
links that are likely to contain new sites. Similar to the procedure taken in Section 5.4, we discuss our
observations and discovered patterns for the structural locality of site entrances (Section 5.3.1), from

which we develop the link selection strategy and implementation (Section 5.3.2).
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5.3.1 Observations and Patterns

Observations We study the occurrences of external site IPs in a site by surveying the 100 sites in the
Randoml10@ataset. For each site, we draw a “matrix” of IP occurrences. The x-axis is all pages in the
site in their breadth first traversal order. The y-axis is all IPs in the site ordered by their first discovery
(because an IP can occur in many pages of a site). If an IP occurs in a page, we mark the corresponding
position in the matrix with a dot.

From all the occurrence matrices, we observe that the distribution of IPs in a site has three typical
shapes, which we call “templates,” as Figure 5.6 illustrated.iriR-page templatein which there is
one (or a few) “link” page that contains many external IPs, while other pages have nofkel@jon
template in which some external IPs occur in almost every page, mainly because these IPs appear in
the common “skeleton” that many pages shareDiggctory templatein which new IPs keep growing
and show a triangle shape of distribution— That is, new IPs can occur in not only shallow pages but also
deeper ones and thus form a triangle. A site with this template is often a directorg.gitefahoo
directory and DMOZ directory, where each page contains IP references for a certain subject category.
Finally, some sites may show a mix of these typical templates in their distributions. Among the 100
sites, 11 sites have no new IPs, 44 sites follow only link-page template, 8 only skeleton template and 8

only directory template. There are totally 29 sites that have mixed templates.

Reachable Patterns From our survey of templates, we summarize two patterns to reach pages contain-
ing IPs: Firsttarget-page pattemSome pages are important by themselves. In particular, it is crucial
to find the path to the “link” pages. Secommbntinuous patternSome sites contain external site IPsin a
“continuous” distribution across depths. That is, searching more pages in a site will either continuously

find different IPs i e., the directory template) or the same onies, (the skeleton template).
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5.3.2 Strategy and Implementation

Strategy. We design our link selection strategy by leveraging both reachable paténstsfor sites of

the target-page pattern, we observe that link pages are often either close to rodtgnagithin depth

1) or contain some keyworde.g, “links ", “resources ”). We thus design our crawling strategy as:
Crawling pages up to depth 1 and then for deeper pages, we build a classifier using anchor-text keywords
as distinguishing features to reach special link pag@escondfor sites of the continuous pattern, it is

clear that we want to leverage the continuity to use the past to “predict” the future and stop early if no
more new IPs are found. We thus develop an adaptive crawling strategy, which dynamically decides
whether to further crawl or not by its current crawling yields.

Specifically, the continuous distribution of IPs indicates that if we observe enough IPs from a group
of recent pages, we are likely to see new IPs in their children. To realize this idea, we need to define
what “recent” pages are and how many IPs are “enough.” Given a page, we define recent pages as a
sliding window of a group ofS adjacent intra-site links in the page. For each window, we crawl its
pages and compute the number of new IPs found in pages of the window. If the number of new IPs is

no lower than a threshold, we will crawl children pages for every page in the window.

Example 25: To illustrate the adaptive crawling with an example, consider a Web site as Figure 5.7
shows. For simplicity, we alphabetically mark each page,a, b, ..., instead of using URLs. Also, for
each page, we give it the number of new IPs it yields. Suppose we set the windd@wasi2eand the IP
thresholdT as 5.

To begin with, we crawl the root pageand find 6 new IP$ Since 6 is more than the threshold 5,

we will continue to crawl its children pages in depth.#,, b, ¢, d ande.

3Note that this example is just for illustration. As we will show in Algorit®pAPTIVE, in practice, to avoid missing the
entire site due to a low harvest rate at a single root page, we crawl all pages up to depth 1 regardless of the harvest rate of the
root page.
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Figure 5.7: Adaptive crawling for finding IPs.

Then, we use sliding windows to decide whether to crawl pages in depth 2 or not. As our window
size is 2, the first sliding window contains padeandc. Since their total new IPs is 4, which is less
than 5, we will not crawl their children pages. We then move forward the sliding window. The second
sliding window contains pagesandd, and has 6 new IPs. We thus crawl children pages of both pages
c andd, and get pages ...,j. The last sliding window in this depth contains pageande, which has
only 3 new IPs. We thus will not crawl page

Next, we repeat the above process for each depth of pages until no pages can be selected to crawl. In
this example, we will further crawl children pages of papaadj, since their total new IPs is 7. Since

there are no other windows that can pass the threshold, the crawling will stop after crawling.page

Finally, because the above strategies are only likely but not certain, we may still miss some pages
containing new IPs. We thus introduce a random crawling behavior for pages that are originally not
selected. Specifically, when a page is not selected by any of our strategy, we still give it a chance to
be crawled with a small probability, e.g, 0.05. This random behavior complements our deterministic

crawling strategies in a statistical sense.

Implementation: Putting together all the strategies we have discussed so far, we develop the overall
Algorithm ADAPTIVE(T, S, p) to realize theL INK SELECTION function for finding Web sites, as Fig-

ure 5.8 shows. In particular, lines 3-5 realize the crawling strategy for the target-page pattern. Function
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Algorithm: ADAPTIVE (T, S, p):

Input: a pagepg, IP thresholdT, window sizeS, probability p
Output: a list of selected intra-site links

begin:

L =0 /* L: the set of selected intra-site links */

W = all intra-site links inpg

[* deal with target-page pattern */

if DEPTH(pg) < 1thenL =LU {u| forallue W}

elseL = LU {u]| for all u € W andLINK KEYWORDSU) = true}
[* deal with continues pattern with adaptive crawling*/

[* get a set of pages with respect to the window S7é

pw= GETPAGEWINDOW(pQ, S

E = the set of new IPs found from pagespw

10 /* check whether there are enough IPs in the window of pages */
11 if |E| > T thenL = LU {u| for all intra-site linksu in pw}
12 /* add random crawling behavior */

13 elif we hit a probabilityp then L = LU {u] for all u e W}
14 return L

end

O©CoO~NOOOUTA,WNPE

Figure 5.8 Algorithm ADAPTIVE.
DEPTH s to return the depth of a page and functionk KEYwORDS is to check whether the URL

contains some keywords about link pages. Lines 6-11 realize the adaptive crawling strategy for the
continuous pattern. FunctidBETPAGEWINDOW returns a window of pages with the given pgugeas

the last page in the window. Lines 12-13 realize the random crawling behavior.

Local harvest and coverage Our algorithm, with its parameters, allows us to control the local harvest

and coverage. We have three parameters to set: the IP thréBlamid the window siz&in adaptive
crawling, and the random probabilify. As our experiments in Section 5.5 show, the combination

of these three parameters affect both the local harvest and coverage. It is thus possible to choose the

parameters that are likely to have a good balance of local harvest and coverage with respect to user’s

requirements.
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5.4 In-Site Form Searcher

In this section we develop the In-Site Form Searcher for efficiently finding query forms within a site.
Section 5.2.1 discussed the simple strateégiiaustiveq), which can already outperform the base har-

vest rate with reasonable coverage. However, can we do better? In this section we observe further struc-
ture locality (in addition to the “shallow distribution” mentioned in Section 5.2.1) specific to finding
query forms. In realizing it, as Section 5.2.3 outlined, we will discuss our observations and discovered
patterns for the structural locality of query forms (Section 5.4.1), then formulate strategies and concrete

implementations (Section 5.4.2).

5.4.1 Observations and Patterns

Observations: We observe that, as a common feature, most Web sites provide navigational menus to
guide users in browsing the sites. Such navigational menus are often presented in order to bring users
to important pages, among which of particular interests to us are those containing query forms. To be
more concrete, Figure 5.9(a) shows the navigational mehtt@f/www.bn.comBy following the link
at the tag'BOOKS", we go to another navigational menu (Figure 5.9(b)) that contains a simple query
form and the link"More Search Options" to the advanced query form of the book department of
Barnes&Noble In fact, we can reach the query forms of all major departmenBaphes&Nobleby
similarly following the links on the tags in Figure 5.9(a). Figure 5.10 illustrates a variety of navigational
menus from real-world Web sites.

To verify that the structure locality provides high coverage in finding query forms, we surveyed 100
query forms from the UIUC Web integration repository [17]. These forms are randomly selected from

forms that are not on root pages (such root-page forms are always covered, as the In-Site Form Searcher
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Figure 5.9 Navigational links inBN.com
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Figure 5.10 More navigational links.

starts with the root page). We find that 87 out of the 100 forms can be reached from the root pages by

following navigational linké.

Reachable Patterns: First, as navigational links serve the purpose of connecting from everywhere
to the important information of a site, they naturally reach the query forms, which provide a crucial
functionality of the site Secondas mentioned in Section 5.2.1, query forms distributed “shallowly” in

Web sitesj.e,, they are close to the entrances.

5.4.2 Strategy and Implementation

Strategy: There can be hundreds of intra-site links on a Web site. How do we effectively find the

navigational links among them? Our method is based on the following two insights.

4The remaining 13 forms can mostly be reached by other simple heuristics. For example, most links to “advanced” query
forms that could not be directly reached by navigational links are around the simple query forms that can. Here we focus on
the navigational links only and do not consider other heuristics.
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Link Grouping and Ranking Link Overlapping Analysis

Figure 5.11 NAVMENU: navigational link detection.

First, navigational links in a page are presented with distinguishing visual characteristics, such as
alignment, position, size, color, and font. Such characteristics enable the prominent and intuitive visual
presentation of navigational links so that users can easily identify them. This observation suggests to
analyze the visual pattern of hyperlinks to detect the navigational links. Note thavisuet parsing
approach has also been applied in understanding Web query forms [72].

Secondnavigational links are often part of a page “skeleton” of a site that will repeatedly appear in
many pages in the site. Such repeating occurrences present the navigational links as shortcuts available
everywhere in the site, thus the important information is always reachable. This observation suggests to

enforce dink overlapanalysis across multiple pages.

Implementation: Based on the above insights, we specializeltivek SELECTION function in Fig-

ure 5.5 to an in-site search strategy, AlgoritiNavMENU, for detecting navigational links. Given a
pagep containing a set of hyperlinkis, it returns a set of candidate navigational linkgy C L. The
details ofNAVMENU are shown in Figure 5.12. At the high level, the algorithm takes two stages, corre-
sponding to the aforementioned two insights, as illustrated in Figure 5.11.

The first stagdijnk grouping and rankingexplores the visual characteristics for selecting and rank-
ing navigational links. The hyperlinks Inare formed into multiple disjoiritnk groupsbased on visual
parsing. To begin with, a link group is a set of more than, say 3, consecutive links representing a menu,
aligned horizontally or vertically. This captures the visual characteristic of most navigational bars in

terms of alignment. Further we rank the link groups by other visual characteristics. More specifically,
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Algorithm: NavMENU (p):

Input: a pagep

Output: a list of selected intra-site link&inks
begin:

OO N WNPEP

10
11
12
13
14
15
16
16
17
18
19
20
21
22
23
24

25
27
28
29
30
31
32
33
34
35
36
37

/* obtain the lines of texts and the URLs hynx*/
(<lyeln >, <ug,...,um >) = lynx(p)
* link grouping*/
t=0 /*total number of link groups */
for each lindj, 1 <i <ndo
/* NAW: non-anchortext words */
if line Ij contains single URIL; and no NAWthen
if line l;_1 contains multiple URLs or NAWhen
t=t+1
o =0 U{uj}
[* all the words inlj are the anchor text afj */
wdgt] = welgt] + number of words it
elif line |; contains multiple URLuj, ..., uj} then
t=t+1
o = {Uj, - Uj i}
/* including both anchortexts and NAW */
wc[gt] = number of words it
/* a group should have at least 3 links */
remove those groups wit;| < 2
/* link group ranking */
for each groum; = {uj,...,uc}, 1 <i<tdo
total_size=total_size+|g;|
total_words= total_words+ wc|gi]
total_dist = total_dist+ m- (j +k)/2
for each groum = {uj,...,uc}, 1 <i<tdo

1 — Wsx|gi| Wiy X WC[gi] Wq X (M—(j+Kk)/2)
_rank[g'] “total_size *_total_words + total_dist
[* link overlap analysis */

Is=0
for each of the tofx ranked groupg do
Is=IsU {the firstx links in g}
Purl =<ug,...,un >
links=0
for each linku € Is do
child = retrieve(u)
C_url = URLs inchild
links = linksU (P_url NC_url)
return links

end

Figure 5.12 Algorithm NAVMENU.
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Figure 5.13 The output of Lynx corresponding to Figure 5.9(a).

we take the ranking score of a link grogms the weighted average of three factors. Thataisky =

Ws X Sizgy + Wy, X wordcoung + Wg x disly, wheresizg is the number of links iy, wordcouny is the
percentage of anchortext words in all the words positioned in the rangeaniddisy is the distance
betweerg and the bottom of the page. For example, the3dipk groups are annotated in Figure 5.11.

We note that this formula is simply to capture the important visual characteristics of a link group as a
menu, although other heuristics can be developed as well.

The second stagbnk overlap analysisidentifies the links that repeatedly appear. This captures the
observation that the same navigational links are likely to appear in the page itself and the pages referred
to by the navigational links. To be more specific, given a navigational knk in p (e.g, Figure 5.9(a)),
the target page df (e.g, Figure 5.9(b)) likely containkas well. ¢From each of the tdp(e.g, k=3
in Figure 5.11) ranked groupsJinks (e.g, the first link) are followed. The links in each resulting page
(e.g, L) are intersected with, the links inp. The resulting intersections are unioned to form the set of
candidate navigational linksay.

The visual information utilized ilNAvMENU can be obtained from the Web page rendering engine
of browsers such as IE and Mozilla. To ensure the high efficiency of the crawler, we use the open source
browserLynx, which renders a Web page in the text model. For instance, the dumping output of Lynx
corresponding to Figure 5.9(a) is shown in Figure 5.13. (The association of the anchortext and the URL
of each hyperlink is not shown.) The (anchortexts of) hyperlinks aligned horizontally in a graphical

browser will appear in the same line of the textual output. Similarly the hyperlinks aligned vertically
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will appear as multiple lines. Note that althougmxonly provides approximate visual presentation of a
page, compared to graphical rendering engines, and our algorithm even only exploits partial information
(such as alignment, size, and distance) from the outpuyf, the result is quite satisfactory according

to our experiments in Section 5.5. Further improvementsafMENU can be made by exploring more

visual characteristics related to navigational links.

Local Harvest and Coverage of Forms:The In-Site Form Searcher captures the reachable pattern of
query forms with respect to navigational links, thus can achieve both high harvest and coverage. It only
follows navigational links, therefore crawls much less pages than the baseline approach of exhaustively
following links, and thus has higher harvest. Navigational links can le8@%eof query forms (that are
not on root pages), therefore the coverage of the form searcher can reach higl&fsince many
forms can be found on root pages.

Moreover, to capture the “shallow” distribution pattern of query forms, we comdsvaMENU with
the simple strategixhaustiveq) in Section 5.2.2 to obtaiNAvMENU (d), which follows navigational
links within the maximal deptld. The appropriatel for NAvMENU (d) will be empirically determined

by the experiments in Section 5.5.

5.5 Experiments

To evaluate the Web Form Crawler, we extensively test each of the core components as well as the
entire system, for their (local and global) harvest and coverage. The experimental results verify that
1) by our sampling-then-executing strategy over a small sample of Web sites, we can compare various
in-site search strategies and select the appropriate one; and 2) compared to page-based crawling, our

best harvest rate is about 10 to 400 times difference, depending on the page traversal schemes used.
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To begin with, we have implemented the Web From Crawler, as Figure 5.4 shows, with our control
logic built upon several modified open-source softwares. In particular, we build our implementation
of the in-site searchers.€., the In-Site Site Searcher and the In-Site Form Searcher) based on wget
(http://www.gnu.org/software/wget/wget.html). For the In-Site Form Searcher, we revise the text-based
browser Lynx (http://lynx.browser.org) to extract visual information of Web pages. We implement the
dispatchers in C and use PostgreSQL (http://www.postgresql.org) to support the Site Database and Form
Database.

We deployed the crawler, with its parallel architecture, on the HAL PC cluster at the University of
lllinois at Urbana-Champaign (http://hal.cs.uiuc.edu). The HAL cluster consists of 100 dual processor
machines each with two 500MHz Pentium 1l Xeon processors, 1 GB of memory and a 9GB SCSI drive.
The database servers are Xeon 2.80 GHz dual CPU with 2GB memory.

We extensively test the Web Form Crawler in its core components as well as the entire system:

1) Form Finder: We evaluate the local and global performance of the Form Finder in terms of its

harvest and coverage.

2) Site Finder. We briefly evaluate the performance of the Site Finder in terms of its harvest and

coverage.

3) Overall: We evaluate the Web Form Crawler with a large scale crawling and report the crawling

result. We also compare our performance with the one using traditional page-based crawlers.

la. Local performance of the Form Finder: In this study, we measure the local harvest and coverage
of the In-Site Form Searcher under various settings. We randomly choose 100 deep Web sites from
the TEL-8 dataset of the UIUC Web Integration Repository [17] as our test set. For each site, we

run the In-Site Form Searcher in three cases: Maximal dgpthO, 3, and 10, denoted Bavmen(0),
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Figure 5.14 Form Finder: Local study.

Navmeny3), andNavmeny10), respectively. For each case, we measure its local harvest and coverage.
As the baseline, we also run the simple strategy of crawling all pages with depth 0, 3 ang.10, (
Exhaustiv€0), Exhaustivé3) and Exhaustiv€10), as Section 5.2.2 introduced). Figure 5.14(a) shows,

for each case, the number of pages crawled and the number of forms found. Figure 5.14(b) shows, for
each case, the local harvest rate and coveragé&xhaustivé0) is effectively the same asavment(0),

we only list the result oExhaustiv€0).

The result in Figure 5.14 is consistent with our analysis in Section 5.2.2: With a deeper depth, the
harvest is lower, while the coverage is higher. Meanwhile, the further structure loceljtyavigational
menus, developed in Section 5.4 indeed results in better performance. By following navigational menus,
we can significantly speed up the harvest while in the meantime maintain a high coverage. In particular,
Navmeny3) is the best setting, with a good balance between harvest and coverage.

We note that as the query form classifier (developed in Section 5.2.3) may have false pastjves,
some non-query forms may be classified as query forms, to have an accurate evaluation of the local
harvest and coverage in this small scale study (in contrast to the large scale global study later), we
perform a manual inspection to verify query forms and duplicates. The result in Figure 5.14 is the one

after manual inspection.
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method mean harvest 95%Cl
Exhaustive(10 0.114 0.020
Exhaustive(3) 0.119 0.020
Navmenu(10) 0.192 0.028
Navmenu(3) 0.214 0.029
Exhaustive(0) 0.537 0.049
method mean coverage 95%ClI
Exhaustive(10 1.0 0.0
Exhaustive(3) 0.898 0.016
Navmenu(10) 0.630 0.026
Navmenu(3) 0.598 0.026
Exhaustive(0) 0.287 0.025

of this thesis.
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Figure 5.15 Form Finder: Selecting strategy by sampling.

Our manual inspection shows that the more pages we crawl, the more false positives we have in the
collected forms. For instance, in depth 0, only 9% forms are false positives, while in depth 10, 60%
to 70% forms are. Also, exhaustive crawling, as it crawls more pages, has more false positives than
navigational menu crawling. Further, as the 100 deep Web sites we choose in this local study are all
“big” sites, the harvest is likely to be underestimated, because for smaller sites, we may not need to
crawl many pages to find forms. Therefore, in practice, the global harvest in large scale crawling, where
no manual inspection is taken, may increase over 5 times, as our following experiments will show. We

believe a more accurate classifier should be and can be developed, but such a topic is beyond the scope

1b. Sampling to select the strategy of the Form FinderTo select a good in-site search strategy for the
form finder, we follow the methodology of sampling-then-executing that is mentioned in Section 5.2.
In the sampling stage, we apply various strategies over a small sampB0#Veb sites. For each
strategy, we compute its local harvest and coverage over each individual the Web sites. According to
the Central Limit Theorem, following the method in Section 5.2, we obtai®#¥éconfidence interval

(CI) for the mean harvesh] and mean coverage)( respectively, of the underlying population over the

whole Web. The results for the five crawling strategies of the form finder are shown in Figure 5.15.
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Figure 5.16 Form Finder: Global study.
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pages forms

In the sampling procedure, the following large scale global study and the evaluation of the entire
system, we explore automatic query form detection mainly based on the rule-based classifier devel-
oped in [22]. However, this automatic detection can result in false positives in both form detection and
duplicate removal. The global harvest rate thus will be higher than the one in local study due to the
existence of false positives. For instance, one particular error is that the classifier often makes a mis-
take on considering product configuration forms as query forms, which we specifically removed in the
manual inspection. A product configuration form is an HTML form used for configuring features of
a specific producte.g, selecting options of a specific car. For E-commerce sites, it is quite often that
each product may have a unique configuration form and thus there are a large number of such forms.
Therefore, misclassifying this type of form will result in a significant increase of harvest rate. However,
as this issue affects every strategies, we still obtain accurate comparison of the strategies. For example,
although the mean harvest obtained from the sampling procedure may not be the same as the real mean
harvest across the underlying population, the mean harvests of different strategies still indicate their

performance ranking when compared with each other.

1lc. Global study of the Form Finder: We then evaluate the global performance of the Form Finder
with a large scale crawling. We execute the Form Finder in three cases: Nawmgeny0), Nav-

meny3), andNavmen10) as the In-Site Form Searcher respectively. We crawl the same set of 50,000
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Figure 5.17 Site Finder: Local performance.

sites for all cases and compare their performance. Figure 5.16(a) shows, for each case, the number of
pages crawled and the number of forms found. Figure 5.16(b) shows, for each case, the trend of global
harvest rate. The result shows that, after crawling a few sites, the harvest rate of the Form Finder is
quickly stabilized. The harvest ®favmeny0) takes longer to get stable than the other two because it
only crawls one page from every site. This result is consistent with our analysis in Section 5.2.2— That

is, the structure-driven crawler can indeed maintain stable harvest.

2. Performance of the Site Finder:While we have given detailed analyses of the form finder above,
we briefly summarize the results of the site finder, as the main goal of our Web Form Crawler is to
collect query forms.

We first evaluate the performance of the AlgoritmAPTIVE in the In-Site Site Searcher. As
Section 5.3 discussed, by tuning the three parameté&®APTIVE, i.e, the IP threshold, the window
sizeSand the random probability, we should be able to control the local performance of the In-Site
Site Searcher for finding site entrances. To verify this argument, we evaluate the In-Site Site Searcher
over theRandom10@ataset with an extensive range of combinationTar {2,5,10}, S {2,5,10}
and p € {0,0.05,0.1}. For each combination, we evaluate its local harvest and coverage. In all the
executions, we set the maximal crawling degtfin Algorithm GENERALINSITESEARCHER) as 10,

which is deep enough to cover almost all pages. Figure 5.17 shows the performance.
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Figure 5.18 Site Finder: Global performance.

From Figure 5.17, we observe interesting trade offs between local harvest and local coverage. In
general, when the parameters allow more pages to be craindedr(is smaller,Sis larger, andp is
higher), the coverage will be higher, while the harvest will be lower. Overall, any of three parameters
can affect the trade off between harvest and coverage. It is thus possible to choose an appropriate
parameter setting according to user’s desired crawling goal. We apply the sampling method to choose
the parameter settinge the specific in-site search strategy, similar to the procedure in Form Finder. For
example, the medium values for all the three parameitersT =5, S= 5 and p = 0.05, can achieve
good harvest as well as reasonable coverage.

With the chosen strategy, we evaluate the performance of the Site Finder by crawling a large set of
sites. We execute the Site Finder over the HAL cluster. We test the Site Finder in two cases: Starting
from the smallRandoml10@lataset of 100 IPs and from the large DMOZ list of 860,000 IPs. The top
curve in Figure 5.18 shows the global harvest of starting fRandom10@nd the bottom one from the
DMOZ list. Comparing the two curves, we can see that the more IPs we have in the Site Database, the
lower global harvest the Site Finder achieves. However, even with the large starting set of 860,000 IPs,
the harvest rate is still reasonably good.

The bottom curve in Figure 5.18 also indicates that the Site Finder can find many new sites that are
not indexed by the DMOZ site list. To measure the percentage of IPs we can find beyond the 860,000

IPs from DMOZ, we execute the Site Finder for a long time and collect 2,067,068 IPs, among which
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Figure 5.19 Evaluation of the entire system.

703,691 overlap with the DMOZ list. That is, only 34% of IPs are indexed by DMOZ and 66% are
not. Therefore, it is crucial to develop the In-Site Site Searcher for finding sites besides directly using

pre-compiled site lists.

3. Evaluation of the entire system: We next evaluate the overall performance of the Web Form
Crawler, including both Site Finder and Form Finder. In particular, the harvest rate of the Web Form

#FormsCollected : . .
Crawler becomegs;ssccrawiedinsothringers R€Call that, in the Site Finder, we have two ways to collect

site entrances: Importing from site lists and crawling with In-Site Site Searchers. For the first situation,
the Site Finder does not need to crawl pages and thus the harvest rate will be the same as the one in the
global study of the Form Finder. For the second situation, as Site Finder also crawls pages, the harvest

rate will be lower.

First, overall performanceWe can use the result in the global study of the Site Finder to measure the
harvest rate in the second situation. Checking our crawling result according to Figure 5.18, we know that
starting with 100 sites as seeds, we crawled 110,814 pages to find 50,000 sites. By counting these pages,
we can compute the harvest of the Web Form Crawler. Figure 5.19(c) compares the harvest of Web Form

Crawler with the corresponding one of Form Finder. In all cases, after counting the pages crawled by the
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Site Finder, we can still achieve a good harvest rate, although the harvest is more significantly affected

for the In-Site Form Searcher with smaller maximal depth.

Second, comparison to page-based crawlWg compare the harvest of site-based crawling and page-
based crawling. As we argued in Section 1, page-based crawling, without focusing on the structure
locality, may result in low harvest. We run the traditional page-based crawler to find query forms by
simply following links. We test three common link following strategies in page-based crawling: Breadth
first, depth first and random selection. For each strategy, we crawl about 50,000 to 150,000 pages and
evaluate its harvest.

Figure 5.19(d) shows the result, from which we can see that, site-based crawling achieves better
harvest than page-based crawling in finding query forms. For instance, using the depth first strategy,
page-based crawling can only find 1 query form in every 1000 pages. Our highest harvest is about
400 times better than this depth first case. Breadth first strategy can achieve better harvest because by
following external links and only crawling about 50,000 pages, the page-based crawler is very likely to
crawl in the shallow part of many distinct sites and thus behaves similar to a site-based crawler. Even so,
our highest harvest is about 10 times better than this breadth first case. Note that while the breadth first
strategy “accidentally” explores the structure locality when crawling a relatively small portion of pages,
our goal of structure-driven crawling is to formalize and explicitly explore such locality and balance
harvest and coverage.

Since the harvest we list here is the one without manual inspection of query forms. We then wonder
if the comparison is still valid. Our answer is yes. Recall that our manual inspection shows that the
more pages we crawl, the more percent of false positives we have in the collected forms. Compared

to site-based crawling, a page-based crawler will be more likely to touch the large number of pages in
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deeper depth and thus have more false positives. Therefore, our comparison here in fact disfavors the
site-based crawling, although the result of site-based crawling is still better.

We notice that the initial harvest of page-based crawling in Figure 5.19(d) is higher than our average
estimation 0f6.6 x 107°. There are three reasons: First, since many query forms are duplicated in a
large number of pages in their own sitegy, the keyword book search BN.commay appear in many
pages, the initial chance to see a query form in page-based crawling is thus higher. When we crawl more
and more pages, the harvest of page-based crawling will slow down and become worse and worse, since
many query forms are already seen. Second, the false positive problem in the query form classifier also
makes the harvest significantly higher than it real value. Third, our survey of the scale of query forms
are done in April 2004. With the rapid growth of the deep Web, we believe there are more query forms

available on the Web now.

5.6 Conclusion

This chapter aims at building a crawler for collecting query forms on the Web. Although critical to
information search and integration over the deep Web, such a problem has not been extensively studied.
As a new attempt, we abstract this problem as object-focused, topic-neutral crawling and propose a
structure-driven crawling framework for such a crawling task by observing the existence of structure
locality of query forms. We develop the Web Form Crawler to realize the framework. The experimental
results show that our crawler can maintain stable yields in the entire crawling process and thus we can
pursue a yield-guided crawler design. Such features are not supported by existing focused crawlers.
Compared to page-based crawling, our best harvest rate is about 10 to 400 times difference, depending

on the page traversal schemes used.
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Next, we will discuss our work on clustering deep Web sources into their domain hierarchy in

Chapter 6, which is the second requisite task to enable automatic large scale matching.
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Chapter 6

Clustering Query Schemas into a Domain

Hierarchy

Since our holistic matching algorithms require the input schemas from the same domain, given a set
of collected schemas across various domains (from Chapter 5), we need to cluster these schemas into
their domain hierarchy. To distinguish schemas in query interfaces with traditional schemas, we name
the formerquery schemasvhich contain a set of attributes in their query interfaeeg, {author, ...,
publisher} for amazon.com{city, ..., rent} for apartments.comOur observations show that query
schemas are right “representatives” for structured sources: First, they are eaailiyple on the “sur-

face” of online databases, and thus can be easily “crawled.” Second, theige@iminative The query

schema characterizes ibject domaine.g, Books, Movies) by itgjuery capabilitiege.g, author, di-

rector). Such observations motivate us to propose model-differentiation as a hew objective function for

clustering, which allows principled statistical measure for determining cluster homogeneity.
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Figure 6.1 Attribute frequencies of different domains.

6.1 Motivation

Our clustering approach is motivated by our observations on the deep Web. In particular, to better
understand the characteristics of schemas in different domains, we again explore the TEL-8 dataset in
the UIUC Web Integration Repository [17]. We have two observations pertinent to our focus of schema
clustering, which we will report in this section.

First, we observe that query schemasdiseriminativerepresentatives of structured sources. Specif-
ically, we count attribute frequencies for each domaie, (the aggregate occurrences of an attribute
across all sources in the same domain). Figure 6.1 lists the attribute frequencies (y-axis) of 3 domains
(Airfares, Hotels and Movies) over all the attributes (x-axis) in the 8 domains. We observe that each
domain contains a dominant range of attributes, distinctive from other domains. For example, Airfares
only covers the first 53 attributes and does not overlap with Movies. Hotels has its dominant range of
attributes from index 200 to 250 (while overlapping with Airfares in some of the first 53 attributes).

Further, some attributes are only observed in one domain— Eret®r attributeanake their do-
mains more distinguishable. For instanemke andmodel are anchor attributes for Automobiles, and
ISBN for Books. We observed that most schemas indeed contain anchor attributes. In particular, our
dataset indicates that 457 out of the total 494 interfaces, accounting for 92.5%, contain some anchor

attributes. The prevalence of anchor attributes motivates our bootstrapping technigues (Section 6.3.1).
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We believe that the existence of anchor attributes might not be a uniqgue phenomenon for schema data—
For other types of transactional data, it is likely that a cluster will contain smmsbor itemghat are
characteristics of the cluster.

Second, we observe that the aggregate schema vocabulary of sources in the same domain tends
to converge at a relatively small size with respect to the growth of sources. Figure 6.2 shows, for
each domain, the growth of vocabularies as sources increase in numbers. The curves clearly indicate the
convergence of vocabularies. Since the vocabulary growth iaesh(e slopes of these curves) decrease
rapidly, as sources proliferate, their vocabularies will tend to stabilize. This observation indicates that
homogeneous sources (in the same domain) share sonoertedvocabulary of attributes. Note that
we also exploit this observation for the task of schema matching imM@® framework in Chapter 2.

These two observations together motivate our approach: The first “discriminative” observation sug-
gests using query schemas as “representatives” of sources in the source organization, which is essentially
a clustering problem. Our goal is thus to cluster structured Web source into their domain hierarchy. By
viewing a schema as a transaction and thus a special type of categorical data, we abstract our problem
of source organization as the clustering of categorical data. Further, the second “concerted” observation
leads us to hypothesize the existence of a hidden schema model (for each domain), which generates
the observed query schemas. We thus pursue model-based clustering (Section 6.2). Finally, the “dis-
criminative” observation further hints a novel objective function, model-differentiation, which seeks to

maximize statistical heterogeneity among models in clustering.

6.2 MD-Based Clustering

As just abstracted and motivated, we are pursuiMglabased approach to cluster query schemas. In

the literature, model-based clustering has been widely discussed. The general idea can be stated as:
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The population of interest consists @Gfclusters, generated lfy different models. Given a set of data
points (a set of schemaX)= {xy, ..., Xn}, where eaclx; is independently generated from one of the
models,2M,... Mg, the probability of generating in the kth model isPr(x;|Mx). A clustering ofX is
a partition ofX into G groups: denoted b§X;P) = (Cq,...,Cg), whereP partitionsX. The objective of
model-based clustering is to identify the partit®that allx; generated from the same modke( e| 24)
are partitioned into a single group.

To realize this general model-based clustering of query schemas, we design a model as a multinomial
distribution (Section 6.2.1) and develop model-differentiation as theatgective functiorf clustering
based on statistical hypothesis testing. Specifically, guided by this objective function, we adopt the
commonly used? testing. (Section 6.2.2). Unlike the clustering work in statistic software, which also
usex? testing, we apply it for categorical data based on the generative model. Since we are pursuing a
hierarchical clustering approach, we apply the widely used HAC (hierarchial agglomerative clustering)

algorithm, which needs a measure to quantify the “similarity” between two clusters. In particular, we

derive a new similarity measure from tMD objective function (Section 6.2.3).
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Figure 6.3 Comparison of two possible clustering results.

6.2.1 Hypothesis Modeling

To develop theviD-based clustering, we need to define the generative model. To begin with, we first
introduce our model definition as multinomial distribution. Specifically, we assume attributes are inde-
pendent each other, which is a commonly used assumption for text data [58]. Then we describe how a
model generates a schema in a statistical way and further how to generate a cluster of schemas.

First, to define the model for the task of schema clustering, we need to describe what is a schema.
We view a query schema as a set of attributes for a query interface, as we abstracted@sthad
DCM frameworks. For instance, famazon.conthe query schem@y; is {author, ..., publisher}. For
simplicity, in later examples, we denote attributes in letters,....

Our first attempt is to consider a schema as a setigifnct attributes. Therefore, we view the
generation of a schema sampling without replacemefit4] from a set of attributes, which means the

result of a trial (to select an attribute) is not the same as any previous trials. (The trials are therefore
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“stateful”.) That is, we can consider a schema withttributes as an experiment witttrials; once one

attribute is selected, it will not be selected again in the subsequent trials. However, while this model is

accurate, its “stateful” trials result in complicated homogeneity testing.

Our second attempt is to approximate the generation procesarbgling with replacement4],

where the attributes can be repeatedly selected in a schema. With this alternative strategy, to gener-

ate a schem® in some clusteC, the modelM behindC is a multinomial modelwith parameters
P1.....Pn- More specifically, a multinomial modél for C consists of an exhaustive setfmutually
exclusive events (In our problem, the events are in fact the attributgs.) An (which covers all the
attributes observed i@) with associated probabilities,,...,pn, z’j\‘:l pj = 1. We denoteM asM =
{A1:p1,...An:pn}. Each trial of M generates one of the events. The probability of generating an
attributeA from M in a single trial is

Pi, Jd:A=A
Pr(AIM) = (6.1)

0, otherwise

Next, we discuss the generation of a schema in cl@fesm A . Under this multinomial model, a
schema&Q is characterized by its observed attributes (and their frequencies). We thu®Q ¥aiength
n) asQ = {A1:y1,... AN Yk} ZiN:1Yi = n, wherey; is the frequency (number of occurrences) of attribute
A in Q. For a schema with distinct attributeg,is either 0 or 1. For instance, for the query schema
Qaz of amazon.conthe frequency ofuthor, Yauthor, iS 1. (We discuss later that this model can generate
schemas with duplicate attributes.) That is, by definition of standard multinoimal distributionJ14],
(of lengthn) is generated fron/ as the result oh independent (therefore “stateless”) trials with the

following probability:
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Pr(Q|M,n) =n! ﬁpr(A;/IIM)YI

(6.2)
Example 26: Consider a clusteZ with 4 schemasQ;:{A,B,C}, Q2:{A,B}, Qs:{C,D}, andQ4:{C,D,E}.
The model contains 5 attributes (eventsy; B, C, D andE, with probabilitiesps, p2, ps, ps andps
respectively. Under our multinomial modeling, we view a schema as a set of attribute frequeagies (
yji). For exampleQ; = {A:1,B:1, C:1, D:0, E:0}. In particularyi1 = 1 sinceA occurs once ifQ;. The

probability of generatin®; is Pr(Q1|M,3) = 6p1p2ps.

Then, we discuss how we statistically view a cluster of schemas. Consider a cluster of schemas

C = {Q1,Q>,...,Qm}, where each schen@; (with lengthn;) is generated by the same mod#l =
{A1:p1,...An:pn ). Since eacl; is a multinomial experiment af; trials, we can viewC as an ex-
periment withz’j“:1 n; trials by concatenating the trials in all schemas. That is, we consideC tised

series of sampling from the same multinomial distributith(i.e., the sameps,...,pn), with all these
independent trials. The theoretical explanation is as follows: LeQak {A1:yj1,... AN:Yjn }, Where

yji's are random variables denoting the frequencies;pthare the same multinomial distributied

= {A1:p1,.-.An:pn}. For the entireC, we define new random variables...zy as aggregate attribute
frequencies. That ig; = ern:lyji. In our extended report [40], we show ttmt..., zy are also sampled

from the same multinomial distribution? with 3", n; trials. Therefore, under this multinomial view,

we can expresS as aggregate attribute frequencies, C = {Aq:z1,... AN:ZN }-

Example 27: Continue on the clusté&® in Example 26, by consideringis generated by a multinomial
distribution and computing, as ZTzlyji, we can express clusté@ras{A:2, B:2, C:3, D:2, E:1}. For

exampleA has frequencies 2 because it occurs once in QatAndQ-.
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Figure 6.4 Contingency table for testing.

A/BICID E|F|G|H|I|J|K|L|M|N/|sum
Ciqo~1}j1}1}12|0,0}]0|0|]O0O|O|O|O]O0O]O0O, 4
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Cy 0,0/0|0] 6|6 |0|]0|0j|0|]2]1]1|1] 16
sum |1 }1}|1/1)12|12}1 (11|11 |1|1|1| 36

Figure 6.5. Example of model-differentiation testing.

The simple multinomial modeling simplifies hypothesis homogeneity testing (by directly fitting the
contingency table as shown in Section 6.2.2). However, the modeling is inaccurate: It may generate
some schemas that are not observable in the real world. For instance, it may generate g scthema
author, title }, whereauthor is repeated twice. While the modeling seems crude (like other typical “inde-
pendent” assumptions in, say, Naive Bayes Classifier for text), our empirical study shows that the simple
model performs well.

As a remark, this modeling is much simpler than what we define in our previous work MGS [37].
The MGS work addresses matching schemas across sources in the same domain. (Therefore, the work
of this chapter is a preliminary step to provide input for MGS.) The MGS modeling assumes a two-
level model structure to capture concepts and synonyms for the goal of synonym discovery. This work
assumes a much simpler model because it is sufficient to capture the attribute frequencies across different
domains for the purpose of clustering.

In this section, we develop the generative model. Next, we introduce the new objective function,

model-differentiation, for clustering schema data and presen’thesting to realize th&1D function.

139



6.2.2 Model-Differentiation: A New Objective Function

Clustering must be guided by sorobjective functiorthat specifies the property of the ideal clusters.
Regardless of the objective function, the basic idea of clustering is to put similar data together and
dissimilar data apart. For model-based clustering, similar data might be generated from the same un-
derlying model, while dissimilar data from different models. Thus, we achieve better clustering result

when the underlying models are more distinguishable.

Example 28: As a running example, assume we are given four clusters of schemas, referred to as
datasetl: Ci:{A:1, B:1}, Cx:{C:1, D:1}, C3:{E:6, F:6, G:1, H:1, I:1, J:1} andC4:{E:6, F:6, K:1, L:1,
M:1, N:1}. Now assume we want to generate 3 clust&s(3). To reduce the number of clusters to
three, we need to combine two clusters into one. We denote the combination of diysterdC, as
Cekl>-

We compare two possible clustering results, as illustrated in Figure 6.3. The first result (Fig-
ure 6.3(a)) combine€; andC,, while the second result (Figure 6.3(b)) combi@sandC,. Fig-
ure 6.3(a) is not as good as Figure 6.3(b) because the distributi@s(Bfgure 6.3(a2)) an€4 (Fig-
ure 6.3(al)) are similar (and hence the schemas generated from these two models will also be similar).
Figure 6.3(b) is better because the attributes with non-zero frequencies in the three clusters do not over-

lap.

Therefore, we define the objective function of clustering as some fungfitimat characterizes the
heterogeneity of models under a partitiBpdenoted by# (X;P). The goal of clustering is to find the
partition P that maximizes functiort, i.e., argmax H (X; P). In statistics, the homogeneity of distri-
butions can be measured t®st of homogeneitysing statistical hypothesis testing. More specifically,
if we have a partition functio® partitioning X into clustersCy(1 < k < G), we can test the hypoth-

esis ‘Cx(1 < k < G) are sampled from the same distribution” with standard testing approaches. The
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result of testing is a probabilistic variableo indicate the confidence that we accept the hypothesis that
those distributions are the same. Thus the heterogeneity of modelsAs Formally, theMD-based

clustering is to find

argmaxH (X;P) = argmax#(Cy,...,Cg)
P P
= argma{l—A(Cy,....Co)}
P

= argmin\(Cy,...,Cg), (6.3)
P

whereA(Cy, ...,Cg) is the result of hypothesis testing on a partit®with G clusters.

More specifically, given a partitioR on the observed daté, we applyx? hypothesis testing to
computeA(Cy,...,Cg). In statistics,x? testing can be used to test the homogeneity among multiple
clusters with multinomial distributions by constructingantingency tableSince we show that a cluster
of schemas is also generated by a multinomial distribution, we can directly apply the test of homogeneity
by fitting the attribute frequencies in the cluster into the contingency table, which reflects the fact that
our modeling simplifies the testing. For arbitrary models, it deserves further research efforts to figure
out how to fit them into the contingency table.

Formally, assume there ameclustersCs, ...,Cn, and each of them is generated from its own multino-
mial distribution (as defined in Section 6.2.1). There madifferent events (attributes) altogether, de-
noted byAq, ..., An. Figure 6.4 is the contingency table to show this set of data. In parti€)|astands
for the attribute frequency d@; in clusterC;. X; is the sum of all the&;; in ith row andY; is the sum of
all the Ojj in jth column. ThatisX = y7_; O;j andY; = 3, O;;. Sis the sum of all0;; in the table.
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We want to test the hypothesigj,1 < j <n, pj1 = Pj2=... = Pjm = Y—S’ wherepij; is the probability

of observing attributé\; in clusterC;. This hypothesis is tested by considering the random variable

m n (Oij—XiXYJ)Z
D?(Cy,....Cn) = — S0 6.4
(&1 ) 2 J;[ %<0 ] (6.4)

It can be shown thad? has asymptotically g distribution with(n— 1)(m— 1) degree of freedom,
denoted byd f [2].

We have to use botB? andd f to decide how similar then clusters are.D? value itself is not a
valid indicator for the similarity of clusters without being qualified the degree of freedom. Therefore we
need to translate these two values into a single similarity measure. In statistics, we can compute the
value giverD? andd f, denoted byPV(D?,d f). TheP-value is the probability valuk in Equation 6.3,
indicating the confidence that we accept the hypothesis tha ttiesters are generated from the same

distribution. The objective functiofi/ is then

H(Cy,...,Ce) = 1— PV(D?,df). (6.5)

The computation oP-value is expensive and requires numerical integration. Therefore, in practice,
we develop an alternative measuj;é, by applying a normalize®? value. In particular, to make the
D? values of different degrees of freedom (resulted from different clusters) comparable, we use the
D? values with a commonly adopted significance le6¥&% as the normalization factors, denoted by

D2(df), with different degrees of freedom. We considérthe ratio between the computéd value

and theD2 with the same f:

(6.6)



Algorithm: GEpag:

Input: SchemaSeX, ObjectiveFunctiorF, NumberOfClusters
Output: G clusters

begin:

1 /*Form alist of initial V clusters */

2 Cc=Xq (1<k<V)

3 [* Derive similarity measure */

4 s=a similarity measure derived from

5 /*HAC main framework */

6 forK=VV-1..G

7  [* Compute pairwise similarities */

8 k*,I*:argmir]<7,s(Ck,C|),(1§k<I <K)
9  /* Merge the most similar two clusters*/
10 Cok j+> = MERGE(Cy+, Ci»)

end

Figure 6.6. General HAC algorithnGEpc.

Example 29: Consider the first clustering result in Example 28, we want to test the hypothesis that
these three clusters are generated from the same distribution. The corresponding contingency table of
this scenario is listed in Figure 6.5. Applying Equation 6.4, we D&C_1 »-,C3,C4) = 34.33 and
df(Co12-,C5,Ca) = (14— 1) x (2—1) = 13. theD2 value for 0.5% withd f = 13is 29.82. By applying
Equation 6.6 (C12-,Cs,Ca) = 3¢35 = 1.15,

Consider the second clustering result in Example 28 similarly, wége;,C,C.34-) = 65.67
anddf(Cy,Cp,Coz4-) = (14— 1) x (2—1) = 13, We then have#H(C1,C;,C34-) = 5257 = 2.2 >

H(C.1,2-,C3,Cs), which means the second clustering result is better than the first one.

6.2.3 General HAC Algorithm and MD-Based Similarity Measure

For constructing the domain hierarchy as motivated in Section 6.1, we adopt the general HAC clus-
tering approach, which is widely used for data clustering [43]. Figure 6.6 illustrates the general HAC
framework [51]. In HAC, we need to measure the similarity of clusters. That is, given a set of clusters,

Ci,...Cv, we compute all the pairwise value&,|), wheresis a similarity function from the objective
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function of clustering. The criterion of defining similarity functisfk,!) is to maximize the objec-
tive function in each step. The two clusters with the smalédst ) are merged in each iteration. The
algorithm stops when there a@clusters left.

Specifically, for outMD-based clustering, we derigék, | ) from # (X;P) (defined in Section 6.2.2)
as follows: In each iteration of HAC, we merge the clusters with the smallegalue {.e., the most

similar two models) and therefore we defsig, |) to be

S(k,|) :?{(CK,Q). (6.7)

Example 30: Consider the datasétin Example 28 as the input &Ep,.. Assume we want to generate
3 clusters. We compute all the pairwise similarities with Equation 6.7 ang &) = 0.43, s(1,3) =
0.96, s(1,4) = 0.96, s(2,3) = 0.96, 5(2,3) = 0.96, ands(3,4) = 0.04. It is clearly to see that; andC,4

are most similar. Thus the clustering resul€is C, andC_3 4-..

6.3 Clustering Query Schemas: AlgorithmMDpac

In this section, we present the concrete algoritfidy,,c (denotingMD-based HAC algorithm) by solv-

ing the difficulty of applying theviD-based clustering. To test the heterogeneity of models with hy-
pothesis testing (Section 6.2.2), we have to face one challenge: When the observations of events are not
sufficiently large, the value db? may not be closely converged ¥3 distribution and thus affects the

value of /. In particular, the(? test requires each event (attribute in our case) has at least 5 observations
to ensure the approximation pf distribution [2]. However, the input data are initially collected without

being grouped and thus cannot satisfy this requirement.
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Algorithm: MDpqc:

Input: SchemaSeX, NumberOfCluster&

Output: G clusters

begin:

1 /* Form the initial clusters */

C = DATAGROUPINGX)

/* Move loner interfaces into A’ */

C, N. = GROUPSELECTION(C)

/* Standard HAC clustering with new measure */
C = CLUSTERINGHAC(G, ()

/* Classify loners into accomplished clusters */
C = LONERHANDLING (A, ©)

/* Build the domain hierarchy with HAC approach */
10 BUILDHIERARCHY((O)

end

O©oOoO~NO UL WN

Figure 6.7: Algorithm MDpgc.

To address this problem of insufficient observations, we design pre-clustering and post-classification
techniques. Pre-clustering is to pre-cluster the data into groups with sufficient observations to satisfy
the requirement of hypothesis testing. Post-classification is to classify the insuffarienischemas
excluded by bootstrapping into the accomplished clusters.

In our development, pre-clustering consists of two steps: data grouping and group selection. Data
grouping is to merge the data into groups by using deterministic rules. After grouping, some groups con-
tain sufficient observations, while others not. Group selection only selects those groups with sufficient
observations to participate in the HAC clustering. We consider the insufficiently observed schemas as
loner schemas. Post-classification is essentially the classification of loners into the completed clusters,
which we call loner handling in our implementation.

Figure 6.7 shows AlgorithntMDpac First, DATAGROUPING pre-clusters data into groups based on
the corollaries developed from the existence of anchor attributes (Section 6.3.1). SeROWKSE-
LECTION excludes the loner schemas with loner thresio(&ection 6.3.2). ThirdgLUSTERINGHAC

clusters the remaining groups with the standard HAC algorithm and Equation 6.7 as the similarity mea-
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sure. Fourth . ONERHANDLING classifies the loner schemas into the accomplishaedusters (Sec-
tion 6.3.3). FinallyBuILDHIERARCHY again applies the HAC algorithm to build the hierarchical tree

of domains (by considering each cluster as one domain).

6.3.1 Data Grouping

Our pre-clustering technique leverages the existenemctor attributeso group schemas determinis-
tically. Our exploration for the schemas of the 8 domains indicates that most schemas contain anchor
attributes (Section 3.1). Specifically, an anchor attribute is essentially an attribute with non-zero proba-

bility only for one cluster. More formally,

Definition 3: Given a clustering partitio@s, ...,Cg and assume the model und&ris MMy, an attribute
Ais ananchor attributeif there is only oneCy that containg\, i.e., Pr(A|%) > 0 andPr(A| M) = O for

| # k. A schema is aistinguishable schemi&it contains at least one anchor attribute.

Definition 3 implies the following corollaries:

Corollary 1: If Ais ananchor attribute witRr(A|2) > 0 andA is observed in a schen@awith length
n, thenQ € C, Pr(Q|M,n) > 0 andPr(Q|2,n) = O for anyl # k.

Proof AssumeQ = {As:y1,...Aslys} of lengthn andA = A;, y; > 0 sinceA is observed imQ. By

applying Equation 6.2, we hawrr(Q|2,n) = nl ] W. Forl #k, Pr(A|M;) = 0 according to
definition of anchor attribute, thus we hale(Q|M;,n) = 0. SinceQ must belong to some clustep,

has to be clustered intg, thusQ € Cx andPr(Q| M, n) > 0.

Corollary 2: If Q; is a distinguishable schema a@d C Q,, Q, is also a distinguishable schema and

belongs to the same cluster@s.
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Proof AssumeQ; € Cy. Q2 must belong to some clust@r. If | £k, Q; becomes a schema containing
overlapping attributes d@x andC;. ThusPr(Q1|94,n) > 0, which contradicts the assumption tiia

is a distinguishable schema. Therefore we Hawek, which meang), is in the same cluster &3;.

Corollary 2 indicates that if all the schemas are distinguishable schemas, the containment relation is
correct in grouping data. Guided by Corollary 2, we group the query schemas by putting all the schemas
satisfying Corollary 2 into one cluster. More specifically, we first randomly select a soQearad put
all the query schemdg; satisfyingQ C Q; or Q; C Q into the same bucket @&. We then evaluate all
the Q; just added recursively until no satisfied schema can be found. It can be shown that the output of
data grouping is not affected by the random selection of schemas.

However, Corollary 2 requires that the schemas are distinguishable schemas. Since it is difficult
to affirm whether a schema is distinguishable before clustering, we design a heuristic by observing
the difference of theontaining setf distinguishable and indistinguishable schemas. We define the
containing set of a schengg denoted by5(Q), as all theQ;s satisfyingQ C Q; in the dataset. Intuitively,
for a distinguishable schen® the schemas i§(Q) are in one domain (based on Corollay 2) and hence
they should be more overlapping in attributes; While for an indistinguishable sa@etha schemas in
S(Q) come from multiple domains and they should be more different in attributes. Hence, we design a

step ofschema type checkirgefore grouping: For each sche®@awe compute its containing s&{Q).

Then for anyQ; andQj in S(Q), we compute their distanaki, j) as }8:88” If there existg(i, j) < 6,
where@ is a threshold value, we consid@ran indistinguishable schema and exclude it to participate in
data grouping. (In fact, the excluded schemas effectively become loner schemas in group selection). In

our experiment, we s&= 0.2. We assume the remaining schemas are all distinguishable schemas and

apply Corollary 2 to group them.
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Example 31: Consider a set of 8 schemdgi:{C}, Q2:{A,B}, Qs:{AB,C,E}, Qs:{AD}, Qs:{AB,D,E},
Qe6:{C,F}, Q7:{C,F,G}, andQg:{C,H}. First, we do the schema type checking on every schema. In par-
ticular, Q:'s containing setS(Q1)={Q3,Q6,Q7,Qs}. Computing the pairwise distance of schemas in
S(Q1), we know the minimal distance &3, 7) = 1/6 < 0.2. ThereforeQ is indistinguishable schema
and excluded for grouping. Similarly, we check other schemas and they all pass this checking.

Next, we start to group the remaining schemas by randomly choosing a schen@y. sahen
we find Q, € Q3 andQ, C Qs. By recursively evaluatings andQs, we find Q4 € Qs and no more
schemas can be incorporated. Theref@seQs, Q4 andQs are in one group. We repeat this process on
the remaining schemas and fiQd andQ; are in another group ar@s itself is in the third group. The
excludedQ; is considered as an individual group. Hence, data grouping outputs four groups.

Without schema type checking, the data grouping will output only one group with all schemas

together sinc&1 only contains an overlapping attribute which is observed in all the groups.

6.3.2 Group Selection

While data grouping merge the data into groups, some groups may still have insufficient observations,
which may affect the result of hypothesis testing. Therefore, we consider those groups as loner groups,
not participating in th€ LUSTERINGHAC step in AlgorithmMDyac. The criterion to judge loner groups

is to set doner threshold\: If the frequencies of all attributes in a group are lower thiamve consider

it as a loner group and all the schemas in this group as loners. In statistcspnventionally set to 5,

which is the recommended value gt hypothesis testing [2]. In our experiment, we find settihtp 3

is enough to contain sufficient observations.

Example 32: Consider the four groups in Example 31, the multinoimal expressions of these four groups

(Q2,Q3,Q4,Q5), (Qs,Q7), (Q1) and Qg) are: A:4,B:4,C:1,D:2,E:1), (C:2,F:2,G:1), (C:1) and C:1,
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H:1) respectively. If we set the threshd\dto 2, then groups@;) and Qg) are considered as loner

groups.

6.3.3 Loner Handling

After the step ofcLUSTERINGHAC, we classify the loners into the accomplished clusters. As a clas-
sification problem, we classify a loner sche@anto the cluster with the largest probability to observe
it. Formally, given a schem@® of lengthn, we will classify Q into the clusteiC; with the highest
Pr(Q[aMi,n).

Some loners may have zero probabilities for all clusters. Equation 6.1 shows that when an attribute
A, does not exist in a clust&, Pr(A;j|M;) = 0. For a schem@ with attributes not in any cluster, all the
probabilitiesPr(Q|M;, n) will be 0 and thus we cannot decide which cluster to classify it into. To avoid
this problem, in this step, we sBt(A;j|2) to a very small value instead o0 if A; is not observed in

Ci. In our implementation, we set= 103,

Example 33: Continue with Example 32, assume after HAC clustering, the two clusters cannot be
merged. We name grou®$, Qs, Qs, Qs) asC; and Qs, Q7) asC,. From Section 6.2.1, we know
multinomial distribution ofC, is (A:0.33,B:0.33,C:0.08,D:0.17,E:0.08) and ofC; is (C:0.4, F:0.4,
G:0.2).

Now we need to classify lonef3; andQg into these two clusters. FQ, by applying Equation 6.2,
we havePr(Qq|Mi,1) = 0.08 andPr(Q1|M>,1) = 0.4. ThereforeQ is put into clustelC,. Similarly,

Qg is also put into clusteC,. The final result of this clustering €%, Qs, Q4,Qs) and Q1, Qs, Q7, Qs).
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6.3.4 Time Complexity

We evaluate the time complexity 8Dy, for each individual step. Assume we havechemas irG
clusters with totallym attributes. Also, we assume the longest length of one schema is a cdbstant
DATAGROUPING can be executed i®(C?n?) = O(n?) time since we need to compare one schema with
all the remaining schemas to check the containment relationship in CorollaBrRQUPSELECTION

can be executed i©(mn) time in that for each group, we need to check the attribute frequencies.
CLUSTERINGHAC takesO(n’m) time because every time we combine two clus@randC;, we only
need to recompute the similarities between the remaining clusters and the new Clygter The
similarities between other clusters are not changed. So each iteratiorC@k@stime and there are

at mostn iterations. Hence, we have ti&n?m) upper bound for this stel.ONERHANDLING takes
O(nm@) time because for each loner schema, we need to cBeckisters with the computation of
probability over at most attributes. The final stepuiLD HIERARCHY is similar toCLUSTERINGHAC

and take€D(G?m) time. Therefore, the time complexity altogether is bounde®fbym).

6.4 Experiments

To evaluate thé/Dp4c algorithm, we test it with 8 domains of structured sources on the deep Web. We
compare our model-differentiation based approach with likelihood [51], entropy (COOLCAT) [24] and
context linkage (ROCK) [35] based approaches using HAC algorithm and analyze the results. Also, we
show the domain hierarchy built bMDp4c and evaluate the influence of the loner threshéldn the

clustering performance.
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MDhac LKhac

Af | Am | Bk | Cr | Ht | Jb | Mv | Mr Af | Am | Bk | Cr | Ht | Jb | Mv | Mr
Ci| 0 |101] O 0 2 4 0 0 Ci| 0O |100| O 0 2 8 0 0
C| O 0 62 | O 0 1 9 2 C | O 0 62| O 0 1 7 2
C| O 0 0 (24| 0 0 0 0 C3| O 0 0 0|3 ] 6 0 1
Ci| O 0 0 03] 0 0 1 Ci| O 0 0 0 0 0 | 56 5
Cs| O 0 0 0 0[50 1 0 Cs| O 2 7 0 0 0 | 10 2
Cs | 53] O 0 0 1 0 0 0 Cs| O 0 0 0 0 0 7 67
C;| O 0 0 0 0 0 8 67 C;| 53| O 0 0 1 0 0 0
Cg| O 1 7 0 0 0 | 62 7 Csg| O 0 0 (24| 0 |40| O 0

(a) Conditional entropy oMDp,¢: 0.32. (b) Conditional entropy of Ky 5¢: 0.42.

EPhac Clhac

Af | Am | Bk | Cr | Ht | Jb | Mv | Mr Af | Am | Bk | Cr | Ht | Jb | Mv | Mr
Ci| 0 |100| O 0 2 4 0 0 Ci1|34| 0 0 0 1 0 0 0
G| 0 0 62| O 0 0 5 2 C | 19| O 0 0 0 0 0 0
C| O 0 0 (24| 0 0 0 0 C3| O 99 7 0 2 7 1 1
Ci| O 0 0 0 [ 35| 6 0 1 Ci| O 1 62 | 24| 0 1 4 1
C| O 0 0 0 0 0 | 57 5 Cs| O 0 0 0[3]21] 0 1
Cs| O 0 0 0 0 0 8 67 Ce| O 0 0 0 0 26| 1 0
C;| 53] O 0 0 1 0 0 0 C;| O 0 0 0 0 0 | 70 | 42
Cg| O 2 7 0 0 | 45| 10 2 Cg| O 2 0 0 0 0 4 32

(c) Conditional entropy oEPpa: 0.38.

~

d) Conditional entropy o€Lpac: 0.61.

Figure 6.8 Comparison of four similarity measures in HAC.

6.4.1 Experiment Setup

We use the TEL-8 dataset in the UIUC Web Integration Repository [17] to test our clustering algorithm.
For each source, we manually extract attributes from its query interface by extracting noun phrases, and
then judge its corresponding domain. This is our ground truth of “correct” clustering. The reason we
do not apply our work in [72] for interface extraction is that we want to isolate the clustering process to
study and thus fairly evaluate the performance.

To measure the result of clustering, we adoptabeditional entropyintroduced in [8]. For a given
number of cluster§s, the value of the conditional entropy is within the range from oG, where
0 denotes the 100% correct clusterilagyG denotes purely random clustering resu#,, the sources
from every single domain are evenly distributed into all clusters. Thus, the closer the conditional entropy

value is to 0, the better the result is.
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6.4.2 Experimental Results

We design three suites of experimenist, we compare our approadiDp,c With the three existing
approaches: likelihood based approabK{so), entropy based approacBERh,o) and context linkage
based approaclC(ac) for clustering the sources of 8 domains. For fair comparison, we only replace
the similarity measure of test of model difference (Equation 6.6) incthesTERINGHAC step with
the likelihood based measure, entropy based measure and context linkage based measure. All the rest
settings (pre-clustering and post-classification etc.) stay the same and the loner thxeishsstito 3.

To make the other measures clear, we briefly list each of them below. Reference [51] introduces the
likelihood based similarity measure for HAC algorithm as Equation 6.8. The basic idea is that in each

merging step in HAC, the two clusters generating the maximal likelihood after merging will be merged.

S(k,1) = £(C) + £(C) — L(Cukr-). (6.8)

COOLCAT [24] introduces entropy as the objective function, from where we derive the following

similarity measure for HAC algorithm, with the same idea as the derivation of Equation 6.8 in [51].

s(k;1) = [C[E(Ci) +[G[E(CI) — [Cki> [E(Cki>)- (6.9)

ROCK [35] introduces context linkage as the similarity measure:

_ link[Cy,Gi]
sthel) = (N + ) (1+2f(8) — nl((1+2f(9)) _ 210 (6.10)

J
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The resultin Figure 6.8 shows the comparison of the four measures in HAC algorithm. In particular,
we present the results as the numbers of Web sources in each cluster from each domain. For example, in
Figure 6.8 (a)101stands for that there are, in clus@r, 101Web sources from automobile domain. We
use the abbreviations Af, Am, Bk, Cr, Ht, Jb, Mv and Mr to denote the 8 domains Airfares, Automobiles,
CarRentals, Hotels, Jobs, Movies and MusicRecords respectively. Figure 6.8 illustrates two results: 1)
It is feasible to address the clustering of structured sources as the clustering of query schemas. The
matrix of MDpac, LKhac aNdEPHac dO show correct clustering for most data. The resulChf,fo) is not
good perhaps because its similarity measure may not fit the schema data WwéD;2)achieves, on
clustering Web schemas, the best performance (smallest conditional entropy) among all the measures.
In particular, compared with the second best meadtiPg,., MDpac has better clustering results for
Jobs and Movies.

Second we show the effectiveness ™MDy, to build the domain hierarchy. After clustering 8
domains, we continue with treuILD HIERARCHY step to build the domain hierarchy in the same way
as the HAC clustering. The result in Figure 6.9 illustrates that Automobiles and Jobs are merged in
the same subtree, MusicRecords, Books and Movies in another subtree, and Airfares, CarRentals and
Hotels in a third subtree. This hierarchy is consistent with our observation in the real werldifject
domains are characterized by their query schemas): Books, MusicRecords and Movies are all media
and often sold together online, and so are Airfares, CarRentals and Hotel reservations. Automobiles and
Jobs are together because they share many location information, stigh state andzip code.

Finally, we design experiments to evaluate the influence of the loner threlhdtdstatistics, 5 is
the recommended for the accuracyydfhypothesis testing and therefdiedoes not need to be larger
than 5. We leiN range from 2 to 5 and test all the four measures (We exdNidel becauseN = 1

means no group selection). The result in Figure 6.10 shows that the clustering result is not affected too

153



BN

Figure 6.9 The domain hierarchy built bMDpac.
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Figure 6.1Q The influence of loner threshohd.
much byN, whenN is ranged from 2 to 4. WheN = 5, the result is worse because of the limited
sampling size of our dataset. SettiNgto 5 will trim most groups in group selection, where some
insufficiently observed domaine.g, CarRental) are entirely trimmed out. Hence, we expect the result
of N = 5 will be good when we have more observations. Putting in other words, when we have sufficient

observations, the setting bf will not affect the result significantly.

6.5 Conclusion

This chapter studies the problem of organizing structured sources on the Web. Motivated by our obser-
vations of the deep Web, we propose to organize sources by their query schemas, and further abstract
the problem as the clustering of categorical data. We develop a new model-differentiation objective
function for clustering. Guided by tHdD objective, we derive a new similarity measure for the gen-

eral HAC algorithm. To apply statistical hypothesis testing for clustering, we design pre-clustering and
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post-classification technigques. Our experiments show the effectiveness of our abstraction— By cluster-
ing the query schemas, we can accurately organize sources into object domains. Also, we show that the
model-differentiation function outperforms existing ones with the hierarchical agglomerative clustering

algorithm.
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Chapter 7

Related Work

Schema matching (which this thesis mainly focuses on) is one critical step for schema integration [6, 61].
As a complete solution to automate the processing of matching Web forms, this thesis presents both the
new idea of holistic schema matchirige(, theMGS andDCM frameworks and the ensemble scheme to
maintain the matching quality with noisy input) and two steps to fully automate the matching process
(i.e, Web form crawling and clustering approaches). In this chapter, we thus accordingly organize
related work with respect to each individual subproblem: schema matching, Web crawling and source

clustering.

7.1 Schema Matching

We relate our holistic schema matching idea (from Chapter 2 to Chapter 4) to existing work in three

aspects: the paradigms, the techniques and the input data.

Paradigms Traditionally, schema matching relies on matchings between pairwise attributes before
integrating multiple schemas. For instance, traditional binaryany [55] schema integration method-

ologies (as [6] surveys) exploit pairwise-attribute correspondence assertions (mostly manually given)
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for merging two or somea sources. Recent work on automatic schema matching mostly focuses on
matchings between two schemas (e.g., [28, 50, 52, 47]). Therefore, the latest survey [60] abstracts
schema matching as pairwise similarity mappings between two input sources. In contrast, we propose a
new paradigm, holistic schema matching, to match many sources at the same time and discover all the
matchings at once. Our work was motivated by integrating the deep Web, where the challenge of large
scale matching is pressing. Our framework leverages such scale to enable statistical analysis.

Further, existing schema matching work mostly focuses on simple 1:1 matchings [28, 50, 52]. Com-
plex matching has not been extensively studied, mainly due to the much more complex search space of
exploring all possible combinations of attributes. Consider two schemasuvatid v attributes re-
spectively, while there are only x v potential 1:1 matchings, the number of possitt@ matchings
is exponential. The recent work iIMAP [47] proposes to construttriatchings between two schemas
by combining their simple 1:1 matchings. ODeM framework (Chapter 3) also aims at finding com-
plex matchings. Although both aiming at complex matchings, our work is different from iMAP in: 1)
scenario: iIMAP focuses on matching two schemas, while we targets at large scale schema matching.
2) techniques: iIMAP relies on the availability of instance values to construct complex matchings from
simple 1:1 matchings, while we explore the co-occurrence information across schemas and thus develop
a correlation mining approach.

The closest idea to the holistic matching paradigm is probably the corpus-based schema matching
approach [36, 49], which suggests to use a separately-built schema corpus as a “knowledge-base” for
assisting matching of unseen sources. While sharing the same insight of statistics analysis over corpora,
our approach differs in that it leverages input schemas themselves as the corpus and assumes a generative

model to unify the corpus.
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Techniques Many solutions have been developed to facilitate schema matching in automatic or semi-
automatic way. The survey of [60] presents a taxonomy and comparison of these approaches. It clas-
sifies the solutions according to whether they deal with data values (called “instances”) or schemas,
whether the schema is flat or structured, and other aspects. There are many different techniques: Some
approaches apply machine learning techniques to match a data source to the mediated schema such as
the LSD system [28]. Some approaches use the structural similarity between schemas to find match-
ings, such as the flooding similarity matcher [52]. Cupid [50] presents a generic matching operation
across different data models and applies a hybrid approach by combining both linguistic and structural
similarity measurements.

In contrast, based on our observation of deep Web sources, we develop two statistical frameworks,
MGS and DCM, which contrasts with existing techniques such as machine learning [28], constraint-
based [46], structure-based [52], and hybrid approaches [50]. IM@&sframework, we hypothesize
the existence of a hidden generative model for each dormeain Books, Movies). Under this hypothe-
sis, a schema can be viewed as an instance generated from the model with some probabilistic behavior.
Schema matching is thus transformed into the discovery of the hidden model, given a set of schema
instances. In th&CM framework, we observe that co-occurrence patterns across schemas often reveal
the complex relationships of attributes, which motivates us to abstract the problem of finding complex
matchings as a dual mining of positive and negative correlations.

Further, to make the holistic matching framework robust against noise, we integrate it véith an
semblescheme, which aggregates a multitude of holistic matchers to achieve robustness, by exploiting
statistical sampling and majority voting. We note that, our ensemble idea is inspitetging clas-
sifiers[11, 26] in machine learning. Bagging is a method for maintaining the robustness of “unstable”

classification algorithms where small changes in the training set result in large changes in prediction.
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In particular, it creates multiple versions of a classifier, trains each classifier on a random redistribu-
tion of the training set and finally takes a plurality voting among all the classifiers to predict the class.
Therefore, our ensemble approach has the same foundation as bagging classifiers on exploiting majority
voting to make an algorithm robust against outlier data in the input.

However, our approach is different from bagging classifiers in several aspectsséttiag We ap-
ply the idea of the ensemble of randomized data for unsupervised leaeningn(our scenario, schema
matching with statistical analysis), instead of supervised learmiaglfuman experts give the learner
direct feedback about the correctness of the performance [45]), which bagging classifiers is developed
for. SecondtechniquesOur concrete techniques are different from bagging classifiers. In particular, in
the sampling part, we take a downsampling other than random redistribution with replacement; in the
voting part, we need to aggregate a set of ranked lists, which is more complicated than aggregate a set
of labels in bagging classifiers. Thiranalytic modelingWe build an analytic modeling specific to our
matching scenario, which enables us to validate the effectiveness of a particular configuration and thus

can be the basis for the design of the ensemble scheme.

Input Data: The previous work assumes their input as either relational or structured schemas. Those
schemas are designed internally for developers. As a consequence, the attributes of the schemas may be
named in a highly inconsistent manner, imposing many difficulties in schema matching. In contrast, our
work focuses on matching query interfaces of deep Web sources. These interfaces are designed for end
users and are likely more meaningful and consistent. Thus, we observed this distinguishing characteris-
tic of “converging vocabulary” in our deep Web studies, which motivated our statistical approach.

Some recent works are particularly focusing on matching Web databases [41, 66, 64]. WISE [41]
is a comprehensive query interface integrator, which evaluates the similarity of attributes in multiple

aspects. However, it only deals with simple 1:1 matchings. Reference [64] matches query interfaces
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based on the results of probing some instance values from the back-end databases via interfaces. It
also only deals with simple 1:1 matchings. Comparing with other matching approaches, probing-based
matching is much more expensive due to the large number of HTTP requests sent for each interface. In
addition, it needs global model for each domain and is thus less scalable as an automatic generic solution
for handling various domains of Web sources. Reference [66] pursues a clustering-based approach
to discover In matchings by exploring the “bridging” effect among query interfaces. However, its
discovery of complex matchings essentially depends on a “hierarchical” interface extractor— That is,
the grouping of attributese(g, the grouping oflast name and first name) must be identified, in the

first place, by the interface extractor (and not the matching algorithm). This “hierarchy-recognition”
requirement makes interface extraction a very challenging task.

In contrast, our matching algorithms only requires an interface extractor to extract a query interface
as a “flat” set of query conditions, instead of a hierarchy of attributes, which can thus be easily satisfied
(e.g, our recent work of automatic interface extraction [72] is such an extractor). In fact, even with
a simple “flat” extractor, it already introduces enough errors to impact the matching performance. In
this thesis, we study such impact and propose an ensemble approach for maintaining the robustness of

matching, which significantly extends the holistic matching idea (Chapter 4).

7.2 Web Crawling

We build a taxonomy to relate our crawling work in Chapter 5 to other Web crawling work. In particular,
we present a taxonomy of 4-quadrant of Web crawlers in Figure 7.1, which contains two dimensions.
Along the dimension okubject topics crawlers are either topic-neutral @my topic or specific to
certaintopics. Along the dimension afrawling target while traditional crawlers collect HTML pages,

new type of crawlers collect certain Web artifacts (which we call objects), such as Web sites, query
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Figure 7.1 The taxonomy of Web crawlers.

forms, productsd.g, digital cameras), or addresses. This taxonomy thus classifies Web crawlers into
four categories. For example, the traditional link-following crawlers [13, 21] fall into the category of
topic-neutral and page-targeting crawlers, and the category of topic-focused crawlers [15, 27, 54, 62]
look for pages on give topics.

The focus of our crawler work is crawling certain type of objects. A recent work [30] describes a
crawler for collecting Websites related to specific topics. Given its target objects, Websites, it is natural
for [30] to crawl site by site. Thus it can be viewed as a subset of the framework of our Site Finder.
The work closest to ours is [5], in which a crawler is developed to find query forms on given topics.
While the kind of objects targeted by [30] is Website, the target object in [5] and our work is Web
form. Note that both [30] and [5] belong to the category of topic-focused and object-focused crawlers.
By exploiting content-driven techniques.§, content classifiers), they are not applicable in finding
topic-neutral query forms.

In contrast, to the best of our knowledge, ours is the first attempt of building a topic-neutral object-
focused Web crawler. Building upon the insight of structure-driven crawling, this new framework on the
one hand eliminates the reliance on content focus, and on the other hand enables us to balance between
high harvest (as virtually all the traditional crawlers focus on) and coverage, by exploiting the object

distribution pattern in structure locality.
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7.3 Source Clustering

We relate our clustering work in Chapter 6 to the literature in three aspects: in terms of the Web cluster-
ing problem and our clustering technique.

First, in terms of theWeb clustering problepmexisting Web clustering works mainly focus on clus-
tering Web documents by exploiting Web content and linkage information [70, 71, 65, 42]. In contrast,
our work focuses on the clustering of structured Web sources. With the observation that query schemas
are discriminative representatives of sources, we are able to translate the original problem of source
organization into the clustering of query schemas, a type of categorical data.

Secondin terms of theclustering techniqueour work proposes a model-differentiation objective
function for clustering query-schema data. Clustering of general categorical data has recently been
more actively studiede.g, STIRR [34], CACTUS [33], ROCK [35], and COOLCAT [24]. STIRR
treats clustering as a partitioning problem of hypergraph and solves it based on non-linear dynamical
systems. CACTUS considers a cluster as a set of pairwise strong connected attributes by measuring
attribute occurrences. ROCK, COOLCAT and this work pursue the same direction of defining a new
similarity measure involving thglobal context{such as properties of a entire cluster) instead of local
pairwise measure. ROCK uses context linkages between data points, and COOLCAT uses entropy
of clusters. As an alternative, we develop the model-differentiation measure, which maximizes the
statistical heterogeneity among clusters.

Our statistical approach belongs to the general idea of model-based clusteginga(ttitional EM
algorithm [53] and hierarchical algorithms [4, 32]). Such clustering assumes that data is generated from
a mixture of distributions, each of which defines a cluster. This general approach is traditionally not spe-
cific to categorical data— More recently, reference [51] proposes a multivariate multinomial distribution

(in which each feature is an independent multinomial distribution) for categorical data. In comparison,
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the model we propose for schema data (or transactional data) is a “joint” multinomial, where all features
are generated from a multinomial distribution.

All the existing model-based works essentially use likelihood as the objective function to maximize—
In contrast, we propose model-differentiation by maximizing the statistical heterogeneity among clus-
ters. In our extended report [40], we show that these two objective functions are égtacalentn as-
sessing the global clustering results. However, toward their “global” objectives, they indeedliffgrty
entgreedy “local” similarity measures. In our experiments, we also compare the model-differentiation

measure with the likelihood one on HAC algorithm.
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Chapter 8

Conclusion

This thesis proposes to move the traditional pairwise attribute correspondence toward a new holistic
paradigm in the discovering of semantic matchings among attributes. This holistic approach is well
suited for the new frontier of massive networked databases, such as the deep Web. As the realizations of
the holistic schema matching, we develop k@S andDCM frameworks in sequence with global and

local evaluation strategies respectively.

On the one hand, global evaluation is a systematic and principled way to evaluate models since it
exhaustively evaluates all possible models with a statistical basis. In particularNiGth&amework,
statistical hypothesis testing can report matchings with respect to a given themigtiitidance level
Also, the discovered model can naturally be employed as a unified schema to mediate queries to specific
sources. However, global evaluation can be expensive. The exploration of all the possible models can be
generally exponential. Further, modeling can be a difficult task, depending on specific target semantics
to be discovered. In particular, it is unclear how to extend the modeling in Chapter 2 to accommodate

complex matchings, which tHeCM framework copes with.
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On the other hand, local evaluation adopts a greedy strategy to incrementally construct a potentially
suboptimal model. The greedy selection is not as systematic as the exhaustive enumeration in the
global evaluation. Also, as the core of correlation mining, we need to choose an appropriate correlation
measure for our application scenario. Since the correlation measure is often empirically designed based
on heuristics, the mining result may lack a principled justification. However, our experiments show
that the matching accuracy of local evaluation is empirically good enough in discovering both simple
and complex matchings. Further, local evaluation has some other advantages that global evaluation
does not have: First, the computation of local evaluation is very efficient, since instead of exhaustively
exploring every model as a whole, we select one matching at a time as part of the best model. Second,
it is easier to accommodate complex matchings in local evaluation since it does not require formal
statistical modeling. In particular, t®CM framework supports complex matchings by considering
both positive and negative correlations. Given the respective strengthes and weaknesses of global and
local evaluations, we wonder if a hybrid of the two approaches will achieve the strength of both without
the weakness of either.

Further, to complete the automatic process of holistic schema matching, we also address two other
related issues: How to maintain the robustness of a holistic matcher when the input schemas contain
errors and how to organize schemas into their corresponding domains.

First, to make holistic matching approaches robust to noisy input from the automatic interface ex-
tractor, we integrate a holistic matcher with emsemblescheme, which aggregates a multitude of the
matchers to achieve robustness, by exploiting statistical sampling and majority voting. In this thesis, we
apply such an ensemble scheme form@M matcher and our empirical study shows that the ensemble
approach can significantly boost the matching accuracy under noisy schema input, and thus maintain

the desired robustness of theM matcher.
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Second, to obtain a set of schemas in the same domain (as the input of our holistic matching al-
gorithms), we develop techniques for source discovegy, @utomatically finding large scale query
interfaces on the Web) and schema clusterirg, @utomatically organize discovered schemas into a
domain hierarchy).

In particular, in source discovery, we aim at building a crawler for collecting query forms on the
Web. We abstract this problem as object-focused, topic-neutral crawling and propose a structure-driven
crawling framework for such a crawling task by observing the existence of structure locality of query
forms. We develop the Web Form Crawler to realize the framework. The experimental results show
that our crawler can not only maintain stable harvest but also steadily grow coverage throughout the
crawling. Compared to page-based crawling, our best harvest rate is about 10 to 400 times difference,
depending on the page traversal schemes used.

In schema clustering, we propose a new model-differentiation objective function for clustering.
Guided by theMD objective, we derive a new similarity measure for the general HAC algorithm. To
apply statistical hypothesis testing for clustering, we design pre-clustering and post-classification tech-
niques. Our experiments show the effectiveness of our abstraction. Also, we show that the model-
differentiation function outperforms existing ones with the hierarchical agglomerative clustering algo-

rithm.
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