
EFFICIENT LOCAL CHECKPOINTING FOR SOFTWARE FAULT TOLERANCE

Krishna Kant
EECS Oepartment~ Northwestern University

Evanston~ IL 60201

INTRODUCTION

The Recovery Block (RB) concept proposed by Randell
[I] for implementing software fault tolerance involves the
establishment of local checkpoints (LCP) whenever a process
enters a RS~ In order for the scheme to be practical, it is
important that the overhead of this checkpointing be small both
in time and storage. Therefore, we must look into alternatives
to simply caching the complete process state at the point of
entry to a RBo Since the checkpointing mechanism need be
concerned with only those variables that are modified within a
RB~ an obvious approach is to keep only the previous (ire.
unmodified) values of these variables. In this note r we examine
some implementation difficulties with this approach and then
propose a somewhat unusual scheme which saves only the modified
values at the end of a RB execution.

RECORDING PRIOR VALUES

The idea here is to record the value of a variable
just before it is to be modified for the first time within the
RB. A rollback then simply consists in restoring previous
values of these variables. Unfortunately, the scheme suffers
from two problems.

First, a reasonable implementation would require
additional hardware which constantly monitors the system bus for
store type of instructions and delays the instruction execution
in case the original contents of this address need to be cached
[2]. The hardware required for monitoring, synchronization and
caching may be substantial. Secondly, the mapping between the
variable names and their bus addresses is rarely
straightforward. The mapping depends both on the memory
management techniques used by the system and the storage
allocation mechanism used by the language in which the program
was written. Take for example the case of a pascal program
running on a system using paged memory management. In this
case, two levels of "backward" translation will be required in
order to identify the variable from the bus address. First, a
search should be made in order to determine the page number
corresponding to the block number part of the physical address.
Secondly, the resulting virtual address must be translated into

Ii

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1041478.1041479&domain=pdf&date_stamp=1983-04-01

the appropriate offset into the run time stack used by the
pascal implementation o The hardware could, of course r be
designed to monitor virtual addresses rather than physical
addresses; however~ this may not be very desirable°

A second problem with this scheme arises when we
consider consistent state restoration in concurrent programs.
Since the rollback of one process in the program may require the
rollback of another, the final LCP to which a process needs to
be rolled back may be far removed from the last established LCPo
In such a case, if every LCP had a complete record of the
process state, we could first determine the final LCP for
rollback and then restore the process to this LCPo However~
with each LCP holding prior values of only those variables that
are actually modified in the associated RB, this cannot be done
and a step-by-step rollback, starting with the last established
LCP is necessary. Figure 1 shows the difficulty pictorially°
The average number of rollback steps required will grow as the
process interaction level and hence the average length of
rollback increases. The problem can be solved by establishing a
full LCP after every N partial LCP's. This would place an upper
bound of N/2 on the average number of rollback steps required
for error recovery. The parameter N can be chosen so as to
minimize the combined overhead of checkpointing and recovery°

RECORDING MODIFIED VALUES

The basic idea in this scheme is to record only those
variables that have been modified. We assume that we have a
tagged architecturet such as the one proposed for capability
implementation [3] . Every word of the memory contains a
"modified" bit which is automatically set to 1 by hardware
whenever its contents are modified. We also assume an
instruction for initializing the modify bit for a sequence of
memory locations to 0. The initialization is done every time
the execution of a new RB alternate is initiated. Upon exit
from a RB, a scan is made over all memory locations
corresponding to the nonlocal variables of the RB, and new
values recorded for all those which have been modified. It may
be noted that this mechanism records exactly those variables
which are stored by the first scheme; the only difference is
that we store the modified values rather than the prior values.
We also assume that a full LCP is established after every N
partial LCP's. The parameter N can again be chosen so as to
minimize the total cost of checkpointing and recovery.

The recovery scheme can now be stated very simply. We
first determine the final LCP to which a given process must be
rolled back and then locate the nearest full LCP established
prior to it. We restore the process to this full LCP and then
successively use the later partial LCP's for state modification
until we reach the correct rollback point. (See Figure 2).

12

The main advantage of this scheme over the first one
is that the required hardware support is very simple; it is
essentially the "tagged architecture ~" advocated for capability
based addressing [3] o The step-by-step rollback will, of
courser be required in any scheme which establishes partial
LCP~s o

It is clear that the checkpointing cost is same for
both mechanisms. The number of rollback steps required to
complete error recovery is always N/2 for scheme 2; however,
for scheme i~ it depends upon the average rollback span (ARS),
i.e. the number of previous RB executions that need to be
discarded° Note that ARSi for sequential programs. As ARS
increasest so does the average number of rollback steps in
scheme i but is is always bounded by N/2. Thus the first scheme
is cheaper for sequential programs and concurrent programs
involving very infrequent process interaction. In other
situations, both schemes incur approximately the same amount of
recovery overhead.

REFERENCES

i.

.

.

B. Randell, "System
Tolerance", IEEE Trans.
pp220-232, June 1975o

Structure for Software Fault
on Software Engineering, Vol SE-i,

P. A. Lee, N. Ghani and K. Heron, "A Recovery Cache for
the PDP-ii", Technical Report No. 134, Univ. of Newcastle
upon Tyne, March 1979.

R° S. Fabry, "Capability based Addressing", Communications
of the ACM, Vol 17, No 7, pp403-412, July 1974.

, N D

(

(

(

F{Z~e i gLZ~z
13

