
ON COST OF STATIC L I N K I N G AND L O A D I N G OF S U B P R O G R A M S

Norman Beck, Gordon Ashby
University o f Oregon

INTRODUCTION

The purpose of this paper is to report some data
concerning cost in CPU processing due to loading pro-
grams. The data was collected on a PDP-10, using modi-
fications made by the linking loader to the prologue
generated for FORTRAN compiled programs, by the
addition of one UUO (a programmed operation similar
to an SVC on IBM 360/370), and several cells in the
monitor used as counters. The data covers the number of
programs loaded and the CPU ~s expended loading
them. This data is broken down between programs that
were loaded and never entered and programs loaded and
eventually executed. It is further classified according to
periods of heavy use for program development and
periods of heavy production use.

The following paragraphs will present the reason
behind the collection of the data, describe the modifica-
tions made in order to collect the data, summarize the
data, describe the University PDP-10 configuration and
general work load, and finally remark on the significance
of the findings.

BACKGROUND

For some time the authors have believed that static
linking and loading was inefficient and a significant
contributor to system overhead. Examples of dynamic
linking and loading functions are found in systems that
also incorporate sophisticated memory management,
auxiliary storage management, and scheduling functions,
e.g., MULTICS. However, most medium and large scale
systems in use employ static linking and loading and less
sophisticated memory management and scheduling. We
are attempting to discover some use patterns of subpro-
grams incorporated into static load modules and also
something of the costs and desirability associated with
forming static load modules. This paper reports aspects
of the study conducted thus far.

One of our contentions has been that static loading,
such as is done on the PDP-10 and IBM 360, results in
the linking and loading of numerous programs which
never enter execwtion because of early termination due
to errors and because of the dictates of the data portion
of particular runs. We have suggested that dynamic load-
ing techniques could be the default function for an
operating system in order to free the internal memory
and ease the CPU and channel overhead involved in
linking and loading. Because of overhead involved with
dynamic loading, we have further suggested that static
loaders should be available to the programmer who has
developed a production program so that he/she could

combin£ those portions of the load module which would
standardly be needed in a run of the program. Finally,
the output from the static loader should be acceptable
input to the dynamic load function of the system.

In order to initially test the validity of our conten-
tions, we decided to collect performance data directed at
the following three questions. Are a very large portion of
the programs linked and loaded never entered? Is the
CPU cost of loading them significant? Do production
runs differ sufficiently from developmental runs to war-
rant inclusion of static loaders in the operating system?
This report describes a study based on these three ques-
tions. Again, the study is directed at a problem of
non-paged systems and does not apply to paged memory
management systems.

THE MODIFICATION TO
FORTRAN OBJECT PROGRAMS

AND THE LOADER

As mentioned earlier, the modifications to the sys-
tem to collect the data amounted to 1) having the link-
ing loader displace one word of the prologue for
FORTRAN object modules with a UUO call that points
to an argument block, 2)a UUO monitor level service
routine, and 3)four counters in the monitor named
%UOLTL, %UOLTT, %UOLUL, and %UOLUT.

There are two arguments tcr the UUO monitor call.
The first is the displaced instruction and the second
contains a loading time in rfis in the left half and a count
in the right half. For main routines, the loading time is
the CPU time expended on all subprograms linked into
the load module and the count is the number of subpro-
grams linked. For subprograms, the load time is the CPU
time expended on that module and the count is set to
z e r o .

The UUO level routine upon entry checks the count
for non-zero to see if the entry is to a main routine. For
main routines the count field is added to the %UOLTL
and the loading time field is added to %UOLTT. Thus
%UOLTL and %UOLTT at any given time contain the
total number of routines linked and loaded and the total
CPU time in milliseconds used for linking and loading
programs. For a subprogram, %UOLUL is incremented
by one and the loading time field is added to %UOLUT.
%UOLUL represents the subset of the %UOLTL routines
that have been entered and %UOLUL the CPU time
expended linking and loading the subset. The UUO level
routine replaces the displaced instruction in both cases
so that subsequent entries do not result in duplication of
the logged information.

On the PDP-10 a user can save a core image for

17

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1041613.1041616&domain=pdf&date_stamp=1973-09-01

repeated execution immediately after linking and load-
ing. Our modifications were designed to capture duplica-
tions that result from multiple executions of these saved
files. We chose to count all subroutines loaded and used
at every execution of the FORTRAN main program. The
overhead involved in linking and loading saved files that
are never executed is not included in the data. The bias
introduced by this choice should tend to increase the
percent used of those loaded and therefore tend to
the apparent desirability of dynamic linking/loading
facilities. Again, the data portion for a particular execu-
tion of a program is a determining factor in which
subprograms are executed and the above philosophy was
required in order to allow this variable to function.

The counters are written to disk at regular intervals
in records that were date and time stamped. A simple
program then categorizes the data according to shift,
day, and production or developmental period. Totals
and subtotals for programs loaded, loaded and used,
loaded and unused, and corresponding loading times are
easily available. A summary of this information, col-
lected ove ra four-month period from January through
April 1973, follows.

SUMMARY OF DATA COLLECTED

Table 1 gives the totals collected for each of the
four months January through April 1973, and composite
four-month totals. Over the four-month period approxi-
mately 3.23 hours of CPU time was spent linking and
loading 121,172 FORTRAN subprograms. Of these,
65,541 were never entered, wasting approximately 1.83
hours of CPU time. During the four-month interval used
to collect the data, the PDP-10 was operational for
1,531 hours and CPU utilization was approximately 300
hours. Thus, a very small portion of available CPU time
was used performing linking and loading functions,
3.23/1531 = .0021 or .21% with the unused figure being
.12%. Whether loading time is compared with available
CPU time or used CPU time, it doesn't appear to con-
sume a significant amount of the CPU. On the average, it
takes approximately 100 n/is of CPU time to load a
program.

Another of our questions was with regard to the
portion of programs that were loaded and went unused
for one reason or another. Less than half, 45.91% of the
programs loaded into memory were used in our four-
month sample. (Frankly, we were surprised that the
percentage used was this high.) These programs occupy
core memory whenever the program is running or ready
to run. While we cannot tell the amount or percentage of
internal memory space so used, we note that, on the
average, programs that were not entered took more CPU
time to link and load than did programs that were
entered, 101 rgs versus 91 nhs, and we can surmise that a
significant amount of internal storage in our computer
configuration supports unneeded programs and data.

Total Loaded
Total CPU Time Loading
Average CPU Time
Total Used
Total CPU Time for Used
Average CPU Time
Total Unused
Total CPU Time for Unused
Average CPU Time

% Used of Those Loaded

January February March April Total

20,645 31,658 21,402 47,467 121,172
1,947,860 q, is 4,109,903 rCis 2,305,749 ~ s 3,322,064 rots 11,685,576 n/is

94 ~s 130 ~ s 108 ~ s 70 ~s 96 rots
8,717 13,667 11,754 21,493 55,631

838,264 fits 1,439,501 fins 1,055,993 ffis 1,737,533 ffis 5,071,291 ~s
96 qis 105 rCis 90 rcis 81 ffis 91 rcis

11,928 17,991 9,648 25,974 65,541
1,109,596 fins 2,670,402 rots 1,249,756 ffis 1,584,531 r~s 6,614,285 ffis

93 its 148 ~s 130 ffis 61 ffls 101 rcis

42.22% 43.17% 54.92% 45.28% 45.91%

Tab le 1

18

Table 2 presents the four-month totals for our nor-
mal student and developmental shifts Sunday through
Saturday as opposed to our limited access "night owl"
production shifts. (A brief profile of our system appears
in the next section.) While the sample from pioduction
shifts is smaller than that for the normal shifts, there
does appear to be a significant difference in the portion
of routines loaded and used, 69.73% for production
times and 43.99% for normal times. (Again, we were
surprised that the difference wasn't larger.) Even in the

case of production times, we conjecture that significant
internal memory space is wasted on programs and data
that are never referenced. Again we note that the average
CPU time used in loading unused programs exceeds that
expended on programs that are entered, 121 ntis versus
101 ~s.

Figure 1 shows a plot of % used of programs loaded
for the four individual months collected. The difference
in percentage entered was clear for each month col-
lected. Again, the difference was not as pronounced as
we had anticipated it might be.

students & primarily
developmental production

Total Loaded 1 t 2,152 9,020
Total CPU Time Loading 10,719,923 rfis 965,653 Iris
Average CPU Time 96 iris 107 ~s
Total Used 49,341 6,290
Total CPU Time for Used 4,436,337 r~s 634,954 ~s
Average CPU Time 90 ~s 101 rfis
Total Unused 62,811 2,730
Total CPU Time for Unused 6,283,586 ffis 330,699 ~s
Average CPU Time 100 ~s 121 ~s

% Used of Those Loaded 43.99% 69.73%

Table 2

80

70

60

50

40

30

/ /

0

.____./\.

Jan Feb Mar Apr

Figure 1

P R O D U C T I O N

N O R M A L

19

BRIEF PROFILE OF
U OF O PDP-10 SYSTEM

The PDP-10 at the University of Oregon is used
entirely as an interactive timesharing system to support
research and instruction. During the time the data was
collected, the system was configured with 96K of inter-
nal core memory and the monitor was housed in ap-
proximately 36K. During normal shifts the individual
user is restricted to a core maximum of 26K and is
charged for terminal connect time, CPU time used, and
core memory used. The policies tend to cause the system
to be used for developmental purposes during these
shifts, and response time is generally instantaneous for
the user.

During night production shifts, night owl, the core
maximum restriction was raised to 40K words and the
charge for core memory used was dropped. Additionally,
the teletype room in the computing center was closed so
that use of the system was restricted to research users on
campus with terminals at their sites. Larger production
jobs were run in these time periods but not to the total
exclusion of editing and developmental runs.

The major language subsystems included in the
PDP-IO system are FORTRAN, COBOL, ALGOL,
BASIC, and MACRO-10 (an assembler). Of these, BASIC
is interpretive and not subject to the linking loader,
COBOL had not been installed at the initiation of the
data collection and has yet to receive significant use, and
MACRO-10 and ALGOL are not used much by either
students or research users. Thus, of the two subsystems
that represent the large majority of the use of the
PDP-IO system, BASIC and FORTRAN, FORTRAN was
appropriate for collection of data concerning the linking
and loading function.

CONCLUSIONS

Linking and loading does not appear to use signifi-
cant CPU time. On the PDP-10 approximately 100 ~s is
expended, on the average, in linking and loading a
routine. Ironically, we observed a higher average time for
linking routines not entered than for linking routines
that were entered.

We observed that less than half of the programs
linked and loaded were used during some point in the
run. A significant amount of memory probably was
occupied by programs and data regions that were never
called for during the run. These programs and data
would never enter the address space of the job or process
if dynamic linking and loading techniques were em-
ployed. Systems need not employ elaborate paging and
segmentation schemes and share programs and data to
benefit from dynamic linking and loading techniques.
However, better memory management than that ex-
hibited on OS/360 is needed to realize some of the
advantages. While we felt that the percentage of never-
referenced routines would be higher than it appears in
our data, we still believe that standard use of dynamic
linking and loading facilities would be preferable to
using static ones.

A difference is apparent between production and
developmental runs. Our data showed that between 20
to 30% more of the routines that were loaded were in
fact entered. Intelligent use of a static loader to combine
those routines that are very likely to be used in a run of
a program could save a production user money over
time, the cost of 100 rcis of CPU time for each instance
of the linking and loading of a routine on our system if
it employed dynamic techniques. This could amount to
a substantial amount for a single application to be run
repeatedly over time and a static loader appears to be
warranted in a system which also employs dynamic
techniques.

Linking and loading affects the functioning of sys-
tems in numerous ways not examined by this study. It
places demands on the file handling portions of the
system, upon the logical and physical I/O portions of the
system, and upon scheduling functions. We hope to
examine these aspects of linking and loading in the
future.

REFERENCE

DEC SYSTEM10 Assembly Language Handbook, Digital
Equipment Corporation, 1972.

20

