
A PROLOG-based Expert System for Tuning MVS/XA

Dr. Bernard Domanski

"Fhe College of Staten Island / CUNY ***

ABSTRACT

This paper will discuss some of the issues involved in building an Expert System that embodies tmling rules
for It3M's MVS/XA operating system. To understand the components of an Expert System and their
functions, PROLOG on an IBM PC (Turbo-PROLOG from Borland International) was chosen as the
development environment. The paper will begin by defining the key concepts about Expert Systems,
Knowledge Engineering, and Knowledge Acquisition. The reader will be given a brief overview of PROLOG,
from which we can explain how an inference mechanism was developed. Finally, the paper will describe the
Expert System that was developed, and additionally will provide a set of key issues that should be addressed in
the future. It is our overall objective to provide new insight into the application of AI to CPE.

1. Introduction

In his acceptance speech for the A. A. Michelson award in 1985, Dr. K. Mani Chandy said that it takes
some ten to fifteen years for research in the universities to become practical technology for industry. The field
of Artificial Intelligence (AI) is a prime example; the last fifteen years have seen AI flourish in coming from
the university sector to industry. AI languages such as LISP and PROLOG have been touted asthe languages
of "choice" for fifth generation computing. The Japanese have chosen PROLOG as the machine language of
their logic processor for their fifth generation systems. 1 Expert System shells such as OPS52 and M.13 can help
simplify and speed the development of these systems.

Considering Computer Performance Evaluation (CPE), some prior exploratory work has been done. 4 ,5
Vendors are now emerging with Knowledge Based systems for CPE (ISS, Boole & Babbage).

Although AI has had a long history, the application of AI to CPE is still immature. In CPE, many
performance analysts have developed a set of "rules-of-thumb" for tuning large systems. Typically, this set
takes five years to develop. As there is a tendency to promote quality personnel within a corporation, it is
critical to extract the set of rules from the performance "expert" before (s)he is promoted to a new position. In
essence, a "technology transfer" must occur.

This paper will discuss some of the issues involved in building an Expert System that embodies tuning
rules for IBM's MVS/XA operating system. To understand the components of an Expert System and their
functions, PROLOG on an IBM PC (Turbo-PROLOG from Borland International) was chosen as the
development emAronment. The paper will begin by defining the key concepts about Expert Systems,

"*° This work was done by the author while on a sabbatical leave from the College of Staten Island, a unit of the City University of New York (CUN'Y).
Though this work was conceived and performed by the author on his own, colleagues at Bell Communications Research reviewed the work as it
progressed. Their input is gratefully acknowledged here.

1. Feigenbaum, E. A., McCorduck, P., "The 5th Generation - Artificial Intelligence and Japan's Computer Challenge to the World", Addison-Wesley,
1984.

2. Forgy, C. L., OPS5 User Manual, Department of Computer Science, Carnegie-Mellon University, Pitlsburgh, PA., 1981.
3. M.I is a product of Teknowledge, Inc., Palo Alto, CA.

4. Hclierstein, J., \ran Woerkorn, H., "YSCOPE: A Shell for Building Expert Systems for Solving Computer Performance Problems", Proceedings,
Computer Measurement Group, Dallas, December, 1985.

5. Artis. H. P., "Using Expert Systems for Analyzing RMF EYata".ibid.

30 Performance Evaluation Review Vol. 16 #2-4 February 1989

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1041911.1041916&domain=pdf&date_stamp=1989-02-01

Knowledge Engineering, and Knowledge Acquisition. The reader will be given a brief overview of PROLOG,
:from which we can explain how an inference mechanism was developed. Finally, the paper will describe the
Expert System that was developed, and additionally will provide a set of key issues that should be addressed in
the future. It is our overall objective to provide new insight into the application of AI to CPE.

2. What is an Expert System?

An Expert System is a knowledge based reasoning system that captures and replicates the problem solving
ability of human experts.]Expertise consists of knowledge about a particular area or domain, understanding of
domain problems, and skill at solving some of these problems. 6

Domain knowledge, rather than the complexity of formal reasoning methods, is the key to solving difficult
problems. Knowledge can take many forms:

• Specific inferences that follow from specific observations,

• Necessary and sufficient conditions for achieving a goal,

• Probable causes of symptoms.

Knowledge can be represented in several ways, such as rules, frames, and logical predicates. In most current
Expert Systems, knowledge is expressed in rules, and these rule-based systems will be discussed here. The skill
of these systems increases at a rate proportional to the enlargement of their knowledge bases. They usually
explain their conclusion by retracing their lines of reasoning and translating the logic of each rule used into
natural language.

There are a variety of reasons for building systems that capture human expertise:

• Experts retire or are promoted, taking their knowledge with them.

• An expert's time is not particularly well spent answering users' questions.

• Expertise may be scarce.

• Expertise may be expensive to deliver.

• Experts are not always consistent.

Figure 1 shows a diagram of the most basic components of an expert system. The knowledge base is
usually a collection of rules about the problem domain, supplied by the expert. Problem solving knowledge is
usually used in consultations between the Expert System and the end user or with other programs. The
working memory keeps track of what the system knows during each cousultation. The inference engine looks in
the working memory and the knowledge base to see what is true at any given time to resolve queries.

6. Hayes-Roth, "Rule Based Systems", Communications of the ACM, 28(9). 1985.

31 Performance Evaluation Review Vol. 16 #2-4 February 1989

K n o w l e d g e ~ - - - - ~ Inference ~-----~--Workking]
Base Engine ~: [Memory

Figure 1

Consider a simple knowledge base with only 2 rules:

1. Rule 1: IF a T H E N b.

2. Rule 2: IF b T H E N c.

Each rule has a premise clause (IF), and a conclusion clause (THEN). ff a user poses the question "IS c
TRUE", the inference engine looks through all the rules in the knowledge base and tries to find one that
would conclude about c. It finds rule 2: IF b is true, T H E N c is true. Now, if the inference engine could
discover whether b was true, then it would know whether c was true. So a query is made of working memory:
"Is b true?" Again, the inference engine examines the rules in the knowledge base, this time looking for a rule
that would come to a conclusion about b. It finds rule 1 - this leads to asking the question '~ls a true?" If the
user responded "yes", then the inference engine would:

• erase the query about a,

• place the fact that a is true in the working memory,

• use Rule 1,

• place the fact that b is true in the working memory,

• use Rule 2,

• place the fact that c is true in the working memory,

• resolve the original query, and

• tell the user "Yes, c is true."

This is a simple example of a backward chaining system. The inference engine works backwards through
the conclusions of the rules, trying to determine whether the premises are true. In a forward chaining system,
facts would be placed in the working memory and the inference engine would report any conclusions it could
to the user. For instance, if "a is true" were entered, the system could report that both b and c were true.
Forward chaining was used in our PC/PROLOG Expert System for MVS/XA. Backward chaining systems
tend to be goal dr iven - they work backward from some specific goal (c above). Forward chaining systems
tend to be data dr iven - the system is primed with certain facts and draws any conclusions it can.

Other information must reside in the knowledge base in addition to the rules. For example, consider the
user interface. How does the Expert System know what question to ask the user when that becomes necessary?
This information is. stored in the part of the knowledge base that describes the a's and the b's - the traits
characteristic of a given problem domain. For example, the trait USERS may carry with it the prompt "On
average, how man3' users are connected to the system?"

But when many vales are present in the knowledge base, complex consultations can occur. It can become
difficult to predict what questions will be asked and in what order unless some precautions are taken. The
builders of the famous NU~'CIN medical Expert System 7 found that doctors were somewhat be~ldered when

3 2 Performance Evaluation Review Vol. 16 #2-4 February 1989

the consultation questions jumped from one topic to another: "What is the patient's age?" "What was the
result of test X?" "What is the patient's name?" and so on. It becomes necessary to use more control
information. For instance, the system could be instructed "Ask about traits a, b, and c first, then try to find
the value of trait d by fonvard chaining, then ask about traits e and f, ..." This consultation and control
information is also kept in the knowledge base. As will be shown later, the PC/PROLOG Expert System :for
MVS/XA employed this concept in its structure of its knowledge base.

It is sometimes necessary to keep even more information in the knowledge base, such as special purpose
algorithms, or methods needed to retrieve information from databases that reside outside the Expert System.
Thus the task of knowledge engineering includes more than elicifing rules from the expert; all the traits (such
as a and b above), and their characteristics and accompanying control information must be identified as well.

A natural question asked about Expert Systems is "what are the advantages of using a knowledge based
system?" In general, knowledge based systems extend the speed, accuracy, consistency, availability, and
affordability of computation from c ler i ca l to i n t e l l ec tua l applications. Specifically,

• B e h a v i o r - Users can ask '%rhy?" questions to show why certain decisions were made. This is in
direct contrast to a traditional data processing system, where the only way to verify the system's
reasoning is to simulate the system's behavior.

• K n o w l e d g e I n d e p e n d e n c e - A piece of knowledge (a rule) can be examined and easily changed
somewhat independently from other pieces of knowledge in the system.

• S e p a r a t i o n - Knowledge is kept separate from the reasoning process that uses it. Building an
Expert System consists of changing k n o w l e d g e rather than program code. The expert and the
knowledge engineer can examine and change this knowledge since it is ideally represented in an
English-like format. Because of this separation, rule based systems can be incrementally developed
with steady performance improvements.

3. Knowledge Engineering / Knowledge Acquisition

What is Knowledge Engineering? This is the term given to the extraction, description, and
computerization of expert knowledge. Knowledge consists of descriptions, relationships and procedures in a
domain of interest. The major task in building an Expert System is the transfer of knowledge from its source
into the Expert System; this is called knowledge acquisition.

Potential sources of knowledge include human experts, textbooks, data bases, examples, case studies, and
personal experience. Within CPE, nearly all these sources can be used to elicit performance knowledge. The
prototype system developed using PROLOG used knowledge that was extracted from technical papers, IBM
manuals, and personal experience.

The process of building a comprehensive Expert System can be described as an iterafive, cyclic interaction
between the expert, the knowledge engineer, and the system itself:

1. The expert tells the knowledge engineer what rules to add or change.

The knowledge engineer makes changes to the knowledge base.

Several tests are run for consistency checking.

.

3.

4. If any problems

5. The expert runs

6. If no problems
system.

arise, they are discussed with the expert, and we go back to step 1.

the modified system on new cases until new problems are discovered.

are encountered in a substantial number of cases, the expert stops checking the

7. Buchanan, B. G., ShortliYle, E, H., "Rule-Based Expert Systems: The /~fYCIN Experiments of the Heuristic Programming Project", Addison-Wesley,
Menlo Park, CA., 1984.

33 Performance Evaluation Review Vol. 16 #2-4 February 1989

Hayes-Roth outlines stages of Expert System knowledge acquisition that roughly correspond to systems
analysis and software engineering. In this acquisition model, an Expert System grows by proceeding from
simple to increasingly more difficult tasks and by incrementally improving the representation and organization
of the knowledge. We outline this acquisition model below.

• I d e n t i f i c a t i o n - Identify the problem area and define its scope while determining the resources
needed and deciding on the goals and objectives of the system. Questions that must be answered
include "What class of problems will the Expert System be expected to solve?", "What data is
required?" and "What are important terms and their interrelationships?"

• S t r u c t u r e - Key concepts, relations, and information-flow characteristics needed to describe the
problem-solving process are defined. Related questions might include "What is given and what is
inferred?", "How are objects related?", and "What is the information flow?"

• F o r m a l i z a t i o n - Concepts and relations are mapped into a formal structure suggested by the Expert
System. Related questions include "What kinds of questions should be asked to obtain data?", or
"What is the cost of data acquisition?"

• h n p l e m e n t a t i o n - A knowledge engineer combines and organizes the formalized knowledge to
make it compatible with the information flow characteristics of the problem, resulting in a
prototype that can be executed and tested.

• T e s t i n g - T h e performance of the prototype is evaluated and revised to conform to the standard
defined by experts in the problem domain. Typically, this is an iterative process: an expert
evaluates the program's performance, while the knowledge engineer revises the knowledge base.

It is beyond the scope of this paper to examine knowledge acquisition techniques in detail. Note that most
of these techniques require that knowledge be elicited from information sources and first placed into an
information base. From there, it is analyzed and organized into knowledge bases, and then used with an
Expert System. The knowledge must be tested for n e c e s s i t y a n d s u f f i c i e n c y , and the knowledge bases must be
refined accordingly. Techniques in knowledge acquisition often have roots in psychology: the Delphi
technique s , and Personal Construct Theory. 9 The interested reader is encouraged to examine these and other
sources of knowledge acquisition information.

Our PC/PROLOG based Expert System for tuning MVS/XA faced the same problem of knowledge
engineering / knowledge acquisition. Though we chose as our initial knowledge source written material (e.g.
papers, IBM manuals), we first addressed questions of identification. We felt that the most common types of
tuning problems for MVS/XA are I/O related; thus, the class of problems :for our first prototype was limited
to I/O and paging/swapping. We next needed to identify the data that would be required, and this was
inferred from our information sources. For example, we decided that it would be important to know whether
or not dedicated page volumes were being used. Overall, the objective of our system was to gather
information about the presence/absence of performance "symptoms", analyze these to form a "diagnosis", and
then suggest a "treatment."

In defining the structure, we grouped certain traits together that are related to specific problems. For
instance, values for pend time, connect time, disconnect time and IOS queue time are related to poor UO
response time -we could derive a value for I/O response time from these traits. The procedures for finding a
problem could then be informally described by grouping the key traits together, inferring any additional
information, and finally describing (informally) the relationships (rules) between the traits and the problems
to be solved:

8. JzgannaUlan, V,, Elmaghraby, A, S., '~'flEDKAT: Multiple Expert De/phi-Based Knowledge Acquisition Tool", Computer Science DeparLrnent Technical
Report, University of Louisville,]985.

9. Boose, J. H., "Personal Construct Theory and die Transfer of Human Ex'pertise", Proceedings, National Conference on Artificial Intelligence, Ausdn,
Texas, 1984.

34 Performance Evaluation Review Vol. 16 #2-4 February 1989

The formalization of structure into a more formal representation is usually made easy when an Expert
System shell is used. The format of rules is specified by the shell, so the transformation does not have to be
difficult. In our case, no such shell was used; our problem was compounded because we were developing our
own shell. In a later section of the paper, we will describe the steps that were taken to build a shell and to
determine a "language" for expressing CPE rules.

Implementation implies that the system be built. This process will be described later. But an interesting
question about the focus of rules comes up. We might build a rule like "If page delay time is greater than 100
msec, then you should examine the page/swap dataset corffiguration." Here, the presence of the symptom
(page delay time > 100 msec) implies a potential diagnosis, which would have a corresponding treatment
(e.g. consider dedicated page volumes). We will call this a forward leading predicate. But now consider the
following: if a treatment was "use dedicated page volumes", then couldn't the Expert System ask "are you
using dedicated page volumes?" If the answer were yes, then suggesting this as a possible treatment is
redundant and confusing. This is an example of a baclovard looking predicate - the presence of a potential
treatment would imply that the Expert System should look for other treatments, or, reply that the system does
not know a treatment :for the problem.

Testing our prototype consists simply of letting an "expert" use the system, and incorporating any
additional knowledge the expert gives into the system. For this, our prototype was given a "why" facility - the
ability for the user to ask how a particular diagnosis was reached. In addition, the prototype was given an
editing capability over the contents of the knowledge base. Using commonly used PC editing keys, the expert
could adds delete or modify not only the rules in the system, but the control mechanism, and the contents of
the help, diagnosis and treatment messages that the system uses. In short, the expert is given full control of all
of the knoMedge that the system has during the entire testing process. After testing, these :features were left
in the Expert System.

4. PROLOG

Over the past two decades, the price of hardware has dropped dramatically, while the costs assodated with
software development have now become the dominant portion of a total system budget. This rapid rise has
influenced the development of new programming tools that simpli~ system development. PROLOG is the
result of years of effort in this area. PROLOG was developed at the University of Marseilles, France by Alain
Colmerauer in the early 1970's. It was designed to be a convenient tool for PROgramming in LOGic (hence
the name). It can be more powerful and efficient than many traditional programming languages (e.g.
PASCAL, FORTRAN, etc.)

A PROLOG program uses a description of a problems' facts and rules, and then finds all possible
solutions to the problem. In PROLOG, a programmer describes what must be computed, rather than how the
computation should be carried out. This declarative (rather than procedural) approach eliminates well known
errors that are common in other programming languages (e.g. one too few iterations in a loop). So aside from
some initial declarations, a PROLOG program consists of a set of facts (e.g. john likes mary, tom likes
sam), and a set of rules (e.g. jean likes X if tom likes X). PROLOG deduces that jean likes sam. Goals like
"find every person who likes sam" can be asked of a PROLOG program. PROLOG uses a built-in
backtracking mechanism that, once one solution has been found, causes PROLOG to reevaluate any
assumptions that were made to see if some new variable values will provide additional solutions.

To better understand the syntax and operation of PROLOG, consider the following sample program:

35 Performance Evaluation Review Vol. 16 #2-4 February 1989

clauses
watches(bill,bob).
watches(john,jane).
watches(fred,felicia).
watches(mitch,bill).
watches(brenda,greg).
watches(bob,bob).
watches(fred,greg).
watches(bill,phillipe).

The clause "watches(bill,bob)" is the fact "bill watches bob." Thus, if we pose as a goal "watches(mitch,bill)",
PROLOG would reply "true". "watches(bill,jane)" would result in a reply of "false". Variables begin with
upper case characters; thus a goal of "watches(john,Who)" (analogous to asking Who does john watch?)
causes a reply of "jane". But the goal of "watches(fred, Who)" results in both "greg" and "fclicia". The _
character is called the blank variable; a goal of "watches(fred,_)" is analogous to asking "does fred watch
anyone?" This would result in the reply true.

If we add the rule "happy(eric) if watches(brenda,eric)" (i.e. eric is happy if brenda watches eric), the goal
"happy(eric)" ("is eric happy") would be satisfied. The rule "nervous(Who) if watches(bill,Who)" would be
satisfied with "bob" and "phillipe"; this is analogous to asking "Who is nervous", and answering using the rule
"someone is nervous if bill is watching them." Thus, PROLOG looks through the already estabfished facts and
concludes that since bill watches both bob and phillipe, that both bob and phillipe are nervous.

Though there are many interesting features of the language (the reader is encouraged to examine the cut
operator, as well as backtracking), the most commonly used data structure is known as a list. Analogous to
arrays, lists are collections of objects (elements) of the same type, separated by commas and placed inside
square brackets. For example, [1, 2, 3] is a list of the integers 1, 2, and 3. PROLOG can manipulate a list
by dividing it into two parts: a head and a tail. The head is the first object on the left in the list; the tail is the
rest of the list. Syntactically, a PROLOG list is wa'itten with a vertical bar separating the head from the tail [
head I tail]. Lists are treated just like other objects in PROLOG, and PROLOG has built-in facilities
(predicates) for manipulating the elements of a list.

5. The Development of the Expert System

The reader should, as this author did, feel comfortable with the concept of an Expert System, as well as
some PROLOG basics. The discussion now turns to building the system itself. Consider that this author is (by
definition) a programmer of procedural languages (FORTRAN, PI.../I, C, etc.) Thus, PROLOG is somewhat
unnatural, and causes some conceptual problems that have to be overcome. For example, consider the
following rule: Bad I/O response time exists if pend time is greater than or equal to 10% of the sum of
disconnect plus connect time, and IOS queue time is greater than the sum of pend time, disconnect time and
connect time. In PROLOG,

bad_resp(IOSO, PEND, DISC, CONN) if
PEND > = (DISC + CONN) * 0.10 and
IOSQ > (PEND + DISC + CONN).

This simple rule implies the our PROLOG program should:

Prompt the user for the value of each variable (IOSQ, PEND, etc.),

Provide help with each prompt should the user not mlderstand what is being asked for,

Validate each resulting reply - here, with a simple numeric test,

Pass the replies as parameters to this role that does the evaluation (bad_resp(IOSQ, PEND, DISC,
CONN)),

3 6 Performance Evaluation Review Vol. 16 #2-4 February 1989

• If the rule is satisfied, provide the user with the diagnosis (poor I/O response time because of
these symptoms),

• Look up a treatment for this diagnosis.

Our first version of the system has the rule (knowledge) coded in PROLOG; thus it is part of the reasoning
process. Given all the rules to be coded, plus the help, diagnosis and treatment messages, the resulting
program was rather long, and strongly resembled a traditional procedural program.

Recall, that an objective of an Expert System is to s e p a r a t e the knowledge from the reasoning process.
Our first version mixed the knowledge and reasoning process together. Thus, we examined the rules a little
closer, since they were the driving force behind the design of the program. When invoked, rules result in true
o r false. Thus, if the prompts were structured as true or false questions, the inference mechanism could be
greatly simplified. For example, consider the following:

demand_paging_problem(P1, P2) if
ask(il, P1) and
ask(i2, P2).

ask(Index, Prompt) if
prompt(Index, Prompt) and
write("Is ",Prompt,"? ") and l* an ordinary write */
readln(Reply) and /* read the user reply */
yes(Reply). /* validate the reply */

prompt(il ,"Demand Paging High").
prompt(i2,"storage isolation used for IMS or CICS").

The inference mechanism "ask" is now divorced f rom theknowledge of what prompts should be useda The
prompts themselves are associated with specific t ra i t s (il , i2). For illustration; we have included tile prompt
clauses within the program, but the collection of prompt clauses is ordinarily kept within a s e p a r a t e , e d i t a b l e

f i l e .

Note though that the control information - ask about trait il then trait i2 relative to demand paging - is
still part of the PROLOG program. Thus, we need to carry this "separation" of knowledge from reasoning
one step further. We create in a separate, editable file, a knowledge base of the following form:

• prompt(trait, prompt messages).

• condition(symptom, [list of traits]).

• diagnosis(symptom, [list of traits], treatment).

• treatmsg(treatment, treatment messages).

• diagrnsg (treatment, diagnosis messages).

• helpmsg (trait, help messages).

where:

• p r o m p t . associates ~4th each trait the corresponding prompt message to ask the user. "Is" is
printed before each prompt message implying a true/false question.

• cond i t ion - associates a list of traits with a particular symptom. For. example, condition(ratehi, Ill,
i2, i3]) would imply that traits i l , i2 and i3 are all associated with the symptom rateN. This
lalowledge is used to con t ro l the flow of prompting.

• d i a g n o s i s - associates the true/false values of traits with whether a particular symptom exists, ff the
symptom does exist, t r e a t m e n t is the index to invoking the correct diagnosis and treatment

37 Performance Evaluation Review Vol. 16 #2-4 February 1989

messages. For example, consider

- - diagnosis(ratehi, [i l , i3], fixrate).

prompt(il, "Demand Paging High").

prompt(i3, "Storage Isolation Used for IMS or CICS").

This implies that the condition ratehi is present if traits il and i3 are both true - demand paging is
high and storage isolation is being used for either IMS or CICS. A minus sign "-" in front of a
trait, e.g. -i2, would imply that trait i2 is tested for falsehood. On closer examination, d i a g n o s i s

represents how-tuning-rules are coded. If it is possible for a symptom to be caused several
different ways, then each possibility can be coded; the inference mechanism automatically checks
for all possible solutions.

• t r ea tmsg , d i a g m s g - associate a treatment with a set of messages - treatmsg deals with treatments,
diagmsg deals with diagnoses.

• h e l p m s g - associates a trait with a set of help messages that try to give more information about the
particular trait.

Thus, each of the above represents knowledge, and is kept in a file that can be edited by the user. The
inferencing mechanism is thus reduced to processing these predicates; it is short, and contains no knowledge.
Conceptually, it can be used in any expert application as long as the syntax outlined above is followed.

Several features were added to the general inferencing mechanism: after a consultation, the user can
invoke a built-in editor, which resembles the PC word processing program WORDSTAR. 1° Rules can be
added, deleted or modified. Care should be taken so as not to violate the syntax outlined above - no syntax
checking is done. In addition, a "Why?" feature was added. After each diagnosis is given, the user is given
the oppomanity to ask the Expert System why that diagnosis is being given; in other words, how that
conclusion was reached. The inferencing mechanism b a c k t r a c k s from the treatment using the diagnosis and
prompt predicates to replay the rules that were invoked using English.

6 . A C o n s u l t a t i o n S e s s i o n

It is difficult for the reader to get a firm understanding of the Expert System described unless (s)he has the
actual floppy disk with the program available. To eliminate this difficulty, this section will display parts of a
sample consultation session with the Expert System. The discussion gill show the screen displays a user would
see, and will provide an overview of the overall flow of the system. Finally, we gill give a short discussion of
how a knowledge base can be edited.

R e q u i r e d F i l e s - First, the program (henceforth called A D V I S O R) must be present along with at least one
knowledge base. Knowledge bases are ordinary text files that can be created by any ordinary PC editor that
does not use embedded control characters. A D V I S O R knows that files are knowledge bases if they end with
the suffix KBA (for Knowledge BAse). In our prototype, we created two knowledge bases, IOTUNING and
PAGING.

The following is what is displayed when A D V I S O R is invoked:

10. WORDSTAR is a registered trademark and product of the MicroPro International Corp.

38 Performance Evaluation Review Vol. 16 #2-4 February 1989

?IVS/XA TUNI~ ~ V I ~

D I A G N O S I S M I N D O u

9 1 A L 0 6 M I N D O ~

P I C K A K N O M L E D G E B A S E -
IOTUNINSoKIIA PI~BINS.KB¢~

R e t u r n : ~ c e p t name Cursor k e y s : S e l e c t name S-FlO=Resize uindoN E s c : ~ o r t

The user uses the PC arrow keys to select which knowledge base they want to use; in essence, this is actually
equivalent to selecting a k n o w l e d g e d o m a i n to be exploited.

At this point, we point out the different w i n d o w s that A D W S O R uses .

• D I A L O G - This window is the primary means of communication between A D V I S O R and the user.
Performance questions are posed to the user, and each reply should be followed by hitting the RETURN
key.

• H E L P - Shotud a user need assistance in understanding a question, the HELP window will display that
information. HELP is invoked by replying with a ? to the question posed in the DIALOG window. In
addition, the HELP window is used later to explain why a particular diagnosis was arrived at.

• D I A G N O S I S - After a set of related performance questions is asked, any performance problem found will
be noted in the DIAGNOSIS window. Here, the user is given the opportunity of asking why a particular
DIAGNOSIS is being made.

• T R E A T M E N T - Often, a particular diagnosis will have one or more possible remedies, or TREATMENTS.
Each possible TREATMENT is displayed in this window successively, each one being preceeded by giving
tthe user the opportunity to ask WHY.

• E D I T - Once a consultation session has ended, the user is given the opportunity to edit a knowledge base.
Here, a f u l l - s c r e e n editor is invoked that allows the rules in the knowledge base to be modified, deleted or
extended.

We now examine several screens to become familiar with the 'look and :feel" of the system. As each
question is asked in the DIALOG window -

39 Performance Evaluation Review Vol. 16 #2-4 February 1989

NVSIXA T ~ I N G A ~ I ~

D I A G N O S I S M I N D O W ,

D I A L O G M I N D O W
I s I / O r ~ o ~ t i m e > 4 0 a ~ (y o r n) ?

I'N'SIX¢~ TUNING ADVIS(~:~ ? = he lp y = yes n = no

the user can ask for help by typing ? and hitting the rctu.rn key -

!
MVS/XA TUNING ~DVISOR

D I A G N O S I S M I N D O W .

D I A L O G W I N D O W
I s I / 0 response t ime) 40 asec (y or n) ? ?

H E L P W I N D O W

I / 0 response t i m e i s t h e t o t a l amount o f t i m e i t t a k e s
to p e r f o r m an I / 0 . I n MVS/XA, an I / 0 o p e r a t i o n c o n s i s t s
o f lOS 0 t i m e , PEND t i m e , and SEJ~/XC~ (connec t + d i s c o n n e c t)
t i m e . A common i n d i c a t o r o f I / 0 b o t t l e n e c k s i s a h i o h v a l u e h e r e .
Re fe r t o an RMF r e p o r t f o r t hese d a t a i t e m s .

H i t ANY KEY when r e a d y :

I'NS/X~I TUNING ADVISOR ? = h e l p y = y e s n ,= n o

'When finishcd with help, typing any key will return the user to the DL~LOG window, where (s)hc is
reminded to reply with a y (yes) or an n (no). From there, the next question is asked -

40 Performance Evaluation Review Vol. 16 #2-4 February 1989

m,31XA TUNING ~DVISOR
D] A G N 0 S] S ta I N D 0 M.

D I I~LOG t l I N D 0 M
I s JQ~3 ~ t i a e .) IPend • r, ommL~:t 4 /) izw.~nnect t ime) (y o r n) ?

IHit ~NY KEY i,¢hen r e a d y :

NVS/ IA TUNING ~J)VISOR ? = he lp y = yes n = no

O:'.c: all c. r the q u ~ d o . s or traits co~¢sponding to a .logical s~:lucnc~ have bccn ~kcd, descriptions of any
pcrfonman~ probl~'ns detected appca.r in the DIAGNOSIS window -

MVS/XA TUNING ADVISOR

D I A G N O S I S M | N D O M
YOUR IOS O TI I IE IS TCXJ HIGH . . .
] 1 0 o p e r a t i o n s a r e queued i n IOS because t h e
t h e d e v i c e i s busy N i t h o t h e r] / O ' s f r o a t h i s
sys tm=. You need t o reduce the number o f l / O ' s

Mhy (y o r n) ?

Ri

H i t N W KEY uhen r e a d y :

rNS/XA TUNING ADVISOR ? = h e l p y = yes It = no

l-lore, t i c mcr is given ~ c opportunity to ask what caused (WHY) this diagnosis to 'Ix: made by ADVISOR. If
the user rcTdics n to the ~ prompt, theTR~-aLTMEI~TT window aT~cazs (more late O. If the user replies y
to the WHY prompt, the]-TP.1-~ window z'ca.ppcazs =ontaimng an F.n@sh-]Jkc replay of the prompts used to
an'iv= at the c=rrcnt ~a.Z:no, sis-

41 Performance Evaluation Review Vol. 16 #2-4 February 1989

MVSIXA TUNING HI)VISOR

D I A G N O S I S M I H D O M
YGUR l O G O T I l T IS TOO HIGH . . .
l / O q) e r a t i o n s a r e queued i n lOS because t h e
t h e d e v i c e | s b u s y N i t h o t h e r I / O ' s f r o e t h i s
s y s t e e . You need t o r e d u c e t h e r v j a ~ o f I / O ' s

Mhy (y o r n) ? y

H E L P U I H D O M
D i a g n o s i s f o r i o s q because t h e f o l l e v i r x j a r e t r u e s t a t e l e n t s :

11/O r e s p o n s e t i a e) qO a s e c) and
- (V l O b e i n g used f o r sak t] l teeqporary d a t a s e t s)

Type. ANY KEY i, ehen r e a d y

IWS/XA TUNING AINISf, I~ ? = h e l p y = yes n = no

Notice, if a particular prompt is preceeded with a hyphen (-), this implies the negation of the particular
prompt. Next, the user types any key which causes the HELP window to be replaced by the TREATMENT
window. Here, a possible suggestion is made that the user can adopt to ultimately help tune the actual MVS
system.

IIVS/XA TUNING ADVISOR

D I A G N O S I S M I N D O U
YOUR IOS G TIME IS TOO HIGH . . .
I / O o p e r a t i o n s a r e queued i n lOS because t h e
t h e d e v i c e i s b u s y N i t h o t h e r I / O ' s f r o m t h i s
$ y s t ~ . You need t o r e d u c e t h e number o f I / O ' s

Mhy (y o r n) ? y

T R E A T N E N T I l l N D O M
I / O ' s c a n be r e d u c e d b y . . .
- u s i n g VIO f o r ~ a l] b a t c h • TSO t L e q) o r a r y

d a t a s e t s ,

H i t N i Y l ~ Y t c h e n r e a d y :

IIVS/XA TL?4IF~G ADVISOR ? ,: h e l p y ,~ y e s n © no

As before, the user types any key which causes ADVISOR to continue.

If a particular diagnosis reappears following the disappearance of the TREATMENT window,

4 2 Performance Evaluation Review Vol. 16 #2-4 February 1989

IqVSIXA TUNING N)VISOR

D I A G N O S I S M I N D O M
YOUR 10S 0 T I l E IS TOO HIGH . . .
I I O o p e r a t i o n s a r e queued i n IOS because t h e
t h e dev ice i s busy w i t h o t h e r I / D ' s f rom t h i s
s y s t e m . You need t o r e d u c e t h e number o f J / O ' s

Mhy (y o r n) ?

! J
rNS/XA TUNING ADVISOR ? = h e l p y : yes n : no

it implJ= that the cm-rcm ~agnosis has been rcach~ by invoking addidon~ rules. Again, the ~ can ask
WHY, and we can s¢¢ that a diffc~nt reply is given in the]-r~.T P window.

rNS/XA TUNIN8 ADVISOR

D I A S N O S I S M I N D O M
YOUR 10S Ig TIME IS TOO HZGH . . .
I I O o p e r a t i o n s are queued i n IOS because t h e ,
t h e d e v i c e i s busy w i t h o t h e r l / O ' s f r o m t h i s
sys tem. You need t o reduce t h e number o f] / O ' s

Mhy (y o r n) ? y

H E L P W I N D O W
D i a g n o s i s f o r l o s q because t h e f o l l o w i n g a r e t r u e s t a t e m e n t s :

(l l 0 r e s p o n s e t i m e > 40 reset) and
(Pend t i m e > 0 . 1 0 • (d i s c o n n e c t t i m e + c o n n e c t t i m e)) and
(IOS 0 t i m > (Pend ÷ C o n n e c t + D i s c o n n e c t t i N))

Type ~ kOEY tehen r e a d y

I,r,,'S/XA TUNING ADVISOR ? = h e l p y = y e s n = no

And, Its before, the HELP window is replaced by the TR.EATM~ENT window, this time giving a di/J'erent
rcmcx.hj the usc~r might apply to the actual MVS s~tcm.

43 Performance Evaluation Review Vol. 16 #2-4 February 1989

I'IVS/XA TUNING N)VISOR

D I A G N O S I S M I N D O M .
YDUR 10S O TIME IS TOO HIGh4 . . .
I / 0 o p e r a t i o n s a r e queued i n IOS because t h e
t h e d e v i c e i s busy • i t h o t h e r I / O ' s f r o • t h i s
sys tem. You need t o reduce the number o f 1 / O ' s

Why (y o r n) ? y

T R E A T M E N T M I N D O M
l / O ' s can be reduced by . . .
- i n c r e a s e b l o c k s i z e s and /o r the number

o f b u f f e r s .

H i t ~ KEY when r e a d y :

I'IVSIXA TUNING I~DVISOR ? = he lp y = yes n = no

Once the consukat/on ~ o n has end~:1, the user is given the opportunity to edit a knowledge base - (a no
n~ply ends the ~ssion).

PIVS/XA ~ l ~ N Y V I ~

D I A G N O S I S W I N D O W

D I A L 0 8 M I N D O W
I s t h e b l o c k s i z e f o r 800/1600 tape d a t a s e t s between 8K L 12K
n) ?
Mant t o e d i t • Knowledge Base? (y o r n)

(y o r

D

I'IVS/XA TUNING AI~ZSOR ? B h e l p y = yes n = no

As at the start of program cxecut/on, the user seJects a knowledge base with the C arrow keys followed by
enter. Nc~.., a full-screen editor dn~lar to WORDSTAR is invoked that operates o~ the knowledge ba.~.

44 Performance Evaluation Review Vol. 16 #2-4 February 1989

D I ~ G N G S I S 4~ I N D Oid

D I ~ L O G JJ I N D O U
I s the b l o c l m i ~ f m ~ EOOllb09 tape da re ,e ta between EK • iEK
n)
Want to e d i t • Knowledge ~8ase? (y or n}

P | C ~ g K N O t I L E D 6 E I A S E
IOTDNINGJ[Ii~ PAGING.KJgA

(y or

Re tu rn :Accep t name Cm-scrr keys=SeAmer ~aae S-FlO:Restze =indow Esc:Abor t

The arm' kcs~, PgUp. and PgDn ~rc mecl to move mxmnd the "wi,ndc~', ~c Ins and Dcl keys are used to
sct/unsct insert mode and for character deletion (Tespccfivcly). Help on all the editing functions is available by
hi~ng the F1 key. The editor has scorch 0:3), substirate (F4), copy (FS), move CF6), and block delete (F7)
capabilJt/es. F8 is an =ux/Iiary edit function. 'When invoice, the user can edit yet another file while remaining
within the edit session for the knowledge base. This is similar to the split-screen facgity tmd~r TSO/ISPF on
the WaJ~a.me.]F~ is an external copy function. A.nothcr file (e.g. a l~owlcdge base prcvioudy created) can
be copied in part or as a whole to any section of the knowledge base bc/ng edited. FIO is used to end the
¢:cSbng rcssion; here, the user is asked if (s)hc ~Imts to save the file just ¢ditcx:L

fqVSIXA TUNING ADV;SOR
L ine I Col I Indent I n s e r t

p r o m p t (' r e s p ' , ' I / O response t ime) 40 reset ')
p rompt ('pend°o 'Pend t i q e) O. lO • (d isconnec t t i m * comwc t t i m e) ')
p r o m p t (' N k l d ' . ' y o u r p r i R a r y tmrk load b a t c h ')
prompt ("dp r " , 'Dynamic Path E#mL~rmm:t (DFqR) suppcrrted on your ~ ")
prompt (' chan ' ,Sdmy ch4mnel u t i l i z a t i o n a t l eas t 30X ")
p r o m p t (' i o s q ' , ' l O S O t ime > (Fqmd * Connect * D i s c o m e c t "t imel ")
p r o m p t (' a v s k ' w ' a v e r a g e seek d is tawce between 40 and 50 c y l i n d e r s ')
p r o m p t (' v t o c ' t ' c y l i n d e r boundary a l l o c a t i o n used f o r VTOC's ")
p r o m p t (' s v i o ' , ' V l O b e i n g u s e d f o r r o l l t4mporm--y data, sets ")
p r o m p t (' w v i o ' : ' V | O b e l ~ teed f o r ~ r t ~m'k f i l m s ")
p r o m p t (' c v i o ' l = c y l i n d e r boundary a l l o c a t i o n b e i n g done f o r VlO d a t a s e t $ ')
p r o m p t i ' s e q ' , ' t h e b locks lzm f o r s e q u e n t i a l d a t a s e t s between 4K • 9K ")
p r o m p t (' p a r t ' l ' t h e b l o c k s i z e fro" p a r t i t i o n e d da tase t s between 4K • BK ")
p r o n p t (' d i r o c t ' ~ ' t h e b l o c k s i z e f o r d i r e r da tase t s betueen ~K and 4K ')
p r o a p t (' c o a p a t ' e ' t h e b l o c k s i z e f o r c o e p a t i b i l i t y d a t a s e t s = &K ")
p r o a p t (' p g a ' . ' t h e b l o c k s l z e f o r prog raa l i b r a r i e s =.18K ")
p r o m p t (' t a p e ' . ' t h e b l o c k s i z e t 'or tape da tase t s a t l e a s t ~ ")
p r o a q) t (' t b c ~ O ' ~ ' t h e b l o c k s i z e f o r ~ t a p e d a t a s e t s = 32K ")
p r o m p t / = o t h e r ' , ' t h e bloc&st~m fro" 800/1600 tape d a t m b e t ~ e n 8K • 12K ")
cond i t ion("pend" e [" reap" I "p~rtd" i ' cham" , "dim"", "4.dkld"])
cond i t i on (" i o s q " ,Z" i o s q ' , " s v i o ' , "mvi o" , ' c v i o "])

F l : H e l p F3:Smarch ~ : S u b s t F ~ p y F6=Howe FT:De] FB :Ex tEd i t Fg:ExtCopy FlO:End

Finally, the session ends.

45 Performance Evaluation Review Vol. 16 #2-4 February 1989

IHIVS/IA TUNIN4.~ ADVISOR • i~11 c lone
: ~ : . I B : 0 7 : = >

7. Issues for Future Development

As this PC/PROLOG based system is still in its infancy, several issues regarding where the system should
next go need to be expressed. The following issues should apply to any Expert System for CPE.

1. Location Help - Rather than just explaining the meaning of traits in help messages, add
information about where to find measurement(s) associated with the trait; e.g. on page 2, bottom
of an RMF report. This is an example of using an additional class of knowledge that, until now,
only the expert has.

2. Automatic Data Reduction - Ideally, a "front-end" mechanism that could read and analyze
measurement sources like RMF automatically would greatly simplify the user's interaction with
the system. Rather than putting the burden of responsibility on the user to get the answers to the
prompts, a program(s) could be designed to extract the corresponding answers, and download
these to the PC. A potential source for much of this data could be the MICCS data base (Morino
Associates), which is a repository for many different types of measurements. The MICS data
dictionary already assigns names to many measurements, and these names could be related to the
traits we referred to previously.

3. Links to other PC packages - I f data were downloaded from the mainframe to the PC, it could be
stored in a spreadsheet or a database. Products like 1-2-3 from Lotus Development or dBASE-III
from Ashton-Tate could then be used to do the analysis on the PC rather than the mainframe.
These could be invoked from PROLOG directly, as the interface is already defined.

4. Certainty Values - As Artis pointed out (5), some rules are not as clear cut as one would like. If a
certainty value, say between 0 and 100, was attached to each rules' conclusion, a certainty
threshoM could be specified for the premises. Below this threshold, rules are considered to be
false. This would allow fuzzy reasoning to be a part of the system.

5. External Program Execution - A s in many mainframe offerings, it is sometimes convenient to have
an exit facility. This would allow the PROLOG system to escape to execute some user-specified
program, and then return. This could greatly increase the potential applicability of the system.

8. Conclusions

The objective of this paper was to provide new insight into CPE by applying AI techniques. An Expert
System is a complicated object with many advantages; foremost among these is that expert knowledge is

4 6 Performance Evaluation Review Vol. 16 #2-4 February 1989

elicited and stored in an executable form.

The system described is only a beginning at applying current technology. It was never intended to replace
the human expert. On the contrary, the original intent was to use the system as a training mechanism, where a
new CPE practitioner could pose performance scenarios to the Expert System, and see how these would be
analyzed, and what recommendations would be made.

It is our belief that similar appficafions will flourish in the next decade. Yet, though the size of knowledge
bases may increase, we believe that the human inference mechanism is still better than any that will be built
during that time. We conclude with the following from Aristotle: "It is the mark of an instructed mind to rest
satisfied with the degree of precision which the nature of the subject admits, and not to seek exactness when
only an approximation of the truth is possible."

9. Acknowledgements

The author would like to take this opportunity to thank those referees and Editorial Review board
members of the Computer Measurement Group for their constructive comments and suggestions. Though the
work was conceived and performed solely by the author on his own time, we would like to thank those staff
members of Bell Communications Research for reviewing the work as it progressed. Their input is gratefully
appreciated here.

47 Performance Evaluation Review Vol. 16 #2-4 February 1989

