
An operating non-system

G . Yuva l

Department of Computer Scienc e

Carnegie-Mellon Universit y

Pittsburg, PA 1521 3

Most multi-user operating systems are designed around the followin g

Syllogism a :

(1) the

	

customer will make mistakes ;

(2) the customer can write and run machine

	

language ;

Therefore

we need a system which no machine

	

language

	

instruction,

	

execute d(3 )

by

	

a

	

user, can

	

crash .

The result of this syllogism is the need for a very fancy 'machin e

language', usually implemented by interpreting every instruction on a n

underlying micro-machine .

Now the only real reason for premise (2) is the alleged great efficiency

of machine code, and any such efficiency is liable to get lost in the inter-

pretation process .

We might try to design an operating system around a differen t

Syllogism b :

(1) the customer will make mistakes ;

(2) mistakes at the machine-language level are expensive to protec t

against, and even more expensive not to ;

Therefore

(3) the customer must not get down to machine language .

If we define "machine language' to be the micro-language executed b y
the real hardware, most computers run this way -- a fact everybody tries t o
ignore .

If we dethrone syllogism a, and try to design around syllogism b, w e
get the following system :

9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1044737.1044738&domain=pdf&date_stamp=1976-07-01


(1) TC -- ' the compiler ' -- a safe compiler for a safe language, tha t

will write its signature on every object-file it produces .

(2) TL -- 'the loader' -- which will only load files signed by th e

the compiler ' TC ,

(3) L -- an I/O library, for the compiled code, that does NOT enabl e

its user to forge signatures .

(4) CSI -- a command string interpreter that can invoke TL and TC .

and nothing else .

A simple way to implement a 'signature' is to make the first and las t

50 characters of a file invisible to anyone but 'the loader', and to make

the I/O routines write them and skip over them automatically .

If we put (1)-(4) on a disk, and start up CSI manually, we seem to hav e

all the protection traditionally expected from an operating system, withou t

the traditional cost of making everything slow and expensive at run time .

The language TC accepts does not have to be a particularly nice one ; i f

some users don't like it, they can get a compiler written to translate thei r

own favorite language into TC's language (possible by changing DO ; int o

BEGIN) ; TC's language only has to be very safe ; in particular, it must b e

impossible to write a loader in it, because this would enable us to circum -

vent TL .

It is sometimes said (e .g . L . Smith, "architectures for secure operatin g

system", MITRE, 1975, AD-A 009 221) that, before we can trust the compile r

that far, we have to prove its correctness . This is not so : we only have

to prove that it generates safe code .

	

In most compilers, the actual cod e

generation is done by a few fairly small procedures, and we therefore onl y

have to prove some simple properties of small chunks of code . The compile r

can still generate (e .g .) divide instructions to perform an add, but a s

non-operating system programmers, we couldn't care less - it is only hurtin g
those who use it to add .

10


