Check for
Updates

An operating non;system

G. Yuval
Department of Computer Science
Carnegie-Melilon University
Pittsburg, PA 15213

Most multi-user operating systems are designed around the following

Syllogism a:

(1} the customer will make mistakes;
(2) the customer can write and run machine language;

Therefore

(3) we need a system which no machine language instruction, executed
by a user, can crash.

The result of this syllogism is the need for a very fancy 'machine
language', usually implemented by interpreting every instruction on an
underlying micro-machine.

Now the only real reason for premise (2) is the alleged great efficiency
of machine code, and any such efficiency is liable to get lost in the inter-

pretation process.

We might try to design an operating system around a different

Syllogism b:

(1) the customer will make mistakes;

(2) mistakes at the machine~language level are expensive to protect
against, and even more expensive not to;

Therefore
(3) the customer must not get down to machine language.

If we define '"'machine language' to be the micro-language executed by
the real hardware, most computers run this way -- a fact everybody tries to
ignore.

|f we dethrone syllogism a, and try to design around syllogism b, we
get the following system:


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1044737.1044738&domain=pdf&date_stamp=1976-07-01

(1) TC -- 'the compiler' -- a safe compiler for a safe language, that
will write its signature on every object-file it produces.

(2) TL -- 'the loader' =- which will only load files signed by the
"the compiler' TC.

(3) L -- an 1/0 library, for the compiled code, that does NOT enable
its user to forge signatures.

(4) €SI -- a command string interpreter that can invoke TL and TC.
and nothing else.

A simple way to implement a 'signature' is to make the first and last
50 characters of a file invisible to anyone but 'the loader', and to make
the 1/0 routines write them and skip over them automatically.

If we put (1)-(4) on a disk, and start up CSI| manually, we seem to have

all the protection traditionally expected from an operating system, without
the traditional cost of making everything slow and expensive at run time.

The language TC accepts does not bave to be a particularly nice one; if
some users don't like it, they can get a compiler written to translate their
own favorite language into TC's language (possible by changing DO; into
BEGIN); TC's language only has to be very safe; in particular, it must be
impossible to write a loader in it, because this would enable us to circum-
vent TL.

It is sometimes said (e.g. L. Smith, "architectures for secure operating
system'', MITRE, 1975, AD-A 009 221) that, before we can trust the compiler
that far, we have to prove its correctness. This is not so: we only have
to prove that it generates safe code. |In most compilers, the actual code
generation is done by a few fairly small procedures, and we therefore only
have to prove some simple properties of small chunks of code. The compiler
can still generate (e.g.) divide instructions to perform an add, but as
non-operating system programmers, we couldn't care less - it is only hurting
those who use it to add.



