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SYMBOL-MAPPING:  A Technical Problem in PLANNER-like Systems 
Drew McDermott 

MIT A! Lab Cambridge, Mass 02139 

This is a brief report on a frustrating problem (or constellation 
of problems) that has been a source of controversy at our lab 
recently. It is a summary of the ideas of many people, but, since 
even the formulation of the problem is controversial, your repor ter  
is solely responsible for describing it in the following terms. 

PLANNER-like systems (<Hewitt, 1972> <Rulifson, 1972> 
<Sussman, 1972>) accomplish deduction by operations on patterns, 
such as matching and instantiation. Since these operations are 
under program control, the patterns must be "indexed" so that they 
may be referred to at random, via other matching patterns. (Most 
theorem provers just grind lists of clauses against each other.) It is 
usually assumed that indexing is a relatively cheap operation, 
requir ing a little manipulation of hash tables or discrimination nets, 
or some other simulation of an associative memory. 

In large data bases, however, a large fraction of the data items 
that are used are implicit: they must be accessed by some sort of 
simple deduction rather than by a straightforward hash-table look- 
up. To store all of these potentially deducible facts expl ici t ly 
requires a great deal of memory space and indexing time, most of 
which w(/uld be wasted, since only a small subset of them will ever 
be used. 

The best examples arise in connection with inheritance of 
propert ies down an "IS-A" hierarchy. When you hear that Clyde is 
an elephant (an example due, like much in this report, to Scott 
Fahlman), many facts about Clyde become "accessible," including the 
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shape of his nose, his color, his preference in legumes, etc. (Didn't 
all those things come to mind "effortlessly"?) They presumably 
fol low from some procedural analogue of 

(1) (is-a ?x elephant) 
((color ?x gray) A (shape (nose ?x) long) 
A (likes ?x peanuts) A (is-a ?x mammal) ^ ... ) 

Furthermore, since the large conjunction on the right of (1) includes 
(is-a ?x mammal), many more properties are implicitly included. 

At languages give us two obvious ways to represent (1): as a 
consequent theorem (if-needed method, etc.); or as an antecedent 
theorem (if-added method, WHEN statement, etc.). Neither of these 
works. If the goal (color Clyde gray) is proposed, consequent 
methods tell us to propose the goal (is-a Clyde elephant). However, 
the goals (is-a Clyde battleship), (is Clyde (mother Whistler)), (is- 
a Clyde Confederate-uniform), etc., are all inevitably proposed as 

-well.  (If the goal had been (color Clyde ?c), or a mammalian 
p roper ty  like (number-of-limbs Clyde 4), the situation would have 
been even worse, but people do not have any extra trouble.) 

The antecedent method does not work either. It would require 
assertion of all the properties of elephants, mammals, animals, and 
physical objects, specialized to Clyde. (Again, one can point to the 
case of humans, who do not pause for a long time just upon hearing 
that Clyde is an elephant.) 

This looks like a good place to use the "context" or "possible 
wor ld"  mechanism of PLANNER, QA4, GOL <Pople, 1972>, Conniver, 
et al. In Conniver (with which I am most familiar), a context is a list 
of context layers, each of which includes some data. A datum is 
present if it is indexed an._...d in some layer of the current context. 
(This is oversimplified.) A glamorous thing to do with contexts is to 
treat a layer as a package of knowledge that can be strung like a 
bead with other layers to fit a specialized situation. How to play 
chess, for example, might be such a package. The information would 
be indexed just once (when it was learned), but only findable when 
the current layer was plugged in. Plugging in takes a couple of 
RPLACD's. 

An idea like this (the "packet" concept) was used by Fahlman 
in his <1973> thesis proposal, part of which appears in <Minsky, 
1974>. 

Unfortunately, it will not work for the case at hand without 
modification. What we want to plug in is the package 
{(color ?x gray), (shape (nose ?x)long) . . . .  }, but with ?x bound to 
Clyde. We just cannot get this without further indexing, if 'Clyde' is 
to point to each of these facts. (it appears to do no good just to 
omit ?x, since there may be more than one animal or nose around.) 
This is why this problem is about "symbol mapping"; we want ?x (or 
"canonical elephant" in many versions) to be mapped into Clyde 
(and whatever other elephants there are). 

The controversy surrounding this problem was sparked by 
Fahlman's recent work (soon to appear as an A.I. memo), in which he 
abandons his packet approach because of this and related problems. 
Fahlman proposes the use of special parallel hardware to do 
searches through ]S-A hierarchies. (His entire scheme includes 
much more. It is impossible to describe it here.) He and other 
people have despaired of a solution on a conventional computer. 

On ideological and other grounds, others of us have continued 
to think about solutions on a serial machine, but not always to 
exact ly the same set of problems as Fahlman. Bob Moore has 
shown that the iS-A problem may be solved by using typed 
variables and terms, where the types are the classes in the ]S-A 
hierarchy, and then indexing on the types of terms instead of the 
terms themselves. Thus (color ?x/(elephant)gray) would appear 
direct ly in the data base. It would work for all elephants because 
the indexer and marcher could efficiently pair this with, e.g., 
(color Clyde/(elephant)gray).  Its main drawback is that it works 
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only for an IS-A hierarchy, and only one which is not too "tangled." 
A tangled hierarchy is one in which Clyde could be many things-- a 
male, a herbivore, a big animal, a~lover of Ivlartha the elephant next 
door, etc. It is an open question whether the IS-A network should 
have to do this much work. On psychological grounds, however, 
Moore and others feel that it should not. 

It seems to me that this problem is an instance of the standard 
"binding" issue of computer science: when shall variables be 
assigned values. The choice of consequent or antecedent deduction 
is a choice between deep and shallow binding <Moses, 1970>. 
When environments or packets are to be switched in and out 
frequently, shallow binding becomes time-consuming (and, in the 
case of deduction, space-consuming). On the other hand, lookup can 
be extremely slow in the case of deep binding. A hybrid scheme 
has been devised by Chris Reeve of the  MIT Dynamic Modeling 
Group's MUDDLE language project, which is as fast as deep binding 
at switching environments, and as fast as shallow binding on 
Iookups, except on the f i rs t  reference of a variable whose binding 
has changed. I have devised an analogous scheme for the deduction 
case. I see it as an alternative to the antecedent or consequent 
way of modeling implication. It has nothing to do with IS-A as such, 
which may be an advantage or disadvantage. 

Schemes like this are unacceptable to Fahlman and others 
because their implementation requires a bit of bookkeeping on the 
first request for Clyde's color, which might slow the process too 
much. In addition, some care is required in managing changes to the 
concept of mammal or elephant after some elephant has come to 
mind. In general, the binding approach will not work unless "coming 
to mind" is well-defined. If all objects are dumped into one global 
data base, space and time will be consumed just as in the 
consequent case. 

Other people (notably David Marr, in a work in progress) have 
argued that a heuristic approach will suffice. Just point 'Clyde' at a 
small list of important elephant properties (whic:h might well 
duplicate some mammal properties), and make it more expensive to 
get at any others. Other roles Clyde might have must be made 
secondary. Many properties will be of the form icolor) = gray, with 
no "?x." The ambiguity so generated can be detected and tolerated. 
Those who advocate such an approach can point to the general 
poor performance of people in retrieving obscure properties of 
concepts. They claim Fahlman's system will solve too much. 

We would appreciate hearing of other people's solutions or 
despair with respect to this problem. 
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A THEOREM ABOUT AUTOMATIC PROGRAMMING 1 
Peter Kugel 

Computer Science Program --  Fulton 406 
Boston College Chestnut Hill, Mass. 02167 

i n t r o d u c t i o n  
An automatic programming system is a system (usually a 

programmed c()mputer) that generates a program from partial 
information about that program (Figure 1). Looked at in this general 
way, automatic programming systems are hardly new. Assemblers 
are automatic programming systems. So are compilers, debugging 
systems, and even loaders, in this paper, I propose to focus on 
systems that "do more" than such systems in the sense that they 
i'equire less complete information about the programs they are to 
generate. 

P a r t i a l  Information Fu l l  
Rbout Program Program 

I I 
V V 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I \ \ \ 1  I gutomatic I I \ \ \ \ \ \ 1  
I \ \ \ \1 --> I Programming I --> I \ \ \ \ \ \1  
I \ \ 1  I System I I \ \ \ \ \ \ 1  

. . . .  ; . . . . . . . . . . . . . . . . . . . . . .  T - -  
v v 

Figure 1: Rn Automatic Programming System 

Let us call an automatic programming procedure an exemp~ry 
programming procedure if it takes (as input) examples of what t h e  
program that it will generate is supposed to do and produces (as 
output) a program that does that job. 

Inputs-0utputs Full 
of Desired Program Program 

I I 
V V 

. . . . . . . . . . . . . . . . . . . . . . .  
. . . . . .  ~ I Exemplary I I \ \ \ \ \ \1  

I I --> I Programming I --> I \ \ \ \ \ \1  
I I I System I I \ \ \ \ \ \ 1  

. . . .  ; . . . . . . . . . . . . . . . . . . . . . .  T - "  
v v 

Figure 2: Rn Exemplary Programming System 

For example, an exemplary programming procedure might take 
in samples of sales figures and the kinds of reports such figures 
were supposed to produce and then create a program that would 
produce similar reports from different figures. Or it might take in 
sample chess games and develop a program that would play legal, 
or even good chess. Our main result, stated informally, is the 
following: 

An exemplary programming procedure that uses a totally 
computable procedure (a debugged computer program) to 
produce programs can produce only finitely many programs. 

This is a very strong limitation on exemplary programming (by 
total ly computable procedures) since the set of all programs for 
almost any reasonable problem domain is infinite. 

I Presented at 1975 Computer Science Conference, Washington, 
D.C. 
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