
DIRECTORY OF RESEARCH PERSONNEL
IN AI AND LANGUAGE PROCESSING

Donald E. Walker
SRI Menlo Park, Ca 94025

Don Walker is compiling for the National Institute of Education
a directory of people engaged in research on artificial intelligence
who are interested specifically in natural language processing.
Anyone who has demonstrated competence in this area and who has
not received a form from Don should submit the fol lowing
information to him:

Name, Institution, Mailing Address, Telephone
Statement of major research interests in the area of

artificial intelligence and language processing (200
words or less)

List of most important publications and reports in this area
Keywords to characterize personal interests:

System Building Narrative Analysis
Question Answering Conversational Analysis
Speech Understanding Problem Solving
Comprehension Inference
Instruction Logic
World Modeling Deduction
Belief Modeling Induction
Planning Syntax
Decision Making Semantics
Protocol Analysis " Pragmatics
Discourse Analysis Language Acquisition

(respondents are invited to add items to this list)

SYMBOL-MAPPING: A Technical Problem in PLANNER-like Systems
Drew McDermott

MIT A! Lab Cambridge, Mass 02139

This is a brief report on a frustrating problem (or constellation
of problems) that has been a source of controversy at our lab
recently. It is a summary of the ideas of many people, but, since
even the formulation of the problem is controversial, your repor ter
is solely responsible for describing it in the following terms.

PLANNER-like systems (<Hewitt, 1972> <Rulifson, 1972>
<Sussman, 1972>) accomplish deduction by operations on patterns,
such as matching and instantiation. Since these operations are
under program control, the patterns must be "indexed" so that they
may be referred to at random, via other matching patterns. (Most
theorem provers just grind lists of clauses against each other.) It is
usually assumed that indexing is a relatively cheap operation,
requir ing a little manipulation of hash tables or discrimination nets,
or some other simulation of an associative memory.

In large data bases, however, a large fraction of the data items
that are used are implicit: they must be accessed by some sort of
simple deduction rather than by a straightforward hash-table look-
up. To store all of these potentially deducible facts expl ici t ly
requires a great deal of memory space and indexing time, most of
which w(/uld be wasted, since only a small subset of them will ever
be used.

The best examples arise in connection with inheritance of
propert ies down an "IS-A" hierarchy. When you hear that Clyde is
an elephant (an example due, like much in this report, to Scott
Fahlman), many facts about Clyde become "accessible," including the

SYMBOL MAPPING

shape of his nose, his color, his preference in legumes, etc. (Didn't
all those things come to mind "effortlessly"?) They presumably
fol low from some procedural analogue of

(1) (is-a ?x elephant)
((color ?x gray) A (shape (nose ?x) long)
A (likes ?x peanuts) A (is-a ?x mammal) ^ ...)

Furthermore, since the large conjunction on the right of (1) includes
(is-a ?x mammal), many more properties are implicitly included.

At languages give us two obvious ways to represent (1): as a
consequent theorem (if-needed method, etc.); or as an antecedent
theorem (if-added method, WHEN statement, etc.). Neither of these
works. If the goal (color Clyde gray) is proposed, consequent
methods tell us to propose the goal (is-a Clyde elephant). However,
the goals (is-a Clyde battleship), (is Clyde (mother Whistler)), (is-
a Clyde Confederate-uniform), etc., are all inevitably proposed as

-well. (If the goal had been (color Clyde ?c), or a mammalian
p roper ty like (number-of-limbs Clyde 4), the situation would have
been even worse, but people do not have any extra trouble.)

The antecedent method does not work either. It would require
assertion of all the properties of elephants, mammals, animals, and
physical objects, specialized to Clyde. (Again, one can point to the
case of humans, who do not pause for a long time just upon hearing
that Clyde is an elephant.)

This looks like a good place to use the "context" or "possible
wor ld" mechanism of PLANNER, QA4, GOL <Pople, 1972>, Conniver,
et al. In Conniver (with which I am most familiar), a context is a list
of context layers, each of which includes some data. A datum is
present if it is indexed an._...d in some layer of the current context.
(This is oversimplified.) A glamorous thing to do with contexts is to
treat a layer as a package of knowledge that can be strung like a
bead with other layers to fit a specialized situation. How to play
chess, for example, might be such a package. The information would
be indexed just once (when it was learned), but only findable when
the current layer was plugged in. Plugging in takes a couple of
RPLACD's.

An idea like this (the "packet" concept) was used by Fahlman
in his <1973> thesis proposal, part of which appears in <Minsky,
1974>.

Unfortunately, it will not work for the case at hand without
modification. What we want to plug in is the package
{(color ?x gray), (shape (nose ?x)long) }, but with ?x bound to
Clyde. We just cannot get this without further indexing, if 'Clyde' is
to point to each of these facts. (it appears to do no good just to
omit ?x, since there may be more than one animal or nose around.)
This is why this problem is about "symbol mapping"; we want ?x (or
"canonical elephant" in many versions) to be mapped into Clyde
(and whatever other elephants there are).

The controversy surrounding this problem was sparked by
Fahlman's recent work (soon to appear as an A.I. memo), in which he
abandons his packet approach because of this and related problems.
Fahlman proposes the use of special parallel hardware to do
searches through]S-A hierarchies. (His entire scheme includes
much more. It is impossible to describe it here.) He and other
people have despaired of a solution on a conventional computer.

On ideological and other grounds, others of us have continued
to think about solutions on a serial machine, but not always to
exact ly the same set of problems as Fahlman. Bob Moore has
shown that the iS-A problem may be solved by using typed
variables and terms, where the types are the classes in the]S-A
hierarchy, and then indexing on the types of terms instead of the
terms themselves. Thus (color ?x/(elephant)gray) would appear
direct ly in the data base. It would work for all elephants because
the indexer and marcher could efficiently pair this with, e.g.,
(color Clyde/(elephant)gray). Its main drawback is that it works

Page 4 SIGART Newsletter No. 51 April 1975

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1045231.1045232&domain=pdf&date_stamp=1975-04-01

SYMBOL MAPPING

only for an IS-A hierarchy, and only one which is not too "tangled."
A tangled hierarchy is one in which Clyde could be many things-- a
male, a herbivore, a big animal, a~lover of Ivlartha the elephant next
door, etc. It is an open question whether the IS-A network should
have to do this much work. On psychological grounds, however,
Moore and others feel that it should not.

It seems to me that this problem is an instance of the standard
"binding" issue of computer science: when shall variables be
assigned values. The choice of consequent or antecedent deduction
is a choice between deep and shallow binding <Moses, 1970>.
When environments or packets are to be switched in and out
frequently, shallow binding becomes time-consuming (and, in the
case of deduction, space-consuming). On the other hand, lookup can
be extremely slow in the case of deep binding. A hybrid scheme
has been devised by Chris Reeve of the MIT Dynamic Modeling
Group's MUDDLE language project, which is as fast as deep binding
at switching environments, and as fast as shallow binding on
Iookups, except on the f i rs t reference of a variable whose binding
has changed. I have devised an analogous scheme for the deduction
case. I see it as an alternative to the antecedent or consequent
way of modeling implication. It has nothing to do with IS-A as such,
which may be an advantage or disadvantage.

Schemes like this are unacceptable to Fahlman and others
because their implementation requires a bit of bookkeeping on the
first request for Clyde's color, which might slow the process too
much. In addition, some care is required in managing changes to the
concept of mammal or elephant after some elephant has come to
mind. In general, the binding approach will not work unless "coming
to mind" is well-defined. If all objects are dumped into one global
data base, space and time will be consumed just as in the
consequent case.

Other people (notably David Marr, in a work in progress) have
argued that a heuristic approach will suffice. Just point 'Clyde' at a
small list of important elephant properties (whic:h might well
duplicate some mammal properties), and make it more expensive to
get at any others. Other roles Clyde might have must be made
secondary. Many properties will be of the form icolor) = gray, with
no "?x." The ambiguity so generated can be detected and tolerated.
Those who advocate such an approach can point to the general
poor performance of people in retrieving obscure properties of
concepts. They claim Fahlman's system will solve too much.

We would appreciate hearing of other people's solutions or
despair with respect to this problem.

R e f e r e n c e s

Fahlman, Scott (1973) A Hypothesis-Frame System for Recognition
Problems, Cambridge: MIT AI Lab Working Paper 57.

Hewitt, Carl (1972) Description and Theoretical Analysis (Using
Schemata) o[PLANNER: A Language for Prouing Theorems and
Manipu~tin£ Models in a Robot, Cambridge: MIT AI Lab TR-
258.

Minsky, Marvin (1974) A Framework for Representing Knowledge,
Cambridge: MIT AI Lab Memo 306.

Moses, Joel (1970) The Function of FUNCTION in LISP, Cambridge:
M[T A[Lab Memo 199.

Pople, H.E., Jr. (1972) "A Goal Oriented Language for the
Computer," in Representation and Meaning-- Experiments u~ith
Information Processing Systems, H. Simon and L. Siklossy (eds.),
Prentice-Hall.

Rulifson, J.F., Derksen, J.A., and Waldinger, R.J. (1972) OA4: A
Procedural Calculus for Intuitiue Reasoning, Menlo Park= SR]
Technical Note 73.

Sussman, G.J. and McDermott, D.V. (1972) "From PLANNER to
CONNIVER -- A Genetic Approach," (Proc. FJCC 41, p. 1171.

A THEOREM ABOUT AUTOMATIC PROGRAMMING 1
Peter Kugel

Computer Science Program -- Fulton 406
Boston College Chestnut Hill, Mass. 02167

i n t r o d u c t i o n
An automatic programming system is a system (usually a

programmed c()mputer) that generates a program from partial
information about that program (Figure 1). Looked at in this general
way, automatic programming systems are hardly new. Assemblers
are automatic programming systems. So are compilers, debugging
systems, and even loaders, in this paper, I propose to focus on
systems that "do more" than such systems in the sense that they
i'equire less complete information about the programs they are to
generate.

P a r t i a l Information Fu l l
Rbout Program Program

I I
V V

.
I \ \ \ 1 I gutomatic I I \ \ \ \ \ \ 1
I \ \ \ \1 --> I Programming I --> I \ \ \ \ \ \1
I \ \ 1 I System I I \ \ \ \ \ \ 1

. . . . ; . T - -
v v

Figure 1: Rn Automatic Programming System

Let us call an automatic programming procedure an exemp~ry
programming procedure if it takes (as input) examples of what t h e
program that it will generate is supposed to do and produces (as
output) a program that does that job.

Inputs-0utputs Full
of Desired Program Program

I I
V V

.
. ~ I Exemplary I I \ \ \ \ \ \1

I I --> I Programming I --> I \ \ \ \ \ \1
I I I System I I \ \ \ \ \ \ 1

. . . . ; . T - "
v v

Figure 2: Rn Exemplary Programming System

For example, an exemplary programming procedure might take
in samples of sales figures and the kinds of reports such figures
were supposed to produce and then create a program that would
produce similar reports from different figures. Or it might take in
sample chess games and develop a program that would play legal,
or even good chess. Our main result, stated informally, is the
following:

An exemplary programming procedure that uses a totally
computable procedure (a debugged computer program) to
produce programs can produce only finitely many programs.

This is a very strong limitation on exemplary programming (by
total ly computable procedures) since the set of all programs for
almost any reasonable problem domain is infinite.

I Presented at 1975 Computer Science Conference, Washington,
D.C.

Page 5
SIGART Newsletter No. 51 April 1975

