
Knowledge Representation - Shapiro

7 Kay, M. The MIND System. In Natural Language Processing,
Austin, R. ted.). Algorithmics Press, New York, 1973, 155-
188.

8 Schubert, L.K. Extending time expressive power of semantic
networks. TR 74-18, Department of Computer Science,
University of Alberta, 1974.

9 Schubert, L.K. Extending the expressive power of semantic
networks. Aduance Papers of the Fottrth International .Joint
Conference on ,Artificial Intelligence, 1975, 158-164.

10 Schubert, L.K. Extending the expressive power of semantic
networks. Artificial Intelligence 7, 1976, 163-198.

11 Shapiro, S.C. The MIND system: a data structure for
semantic information processing. R-837-PR, The Rand
Corporation, Santa Monica, 1971.

12 Shapiro S.C. A net structure for semantic information
storage, deduction and retrieval. Proceeditzgs Second
International Joint Conference on Artificial Intelligence, The
British Computer Society, London, 1971, 512-523.

13 Shapiro, S.C. An introduction to SNePS (semantic net
processing system). Technical Report No. 31, Computer
Science Department, Indiana University, Bloomington,
Revised December, 1976.

14 Shapiro, S.C. and Bechtel, R.J. Non-standard connectives and
quanlifiers for question-answering systems. In progress.

15 Woods, W.A. What's in a link: foundations for semantic
networks. In Representation and Understanding, Bobrow,
D.G. and Collins, A. (Eds.). Academic Press, New York, 1975,
35-82.

Semantic Network Representations in Rule-Based Inference Systems
Richard O. Duda, Peter E. Hart, Ntis J. Nilsson, and Georgia L.
Sutherland

Stanford Research Institute Menlo Park, CA 94025
Rule-based inference systems allow judgmental knowledge

about a specific problem domain to be represented as a collection
of discrete rules. Each rule states that if certain premises are
known, then certain conclusions can be inferred. An important
design issue concerns lhe representational form for the premises
and conclusions of the rules. We describe a rule-based system
that uses a partit ioned semantic network representation for the
premises and conclusions.

Knowledge-Directed Inference in BELIEVER
N. S. Sridharan and C. F. Schmidt

Department of Computer Science
Rutgers University New Brunswick, N J08903

The BELIEVER theory is an attempt to specify an information
processing systenn that constructs intentional interpretations of
an observed sequence of human actions. A frame-based system,
AIMDS, is used to define three domains: the physical world; the
plan domain, where interpretations are constructed using plan
structures composed from plan traits; and the psychological
description of time actor. The system achieves a shift of
representation from propositions about physical events to
statements about beliefs and intentions of the actor by
hypothesizing and attributing a.plan structure to the actor.

A paradigm for approaching a part of the interpretat ion
problem is described in this report. Understanding is viewed as a
process of assimilating incoming patterns with existing knowledge
and expectations. The essential process of "expectation
matching" is attended .to in detail and a simple example is
presented to illustrate the paradigm and its possible extensions.

Knowledge Representation

A Knowledge Base Organization for Rules About Programming
David Barstow 1

Stanford University Stanford, CA 94305

Abstract
PECOS is a knowledge-based system for automatic program

synthesis. Programs are specified as abstract algorithms in a
high-level language for symbolic computation. Through the
successive application of programming rules, the specification is
gradually refined into a concrete implementation in the target
language. The existence of several rules for the same task
peFmits the construction of a variety of distinct programs from a
single initial specification. Internally, program descriptions are
represented as collections of nodes, each labeled with a
programming concept and with other properties related to that
concept. The refinement process is guided by the selection and
application of rules about programming. These rules are stated
as condition-action pairs, but the identification of certain rule
types permits the use of various techniques for efficient rule
retr ieval and testing, including the determination, of retr ieval
patterns and the automatic separation of the condition into an
applicabil i ty pattern and a binding pattern.

Introduction
PECOS is a knowledge-based system that constructs

concrete implementations of abstract algorithms [1]. For current
experiments the specification language centers around notions
from symbolic programming, including information structures such
as collections or correspondences, and operations such as testing
whether an item is in a collection or computing the inverse of a
correspondence. Programs are synthesized by gradually refining
the original specification into a program in the target language.
Currently the target language is LISP (in particular, a subset of
INTERLISP [10]), but experimentation with SAIL (an ALGOL-like
language) is underway [8]. Frorn a given specification, PECOS is
able to construct several different implementations, differing both
in representations for data structures and in algorithms for
abstract operations.

PECOS's abilities are derived from a large knowledge base
of rules about programming. These rules have been carefully
designed and constructed to deal explicitly with various aspects
of the programming process, including intermediate-level
consh-ucts and certain design decisions. In previous experiments,
such rules have been used to synthesize several simple sorting
programs [5,6]. Detailed discussions of all of PECOS's rules may
be found elsewhere [1]. The current discussion focuses on the
organization of the knowledge base and the techniques used to
retr ieve and apply its rules.

Rules about ProErarnrnirt E
The rules in PECOS's knowledge base constitute an

explication of knowledge about writing programs in the domain of
symbolic computation. While many of the rules are relat ively
specific (o the task of writing simple symbolic programs, some
are generally applicable to programming in other domains as well.
Most are independent of any particular programming language,
although some are quite specific to LISP. A representative
sample is given below. (The rules are presented in English for
ease of understanding; details of the internal representation are
discussed later.)

1. This research was supported by the Advanced Research
Projects Agency of the Department of Defense under Contract
MDA 903-76-C-0206. The views and conclusions contained in
this document are those of the author and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of Stanford University, ARPA, or
the U. S. Government.

Page 18 SIGART Newsletter No. 63 June 1977

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1045343.1045352&domain=pdf&date_stamp=1977-06-01

