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ABSTRACT
Several formal languages have been proposed to encode pri-
vacy policies, ranging from the Platform for Privacy Pref-
erences (P3P), intended for communicating privacy policies
to consumers over the web, to the Enterprise Privacy Au-
thorization Language (EPAL), intended to enable policy en-
forcement within an enterprise. However, current technol-
ogy does not allow an enterprise to determine whether its
detailed, internal enforcement policy meets its published pri-
vacy promises. We present a data-centric, unified model for
privacy, equipped with a modal logic for reasoning about
permission inheritance across data hierarchies. We use this
model to critique two privacy preference languages (APPEL
and XPref), to justify P3P’s policy summarization algo-
rithm, and to connect privacy policy languages, such as P3P,
with privacy policy enforcement languages, such as EPAL.
Specifically, we characterize when one policy enforces an-
other and provide an algorithm for generating the most spe-
cific privacy promises, at a given level of detail, guaranteed
by a more detailed enforcement policy.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; K.4.1 [Computers and Society]:
Public Policy Issues—Privacy

General Terms
Security, Theory, Languages

Keywords
Privacy policy, EPAL, P3P, Policy summary, Modal logic

1. INTRODUCTION
Privacy is a significant concern among online consumers

[1]. In response to this concern, online service providers
have developed privacy policies. Initially, service providers
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posted privacy policies on their web sites in free text. How-
ever, free-text policies are difficult for consumers to under-
stand [16]. The World Wide Web Consortium has proposed
the Platform for Privacy Preferences (P3P) to enable ser-
vice providers to post machine-readable privacy policies [13].
Service providers who have posted P3P policies promise spe-
cific data practices, but they still require internal mecha-
nisms to enforce those promises. One approach is to detail
data practices in a formal authorization language. IBM has
proposed the Enterprise Privacy Authorization Language
(EPAL) as one such enforcement language [17]. Instead of
using EPAL as our example enforcement language, however,
we use DPAL, a similar language with several advantages [6],
including straightforward ways of combining policies. Re-
gardless of the enforcement language used, it is not obvious
how enforcement policies relate to privacy promises.

Our goals are fourfold. First, to describe the semantics
of privacy languages, such as P3P and DPAL, in a rigorous,
uniform model. Such a description is essential in relating
policies written in different languages. Second, to validate
our model, the Data-Hierarchy/Action Model for Privacy
(DAMP), by analyzing the existing relations between P3P
and languages designed to interoperate with P3P, such as
APPEL, XPref, and compact P3P policies. Third, to de-
termine whether a policy, such as one written in DPAL,
enforces the promises made in another policy, such as one
written in P3P, thereby connecting privacy promises with
privacy enforcement. Finally, to provide an algorithm for
summarizing detailed policies using a given vocabulary, en-
abling enterprises to translate their operative DPAL policies
into P3P. Achieving these goals will provide enterprises with
the tools to ensure their privacy enforcement mechanisms
actually enforce their announced privacy policies.

Figure 1 depicts one usage scenario for the main relations
and algorithms. A service provider first writes a DPAL pol-
icy detailing its data practices, then employs our summa-
rization algorithm to generate the most specific P3P policy
enforced by this DPAL policy. The service provider may
then, optionally, generate a compact P3P policy using the
algorithm in the P3P specification. We prove that each com-
pact policy is enforced by the P3P policies that generate it.
Either the full or compact P3P policy is then transmitted
to a consumer’s user agent, which is configured using its
user’s privacy preferences, expressed in APPEL. If the con-
sumer’s user agent accepts the received policy, the service
provider’s data practices conform to the consumer’s privacy
preferences.
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Figure 1: The intended usage scenario for the tools
in this paper.

1.1 Perspectives and modalities
It is important to understand that different privacy lan-

guages address privacy concerns from different perspectives.
P3P policies are intended to be interpreted by consumers
(or their automated agents), whereas DPAL policies are in-
tended to be interpreted by the issuing service provider.
Consumers and service providers are interested in answer-
ing different types of questions about privacy policies, and
consequently may understand a policy summary as allow-
ing different actions. P3P is designed to easily answer con-
sumer questions; DPAL is designed to easily answer ser-
vice provider questions. Previous attempts to model privacy
policies [17] do not distinguish between these two perspec-
tives. Such a distinction, however, is necessary in order to
relate privacy preferences to privacy enforcement.

Consumers desire privacy policies that permit as little use
of their personal data as possible. Most consumers, how-
ever, are willing to give up some privacy in exchange for
a service. In our model, consumers reject candidate pri-
vacy policies that exceed some level of permissiveness. For
example, a consumer might reject a policy because it per-
mits telemarketing. In the face of incomplete or conflicting
information, consumers use an upper bound for their de-
terminations. A consumer considering a policy permitting
the use of some, but not all, personal data for telemarketing
would summarize the policy as allowing telemarketing, and
therefore might reject it. In our model, elaborated in this
paper, the ability to perform an action using some parts of
a large piece of data is expressed using the 3 modality.

Service providers desire privacy policies that permit as
much use of their customers’ personal data as is useful.
Many service providers, however, are willing to limit their
use of personal data in order to do business with privacy-
conscious consumers. Before performing an action, a service
provider must determine whether it has promised not to per-
form that action. For example, a service provider might need
to determine whether it is allowed to use a customer’s per-
sonal data for telemarketing. In the face of incomplete or
conflicting information, service providers use a lower bound
for their determinations. A service provider operating un-
der a policy permitting the use of some, but not all, personal

data for telemarketing could summarize this policy as not
allowing all telemarketing, and therefore could restrict its
actions conservatively. The ability to perform an action us-
ing all parts of a large piece of data is modelled using the 2

modality.
Notice that for a single detailed policy allowing some but

not all data to be used for telemarketing, a privacy-conscious
consumer would like this policy to be summarized (using
the 3 modality) as “allows telemarketing” so the consumer
can reject the policy, whereas a service provider who has
committed to the policy must summarize the policy (using
the 2 modality) as “prohibits telemarketing” in order to
avoid violating the policy when it is enforced using the policy
summary.

We have developed the Data-Hierarchy/Action Model for
Privacy (DAMP), a data-centric model for privacy policies.
DAMP distinguishes privacy promises about an individual
data object from restrictions inherited from promises about
other data objects. This formal separation is necessary be-
cause consumers and service providers have different per-
spectives on privacy and therefore on interpreting promises
about related data objects. Their dual perspectives are cap-
tured in the dual 3 and 2 modalities of a modal logic for
reasoning about privacy policies.

1.2 Applications
In our usage scenario, consumers require a language, such

as APPEL [13], for expressing their privacy preferences.
Critics have argued that APPEL is difficult to use effectively
and have proposed XPref as an APPEL replacement [2]. Us-
ing DAMP to analyze APPEL and XPref, we discover that
both languages can express dubious preferences. For exam-
ple, a consumer may express the preference to block services
not performing telemarketing. Moreover, expressing simple
preferences, such as “block services that collect my home
address,” in XPref is non-intuitive.

P3P specifies an algorithm for generating compact poli-
cies, which are short summaries of P3P policies. DAMP
endows this algorithm with clear semantics: compact poli-
cies are answers to common consumer queries. To compute
compact policies, compute the values of certain 3 terms in
the modal logic. Service providers might employ a dual no-
tion of a compact policy, formed by replacing 3 terms with
2 terms.

Practicable enforcement languages, such as DPAL, also
compute the values of 2 terms; however, they do so at a
finer level of detail. Seemingly ad-hoc features of DPAL,
such as upward inheritance of deny rulings, can be moti-
vated using the 2 operator. Deviations from this semantics
result in unsafe [6] policies. Using DAMP, we demonstrate
how service providers can determine whether their operative
DPAL policy actually enforces their announced P3P policy.
We also provide an algorithm for generating the most spe-
cific P3P policy enforced by a given DPAL policy.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our privacy model, DAMP, including an ex-
tended example and rigorous definitions. Section 3 applies
DAMP to understanding P3P, with attention to privacy
preference languages and compact policies. Section 4 ex-
amines enforcement languages, justifying some peculiarities
of DPAL and criticizing others. Section 4 also describes an
algorithm for generating P3P policies from DPAL policies.
Section 5 concludes.



2. A MODEL FOR PRIVACY
Previous models of privacy policies [17] do not distinguish

between the perspectives of those who handle personal data
and those whose personal data is being handled. Such a
distinction, however, is necessary in order to relate privacy
preferences to privacy enforcement. This section presents
a model of privacy, the Data-Hierarchy/Action Model for
Privacy (DAMP) mindful of these two perspectives.

2.1 Principals, data, and actions
Traditionally, in models of access control [15], there are

two types of principals: the “good guys,” and the “bad
guys.” Each group desires different properties of the ac-
cess control system. The “good guys” desire a lower bound
on the functionality of their system, whereas the “bad guys”
desire maximal functionality.

Access control policies are partially ordered by the amount
of functionality they permit. Viewed in terms of policies, the
“good guys” require a policy more permissive than some
lower bound policy, p, that permits their desired minimal
functionality. Left to their own devices, the “bad guys”
would select the maximally permissive policy, >, in order
to conduct their nefarious business. The principle of least
privilege (see, for example, [7]) states that the “good guys”
should enforce p itself.

Privacy policies are also partially ordered by permissive-
ness and may be understood in terms of two principals: the
service provider and the consumer. The service provider
desires a policy at least as permissive as some policy, ps,
whereas the consumer desires a policy at most as permis-
sive as another policy, pc. The service provider imposes a
lower bound on functionality in order to conduct his or her
business. The consumer imposes an upper bound on func-
tionality in order to protect his or her privacy. A policy p
with ps v p v pc is acceptable to both parties and may be
used by the service provider to govern data collected about
the consumer.

The central component of this model is the data hierarchy.
A service provider who collects data about a consumer, such
as given name, zip code, and blood cholesterol levels, often
manipulates data in aggregates, such as home address and
blood test results. Data objects about an individual are thus
partially ordered by inclusion and form a hierarchy. When a
service provider, in a privacy policy, makes a promise about
a data object, that promise also indirectly affects containing
objects.

The final components of this privacy model are actions.
Previous work in privacy [5, 19] modelled aspects of actions,
such as purpose and recipient. For simplicity, we abstract
away these aspects in our model, taking actions are parame-
terized only by the data object on which they act. However,
this is only a modelling convenience, as actions may be com-
plex, for example, “Disclose X to health insurer for billing,”
or may occur over a long duration: “Retain X for five years
and then expunge.” Policies state concretely which actions
are permitted and which actions are prohibited of the ser-
vice provider. We assume the existence of a global set of
actions, A, containing every possible action.

2.2 Extended example
In the following example, Alice is the consumer and Dr. Bob

is the service provider. They are concerned with the data
objects blood cholesterol level, T-cell count, and blood test

results. Blood test results contain both blood cholesterol
level and T-cell count. They are concerned with the action
“disclose X.”

Alice is HIV-positive. She wishes to keep her medical
records private because she fears she will be denied health
insurance if prospective insurers learn her HIV status. Con-
servatively, she can prohibit disclosure of her entire medical
history, but she can obtain a better insurance rate if she
permits certain disclosures. She is willing to disclose some
of her record, such as her age, weight, and x-rays, but she
does not wish to disclose results of blood tests. In evaluat-
ing privacy policies, Alice decides to ask, “Does this policy
permit disclosure of blood test results?”

After framing her question, Alice consults the privacy pol-
icy of her physician, Dr. Bob, to determine if he will respect
her preference to keep blood test results confidential. In his
policy, Dr. Bob promises not to disclose blood cholesterol
levels. This is not sufficient to satisfy Alice because it does
not preclude Dr. Bob from disclosing her T-cell count, a
blood test result. Alice, therefore, concludes that Dr. Bob’s
policy does permit disclosure of some important blood test
results.

Dr. Bob’s perspective on his policy is different from Al-
ice’s perspective. In order to provide quality care for his
patients, Dr. Bob wishes to disclose certain records, such as
blood test results. In evaluating his privacy policy, he de-
cides to ask, like Alice, “Does this policy permit disclosure
of blood test results?” His policy promises not to disclose
blood cholesterol levels, and therefore, prohibits him from
disclosing blood test results in their entirety. He concludes
his policy does not permit disclosure of blood test results.

Alice and Dr. Bob appear to be asking the same question,
but their questions differ in their use of quantifiers. Alice
is worried about Dr. Bob disclosing part of her blood test
results, so she may restate her question as, “Does this policy
permit disclosure of any blood test results?” Dr. Bob is
worried about respecting each of his promises about blood
test results, so he may restate his question as, “Does this
policy permit disclosure of all blood test results?” Their
different questions lead to different answers.

2.3 The model
We model privacy policies as functions mapping data ob-

jects to sets of actions. The issuing service provider promises
to restrict his or her actions on a data object to the set of
actions indicated by the policy. This unusual policy model
separates promises about a data object from promises about
related data objects, allowing us to understand the inheri-
tance of restrictions in data hierarchies and to explore some
proposed privacy preference languages.

Let A be the set of all potential actions, and let D be the
set of data objects, ordered by ≤D such that if d1, d2 ∈ D
with d1 ≤D d2, then d1 is a component of d2. For example,
“disclose” is an action, and “blood cholesterol level” is a
data object, which is also a component of the data object
“blood test result.” A privacy policy, p, is a function from D
to subsets of A, indicating that the issuing service provider
promises to confine its actions regarding each d to the set
p(d).

A policy p does not directly state whether an action is
permitted. Instead, it serves an adjudicatory function. A
service provider who performs action a on data object d has
violated p if a 6∈ p(d). However, a ∈ p(d) does not imply a



may be performed on d. When a service provider performs
action a on datum d, that provider effectively performs a
on all d′ ≤D d. For example, if Dr. Bob discloses blood
test results, he necessarily discloses blood cholesterol levels.
Therefore, when contemplating performing action a on da-
tum d, the policy’s issuer must not only check that a ∈ p(d),
but also that a ∈ p(d′) for all d′ ≤D d. Suppose this second
condition is violated at d′ because d′ ≤D d and a 6∈ p(d′).
If the policy’s issuer performs a on d, he or she effectively
has performed a on d′, violating a promise set forth in p.
Dr. Bob, in disclosing blood test results, violates his policy
to restrict his actions on blood cholesterol levels to a set not
containing “disclose.”

Consider the consumer’s perspective in this model. He or
she is interested in understanding p in order to determine
whether it sufficiently restricts the issuing service provider’s
actions. A natural criterion is whether the provider has
promised not to perform action a on data object d. Näıvely,
the consumer might ask whether a ∈ p(d). However, for
many common actions governed by privacy policies, such as
information disclosure, this question is insufficient to protect
the consumer’s privacy. Although Dr. Bob will not disclose
complete blood test results, he might disclose T-cell counts.
To be conservative, consumers must, therefore, ask whether
a ∈ p(d′) for each d′ ≤D d.

The quantifiers in these questions can be viewed as modal-
ities. The partial order on D can be interpreted as the ac-
cessibility relation in the Kripke frame [9] (D,≤D), where
d1 is accessible from d2 if and only if d1 ≤D d2.

1 Individual
actions can be viewed as atomic propositions.

Def. The Kripke model, Kp, for policy p is (D,≤D,
p),
where for all d ∈ D and all a ∈ A,

d 
p a ⇐⇒ a ∈ p(d).

We extend the 
 relation to modal formulae in the standard
manner,

d 
p ϕ1 ∧ ϕ2 ⇐⇒ d 
p ϕ1 and d 
p ϕ2

d 
p ¬ϕ ⇐⇒ d 6
p ϕ

d 
p 2ϕ ⇐⇒ (∀d′ ≤D d)(d′ 
p ϕ),

and adopt the convention that ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2),
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, and 3ϕ ≡ ¬2¬ϕ.

To determine whether he or she may perform action a on
the entire data object d under policy p, a service provider
evaluates d 
p 2a. Dually, a consumer can avoid service
providers who might perform a on a component of d by
evaluating d 
p 3a.

Our use of modal logic differs from previous work [14, 18]
using modalities to reason about security. In [14], modali-
ties were used to reason about knowledge and future events.
[18] used modal logic to understand the evolution of policies
over time. In the present work, modalities are used to reason
about components of data objects. [11] examined rights in-
heritance in role-based access control hierarchies. However,
there the modalities occur only implicitly.

1This notation is non-standard. Usually, aRb indicates b is
accessible from a.

2.4 Enforcement

Def. Given privacy policies p and q with a common data
hierarchy D, p entails q, written p v q, if for all d ∈ D,

p(d) ⊆ q(d).

The v relation captures the intuitive notion that one pol-
icy is less permissive than another if the former makes a
stronger promise, for every data object, than the latter. v
does not compare policies without a common data hierarchy,
which is unfortunate because service providers often wish
to compare policies dealing with data at different levels of
detail. For example, an enterprise’s operative enforcement
policy is often more detailed than the privacy policy it an-
nounces on its web site. A certain class of modal formulae
are used to generalize this relation to policies dealing with
data at different levels of detail.

Def. A modal formula is positive if its symbols are among
actions, ∧, ∨, 2, and 3 (i.e., it must not contain ¬ or →).

A positive modal formula true of a policy is true of all less
restrictive policies. Positive formulae are the basic building
blocks for reasoning about policies and are used by both
consumers and service providers.

Lemma 1. Given privacy policies p and q, with a common
data hierarchy D, if p v q,

d 
p ϕ =⇒ d 
q ϕ

for all d ∈ D and all positive modal formulae ϕ.

Proof. Assume p v q. Proceed by induction on positive,
simple, modal formulae. Assume ϕ = a. Given d ∈ D,
assume d 
p a ⇔ a ∈ p(d) ⇒ a ∈ q(d) ⇔ d 
q a. The
inductive steps for ∧ and ∨ are immediate.

Assume ϕ = 2ψ. Given d ∈ D, assume d 
p 2ψ. Given
d′ ≤D d, d′ 
p ψ and, by induction, d′ 
q ψ. Therefore,
d 
q 2ψ.

Assume ϕ = 3ψ. Given d ∈ D, assume d 
p 3ψ. Fix
d′ ≤D d such that d′ 
p ψ. By induction, d′ 
q ψ and,
therefore, d 
q 3ψ.

Consumers and service providers are interested in simple
formulae, such as 2a and 3a. We generalize v by requir-
ing simple formulae to carry over from the more restrictive
policy to the less restrictive policy.

Def. A modal formula is simple if it does not contain
nested modalities.

Intuitively, one policy enforces another if any action per-
mitted under the former is announced under the latter. En-
forced policies constitute an “upper bound” on enforcement
policies. This allows consumers to determine whether the
enforcing policy conforms to their preferences by examining
the enforced policy.

Def. Given policies p and q, with data hierarchies Dp and
Dq, respectively, and Dp ⊆ Dq, q enforces p if and only if

d 
q ϕ =⇒ d 
p ϕ

for all d ∈ Dp and all positive, simple, modal formulae ϕ.



The “enforces” relation is a direct generalization of the v
relation. If p and q share a common data hierarchy, the two
relations are identical.

Lemma 2. Given privacy policies p and q, with a common
data hierarchy D,

q v p ⇐⇒ q enforces p.

Proof. The left-to-right direction is a special case of
Lemma 1. For the right-to-left direction, given a and d ∈ D,
assume a ∈ q(d). d 
q a and, because q enforces p, d 
p a.
Therefore, a ∈ p(d) and q v p.

The enforces relation is similar to the policy refinement
relation in [4], but there are two key differences. First, pol-
icy refinement is EPAL-specific and depends crucially on
EPAL’s semantics. This prevents policy refinement from
relating two policies written in different languages. Second,
whether one policy refines another depends on the particular
syntactic expression used to represent each policy. Whether
one policy enforces another depends solely on the policies
themselves, and not their syntactic expression. Both are
generalizations of v in the sense of Lemma 2.

3. UNDERSTANDING P3P POLICIES
A World Wide Web Consortium standard, the Platform

for Privacy Preferences, or P3P, is a broadly adopted [8]
formal language for communicating privacy promises to con-
sumers [13]. A P3P policy is a promise by a service provider
to limit the use of certain data to certain purposes, recipi-
ents, and retention periods.

Prior to retrieving a web page, a consumer’s web browser
first downloads the site’s P3P policy, and then compares the
downloaded policy against its user’s privacy preferences. If
the policy respects the user’s preferences, the web browser
retrieves the web page. However, if the policy does not
respect the user’s preferences, the browser may block the
site or notify the user. When manipulating data, the web
site operator is obligated to adhere to the P3P policy under
which it collected the data.

3.1 Modelling P3P policies
P3P policies govern a data hierarchy, the base data schema,

or an extension thereof. P3P policies are comprised of state-
ments, each of which attaches a set of purposes, a set of
recipients, and a set of retention periods to each of a collec-
tion of data objects, indicating the issuer promises to restrict
its actions concerning those data objects to those purposes,
those recipients, and those retention periods.

In the P3P statement in Figure 2, webmd.com promises to
restrict use of the user’s name and birthday to the “current”
purpose, as well as individual analysis. webmd.com may dis-
close the user’s name and birthday to delivery agents, but
this disclosure will be made only if the user opts in. Finally,
webmd.com may retain the user’s name and birthday to meet
legal requirements on data retention.

A P3P statement attaching a promise to a node in the
data hierarchy (e.g. #user.name) also attaches that promise
to all children of that node (e.g. #user.name.given). If
two statements attach different promises to the same data
object, the issuer is permitted to perform actions permissible
under either promise.

A P3P statement, σ, can be interpreted as a function,
P[[σ]], from a data hierarchy, D, to subsets of actions, P(A),

<STATEMENT>

<PURPOSE><current/><individual-analysis/>

</PURPOSE><RECIPIENT>

<delivery required="opt-in"/></RECIPIENT>

<RETENTION><legal-requirement/></RETENTION>

<DATA-GROUP>

<DATA ref="#user.name" optional="yes"/>

<DATA ref="#user.bdate"/>

</DATA-GROUP>

</STATEMENT>

Figure 2: An abbreviated P3P statement from
webmd.com. In this statement, webmd.com promises to
restrict the use of a user’s name and birth date
to the “current” purpose and individual analysis.
webmd.com may disclose a user’s name and birth date
to delivery agents, but only if the user opts in.
Finally, webmd.com may retain the user’s name and
birthday to meet legal requirements on data reten-
tion.

indicating the issuer promises to restrict his or her use of
each data object, d, to the set of actions P[[σ]]d. Data objects
mentioned in the statement, and their children in the hier-
archy, are mapped to the promise indicated. Other data ob-
jects are mapped to the most restrictive promise, the empty
set of actions, which permits no action.

A P3P policy p, formally a finite set of P3P statements,
may also be interpreted as a function, P[[p]], from D to P(A),
such that, for all d ∈ D,

P[[p]]d =
[
σ∈p

P[[σ]]d

The above use of union follows from the disjunctive seman-
tics of P3P, which permits an action if it is permitted by
at least one statement. The Kripke model for a policy p is
KP[[p]].

3.2 Privacy preferences
P3P policies are intended to be interpreted by automated

user agents. A consumer’s agent examines the data practices
promised by a P3P policy and reports whether it respects
the consumer’s privacy preferences. These privacy prefer-
ences, written in a formal language, allow consumers to spec-
ify which data practices they find acceptable and which they
find unacceptable.

Def. f is a privacy preference if it is a unary predicate on
policies (i.e., it is a function from policies to {true, false}).

According to our model, consumers prefer more restrictive
policies. A robust preference that accepts a policy (i.e., it
maps that policy to true) will also accept more restrictive
policies.

Def. Privacy preference f is robust if, for all policies p v
p′, f(p′) =⇒ f(p).

A robust preference is an upper bound on policy permis-
siveness. For example, a preference to block web sites that
use home telephone numbers for telemarketing is robust,
whereas a preference to block web sites that do not use
home telephone numbers for telemarketing is not robust.



<appel:RULE behavior="block">

<p3p:POLICY>

<p3p:STATEMENT appel:connective="or">

<p3p:PURPOSE appel:connective="non-and">

<p3p:telemarketing />

</p3p:PURPOSE>

</p3p:STATEMENT>

</p3p:POLICY>

</appel:RULE>

Figure 3: A non-robust APPEL preference. The
connective non-and causes the rule to fire for policies
that do not disclose the telemarketing purpose.

Ideally, a preference language should not be able to express
non-robust preference because a consumer who writes such
a preference is almost certainly making an error.

Lemma 3. Given action a and data object d, if f is the
privacy preference

f(p) ⇐⇒ d 6
p 3a,

for all policies p with data hierarchies containing d, then f
is robust.

Proof. Assume, by way of contradiction, f is not robust.
There must exist policies p and q with p v q and f(q), but
¬f(p). d 
p 3a, because ¬f(p). Fix d′ ∈ Dp such that
d′ ≤Dp d and d′ 
p a. By the definition of v, d′ ∈ Dq and
d′ 
q a, implying d 
q 3a. This contradicts f(q).

The P3P specification defines a language for expressing
privacy preferences, named A P3P Preference Exchange Lan-
guage (APPEL) [13]. An APPEL preference reports whether
interactions with a service provider espousing a P3P policy
should be blocked, limited, or allowed to proceed.

An APPEL preference is a set of rules. Each rule consists
of a judgment (block, limited, or request) and a condition
under which to issue that judgment. Rules are processed in
order, optionally halting at the first rule whose condition
is met. This early evaluation termination immediately leads
to non-robust policies. However, even an APPEL preference
containing a single rule might not be robust. The rule in
Figure 3 blocks services that do not use collected information
for telemarketing. This is not robust behaviour.

XPref is another language for expressing privacy prefer-
ences, based on XPath [10]. The designers of XPref were
motivated by their difficulty expressing simple privacy pref-
erences in APPEL [2]. Following from this motivation, they
endowed XPref with significant expressive power. Unfortu-
nately, XPref can express non-robust preferences. For ex-
ample, the rule in Figure 4 blocks services that do not use
collected information for telemarketing. This is not robust
behaviour. Several of the example XPref policies in [2] are
non-robust.

Using XPref robustly is non-intuitive. Consider express-
ing the preference “block services that collect my home ad-
dress.” Näıvely, a user might expect that preference to
be expressed by the rule in Figure 5(a). However, such
a preference will not block a service that discloses it col-
lects user.home-info data, which includes postal address.
A user’s second attempt to encode this preference in XPref
might be the rule in Figure 5(b). Such a preference is still

<RULE behavior="block"

condition="/POLICY/STATEMENT/PURPOSE/*

[ name(.) != "telemarketing" ]" />

Figure 4: A non-robust XPath policy. This rule fires
for policies that do not disclose the telemarketing

purpose.

(a) <RULE behavior="block"

condition="/POLICY/STATEMENT/DATA-GROUP/*

[ name(.) = "DATA" and

@ref = "#user.home-info.postal" ]" />

(b) <RULE behavior="block"

condition="/POLICY/STATEMENT/DATA-GROUP/*

[ name(.) = "DATA" and

( @ref = "#user.home-info.postal" or

@ref = "#user.home-info" or

@ref = "#user" ) ]" />

(c) <RULE behavior="block"

condition="/POLICY/STATEMENT/DATA-GROUP/*

[ name(.) = "DATA" and

( starts-with(@ref,

"#user.home-info.postal") or

@ref = "#user.home-info" or

@ref = "#user" ) ]" />

Figure 5: Approximations to a robust XPref pref-
erence. (a) does not fire for policies that disclose
#user.home-info. (b) does not fire for policies that
disclose components of #user.home-info.postal. (c)
is robust.

lacking. A service might disclose it collects each individ-
ual subelement of user.home-info.postal, such as street,
without explicitly disclosing it collects home addresses. Fig-
ure 5(c) correctly expresses this preference by blocking ser-
vices whose policy, for an action a, satisfies

#user.home-info.postal 
 3a.

3.3 Compact policies
Compact policies are terse summaries of P3P policies.

Service providers can include compact policies in HTTP
headers to improve performance. Microsoft Internet Ex-
plorer 6.0 uses compact policies associated with cookies to
implement its privacy protections [12]. A compact policy
consists of a set of terms representing the purposes, recipi-
ents, and retention periods of the P3P vocabulary. For ex-
ample, the term TEL represents the telemarketing purpose.
The P3P specification includes an algorithm for condensing
full P3P policies into compact policies but does not explain
its semantics. Our model endows the algorithm with clear
semantics.

Let τ be a compact P3P term, aside from NID. The term τ
is present in a compact policy if (and only if) the full policy
satisfies d 
 3a for some a permitted by τ , where d is the
root (all-inclusive) data object.

The term NID, or NON-IDENTIFIABLE, differs from other
P3P terms because it represents the formula ¬3a, where a
is the act of using a piece of data to identify an individual



consumer. It is present in a compact policy if (and only if)
the full policy satisfies d 
 ¬3a, where d is the root element
of the P3P data hierarchy. This is a performance optimiza-
tion in P3P, whose designers believed the vast majority of
P3P policies would satisfy d 
 3a [12]. A compact policy,
therefore, consists of the answers to certain 3 queries.

Theorem 4. All P3P policies enforce their compact rep-
resentations.

Proof. Given P3P policy q with data hierarchy Dq, let
p be its compact representation. The data hierarchy for p is
the trivial, single-element hierarchy, Dp, containing only d.
Proceed by induction on positive, simple, modal formulae.
Given ϕ, assume ϕ = a for some action a ∈ A and d 
q a.
Thus, d 
q 3a and d 
p a. The inductive steps for ∧ and ∨
are immediate.

Assume ϕ = 2ψ, where ψ is free of modalities, and d 
q

2ψ. Thus, d 
q ψ and, by induction, dp 
p ψ. As Dp

contains only one element, dp 
p 2ψ.
Assume ϕ = 3ψ, where ψ is free of modalities, and d 
q

3ψ. Fix d′ ∈ Dq, such that d′ ≤Dq d and d′ 
q ψ. By the
definition of compact policies, q(d′) ⊆ p(d). Thus, d 
p ψ
and d 
p 3ψ. Combining these statements, q enforces p.

Consumers may use compact policies to make simple pri-
vacy decisions. For example, consumers may avoid service
providers who use their information for telemarketing by
avoiding those providers with compact policies containing
the term TEL. However, such compact policies are of little
use to service providers.

A different policy summary, for use by a service provider,
might be constructed by recording the results of 2 queries.
If the term TEL appeared in this policy summary, a service
provider could conclude he or she may use any piece of data
for telemarketing. In practice, however, service providers
require a fine-grained privacy enforcement language, such
as DPAL.

4. ENFORCING PRIVACY PROMISES
P3P is useful for communicating data practices between

service providers and consumers. However, it is lacking as
a language for enforcing privacy policies within the enter-
prise. A P3P policy is, essentially, a precise summary of
an enterprise’s data practices and therefore lacks the detail
necessary for enforcement.

IBM has proposed EPAL as a privacy enforcement lan-
guage [20]. In [6], we discuss some shortcomings of EPAL
and propose an improved language, DPAL. An enterprise
enforcing a DPAL policy may wish to determine whether its
DPAL policy is consistent with its announced P3P policy.
This section contains the tools necessary for making that
determination.

Enterprises enforcing DPAL policies may wish to create
P3P policies for use on their web sites. These enterprises
have two criteria for the generated P3P policy. First, the
P3P policy must be enforced by the DPAL policy, so as to be
honest about data practices. Second, the P3P policy should
be as restrictive as possible, so as to appeal to as many
consumers as possible. This section presents a general al-
gorithm for summarizing privacy policies that an enterprise
can use to generate such a P3P policy from a DPAL policy.

4.1 DPAL as an enforcement language
Like a P3P policy, a DPAL policy consists of a set of

statements, each of which applies to a set of data objects
and restricts the actions the service provider may undertake.
Unlike in a P3P policy, an action is permitted by a DPAL
policy only if it is permitted by each statement in the policy.

Interpreting DPAL statements is similar to interpreting
P3P statements. Each DPAL statement, σ, is interpreted as
a function, P[[σ]], that maps data objects to sets of actions,
indicating the issuer will restrict his or her use of a given
data object, d, to the set of actions P[[σ]]d.

A key difference between P3P and DPAL is the scope of
policy statements. In both P3P and DPAL, a statement
mentioning data object d affects all data objects d′ ≤D d.
In DPAL, however, “deny” statements also affect all data
objects d′′ ≥D d. This upward inheritance of denying state-
ments arises precisely because DPAL is designed to answer
the 2 queries of service providers. Specifically, if a statement
prohibits action a on d, then d′′ 6
 2a.

Unlike P3P, in which policies are the disjunction of their
statements, DPAL policies enforce each of their statements.
A DPAL policy is the conjunction of its constituent state-
ments. Formally, a DPAL policy, p, over a data hierarchy,
D, is interpreted such that

P[[p]]d =
\
σ∈p

P[[σ]]d

for each d ∈ D. As with P3P, the Kripke model for p is
KP[[p]].

DPAL is an enforcement language because each DPAL
policy is invariant under 2. Formally, every DPAL policy p
satisfies

d 
P[[p]] 2a ⇐⇒ d 
P[[p]] a

for every d ∈ D and every a ∈ A. This is the “safety”
property of [6], recast in our model. Service providers can
determine if DPAL policy p permits action a on data object
d by determining if a ∈ P[[p]]d because

a ∈ P[[p]]d ⇐⇒ d 
P[[p]] a ⇐⇒ d 
P[[p]] 2a

Lemma 5. Policy p is safe if, for every d ∈ D and every
a ∈ A,

d 
p 2a ⇐⇒ d 
p a.

Proof. Assume, by way of contradiction, there exists
d1, d2 ∈ D with d1 ≤D d2, a ∈ p(d2), but a 6∈ p(d1). Then
d2 
p a, implying d2 
p 2a. Therefore, d1 
p a, which
contradicts a 6∈ p(d1).

DPAL does not actually satisfy this property. Obligations
attached to “allow” statements restrict the set of permissible
actions: actions not meeting obligations are not permitted.
However, obligations do not inherit upwards. This violation
of 2-invariance creates enforcement loopholes, exploitable
to perform otherwise prohibited actions. This peculiarity
is also present in EPAL [3, 6]. Enterprises using EPAL as
an enforcement language (that is, evaluating d 
 a in place
of d 
 2a) may be vulnerable to malicious or accidental
circumvention of their policies.

4.2 Transitivity of enforcement
The enforcement relation is transitive, so if a DPAL policy

enforces a P3P policy, the DPAL policy also enforces the
compact version of the P3P policy.



for all d ∈ Dp (inductively) do
p(d)← q(d)
for all d0 ∈ Dq (with d0 ≤Dq d) do

if (∀d′ ≤Dp d)(q(d0) 6⊆ p(d′)) then
p(d)← p(d) ∪ q(d0)

end if
end for

end for

Figure 6: Algorithm for projecting policy q, with
well-founded data hierarchy Dq, onto Dp ⊆ Dq.
Build p by iterating through the data objects in Dq,
at each iteration processing a ≤Dp-minimal unpro-
cessed data object.

Lemma 6. The relation “enforces” is transitive.

Proof. Given policies p, q, and r, with nested data hi-
erarchies Dp ⊆ Dq ⊆ Dr, respectively, assume r enforces q
and q enforces r. We claim r enforces p. Given d ∈ Dp and
positive, simple, modal formula ϕ, assume d 
r ϕ. Because
r enforces q, d 
q ϕ. Because q enforces p, d 
p ϕ, and r
enforces p.

4.3 Summarizing policies
Determining whether a service provider’s DPAL policy

enforces his or her P3P policy is useful when both policies
already exist. Commonly, however, a service provider has
already written a DPAL policy and wishes to generate a
corresponding P3P policy for publication on his or her web
site. The P3P policy he or she wishes to generate is the least
permissive policy enforced by his or her DPAL policy.

Def. Given a policy q, with well-founded data hierarchyDq,
and a subset Dp of Dq, the projection, p, of q onto Dp is
the policy resulting from the algorithm in Figure 6.

To generate a P3P policy, a service provider projects his
or her DPAL policy onto P3P’s base data schema. P3P can-
not express exactly this projection, p, because of its limited
action vocabulary. To generate P3P terms, emit each term
with a non-trivial intersection with p(d) for some d ∈ Dp.
Redundant terms may be eliminated by traversing Dp in a
depth-first search and not emitting terms previously emitted
during the path back to the root data object.

Theorem 7 (Enforcement of projection). For all
policies q, with well-founded data hierarchy Dq, and all Dp ⊆
Dq, q enforces the projection, p, of q onto Dp.

Proof. Given d ∈ Dp, proceed by induction on positive,
simple, modal formulae. Given ϕ, assume ϕ = a for some
action a ∈ A and d 
q a. By the algorithm, a ∈ p(d),
and therefore, d 
p a. The inductive steps for ∧ and ∨ are
immediate.

Assume ϕ = 2ψ, where ψ is free of modalities, and d 
q

2ψ. For all d′ ∈ Dp with d′ ≤Dp d, d′ 
q ψ and, by
induction, d′ 
p ψ. Therefore, d 
p 2ψ.

Assume ϕ = 3ψ, where ψ is free of modalities, and d 
q

3ψ. Fix d0 ∈ Dq such that d0 
q ψ. Consider the loop
iteration in which d0 and d are processed. There are two
cases. First, assume the “if” condition is met. Thus, q(d0) ⊆
p(d), d 
p ψ, and therefore, d 
p 3ψ.

Second, assume the “if” condition is not met. Fix d′ ≤Dp

d such that q(d0) ⊆ p(d′). Thus, d′ 
p ψ, and therefore,
d 
p 3ψ. Combining conclusions, q enforces p.

In order to attract the most consumers, a service provider
may wish to publish the most restrictive P3P policy, the
tightest expressible upper bound, consistent with his or her
internal DPAL policy. Projection generates such a policy.

Theorem 8 (Minimality of projection). For all poli-
cies q, with finite data hierarchy Dq, and all Dp ⊆ Dq, the
projection, p, of q onto Dp is the v-minimal policy with data
hierarchy Dp enforced by q.

Proof. Assume, by way of contradiction, there exists p′,
with data hierarchy Dp, such that p is distinct from p′, q
enforces p′, and p′ v p. Fix an action, a, and a data object,
d ∈ Dp, such that a ∈ p(d) and a 6∈ p′(d). Consider the
point in the algorithm when a is added to p(d). There are
two cases.

First, assume a is added to p(d) in the initialization loop.
Thus, d 
q a. Because q enforces p′, d 
p′ a, but this
contradicts a 6∈ p′(d).

Second, assume a is added to p(d) in the iteration of the
nested loop when d0 ∈ Dq is considered. Let C be a set that
chooses an action from q(d0)− p′(d′), for each d′ ≤Dp d. C
is finite because Dp is finite. Let ψ be the conjunction of ele-
ments of C. d 
q 3ψ, but d 6
p′ 3ψ, because p(d′), for each
d′ ≤Dp d, has already been determined. This contradicts q
enforcing p′.

5. CONCLUSION
This paper proposes DAMP, a data-centric model for pri-

vacy, which distinguishes between the perspectives of service
providers and consumers and is equipped with a modal logic
for reasoning about privacy policies. The 2 modality reflects
the perspective of service providers; the 3 modality reflects
the perspective of consumers. By separating these modal-
ities from the underlying privacy promises, we are able to
connect privacy promises with privacy enforcement and pro-
vide a rigorous foundation for understanding privacy poli-
cies.

We validate DAMP by using it as a tool in understand-
ing languages designed to interoperate with P3P, such as
APPEL, XPref, and compact P3P policies. In doing so, we
discover a surprising property of both APPEL and XPref:
each can express dubious privacy preferences, such as “block
services that do not telemarket.” Moreover, robust prefer-
ences are difficult to express in XPref.

Using DAMP, we illuminate the relation between a P3P
policy and its compact representation. A compact policy
lists the values of certain 3 terms in our modal logic. These
semantics underpin P3P’s algorithm for generating compact
policies. We prove P3P policies enforce their compact rep-
resentations. This enables consumers who accept compact
policies to be confident that the underlying full policy con-
forms to their preferences.

DAMP’s enforces relation connects privacy promises (for
example, expressed in a P3P policy) with privacy enforce-
ment (for example, embodied in a DPAL policy). A con-
sumer who accepts a privacy promise can be confident the
service provider’s operative enforcement policy conforms to
his or her preferences. Because enforcement is transitive,
a consumer who accepts a compact policy enjoys the same
assurances about the operative enforcement policy.

Finally, we complete the toolset by presenting an algo-
rithm for summarizing detailed enforcement policies using
a given vocabulary. Enterprises can use this algorithm to



translate their DPAL policies into P3P policies for announce-
ment on their web sites. We prove the summary policy is
enforced by the detailed policy and is the most restrictive
such policy. This provides enterprises with the tools to en-
sure their privacy enforcement mechanisms actually enforce
their announced privacy policies.
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