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Many parallel algorithms require effiaent support for reduction mllectives. Over the years, researchers have 
developed optimal reduction algonduns by taking inm account system size, dam size, and complexities of reduction 
operations. However, all of these algorithm have assumed the faa that the reduction precessing takes place on 
the host CPU. Modem Network Interface Cards (NICs) sport programmable processors with substantial memory 
and thus introduce a fresh variable into the equation This raises the following intersting challenge: Can we take 
advantage of modern NICs to implementJost redudion operations? In this paper, we take on this challenge in the 
context of large-scale clusters. Thmugh experiments on the 960-node, 1920- messo or ASCI Linux Cluster [ALC) 
located at the Lawrence Livennore ~ationai Laboratory p.1, we show that N~C-based redunions indeed perform 
with reduced latency and i m m e d  consistency over host-based aleorithms for the wmmon case and that these 
benefits scale as the &em &ws. In the largest configuration tested--1812 processors-- our NIC-based alnorithm 
can sum a single element vector in 73 ps with 32-bi integers and in 118 with Mbi t  floating-point n-xnbers. 
Ihese results represent an improvement, respeaively, of 121% and 39% with resvect w the ~roduction level MPI 
library 

1 Introduction 

Reductions involving small data sizes are the common 
case in many saentific applications. Recent perfor- 
mance evaluations studies show that large-scale scien- 
tific simulations can spend up to 60% of their run time 
performing reductions [191. Sintilax results have been 
provided by an indepth analysis of the saentific work- 
load at Lawrence Livermore National Laborato~y [lo]. 4 ,, 

In order to characterize the usage pattern of chis col- E 

leetive communication oattern we ~roKled the MPI 4 -  = I 
allreduce operations pe;formed dwkg the execution 
of SAGE [161. SAGE is a program representative of the I) 

Wf2 W I T 6 1  

typical Aentific applications Nnning on large-=& Figure 1: MPIAllreduce Operamr Distribution for 
ASCI-class parallel machines. The results are shown SAGE 
in the following figures. 

Figure 1 shows the dism%ution of operation types. 
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Figure 2: MPIAUreduce Vector Size Distribution b r  
SAGE 

we can see that Boating-poim operations far oumum- 
ber the integer operations, and that only three opera- 
tors are used by SAGE: minimum, maximum and sum. 

More imporrant is Figure 2 which shows the cumu- 
lative distribution of the data sizes for different reduc- 
tion operations using both integer and floating-point 
data types, IXmX oobserawn m a k  a &g poiot: 
97% of all reductions use 3 or fewer elements and 
100% use 8 or fewer. 
Since reduce operations involve both communica- 

tion (mnsfer of data) and processing (reduction o p  
eratiom), the design space for developing effident al- 
gorithms is quite large. In the past, many researchers 
have studied the interplay between system size, data 
size, and complexities of reduction operations to de- 
rive optimal, scalable, and high-performance libraries 
for reduction. All these works have focused on de- 
veloping optimal and scalable algorimms considering 
only host-level processing, [Il l ,  [31, [1,2,4, 5,6,15, 
181. 

Modern network intehce cards, such as the 
Quadrics Elan [201, pmvide pmgmmmable MCs and 
substantial memoty. This added capability allows the 
host processor to delegate certain tasks to the MC pro- 
cessor. To differentiate where the task is actually per- 
formed the terminology "host-basedd and "NIC-based" 
have been introduced. There are various reasons one 
may wish to do such a thing, and in this paper we 
discuss two of them with regard to reduction. Namely, 
we find dnt NIC-based reductions can offer both signif- 
icantly lower latency and better consistency than host- 
based algorithms. 

The focns of this paper is on the reduce operation, 
but it can be easily generalized to the allreduce -the 
slightly more complex collective that distributes the 6. 
nal result of the reduce to all n o d e s  by combining 
our reduce algorithms with a broadcast 
This paper provides the following scientific and tech. 

nieal conuibutions. We provide a detailed perfor- 
mance model that provides an expeaation of perfor- 
mance for the various configuration options of the re- 
duce algorithm: vector size, type of reduce operation 
and arity of the distribution aee. 

Guided by this model, we implemented a NIC-based 
algorithm that uses emulated bWhIg-point 0peElti0~ 
in the Quadrics NIC. This algorithm can operate with- 
out the intervention of the p m s 0 1 s  in the host 

For the c a m o n  case of shon veaors, our algo- 
rithms provide m e l y  low latency and predictable 
performance, and is not negaiively affected by the sys- 
tem activities in the processing nodes. 

In the largest configmation tested on the ALC [241 
-1812 processors our NIC-based algorithm can 
sum a single ekment vector in 73 ps with 32-bit inte- 
gers and in 118 ps with 64-bit Boating-point numbers. 
These results provide an impmement, respectively. of 
121% and 39% with respect to the production level 
MPI library To the best of our knowledge, these re- 
sults represe~lf the best W c e  achieved on any 
largeaale parallel computer, both in terms of latency 
and scalability Finallg, we provide an enhanced ver- 
sion of our reduce algorithm that can generalize these 
performance results m larger vectors, by splitting the 
computaiion of the input vecm 

The rest of this paper is organized as follows. Sec- 
tion 2 outlines the relorant characterist of the 
Quadries network. Section 3 descnies important 
trade-offs involved between implementing host-based 
and NIC-based collectives, and Section 4 b s e s  de- 
sign issues, solutions, and dmpliticatiws specific to re- 
ductions. Section 5 presents h e  algorithm and asso 
ciated model we developed, while Seaion 6 provides 
the results we obtained. Finally, some concluding re- 
marks are given in Section 7. 

2 The Quadrics Network 

We implemented our MC-based reducfion algorithms 
on the Quadrics network, a modem duster inter- 
connect technoIogy [20]. Quadrics is based on 
two building blofks: a programmable network in- 
terface card called the Elan [21, 221 and a low- 
latency high-bandwidth communication switch called 
the Elite 1231. 

The Elan resides on the PC1 bus and interfaces a pro- 
w i n g  node, containing one or more CPUs, to the net- 
work. The Elan itself is quite powerful. It contains a 
user-programmable, multi-threaded, 32-bit 100 hWz 
RISC-based processor and a substantial 64 MB bank of 
l d  SDRAM memow along with an MMU and other 
sophisticated processing features. All of thh hardware 



is provided at the NIC to aid implementation of higher- 
level message protocols without requiring expliat in- 
tervention from the host CPU. In order to better sup 
port this usage model, the processor's insinmion set 
includes extra instructions to construa network pa&- 
ets, manipulate events, and schedule threads. This 
functionality is used to provide exmemely low message 
processing overhead at the nodes of the network 

The Etan divides messages into a sequence of 6xed- 
length transactions for effiaent transfer through the 
network The primary communication primitive sup 
ported by the network is the Remote DMA (RDMA). 
RDMAs allow for one-sided data transfer between re- 
mote processes, i.e. the remote process need not ex- 
plidtly participate in the exchange. Transfer opera- 
tions include PUT, which bansfers data m a remote 
address space, and GET, which acquires data from a 
remote address space. Both operations can access ei- 
ther host- or NIC-level memory. 

The network itself is worm-hole routed and circuiu- 
switched. in cmsists of Elite switches, interconneefed 
in a fat-tree topology [lv. Each Elite provides the 
imporrant following features: 8 bidirectional links sup 
porting two virtual c h a d  in earh direction, a fuII 
crossbar switch, a raw transmission bandwidth of 400 
MB/s (325 MB/s at MPI level) per link with a low eut- 
thmugh latency of 35 ns, and hardware support for col- 
lective communication including barriers and broad- 
casts. 

3 NIC-based vs. Host-based - Pros 
and Cons 

In this paper we show how NIC-based reduction al- 
gorithms can outperform host-based veniom in two 
important ways:reduced latency and i n d  consis- 
tency. In this section, we will desrni how exacdy 
this is ~ocomplished. We also discus the major penal- 
ties encountered when implementing reductions at the 
MC-level namely, host-MC synchronization cost and 
reduced computational performance. 

3-1 Advantages - Reduce Lateney, h- 
creased Consistency 

NIC-based collectives can be completed significantly 
Elseer than host-based versions. Modem cluster in- 
terconnects, such as Quadrics, support very low mes- 
sage latencies; so low in fact, that PC1 bus transaction 
time is substantial compared to the latency between 
nodes. By implementing collective communications at 
the NIC, as opposed to the host, many extraneous W 
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Figure 3: MPI Barrier and Reduce Latencies 

bus transactions can be eliminated, This can signifi- 
cantly reduce the total operational latency. 

Collective operations, by their very nature, require 
a series of related messages m be exchanged between 
nodes involved in the collective. In host-based imple- 
mentations, the host must handle each of these mes- 
sages. In order to do so, each message must be relayed 
between the host and the network via PCI bus transac- 
tiom. NIC-based implementations, on the other hand, 
handle messages immediately at rhe MC, avoiding 
most of these aips through the PCI bus. In fact, NIC- 
based implementations suffer from such costs only at 
very beginning and very end of the operation. This 
means that MC-based wllenives can scale substan- 
tially better than host-based versions as the size of the 
cluster increases. 

Thus far, the majority of NIC-based research has 
taken foeus on this advantage [7,8,9,13, 141. In the 
process of showing how this established advantage ex- 
tends to the realm of reductio~w, we found a new and 
much more significant advantage that MC-based col- 
lectmes~whenNrmingmkrgesralesystems. 

NIC-based wllectives show dramatically reduced la- 
tency and i n d  consistency over host-based ver- 
sions when used in w q  large-scale dusters. It hap- 
pens that process interference at the host level turns 
out to be a major problem on large clusters. To demon- 
s- this, observe F i  3. This figure shows the 
latency measured for a barrier and a reduction when 
using both one and two processes per node on the ALC 
elustec Note the dramatic latency deviation for each 
operation when two processes are used on each node, 
as opposed to just one. 

In this system, there are two physical ptocessors per 
node. When the cokctiw involves only one process 
per node, there is a spare processor on which the node 
may run various system activities. Howeve6 when 
both pmessors are used by the collective, at least one 
of the processes is forced to share its processor with 



the system threads. This interference is responsible 
for the drastic drop in performance. 

Basically, the problem arises since host-based pro- 
cesses in charge of handling intermediate messages 
during the collective may be subject to process swap- 
ping. Unlucky intermediate nodes may be swapped 
just before processing an incoming message. In this 
case, the collective will stall until the process is 

’ swapped back to handle the message. This leads to 
poor performance, much like problems observed in 
job scheduling on large systems when using a local 
scheduling approach. The problem tends to manifest 
itself on large systems more so than on small systems, 
because larger collectives require larger algorithmic 
tree structures. Larger trees in turn require more inter- 
mediate nodes, Thus, there are simply more chances 
that some intermediate processes will be interfered 
With. 

In addition to increased latency, one may immedi- 
ately understand that this is a rather non-deterministic 
phenomenon, which leads to a large variance in oper- 
ational latency from one collective invocation to an- 
other. Thus, the same process swapping problem si- 
multaneously increases average latency and decreases 
operational consistency 
As host-level process swapping is inherently a host- 

based problem, NIC-based algorithms can avoid it alto- 
gether. As a result, NIC-based collectives can complete 
with drastically better latency and in a more consistent 
fashion. 

3.2 Disadvantages - Overhead, Slower 
NIG Processor 

Even though the NIC carries out the actual collective 
in the NIC-based implementations, the host must com- 
municate to the NIC, among other information, what 
operation is to be done, which data need to be pro- 
cessed, and when the operation is to start. Also, the 
NIC must notify the host of the operation’s completion. 
This process is termed Host-NIC synchronization and 
occurs, on Quadrics, through the use of events and op- 
eration descriptors. 

Host-NIC synchronization introduces some over- 
head which must be compensated before NIC-based 
collectives can be beneficial with respect to latency. As 
currently implemented, this Host-NIC synchronization 
adds 2 to 3 ps of overhead to the total operational 
latency. However, it should also be noted that this 
overhead can be largely avoided by overlapping it with 
other operations, and is thus really of minor concern. 

The most important issue to be considered is that 
of the NIC processor. The user-programmable proces- 
sor on the NIC is considerably slower than the host 

processor (particularly, about 10 times slower on the 
machines we used). Different processing requirements 
by different algorithms and different operations make 
this a very significant difference. Basically, this dif- 
ference places a limit on the complexities of the al- 
gorithms and operations which may benefit from NIC- 
based implementations. To make matters more compli- 
cated, a substantial lack of processing functionality typ- 
ically exists as well. For example, there is no hardware- 
based floating-point support on the Quadrics Elan. 
The limitations of the NIC CPU proved to be the tough- 
est design issue we encountered in our work. 

4 Design Issues and Initial Obser- 
vations 

We extend NIC-based collectives to the realm of reduc- 
tions. Reductions are computationally intensive collec- 
tives, and as a result, the slower and less functional 
NIC CPU becomes a limiting factor. In this section, we 
probe the sensitivity of the Quadrics Elan to compu- 
tational requirements. Fortunately, as already noted, 
the common case in many practical programs does not 
require large amounts of computation. Thus, even 
with limited processing power, NIC-based collectives 
present a viable option. 

4.1 Complications - Processing Speed 

As noted above, NIC CPUs are typically much slower 
than the CPU available at the host level, often by an 
order of magnitude or so. In addition, NIC CPUs 
provide less functionality. Knowing these limitations, 
most of the research in NIC-based work so far has con- 
centrated on collectives which involve little process- 
ing. Collectives such as barriers, broadcasts, multi- 
casts, and gathers, simply require intermediate nodes 
to pass on the received message as is, with perhaps mi- 
nor data restructuring. Because so little processing is 
required, these algorithms incur little penalty by run- 
ning on slower processors, and the overall results have 
been quite positive. 

The success obtained by simpler NIC-based collec- 
tives inspired us to investigate more complicated cases, 
namely reductions. Our design goals were to support 
NIC-based implementations of the standard MPI re- 
duce and allreduce collectives for 32- and 64-bit in- 
teger and floating-point data types, each having min, 
max, and sum operations. 

The first problem we encountered is the fact that 
the Elan CPU has no hardware support for floating- 

and Capability 
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F i  4: Serial Reduction Latency 

point operations. Thus, we were required to emu- 
late tloating-point operations in software with inte- 
ger insauetious. Of c o w ,  this isn't the first time 
such a problem his been pc6ed, and formnately others 
have worked hard to provide sophistirated software li- 
braries to serve as a solution. In partieulaZ we tadded 
this problem by porting SoftPloat 1251 m the Elan, an 
IEEE 754 compliant floating-point package written by 
John R Ha- wbich is freely available to the public 
domain. 

After providing Boating-point eapabiw we invesli- 
gated the communication and computation rhar;l&er- 
isties of the Elan. This was acccmplished ly imple- 
menting a very simplisdc version of reduce. Basically, 
a group of N nodes performs a reduce by designating 
oneofthenodesasthe~whimissobdyipspon- 
sale for receiving and reducing all of the data. After 
a synchronization phase, all non-root nodes simultane- 
ously send thei~ data to a cMRspooding RDM.4 buffer 
at the root Upon receiving all of the messages, the 
root perform the reduetion operation on dwn in se- 
rial ordec We will refer to these results at later points 
in the pap5 so it is convenient to pmvide a name m 
this algorithm. We simply call it the "serial reducnon . m 

al9orimm. 
Serial reduction tests involving 2-13 processors for 

various reduetion operaions and data sizes prcdueed 
Figure 4. T X a e  are a impostant features m take 
note of. 
First, regardless of the operation, all of the curves 

closely follow a linear wend as the number of nodes 
is increased. Such a tight mnd makes it very easy to 
model performance, as latency can be predicted using 
only a couple model parameters. We address this issue 
in more details in SeCtiOd 5, but baskally. the intercept 
is related to the message latency, while the shpe repre. 
sen6 the reception and reduction time required by the 
message. 

Second, it is more relevant at this time to take note 

of the reduction latency sensitivity to the operation be- 
fng performed. Simpler operations scale considerably 
better than morr complicated ones. Even fast opera- 
lions are rake seasitive m small changes in dam size. 
As could be apead, Boating-pint operations are es- 
pecially slow since they must be implemented in soft- 
wareoaanakeadyslowpr~~e~~~r. Infact,t?ledmeto 
perform a single 64-bit Aoating-point addition is com- 
parable to the message latency between nodes. 

Certainly then, it will be essential to consider both 
commanieatia, and computadon cmts when design- 
ing &dent NIC-based reduction algorithm. It is also 
clear that NIC-based redutions, even For very simple 
operations, will perfnm with reaxlnably low latency 
only for 4 Sman data. NwertheieSS, it turns out 
that, even wide this is a rather saingent resaietion 
on the class of problems where MC-based impkmenta- 
tious may be valuable, a Luge majority of the problems 
posedbypractiealprograagfallswidrinthisflass. 

5 The Model and the Algorithms 
O w  the years, many efficient reduction algorithms 
have matetialized, stressing the importance of these 
mlleerives. Howeves a large majority of the existing 
algoridunsarebasedonmcdekwhichmakeassumg 
tions that do not hold when considering N1C-based 
reduetiom. In this section, we point out the major 
pmblemswiththertlrsdardmodek,intmdweamodel 
which add- these problems, and then pzeseru an 
efsdent reduction algorithm based on this new model, 
along with one importam optimization. 

5.1 Problems with the LogP and Postal 
Models 

Man proposed reduetion algorithm are primarily 
basedonowoftwosimpleparaUelperfornraneemod- 
eLr. I@ [Ill or pwtal [3] U, 4,5,6,15, 181. Unfor- 
tunat+ neither the logP nor the postal model =at- 
mely eapnrrrs the eOmmtmication/c0mpu~n char- 
aereristics of Quadrics-based @ems, without making 
significant modification to the models themselves. As 
a result, the algorithms designed to be most &em 
or optimal on systems closely aligned m these models 
may no longer be the most &dent or optimal when 
implemented with the Quadrics network. 

Problems arise in two important respeas. The fa- 
miliar LogP and postal models each impliady assume 
that: 1) the send/receiw costs of the underlying sys- 
tem are symmetric, and 2) redunion costs are negli- 
gible compared to communication costs. In partieul;u; 



the LogP model reserves the '0' parameter to simdtane- ( Parametet I Meaning I 
ously cepresent both the time it takes a sender m send I L I mesaw iatenrv 
a message as well as the time it takes a receiver to re- 
Ceive one. The postal model I U J ~  its sole Param- 
eters 'lambda' m this symmetricai ecwt AdditionalIly, size M, dependent on the operation 
neither model expIiatIy provides a parameter to rep -- 
resent computation time. These prove to be substan- I I n a n r n h e r  nf ~ . n r l ~ ~  

I to a fast worm-hole routed, drmir-switched network. I 

tial limitations. Both assurnptio~&bmdc down for NIC- 
' based reductions on Quadrics, which involve threads 
~ n n i n g  on relatively slow Elan processors connected 

Worm-hole routed, -it-switched systems, such 
as Quadrics, lead to asymmetrical send and receive 

--"- -. ----" 
constant due to initial overhead, in 
g d  dependent on the operation 
nr, 

TABLE 1: Model Parameters 

costs when sending small messages. This o c m  since 
the sender must wait for a message m worm its way 
through the network to the receive& establish a circuit, 
and then tear it down before sending another message. 
This process is limited primarily by the latency of the 
network The receiver, on the other hand, is free to re- 
ceive messages as fast as it can pull them off the wire. p+2rw;r7 c t: c $;: c 
For small messages, this means that a receiver is able 
m receive more messages than a sender can send in 
a given time. While this asymmetry is most prevalent 

/' 
for small messages, as noted in the previous seaion, re- 
ductions which involve vectors of just a few elements 
are arguably the common case in pmctical programs. 
Thus, it is critical that we choose a model which ex- 
plicitly accounts for this asymmetrical behavior when 
designing our algorithms. 

In addition, unlike host-based algorithms which are 
largely communication bound, especially for small vec- 
tor sizes, NIC-based implementations may be either 
communication or computation bound. For example, 
on dw Quaddrs Elaq the eost m perform a single 
floating-point 64-bit addition is comparable to the net- 
work law. The much slower and less funuiod MC 
CPU can pay a considerable price in computation msrs 
when the vector size is increased even by a single el- 
ement. This implies that while host-based algorithms 
may be designed quite snccessfully by mgkming com- 
putation costs altogether, efFiaent NlC-based imple- 
mentations are forced to consider surh wsfs. Thus. 
it is critical that the model explicitly account for reduc- 
tion costs. 

5.2 The Model 

Observations of the serial reduction data h m  the pre- 
vious section suggest a very simple model, based on 
the linearity of the latency curves. Essentially. the 
intercept represents message latency while the slope 
contains information about the receive and reduction 
costs of a message. These serial algorithms will be the 
building blocks of any more sophisticated algorithms. 

F i r e  5: Serial Reduction Latency Model 

So by accurately modeling these building blocks, one 
can piece together a model for more sophisticated al- 
gorithm. In other words, essentially just the slope 
and intempt of these lines are suffident m quite ac- 
curately predict perbrmance of any proposed algo- 
rimms. 

W~th these -, we deb c m  model as 
given in Table 1. We will typically suppress the h c -  
t i o d  parameten M and OP from the various terms. 
Notewiththismodelitissimpletodesaibethela- 
tency curves fmm the serial reduction data as: 

This expression is shown pictorially in Figure 5. 
To assign numerical values to the parameters, we 

extracted the values of r and c from the serial reduc- 
tion data for various values of M and OE The terms L 
and C were fit m the data, and P is obviously given 
for a particular problem. In passing, we will note that 
while, in general, r is dependent on the message size, 
it turns out to be constant for cases we are interested 
in. This is because we focus on reductions involving 
vector sizes of a few elements, say up to 8, which typ- 



ically fit into a single 64-byte fixed length packet on 
the Quadrics network. Thus whether we are working 
with single-element vectors or &element vectors, the 
receive time is the same. 

The proposed model parameters also suggest the 
dB=-- 

a 8 a A & o  

general form of emdent algorithms. Again looking 
at the serial reduction data, note that for s d  mes- agrua  

sages, the latency L is significantly more than the re- 
'ceive time, c Thus, due to the circuit-switched nature 
of the network, the sender may only send a message 
every L units of time, while the reeeiver can receive 

+zz&?* oa"' o . p r 6  
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one in every r < L units. This is the asymmetrical com- 
munication characteristic previouslydiiussed. As are- g p n l  

sult, nodes in effiaent algorithms will tend to receive 
more often than they send, leading to a class of tree- Figure 6: F-nomial 'hes of Vatying Degrees 
shaped algorithms. Given that efficient algorithms will 
take the form of trees, we implemented f-nomial tree 
algorithms, feeling they were a good balance between 
structural simplicity and optimality. 

5.3 Fnomial Trees - Generalized Bino- 
mial nees 

Pnomial trees are generalized binomial mes, which 
are more familiar structures. Herr we will describe 
f-nornial wes starting from a quick review of the oper- 
ation of binomial trees. Also, although reduction trees 
will collapse in on themselves, it is easier to desaibe 
the hmc!ionaiiiy of a tree as it expands. Foi conve- 
ntence then, say we are attempting b broadcast a mes- 
sage From the root to all nodes in the tree. 

The operation of binomial trees can be described 
as follows. The algorithm can be broken into distinct 
phases. Atthestartofthefirstphaseodythesmthas 
a mpy of the message to be broadrapt. During each 
phase, each node which has a ccpy at  the start of the 
phase sends to another node which doesn't. In this way, 
the number of nodes that have copies of the message 
doubles after each phase. The algorithm stops ooce all 
nodes have received the broadcast message. In a bin* 
mid tree then, the number of nodes the message can 
reach in a given number of phases, grows as a power 
of 2 (hence the prefix "bi") with the number of phases. 

An f-nomial tree generalizes d6.q algorithm by hav- 
ing each node with a copy of the message at the start 
of a phase send to (f-1) others who don't, as o m  
to just one. Thus, the number of nodes the message 
can reach grows as a power of f with the number of 
phases. This is the stcumre of the algorithm we im- 
plemented; only remember the tree collapses rather 
than expands. P i e  6 shows some example Enomid 
trees of varying degrees which cover 16 nodes. At this 
point, again it may be interesting to emphasize that 
due to the asymmetry of Quadrics, if we are transfer- 

F i r e  7: Derivation of Model of Fnomial Reduction 
Latency 

ring small messages, in general, an f-nomial tree will 
collapse sigdicantly faster than the same tree will ex- 
pand. This kind of behavior is not readily modeled by 
either the LogP or the postal model and is one reason 
why we chose to define our own parameters. 

Now we apply the model hl this algorithm. Since the 
root node in an f-nomial tree is invohred in each step of 
the algorithm and is the only node to receive messages 
in the final step, we can predict the latency of the en- 
tire operation by focusing on the work the m t  node 
must do. An f-nomial tree contains roughly log,(P) 
phases, dvring each of which the root has roughly (f- 
1) children (roughlx since this assumes a full me). 
Each phase will be of the linear, buiiing-block, fom 
of the serial reduction data previously discussed. Thus 
one can arrive at the foilowing expression as a quick 
analysis of the time required for an f-nomial algorithm 
to complete: 



'Figure 8: Multi-phase Reduction Latency Model 

In this algorithm, the initial overhead, C, is encoun- 
tered as a one time cost Then there are logf(P) pbases 
each of which eonsists of (f-1) Fhildren who send to 
the mot at the same time. An of these messages worm 
t h e i r w a y i n p a r a U e l m i w t a n d ~ s u f F e r  
the lateney, L, before aniving. F i i x  the root must 
re& and reduce each of the (f-1) mesages before 
moving to the next phase. The model for an interme- 
diate phase can be seen picmially in Figure 8. 

This simplistic e x p r e s h  does not accurately ac- 
count for trees with a number of nodes other than an 
integer power of the degree E When the number of 
nodes, g is not an integer paver of the degree, f, more 
careful analysis win show that: 

Time =C + L x  rPHASESl+ (r + c)x 

IU- I) x LPHASESJ + r ( ~ ~ f ' ~ ~ ~ ~ ~ ~ )  - 111 

where PHASES = &gf(P). 
Here, PHASES represents roughly the number of 

phases in the f-nomial tree In particular rPHASES1 
is the total number of phases, while LPHAS ES 1 is the 
total number of full phases, Le. those involving a full 
set of (f-1) children. The L term rrpresents the total 
latency cost incurred from each phase of the tree. The 
(r+c) term accounts for the time to pull each message 
From the network and perform the reducdoa, wMch in 
turn is broken into two terms iW The LPHAS ES J 
term counts the number of children we process due to 
full phases, while the ceiling term counts the number 
of children in the last step, which may be fewer than 
a full set. An example is given in Figure 7 for a 16- 
node tree to demonstrate how the various terms refer 
to the tree. This more d e a d  model was found to 
be imp~e5~ively accurate. Verification of this model is 
p-ted in the experimental section. 

Figure 9: Vector Split Optimization 

5.4 Vector Split Optimization 

The slower and less h a i o n a l  NIC CPU is quite sensi- 
tive to the vector size of the reduetion, esp- for 
~ p o i 8 t o p e r a ~ w h i c h ~ b e e a u b . t e d i n  
software. To reduce this coat, one would like to heav- 
ily parall& the computation In afier words, we 
wottldoften~m%eepasmanyoftheN1Cproeesso1~ 
wo*g as possii. To do so, we are often willing to 
suffer a litde exaa e~mmunieation ecst in favor of a 
substaotial reduetion in oomputation mst 

Ibr malti-element vectors we can use an optimiza- 
tiontoinaeaseparaUe~proposedbyVande Geijn 
in [121. the idea is to split the vector and 
assign the different piem to different groups ofnodes. 
The groups then reduce the disaibuted pieces in par- 
allel and recombine the vector in the last step. As an 
example, say we would like m reduce a two-element 
vector wer 8 nodes. Prrsented with this optimization, 
we now have two options: 1) perform a wo-ehmt 
reduction via an &node f-nomial tree ol; as shown in 
Figure 9, 2) divide the 8 nodes in h a  assign the mp 
piece of the vector to one group of 4, the lower half to 
the othel; and then perform two single-element reduc- 
dons via trvo +node f-nomial tmxs in paraUel, finally 
recombining the reduced vector pieces at the end in 
theseeondapproadr,wesufferfromoneextracommu- 
nieatim step m recombine rheveaor pieces at the end, 
however if computation is expensive, we save 
cautly on reduction costs during each phase of the re- 
duction tree. For very large trees, which requk many 
phases, t h i s s a ~ c a n b e s ~ t  
This optimization was pre-pended to the f-nomial al- 

gorithm to create a new algorithm we call Y-nomid 
spW. During the beghhg, the vector is split in 
halves continuously until the pieces consists of just sin- 
gle elements. The f-nomial tree algorithm is then used 



to reduce the single-element vectors. As diseussed, this 
is done in parallel over multiple sub-trees. The root of 
each of these will receive a fully educed piece of the 
vector, which is then sent m the primary root of the 
overall reduction tree in the last step. The improve- 
ment due m this optimization proved m be dramatic. 
Bas iw,  it allows the NIC-based reductions to scale 
substantially better than they otherwise would have 
for larger vector sizes. 

6 Experiments 
Figure 10: Prediction and Actual Latencies for Eloat- 

In this papeg we aim to highlight the attractive advan- 64 Addition on 31 Node Tree 
tages NIC-based reductions achieve over host-based 
versions in large-scale systems. We developed our algo- 
rithms and our initial performance evaluation on the 
'crescendo' cluster at LANL, a 32-node 64-prccessor 
cluster based on 1 Ghz Pentium 111 and the Quadrics 
network. We completed our scalability analysis on the 
ALC cluster [24 located at the Lawrence Livermore 
National Laboratory ALC uses 960 dual-processor 
nodes with 2.4 Ghz Xeons and the Quadrics network. 

To begin, we will first verify the accuracy of the 
newly proposed model. Then, we show results indica- 
tive of the reduced latency and increased consistency 
we observed using f-nomial NIC-based reductions. To 
end, we present the benefits obtained with the vector 
split optimization. 

6.1 Model Verification 

Before running tests on large-scale systems, we 
wanted m inspect the armracy of the model. We ex- 
tracted the m&l parameters from the serial reduc- 
tion data as previously mentioned, and applied them 
to various f-nomial sees for different reduetion prob- 
lems. To provide some eonfidenee in titis model, in Fig- 
urelO,wedwwthepredietedandmea~~~edhteneies 
for 64-bit floating-point addition on a 31 node system, 
using vectors sizes of 1, 2, 4, and 8 el em en^. There 
are a few items of interest here. 

First, we can see how well the model aligns with the 
experimental data. Because the model figthe data so 
closely, this allows one to make theoretical estimates 
of the behavior of various reduction algorithms with 
good confidence. Thus, in Future reduction algorithm 
design, one has a detailed model by which one may 
be able to consider and eliminate many design choices 
without the need to run extensive tests. 

Second, it is also quite important to note how signif- 
icant the computational costs are. For example, note 
that the latency required to reduce an 5element vec- 
tor across 31 nodes is more than three times the la- 

tency required for a single-element vecto~ Clearly 
then, any well-designed algorithms must absolutely 
consider computation costs. To make the point once 
more, this highlights the issue of the diaerence in pro- 
cessor speeds discussed eariiec This issue is the most 
l i t i n g  impedance which NIC-based reduction imple- 
mentations encountec 

Finallx note that because of the high susceptibility 
m computation costs, the degree of the f-nomial tree 
may make a significant difference in the latency of the 
reduction. Intuition suggests that expensive computa- 
tion should be spread among as many processors as 
possible, implying that efficient algorithms will tend 
to produce low-degree trees for probIem that require 
much computation. Reassuringl~ W s  what is no- 
ticed in the plots. Small vectors, which require less pro- 
cessing time. lead m curves that are essentially &at for 
the degrees tested, while Imger vectors tend to heav- 
ily favor lowerdegree trees. On the other hand, for 

operatiortPsirrtplermantk%tiogpoiMaddE 
tion, it pays more dividends m use higherdegree trees 
m save on the relatively more costly communication. 
Oneeagain,wepointout~thaf becausethehost 
processor is much fasteg such drastic latency variation 
would not be obseived as the degree of the tree is var- 
ied in host-based reduahs. 

6.2 Reduced Latency 

We timed the latenaes for host-based and NIC-based 
reduction over a variety of operations and data sizes. 
We used the MPI reduce collective for our host-based 
tests. When taking measurements, we found a large 
variance in the host-based latencies from one itera- 
tion to anothec To compensate, we plotted the av- 
erage latency recorded over 100,000 iterations. We 
show the results we obtained in Figure 11 for host- 
based and NIC-based 64-bit bating-pomt addmon, as 
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Figure 11: Host-based and NIC-based Reduce Laten- 
cies for INT32 
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P i  12: Host-based and NIC-based Reduce Laten- 
cies for PLOfl64 

well as, NIC-based 32-bit integer addition in Figure 12, 
all using a single-element vecmz Note that since the 
host-based latenaes are slightly affected by the reduc- 
tion operation being computed, the provided m e  for 
floating-point addition is representative of other oper- 
ations as well. 

As the figures show, we note that the NIC-based 
curves scale considerably better than the host-based 
results. Indeed, as one may infer &om the 32-bit in- 
teger addition m e ,  our NIC-based implementation 
was able to perform simple integer reductions in about 
halfthetimeittakesrhehostmdoso. h&q 
even wNe incurring the expensive cost of emulating 
floating-point a d d i i n  on a much slower proeescor, 
our NIC-based implementation was able to substan- 
tially out race the host-based reduction. Wi some o p  
timizatiou to the emulation software, this gain could 
be even further improved. We will acknoledge that, 
when reducing with floating-point operations, the very 
best host-based latency recorded was better than the 
best NIC-based times. However, for simpler operations, 
like integer addition, the MC-based implementations 
gained enough in PC1 transaction savings m out per- 
form the host even on its best m. At any rate, it is 

dear to see that, in many cases, NIC-based reductions 
can complete with extremely low latencies. When re- 
ducing over 900 nodes, we were able to obtain la- 
te& as low as 40 ps for integer operatiom and a 
slightly higher time of 65 ps for floating-point. 

In the largest configuration tested -1812 
pmeesso- our MC-based algorithm can sum a 
single element vector in 73 ps with 32-bit integers and 
in 118 p with %bit floating-point numbers. These 
results represent an improvement, respectiveb, of 
121% and 3% with respect to the production level 
MPI Ebrary. 

Further, we note that the NIC-based reduction la- 
tencies involving one proces per node scale dot-for- 
dot with the times predicted by the model up through 
128 nodes, at which point the measured times break 
away cleanly This deviation is due to the testing en- 
vironment in which we recorded our results; it is not 
due to an inherent fault in the modeL The synchro- 
nization method we used in between reduction iter- 
ations changed from a hardware-based barrier to a 
software-based barrier at tbis point due to the manner 
in which nodes were allocated to us. The model could 
be adjusted to account for this difference, however, we 
thought it to be quite iosrmftive m obsem the kind of 
performance one could expect to see if a b a t e d  nodes 
appropriately. The model suggests that, provided with 
hardware-based barrien, extremely low-latency reduc- 
tions may be achieved. Namely, we have all indications 
that 32-bit integer addition can be completed in under 
25 ps and ndbii floating-point addition in less than 45, 
even for dustes as large as 900 nodes. 

Finally, we should point out the latency deviation 
in the NIC-based results when two processes are in- 
vovled on each node. Unfortunatel~ the curves fol- 
low the same trend noticeable in the host-based results 
which we were aying to avoid. Again, we blame this 
occurance on the synchronization method used We 
rather naively used a host-based barrier in between 
our NIC-based reductions during testing. As a result, 
our WC-based timings were sub* to the same type 
ofhost-level problems as the host-based implementa- 
tions. We intend to fix these problems by implement- 
ing our own MC-based synchronization scheme for fu- 
ture  test^, however, we did not get the oppoztunity for 
another test slot on the LivemKKe machine before writ- 
ing the paper 

6.3 Inaeased Consistency 

We just mentioned how the host-based MPI reduce la- 
tenaes varied substantially depending on the system 
environment. The best times we observed, when the 
system was unloaded and noise-free, were about 3 
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Figure 13: Reduction Latency Dismimions for Single- 
Element Float-64 Addition on 900 Nodes 

times better than the times obsenred when other jobs 
were running on the system. The NIC-based results 
were quite steady in either case. This is related to the 
consistency achrantage we hgw noted for NIC-based 
reductions. 

To clarify this point a lit& more, Figure 13 shows 
a d i s t n i o n  graph ofihe he recorded ffor the 
NIC-based and host-based 64-bit floating-point addi- 
tion of a single-element vecm. Though at h t  glance, 
the NIC-based reduerion appeam pD take mcne time 
than the host-based reduction, one must look deeper 
into the numbers. The point to be made is the much 
~VariarrewhiehsurrouodstfiesharpspiJCeof 
NIC-based latendes. Host-based lafender, on the 
other hand, are spread quite s d y  across a wide 
range of valses. indeed, a very krge number of host- 
based latencies extend far past the dght-hand limit 
of the dipuibution graph. To be precise, 9% of the 
NIGbased reductions fall with a rptead of onfy 4 lrs, 
while for host-based reductions, only 57% falI within 
a sprrad of 20. In fact, after adding it all up, the aver- 
age hast-based latency comes in aronnd 95 ps, whife 
the MC scores a substantiany lower 75. This notice- 
ably large contrast in consistency is quite indicative of 
the non-deterministic effect that process swapping im- 
poses on host-based reduction implementations. As 
expected, NIC-based reductions are more consistent 
and scalable than host-based versions on large-scale 
systems. 

6.4 Split Optimization 

Earlier we noted that, while MC-based reductions 
can provide reduced latency and incrrased wnsistency, 
they are especially sensitive to computational cost due 
to the slow NIC CPU. The vector split optimization is a 
way to counteract this shortcoming by increasing par- 
allelism when reducing multi-element vectors. 

1 1 

-a- 
Figure 1+ Pnomial Split on Various Vector Sizes for 
Float-64 Addiion on 512 Nodes 

We measured the performance ofthe f-nomid split 
algod&m for &bit ftoating-point addiion on 512 
rrodesuPingvariw4vec&xsizes. Theresultsare 
shown in F i  14. The value of the vector split op- 
timization is quite pronounced. Aftg 3 splits, the a 
element larwcy is bproved by &y a factor of 3, 
while for 4 splits, the 16-eIement case h over 3 times 
faster The trend obviously suggests the h e r  the vec- 
twthebeaerrhebewfIt. 

Although the vector split opainization enables MC- 
based reductions to scale beam than they otherwise 
wouM have, there is aiU a limit on the performance 
it can achieve. Note that a latency of 140 @ for a 16- 
element reduction may stiU be much more than what 
a host prooesgor can churn out. And interesting& one 
may farefuay note that the latency for a 2-eIementvec- 
tor actually increases sIighrly after one split This of 
coursewillhappwifthetotalsavingsineomputation 
~thehelghroffke~islessthaatheaddedcom 
munieation cost of &e recombine step. Howeves the 
~~~sg(nrerpolntcanbewlnputedsoa~malwayspick 
the better of the two options. Van de deja dkusses 
the details in 1121. 

7 Conclusions and Future Work 

In this paper we showed that MC-bared collectives out- 
perform host-based versions in two important ways: 
1) reduced latency via fewer PC1 transactions and 2) 
reduced and more consistent latency via decreased sus- 
ceptibility m process swapping. White these are at- 
tractive advantages, they don't come to us  for free, 
namelx one must deal with host-MC synchronization 
overhead and perform processing on a much slower 
and less IimetionaI processor 
Many existing reduction algorithms are based on 

the popular aad successful LogP and postal mod- 



els. Unfortunately, these models do not well account 
for the asymmetrical communication characteristics in 
Quadrics, nor for the high computation costs of the 
relatively slow Elan processor. In response, we pre- 
sented a simple madel which does address these issues. 
The new model suggests that efilcient reduction imple- 
mentations will fall in the class of asymmetrical tree- 

.) shaped algorithms. We then presented the f-nomial 
tree reduction algorithm, which are generalized bino- 
mial trees. We also added the vector split optimization 
to increase performance when reducing larger vectors. 

Experimental data shows that the model we pro- 
posed quite accurately predicts the jmformance of our 
algorithm. We also found evidence that NIC-based re- 
duction implementations indeed sca1.e better by elimi- 
nating many PCK transactions. More dramatically, we 
show that NIC-based reductions can avoid the costly 
process-swapping penalties to which the host-based 
versions are subject to. Finally, we note the value of 
the vector split optimization for larger reduction sizes 
in NIC-based algorithms. 

The experimental results show low latency and im- 
pressive scalability. In the largest configuration tested 
-1812 processors- our NIC-based algorithm can 
sum a single element vector in 73 ps with 32-bit inte- 
gers and in 118 ps with @bit floating-point numbers. 
These results represent an improvement, respectively, 
of 121% and 39% with respect to the production level 
MPI library. 

Future work will involve exploration of additional 
algoritbms. It is also possible to optimize much of the 
software performing the reduction on the NIC, espe- 
cially for floating-point operations. Another important 
optimization which we did not tap, is the ability for 
NIC threads to directly build and send packets on the 
network. For small messages, one can gain about 33% 
improvement in message latency by doing so. In ad- 
dition, the host-based versions do not have access to 
such benefit, so this would increase the gains obtained 
by NIC-based implementations during each phase, on 
top of savings already gained by the elimination of ex- 
traneous PCI bus transactions. 

References 

A. Bar-Noy and S. Kipnis. Designing broadcast- 
ing algorithms in the postal model for message- 
passing systems. Math. Systems Theory, 27(5), 
1994. 

A. Bar-Noy and S, Kipnis and B, Schieber. Op- 
timal computation of census functions in the 

12 

postal model. Discrete Applied Mathematics, 58, 
1995. 

[31 A. Bar-Nay and S. Kipnis. Multiple Message 
Broadcasting in the Postal Model. In Interna- 
tional Parallel hocessing Symposium, pages 463- 
470,1993. 

141 M, Barnett, S, Gupta, et al. Building a High- 
Performance ColIective Communication Library 
In Supercomputing, 1994. 

[SI M. Barnett, R. Littlefield, D. G. Payne, and R. V 
de Geijn. Global Combine on Mesh Architectures 
with Wormhole Routing. In Proceedings of the Zn- 
ternational Parallel Processing Sympos ium, pages 
156-162,1993. 

[6] J. Bruck, R. Cypher, I? Elustando, A. Ho, C. Ho, 
V; Bala, S. Kipnis, and M. Snir. CCL A Portable 
and lhnable Collective Communication Library 
for Scalable Parallel Computers. In Proceedings of 
the International Parallel Processing Sympos ium, 
1994. 

E71 D. Buntinas and 0. Panda. Fast nic-based barrier 
over rnydnet/gm. In Roceedings of the Intema- 
tional Parallel and Distributed Processing Syrnpo- 
sium 2001 (IPDPS’OI), San Francisco, CA, April 
2001, 

[SI D. Buntinas, D. Panda, J. Duato, and E Sadayap- 
pan. BroadcasVrnulticast over Myrinet using 
NIC-assisted multidestination messages. In Work- 
shop on Communication, Architecture, and Ap- 
plications for Network-Based Parallel Computing 
(CANPC ’001, High Perjbrmance Computer Archi- 
tecture ( H P U - 6 )  Conference, Toulouse, France, 
January 2000. Available from f tp :  / / f tp .  cis. 
Ohio-state . edu/pub/communicat ion/papers/ 
canpc00-nic-multicast.pdf. 

NIC- 
based atomic operations on Myrinet/GM. In 
SAN-1 Workshop, High Performance Computer 
Architecture (NPc1A-8) Conference, Boston, MA, 
February 2002. AvailabIe from ftp : //ftp . cis. 
ohia-state , edu/pub/communicat ion/papers/ 
san-1-atomic-operations .pdf. 

[lo] M. Collette. LLNL User Briefings. In ASCI Q 
W V H P  Technical Quarterly Meeting, Santa Fe, 
NM, March 2003. 

[9] D. Buntinas, D. Panda, and W, Gropp. 

1111 D. E. Culler, R. Karp, D. Patterson, A. Sahay, K. E. 
Schauser, E. Santos, R. Subramonian, and X von 



Eicken. LogP: Towards a Realistic Model of Par- 
allel Computation. In Proceedings of the Fourth 
ACM SZGPLRN Symposium on Principles and Prac- 
tice of Parallel Programming, pages 1-12, San 
Diego, CA, May 1993. 

fl21 R. \r! de Geijn. Efficient Global Combine Opera- 
tions. In Proceedings of 6th Distributed Memory 
Computing Conference, April 1991. 

Design and 
implementation of global reduction operations 
across atm networks. In Proceedings of Tltird In- 
ternational Symposium of High-Performance Dis- 
tributed Computing, San Francisco, CA, August 
1994. 

[141 C. Huang and E! K. McKinley Efficient collective 
operations with atm networks interface support. 
In Proceedings of International Conference on Par- 
allel Processing (ICPP96), 1996. 

[15] J. Bruck and L. De Coster and N. Dewulf and C. 
T. Ho and R. Lauwereins. On the Design and Im- 
plementation of Broadcast and Global Combine 
Operations Using the Postal Model. IEEE Trans- 
actions on Parallel and Distributed systems, 7(3), 
March 1996. 

[16] D. J, Kerbysun, H. J. Alme, A. Hoisie, E Petrini, 
H. J. Wasserman, and M. Gittings. Pre- 
dictive performance and scalability modeling 
of a large-scale application. In Proceedings 
of SC200.2, Denver, Colorado, Nov. 10-16, 
2001. Available from http : //w. sc2001. erg/ 
paperdpap .pap256 .pdf. 

E171 C. E. Leiserson. Fat-trees: Universal networks for 
hardware-efficient supercomputing. IEEE Trans- 
actions on Computers, C-34(10):892-901, Oct, 
1985. 

1181 M. Bernaschi and G. Iannello. Collective Com- 
munication Operations: Experimental Results vs. 
Theory. Concurrency: Practice and Experience, 
10(5), April 1998. 

[19] I3 Petrini. Identifying and Eliminating the 
Performance Variability on ASCI Q. Invited 
Talk, Lawrence Livermore National Laboratoq 
Availabe from http : //www. c 3 .  lanl . gov/ 
-fabrizio/talka/asciq_noiss .pdf, March 
2003. 

[ZO] E Petrini, W. Feng, A. Hoisie, S. Coll, 
and E. Frachtenberg. The Quadrics net- 
work: High-performance clustering technol- 
om. IEEE Micro, 22( 1):46-57, Jan./Feb. 2002. 

. 

[13] C. Huang and I? K. McKinley 

- 

ISSN 0272-1732. Available from http : //WWW. 

computer. org/micro/mi2002/pdf /m1046. pdf. 

C211 Quadrics Supercomputers World Ltd. Elan Pro- 
gramming Manual, 2nd edition, Dec. 1999. 

1221 Quadrics Supercomputers World Ltd. Elan Refer- 
ence Manual, 1st edition, Jan. 1999. 

[231 Quadrics Supercomputers World Ltd. Elite Refer- 
ence Manual, 1st edition, Nov. 1999. 

[241 M. Seager. Planned Machines: ASCI Purple, ALC 
and MLIC MGR. In 7th Workshop on Distributed 
Supercomputing (SOS7), Durango, GO, March 
2003. Available from http : //www . cs . sandia . 
g6v/SOS7/presentations/seager, ppt. 

[251 http://www.jhauser.us/arithmetic/SoftFloat.html. 

13 




