
International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.1-1 -

Specification and Formal verification of security requirements

Isaac Agudo, Javier Lopez

Abstract:. With the grown of internet and distributed applications, security requirements are going

inherent to the software development process. Each time one communicates with some other one there are
relevant security risk that must be taken in account. This is what is happening in the new soft-ware
applications using client/server architecture. We propose including security requirements at the top level of
development process, together with functional requirements because they are much related. With this
information we are able to extract all communication protocols that are involved in our application and their
associated security goals. This is the input to a verification phase in which we look for security flaws. The last
step, and the more useful (and the not yet finished) is to use this information to modify our initial specification
at the top level of the development process

Key words: Computer Systems and Technologies, Security, formal verification.

INTRODUCTION
The use of Internet, in particular in the form of world-wide-web and its wireless

counterpart, has opened a whole new arena for electronic commerce and electronic
business. New services and the existing ones moved on to Internet with an improved
quality and have created large revenues. The potential growth in e-business can, however,
be held back by concerns about the security of the software systems involved. Internet is
notorious for lack of security. Online e-commerce applications are susceptible to failures
and exposed to active attacks when not properly designed and tested. A common solution
for securing electronic business is to employ crypto-graphic protocols (e.g., encryption,
digital signature, authentication, identification, key management, etc.) at application levels.
However, many cryptographic protocols are being and will be designed and/or
implemented by “hackers”, engineers oriented to application problems without appropriate
methodologies at hand.

Systems complexity, in particular due to concurrency among systems, has been the
main cause of design and/or implementation failures that are introduced into
hardware/software systems. Cryptographic protocols are open to a further cause of
failures: unlike normal hardware/software systems which are likely to interact with a
friendly environment (for instance, a user will try care-fully to only input valid data to a
program in order to avoid a run time crash) cryptographic primitives are assumed to
interact with a hostile environment. They must be resilient to all imaginable misuses, not
only by an attacker who may interact with the system without being invited, but also by a
legitimate user (attacker from inside). Attackers make deliberate abnormal uses of the
system, and if necessary, they may collude. That is why often cryptographic protocols,
even designed and implemented by security experts, are vulnerable to failures. The long
hidden failures in Needham-Schroeder protocols are a well-known lesson on unreliability
of security experts [8]. In the area of design of cryptographic protocols there exists well-
thoughts engineering guidelines for the design of cryptographic protocols (e.g., prudent
engineering practice of Abadi-Needham [1] and robustness principles of Anderson-
Needham [2]). However, these guidelines do not form a computational theory and
therefore cannot lead to an automatic or even a computer-aided design method. Formal
analysis, on the other hand, has been shown to be effective in identifying security flaws in
many key distribution and authentication protocols. Several different approaches have
been developed. Meadows developed a PROLOG based model checker (NRL Protocol
Analyser)[6, 7]. The user supplies a description of an insecure state and the PROLOG
searches backwards in an attempt to find an initial state. One serious problem is that the
back-tracing algorithm is not guaranteed to terminate. Lowe [5] used the FDR model
checker for CSP [4] to find successfully a previously unknown error in the Needham-
Schroeder public-key authentication protocol. Schneider [11] uses CSP to model protocols

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.1-2 -

in a hostile environment and to express security properties. Verification proceeds by the
discovery of a rank function.

SPECIFICATION OF SECURITY REQUIREMENTS

We aim to include the specification of security requirements into the design phase of

software development. As in the framework of project CASENET1, we need to integrate
some modelling language, like UML [13], and some security specification language, like
SRSL [14]. This could we done by adding pre- and post-conditions to UML diagrams, as
shown in the following figure:

Figure 1: High level specification example

The above figure (Figure 1) shows an elementary example, where a client c is

trying to log in a sever s. Only to message are interchanged between c and s, the first one
consist on a login name and a password and the second one is only a confirmation
message. The requirement means that after s receives the login message she must
believe it is authentic, i.e. It comes form the same c that is specified in the message.

As this is a high level specification we need to translate it to a low level one in order
to analyse the security requirements. We then establish two different levels, which we
name application and protocol levels respectively. These levels have to be related in both
directions in order to allow a feedback from the analysis level.

Into the protocol level we can also distinguish two different sublevels, a middle level
in which we specify the protocol as a sequence of message and a very low level in which
we use some formalism that allow us to express the protocols steps together with security
requirements. In this case we opt for using APA, a formalism based on Automata theory
that will be described later.

The following figure (Figure 2) describes the whole process of specification and
analysis and the main technologies we use at each step.

1 http://www.casenet-eu.org

c: Client s: Server

login(name,key)

ack_login

Post:
Message_Authentication(c,s,login(name,key)

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.1-3 -

Figure 2: Full cycle

PROTOCOL LEVEL

At the protocol level, we expect a description of the protocol as a Message Sequence

Chart (MSC) [14] and, additionally, the security goals inherited from the application level.
These security goals could be required only at a specific protocol step. In that case

we consider it an active requirement because it depends on a specific action (authenticity).
On the other hand, it may depend on a global one (confidentiality). In that case we
consider it a passive requirement because it does no depend on a specific action.

We translate this specification into an Asynchronous Product Automata and then we
analyze it using SHVT (Simple Homomorphism Verification Tool) [15].

If a flaw is found, this means that some state of the APA violates any of the “security
goals”. A report is obtained that consists of a path from the “initial state” of the protocol to
the state where the flaw has been found. The path of state transitions can be translated to
an analogous path consisting of protocols steps (MSC). That information helps to
understand how to modify the initial protocol specification. Further work has to be done in
order to transport this information to the application level [14].

MESSAGE SEQUENCE DIAGRAM (MSC)

A MSC specification of a security protocol consist mainly on:

• Header: Describes the scenario, actors, keys, and cryptographic functions we
use, as well as the initial knowledge of each actor.

• Protocol Steps: Describe how actors exchange messages using the following

notation:

A: out (in) m1, 1({M}K) to (from) B;

This example specify that A sends to B the message M, encrypted with key K

Application level

Modeling language
 +

Security constrains

MSC
 +

Security Goals

APA Specification

Feedback

Protocol level

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.1-4 -

(B is the intended recipient). We use m1 and 1 as labels to reference the
protocol step at the security analysis.

• Security Goals: Describe the security goals that must hold after each protocol

run or a specific protocol step.

ASYNCHRONOUS PRODUCT AUTOMATA

Asynchronous Product Automata (APA) are a universal and very flexible operational

description concept for cooperating systems. It naturally emerges from formal language
theory.

An APA can be seen as a family of elementary automata. The set of all possible
states of the whole APA is structured as a product set, and each state is divided into state
components.

In the following, the set of all possible states is called state set. The state sets of
elementary automata consist of components of the state set of the APA. Different
elementary automata are put together by shared components of their state sets.
Elementary automata can communicate by changing shared state components.

The previous figure shows a graphical representation of a small asynchronous
product automaton consisting of two elementary automata, A and B, and state
components C1, C2 and C3. State sets are ZC1, ZC2 and ZC3, which are domains of state
components). The state set of the APA, as well as the state set of A, is the product of ZC1
and ZC2. The state set of B is the product of ZC2 and ZC3. The full specification of the
automaton includes the transition relations of the elementary automata and the initial state.
The neighbourhood relation N (represented as lines) indicates which state components are
included in the state of an elementary automaton and may be changed by a state
transition of the elementary automaton. A state transition of automaton A may change the
content of C1 and C2 while B may only change C2 and C3.

In this example, C2 represents the network communication channel, because it is the
only state component that can be accessed by both A and B. C1 and C3 represent the
internal memory of A and B, respectively. For a detailed definition of Asynchronous
Product Automata see [12].

Together with the previous structure it is necessary to specify the state transitions,
which define the APA behaviour.

SPECIFYING SECURITY PROTOCOLS WITH APA

In order to specify a security protocol we need to firstly define the domain of the State
components (ZC), and the initial state of the automata. Secondly, we need to define the
state transition patterns, what mainly corresponds to the protocol steps, and also to
internal computation steps like generation of nonce.

As for modelling nonces and generated keys we use global State components named
Nonces and Keys. Each time an Agent needs to generate a nonce or a key, she reads it
form the corresponding State component, and removes it to prevent non-freshness of this
item. Thus, we allow exhaustive model checking by defining all the possible nonces and
keys, but also propose the use of formal language methods to avoid state explosion
problems.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.1-5 -

The general model corresponds to this figure:

where:
• State: Stores information about the status of the protocol, like which is the next

thing the Agent has to do.
• Symkeys: Stores all the symmetric keys the Agent uses.
• Asymkeys: Stores all the asymmetric keys the Agent uses.
• Goals: Specifies the security goals we expect for each step of the protocol. We use

a logic language for describing the security requirements in which we define a few
predefined predicates. One example is:

TRANSLATING MSC TO APA

Firstly, the header of the MSC specification provides the information for defining the

initial State of the APA. It includes number and name of agents, number of simultaneous
protocol runs, possible nonces and generated keys. It also includes initial knowledge of
participants, like messages to be sent or private, public and shared keys.

Next, for each step of the protocol we translate it into a proper automata transition
according to the items used in the message. As stated before, we use the state
component State to store information about the protocol flow. When translating a protocol
step, all the previous steps that were stored in the state component State comprise the
context of this transition and the results of this transition are added to State to be used in
followings transitions. This process sorts the transitions as in the MSC specification.

CONCLUSIONS AND FUTURE WORK

Using formal methods for design of software is a well known way to produce reliable

software. It also prevents the necessity for error correction and allows a better
understanding of the application’s functionality.

We suggest the use of this well know software engineering techniques together with
the specification of security requirements. For this purpose we propose some tips for the
integration of the analysis of security protocols with software design techniques.

Further work has to be done in order to close the gap between specification of
security requirements and formal analysis. Although it is relatively easy to translate these
high level security requirements to a proper formalism and analyse it, there is not a unified
formalism that allows analysis of all security formalisms. Moreover, there is not an easy

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.1-6 -

way to translate the report of analysis to the upper level in order to modify the
specification.

REFERENCES
 [1] Martin Abadi and Roger Needham. Prudent Engineering Practice for

Cryptographic Protocols. In Proceedings of the 1994 IEEE Computer Society Symposium
on Security and Privacy, pages 122–136, Los Alamitos, California, 1994. IEEE Computer
Society Press.

[2] Ross Anderson and Roger Needham. Robustness principles for public key
protocols. In D. Coppersmith, editor, Advances in Cryptology – CRYPTO ’95, volume 963
of Lecture Notes in Computer Science, Berlin, 1995. Springer Verlag.

[3] G. Bella and L.C. Paulson. Kerberos version iv: Inductive analysis of the secrecy
goals. In 5th European Symposium on Research in Computer Security, Lecture Notes in
Computer Science, pages 361–375. Springer-Verlag, 1998.

[4] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[5] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

CSP and FDR. In Second International Workshop, TACAS ’96, volume 1055 of LNCS,
pages 147–166. SV, 1996.

[6] C. Meadows. Applying formal methods to the analysis of a key management
protocol. Journal of Computer Security, 1992. [7] C. Meadows. The NRL protocol analyzer:
An overview. In Proceedings of the Second International Conference on the practical
Applications of PROLOG, LNCS. SV, 1995.

[8] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, pages 993–999, 1978.

[9] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

[10] L. C. Paulson. Inductive Analysis of the Internet Protocol TLS. ACM Trans. on
Information and System Security, 2(3):332–351, 1999.

[11] S. Schneider. Verifying authentication protocols with CSP. In IEEE Computer
Security Foundations Workshop. IEEE, 1997.

[12] S. Gürgens, P. Ochsenschläger, C. Rudolph. Role Based Specification and
Security Analysis of Cryptographic Protocols Using Asynchronous Product Automata,
DEXA Workshops, 2002.

[13] Javier Lopez, Jose A. Montenegro and Jose L. Vivas. Towards a UML-based
framework for security requirements engineering, International Workshop on
Requirements for High Assurance Systems IEEE, 2003

[14] Javier Lopez, Juan J. Ortega, Jose M. Troya. Protocol Engineering Applied to
Formal Analysis of Security Systems, In Proceedings of the International Conference on
Infrastructure Security, InfraSec 2002 Bristol, UK, October 1-3, 2002.

[15] P. Ochsenschläger, J. Repp, and R. Rieke.The SH-Verification Tool, In
Proceedings of 13th International Florida Artificial Intelligence Research Society
Conference (FLAIRS-2000), pages 346-350, Orlando, FL, USA, May 2000.

ABOUT THE AUTHORS
Isaac Agudo, PhD Student, Department of Languages and Computer Science,

University of Malaga, Phone: +34 952 13 3371, Е-mail: isaac@lcc.uma.es.
Professor Dr. Javier Lopez, Department of Languages and Computer Science,

University of Malaga, Phone: +34 952 13 3371, Е-mail: jlm@lcc.uma.es

