
L I N E A R S P A C E D A T A S T R U C T U R E S

F O R T W O T Y P E S OF R A N G E S E A R C H

by

B. Chazelle I) and H. Edelsbrunner 2)

Abstract:

This paper investigates the existence of linear space data structures for range searching. We examine the homothetic

range search problem, where a set S of n points in the plane is to be preprocessed so that for any triangle T with sides parallel

to three fixed directions the points of S that lie in T can be computed efficiently. We also look at domination searchin9

in three dimensions. In this problem, S is a set of n points in E s and the question is to retrieve all points of S that are

dominated by some query point. We describe linear space data structures for both problems. The query time is optimal in

the first case and near-optimM in the second.

The first author was supported in part by NSF grants MCS 83-03925 and the Office of Naval Research and the Defense

Advanced Research Projects Agency under contract N00014-83-K-0146 and ARPA Order No. 4786.

1) Ecole Normale Sup4rieure, Paris, France and Dept. Comp. Sci., Brown Univ., Providence, RI 02912. USA.

2) Dept. Computer Science, Univ. Illinois at Urbana-Champaign.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-194-6/86/0600/0293 $00.75

293

http://crossmark.crossref.org/dialog/?doi=10.1145%2F10515.10547&domain=pdf&date_stamp=1986-08-01

1. I n t r o d u c t i o n

Let ,.c, be a set of n points in d-dimenslonal Euclidean space E a and let D be a domain of subsets of E d called ranges.

Range searching with respect to S and D refers to the task of preprocessing $ so that for any q E D, the subset of points of S

that lie in q can be computed effectively. Typically, D is the set of all ranges patterned after some fixed shape, e.g. rectangles,

disks, triangles in g 2, tetrahedra in E s, etc. In all cases, the understanding is that the preprocessing is a one-shot operation

whose cost is amortized over many queries. For this reason, it is traditional to measure the performance of a range search

algorithm by means of S{n), the storage required, and Q(n), the time needed for answering any query. Let Sq = S N q denote

the set to he computed. Two important classes of range searching need be distinguished. In count-mode, range searching

involves computing only the cardinality of Sq, whereas in report-mode, every element of Sq is to be computed explicitly.

These two modes of operations often widely differ in complexity. One reason for the discrepancy comes from the

opportunity offered in report-mode to amortise the search cost over the individual points of the output [CI. The existence of

fairly efficient range search algorithms for a variety of problems motivates the following kind of questions. What problems

can be solved within a given time and/or space complexity? In particular, what can be done - -and how efficiently-- if

only linear storage is available? The main contribution of this paper is to propose a number of linear space algorithms for

range search problems in E 2 and E s. Before proceeding any further, let us introduce some terminology. Homotheti¢ range

searching in E 3 has the specifications: S = set of n points in E2; D = set of triangles with sides parallel to three fixed

directions. Domination search in E s refers to: S = set of ~. points in Es; D -- {(-co, z] x (-co , V] x (-co , z] I z, y, z E ~}.

We summarise our main results; k denotes the output size.

1. Homothetic range searching in E2: S(n) = O(n) and Q(n) = O(k + log n).

2. Domination search in ES: S(n) = O(n) and Q(n) = O(kiogn).

3. Domination search in Es: S(n) = O(n) and Q(n) -- O(k + log 2 n).

The complexity class of interest in this work is characterized by the conditions: S(n) --- O(n) and Q(n) = O(k + log c n),

for some constant c. The main contribution of our work lies in the fact that neither of the problems listed above was known

to be in this class before. The only (major) range searching algorithms previously proven in this class are:

1. D is the set of isothetic rectangles adjacent to a fixed line [M,C] (recall that a figure is isothetic if it is made of edges

parallel to the axes).

2. D is the set of halfplanes [CGL].

3. D is the set of trapezoids with two right angles adjacent to a fixed line [CG] (note that the last two problems are special

cases of this one).

4. D is the set of translates of a fixed convex range [CE].

In [CI] it is shown that in count-mode orthogonal range searching (D = [zl, z2] x [Yl, Y2]) can he done in linear space

and logarithmic time, but in report-mode a factor log e n must be added to either time or space. Another complexity class

worthy of interest in this context is characterized by the conditions: S(n) = O(n) and Q(n) = O(k + ha), for some constant

< 1. The following problems have been shown to belong to this class: 1) S = set of n points in E ~, D = set of all triangles

[W,EW]; 2) S = set of n points in E 3, D = set of all tetrahedra [Y]. See also [DE] for more general sets of problems in the

complexity class in question.

All the results of this paper are based on an optimal solution to a paper-stabbing problem. Suppose that you have n

sheets of paper attached to one corner of your desk; assume that sheets are different in size and shape but that none of them

is completely hidden behind any other. A query comes as a needle which you poke through the first k sheets at an arbitrary

point in the desk. The question is to enumerate these sheets in optimal time and space. Our solution to this problem can be

294

viewed as a generalization of McCreight's priority search tree [M]. Since the underlying structure is an acyclic directed graph

instead of a tree, one might call it a priorigy search dug.

2, O n a P a p e r - S t a b b i n g P r o b l e m

We endow E ~ wi th a Car tes ian system of reference (0 , zy). The coordinates of a point p are denoted (p=, p~). We say

tha t a point p dominates a point q, a property denoted q -< p, if and only if qx < p~ and q~ _< p~. Let S = (p , , . . . , p ,) be a

sequence of points pi = (xl, yl) satisfying the following

Appearance Property': for any i , j , the relat ion pl "~ py implies i <] .

Informally, the appearance property s t ipulates tha t applying the painter's algorithm to the rectangles P~ -- {p 6 E ~ [

p -< Pl}, in the order i = n , . . . , 1, leaves each rectangle at least par t ly visible (Fig. l) . For any point q 6 E 2 and any integer

k (1 <_ k < n), define Sq,~ to be the set of points in { p , , . . . , P k } domina t ing q. We formulate the paper-stabbin 9 problem as

follows:

Preprocess S so that for any q in E 2 and any integer k (with 1 <_ k < n), the set Sq.k can be computed ef~cientIy.

Before proceeding wi th the detai led description of our solution, a word on the in tui t ion behind it might be useful. Since

only O(a) space is allowed, there is l i t t le more we can do than form the p lanar graph of the visible par ts of rectangles R~

(Fig. l) , and prsprocess i t for efficient point locat ion [LT,K,EGS] (i.e. retr ieval of the face containing an arbi t rary query

point). This allows us to find the face containing q in logari thmic time. After this pre l iminary step, one wil l a t t empt to

cross through the subdivision both upward and rightward. Every edge in the subdivision corresponds to some point in S,

so we might want to stop the traversal upon encountering points outside of the desired range (determined by k). This may

fail to give all the points of Sq,k, so addi t ional explorat ion based on some par t icular face ordering will be needed. We next

substant ia te this intui t ion.

I) - The Map of S, Its Properties, Its Construction

Wlog assume tha t all points of S lie in the North-East quadrant , and for convenience tha t all z~ (resp. y~) are palrwise

dist inct . We define the map of S, denoted ~ (S) , to be the isothetic - l una r subdivision obta ined as follows (Fig. l) : for

each i = 1 , . . . , a in turn, extend a horizontal segment p~hl and a vert ical segment pivi from pl, unt i l h i t t ing either another

segment or one of the axes. More formally, let py be the point of S wi th max ima l x-coordinate such tha t] < i and yl < yj-

If py is well-defined, we have hlx = zy, else h~= = 0. In all cases, hly = y~. Similarly, v~= = z~; let Pl be the point of S with

maximal y-coordinate such tha t l < i and zl < zl. If pl is well-defined, we have v~ = Yl, else vi~ : 0. The point Pl is called

the anchor of any edge on the segments pihl or pivl.

L e m m a 1. Let s be any vert ical (resp. horizontal) segment tha t does not pass through any point of S. Consider the bottom-

up (resp. left-to-right) sequence of edges of M(S) intersected by s and let (pq ,pi,) be the corresponding sequence of

anchors. We necessarily have i , < . . . < it .

Proof: Because of symmetry, we restr ict ourselves to the avertical" case. Let s= be the x-coordinate of s. Since s does not

contain any point of S, for each 1 < l _< t, we have

~ , , < ~ < zi , . (1)

For the sake of contradict ion, assume tha t for some l (1 < l < t), we have it+x < it (Fig.2). From the appearance property of

S and the definition of p~, we have Pi, ~ P~t+, and y~ < Yil+x, hence zi~ > zi~+,. But from the definition ofh~ t and it+x < il,

this leads to h~,= >_ z~,., (Fig.2), which contradicts (1). |

295

Next we show how to set up the map)4(S). We assume that ~ (S) is represented by any of the standard structures for

planar subdivisions: the DCEL (doubly-connected-edge-list representation IMP] or the q~tud-edge structure [GS D. Computing

.q(S) in O(n log n) time is elementary. The construction proceeds incrementally, by inserting each point p x , . . . , p , in this

order. Let M~ be the subset of maxima in Si = (p, p,}, i.e. Mt = {p E S~] p 7~ q, for all q E St - (p)}. We can represent

M~ in a dynamic search tree, sorted by y-coordinatea. Inserting Pt+* involves searching for I/t+x in the tree, computing h~+,,

traversing ~(Si) to find v~, updating the map, deleting dominated points from the tree, and adding Pt to it. These operations

are standard enough to make further elaboration unnecessary.

As will appear shortly, we need an efficient method for solving the following retrieval problem. Let q be a point in

E ~ with R u = {(z,y) [z = qx and y_> qv} and R® = {(z,~) [y = qy and z_> q®}. Let Iy(q) (reap. It(q)) be the set

of intersections between R u (reap. Rz) and the edges of ~(S) , sorted by increasing y-coordinates (reap. z-coordinates).

Preprocess)~(S) so that for any q E E 2, the points of In(q) and It(q) can be computed in O(1) time per report, after

O(logn) time preliminary work. A data structure, known as a hies-graph, has been described in [C] for solving precisely

this problem. With the hive-graph, the points in ly(q) (reap. I¢(q)) are visited and reported in the correct order. It will be

crucial later on to be able to stop this process at an arbitrary point, without paying the price for the remaining points in

In(q) (reap. I=(q)). We will not detail the method here, but roughly speaking, it involves building a closely knit subdivision

over the set of segments and preproceasing it for efllclent point location. The preproceasing required by the algorithm takes

O(n log ,) time and the space used by the data structure is O(n).

H) - Completing the Data Structure

As we mentioned earlier, being able to cross through ~ (S) along vertical or horizontal segments may not be quite

sufficient to solve the paper-stabbing problem. Consider query point q together with k = 7 in Fig.1. Points p4, Ps, and pe

anchor edges which intersect the vertical and horizontal rays emanating from q; this is not true for p7 which, however, is

in S,.7. To remedy this flaw we use a directed graph G = (V, E), whose vertices are in one-to-one correspondence with the

points of S and whose edges express the segment adjacenciea in ~(S}. G is defined as follows: V = {to*, . . . ,w ,} ; E -

{(tot, toy) [hi E p~v~ ore i E pth~} (Fig.3). We adopt a node-based representation whereby each node tot of G has associated

with it a linked list E(tot) of outgoing edges. E(wt) = {to~ to~,, }, with ix < . . . < ik~ and (wi, tot,) (tot, tott~) E E.

We complete the description of the data structure by mentioning that each edge in .M(S) should have a pointer to its

supporting node in G (an edge e is said to be ~upportsd by tot iff it lies on either pth~ or ptvt). Of course, for any i (1 < i < n)

point Pt should be retrievable in constant time from tol. It is clear that G with all its required pointers can be computed

in O(n) time once ~ (S) is available in DCEL or quad-edge form. We omit the details. Next we list some of the salient

properties of O.

L e m m a 2. G is scycllc and each node has indegree at most two.

Proof: Whether h~ lles on pivi or vt lies on pihy, the inequality] < i holds, therefore G is acyclic. Since h~ and v~ lle on

unique segments of .M(S), the indegree is at most two. I

Note in passing that O is not necessarily connected (Fig.3).

HI) - The Query Algorithm

We are now ready to describe the algorithm for computing Sq.k = {pt E S [q ~ pt and i _< k}, given a query (q, k). For

convenience, we assume that q® # z , , . . . , z , and qv # y , , . . . , l l , . Recall that I®(q) (reap. In(q)) is the ordered sequence

of intersections between .~I(S) and the upward (reap. rightward) ray from q. Let p be any point of an edge e of ~(S) ; we

designate by ct(p) the anchor of e. Let J , = {tot E V I i _< k and Pt = ~(P) for some p in I~(q)} and Jy = {tot E V] i _< k

and p~ = ~(p) for some p in Iv(q)). As a preliminary step, we compute J= and J~. This can be done optimally by using

296

the hive-graph structure mentioned in §2.1. This is possible because, by virtue of Lemma 1, the order of reports corresponds

to increasing indices, i.e. the anchors of points in l=(q) (resp. ly(q)) form an increasing sequence of indices. As a result,

each sequence of reports may stop as soon as an anchor Pi (J > k) is discovered. After this operation, which necessitates

O(logn + I J= U Ju[) time, we are ready to explore the graph (7.

Initially, ~qq,~ = ~ and we define J = J= U Jr. If J = ~, terminate. Otherwise, mark every node in J . Then, as long as

there are marked nodes in G, pick any of them, to~, and perform the following steps.

S tep I: ~qq,k ~-- ~qq,k U{p~}. Unmark to~.

S tep 2: Let E(w~) = {wi=,..., w~=} be the set of nodes emanating from to~ and let i,~ be the largest index less than k, i.e.

i,~ = max{y I J ~ { i l , . . . , i l} and j _< k}. If im is well-defined, mark nodes w~=,..., to~,.

Theorem 8. Let S be a sequence of n points in the North-East quadrant which satisfies the appearance property. There is

a data structure that takes O(n log n) time for construction and O(n) space, such that for any query (q, k) the points in Sq,k

can be reported in O([5'q,k[+ logn) time. This is optimal.

Proof: We successively establish the correctness of t~e method described above (part 1 below) and then analyze its perfor-

mance (part 2 below).

Part 1. Given the organization of each set of outgoing edges in sorted lists, it suffices to show that for each p~ E Sq,k- (J= U Jr)

there exists in G a (directed) path toi=,..., t0j=, with 3a = i, t0y= E J= U Jr, py=,..., py= E s~,~. We prove this fact by induction

on the ascending sequence of indices in 5q,~. The basis case being obvious, let p, E Sq,~ - (J= U Jr). Since p~ is not in J=, ui

lies on pjhy for some j (1 < j _< n), so O has an edge from wy to w~. Also, u~y > qy implies that q -< pj, and since clearly

j < i, we have py E .qq,k. By induction hypothesis there exi ts a directed path from some wi~ to wy. This concludes the

argument.

Par~ 2. The computation of Jr= and Jv takes O(logn + I Jr U JrD time, as already observed. The remainder of the algorithm

has a complexity proportional to the number of edges of G traversed. Let us call a good node, a node to~ such that p~ E Sq.k,

and a bad node, any other. Let H be the subgraph of G induced by the good nodes. Prom Lemma 2, it follows that for each

good node to~ at most two bad nodes need to be visited. The running time of the algorithm is therefore proportional to the

number of edges in H. This number is proportional to the number of vertices in H, since each vertex has indegree at most

two (Lemma 2). |

3. Homothe t ie Range Searching

The homothetic range search problem refers to the case where the query domain D is the set of all polygons obtained

by submitting a fixed simple m-gon to an arbitrary translation and an arbitrary scaling transformation. More precisely, let

P be the simple m-gon. A query is specified by a pair (q,c), with q E E 2 and ¢ E ~; the homothet of P is the polygon

Pq,c = {p E E 2] there is a point v E P such that p= = qffi + cv= and py = qv + e%}. The input to the problem, denoted S

as usual, is a set of n points in E 2 and the set to be computed is Bq = .q N Pq,e. In the following, the number of sides of the

query polygon, m, is taken to be a constant. We state our main result.

Theorem 4. Let S be a set of n points in E 2. In O(nlogn) preprocessing, it is possible to construct an O(n) space data

structure so that homothetic range searching w.r.t. S can be done in O(k+logn) query time (k = output size). The method

is optimal.

Proof: By triangulating the query polygon if necessary, one can always assume that P is a triangle. We set up a coordinate

system such that two sides of P are parallel to the coordinate axes, and if P is translated so as to have its two sides collinear

with the coordinate axes, then P is contained in the North-East quadrant (note that this system will not be orthogona]

297

in general). We easily ensure that each point in S lies in the North-East quadrant. Let az + by + 1 = 0 be an equation

of the line passing through the third side of the triangle P. In O(nlogn) time, sort the points of S according to their

projections on a line perpendicular to this line. Let S = (Pl,...,P,~) be the resulting sequence; if p~ = (:c~,y~) we have

azl + byl ~ • .. ~_ az,~ + byn. It is easy to see that S has the appearance property of the previous section, so it is possible

to prepare the grounds for the paper-stabbing problem. Let ABC be the query triangle, with AB (resp. AC) parallel to

the z (resp. y) axis (Fig.4). Let H be the halfplane delimited by the line passing through BC and containing ABC, and let

/c = IS ~ HI; note that k is easily computed in O(log n) time. S ~ ABC is exactly the output of the paper-stabbing problem

on query input (A, k). |

4. The D o m i n a t i o n Search P r o b l e m in E 3

We endow E s with a Cartesian system of coordinates (O, zyz). The notion of domination introduced in Section 2

generalizes easily to higher dimensions: a point q E E s dominates a point p E E 3, denoted p -< q iff Px ~ qx, Pv -~ qu and

pffi ~ q~. Let S = {Pl, . . . ,Pn} be a set of n points in E 3. Domination searching can be phrased as follows: preprocess S

so that for any query q E E 3 the set Sq = {p [p E S and p -< q} can be computed effectively. Let S(n) and Q(n) denote

respectively the space and query time required by an algorithm for domination searching in E 3, and let k denote the output

size. The best solution known so far achieves S(n) = O(nlogn), Q(n) = O(k + logn) [GBT]. We will next describe two

linear space data structures for this problem, one achieving Q(n) = O(klog n) and the other Q(n) = O{k + log 2 n).

Let Pl = (zl, Yi,zi)- For convenience, we again assume that none of the three sets of coordinates has duplicates. The

notion of minima is crucial to our approach. A point Pl is called a minimum of S if it does not dominate any other point in

S. This definition carries over directly to E 2, so we may refer to minima in E 2 without further explanation. Assume for the

time being that each point of S is a minimum. We put ourselves in the conditions of Theorem 3 by

1. defining a new relation 4" as follows: p -<* q iff q -< p ;

2. sorting the points of S so that zl < ... < zn, and defining S" = ((zl, yl),-.., (zn, Pn)) C_ E 2.

Since each p~ is a minimum, it is immediate to see that the sequence 8" satifles the appearance property w.r.t. -<° (§2).

Given a query q, we reduce the domination problem in E 3 to a paper-stabbing problem in which -<" has been substituted

for -<. A query q = (qz, qu, qz) is transformed in O(logn) time into a query (qx, qv, k) for the paper-stabbing problem, with

k = l{P~ E S [z~ ~ q=}[. We conclude with a result which will be the cornerstone of our ensuing developments.

Lemma 5. Let S be a set of n points in E 3, all of which are minima. In O(r~ log n) preprocessing, it is possible to construct

an O(n) space data structure so that domination searching w.r.t. S can be done in O(k + logn) query time (k = output

size). The method is optimal.

I) - A Simple Linear-Space Solution

From now on, S is taken to be an arbitrary set of n points in E 3. Recall that Sq, the set to be computed, consists of the

points of S dominated by the query point q. In preprocessing, we compute the sequence of layers of S, denoted (/~1,-.-,/ 'p).

These layers are subsets of S obtained by removing the minima of S, computing the new set of minima, removing it and

so forth. Let •(S) denote the set of minima of 8. The following algorithm provides a formal definition of layers, as well a

method for computing them.

298

i~--0
while S #

begin
i* - - i+1
£~ . - ~(s)
S.--S-£~

end
p.--i

Kung et al {KLP] have shown how to compute the minima of a set of n points in E a in 0 (. log .) time. This leads to an

O(n 2 log .) time, O(.) space algorithm for computing the layers of S. This can be improved by resorting to a simpler, but

more space-consuming technique. Set up a directed graph over the points of S by placing an edge from pi to pj iff pl -< Pi.

Removing all the sources of the graph gives ~, and iterating on this process gives /~2,..., ~p in O(r~ 2) time and space. We

omit the details.

Lemma 6. For any i (I < i < p), S q N ~ + , • ~ implies .qqN~ # ~.

Proof: Each point p in ~;+, dominates at least one point in ~i. |

From Lemms 6 , a possible line of attack follows trivially. We apply the result of Lemma 5 to LI, ~2, . . . in turn, until

we fail to report any point in ,.qq, at which stage the algorithm terminates. This leads to

Theorem 7. Let S be a set o f . points in E 3. In 0 (. 2) preprocessing, it is possible to construct an O(n) space data

structure so that domination searching w.r.t. S can be done in O(klogn) query time (k = output size).

I I) - A More E/Bcient Algorithm

We next show how a recursive strategy allows us to take the running time of the previous solution down to O(k+log 2 n).

To be rigorous, this transformation constitutes an improvement only for values of k = n(log .) . Before proceeding with the

description of the algorithm, we need to make a short digression. Let V be a set o f . points in E ~, with each point being

a minimum. Let Vq = {v 6 V I ~ "< q} be defined for any point q E E 2. Domination search in two dimensions calls for

computing Vq efficiently, given any query point q. Of course, this problem can be solved optimally by application of Lemma

5. A much simpler solution is based on the following remark. Let V = {vl , . . . , tJ.} be given by increasing z-coordinates.

The points of V~ always form a contiguous chain (possibly empty) of the form {v~, V~+l,-.., oj}. Computing Vq can be done

in optimal O(] - i + l o g .) time by searching for qz in V (regarded for this purpose as s dictionary of z-coordinates).

Observat ion 8. Let S be a set of . points in E 2, all of which are minims. In O(nlogn) preprocessing, it is possible to

construct an 0 (.) space data structure so that domination searching can be done in O(k + l o g .) query time (k = output

size). Answering s query essentially involves searching for an item in a dictionary.

This last remark about the reduction of domination search in E 2 to a simple dictionary look-up is of great importance,

as will be apparent below. Let's go back to our original problem, i.e. domination search in E s.

The data structure, denoted D(S), is a binary tree defined recursively as follows:

1. If S = ~ then D(S) is the empty tree.

299

2. Otherwise, let S* be the projection of S onto the yz-plane. We define P as the set of minima of S*, i.e. P = {p E S* [

q ~ p for all q ~ `9" - {p}}, and M -- {p = (pffi, Pv, P,) e ,-q I (P,, Pv) E P} (clearly, M is a set of minima in E3). It is then

possible to build the data structures of Lemma 5 and Observation 8 for M and P, respectively, which we denote II(S)

and E{S). Both data structures are assigned to the root r of D(S). Define V = ,9- M and let (p~ ,p~J be the

sequence of points in V sorted by increasing x-coordinates. Let l = [m/2J, VI = {pi~,--. ,p~,}, and V2 - {Pi,+~,..- ,P~).

D(VI) (resp. D(V2)) is assigned the left (reap. right) subtree of r. Since each point of .q is represented only twice in T,

the storage required for the entire data structure is clearly O(n). The data structures E and H will be referred to later

on as the eas~/and hard structures, respectively. We are now ready to describe the query algorithm.

Step I: In O(log n) time, retrieve the nodes of T that canonically decompose (-co, qz]- To do so, use T as a search tree to

locate the leaf corresponding to p~ s.t. z~ _< q= < x~+1. Let vl,...,vh be the corresponding search path; vl is the root and

u~, is the leaf that stores p((Fig.5).

Step 2: Query the hard structure at each v((1 _< ~ _< h).

Step $: Let W" be the sequence of left children of (v1,...,uh-1) that are net nodes of the search path (this sequence is

obtained by tracing the search path and recording the left child of each node witnessing a right turn -- see square nodes in

Fig.5). Mark every node of IV.

Step 4: While T has marked nodes, pick any, unmark it, and query its easy structure. If this leads to any report, mark its

children (if any).

The correctness of the algorithm is based on a number of observations, simple enough to have their proofs omitted.

1. All the points in Sq are stored in v l , . . . , vh and in the subtrees rooted at the nodes of W.

2. With respect to the subset of S associated with any node that is either in 14/ or is a descendent of a node in W, the

problem to be solved is equivalent to domination search in a set of minima in E ~.

3. If the easy structure at v fails to report any point, no point stored in any descendant of v lies in .qq.

Let Tq be the subtree of T visited during the computation and let k -- ISql be the output size. The algorithm takes

O(log2n + klogn) time, since 1) every node visited that is neither a leaf of Tq nor of the form uy contributes at least

one distinct entry to Se; 2) each node visited requires O(logn) search time; 3) the number of nodes vy is O(log,~). This

disappointing performance can be improved by exploiting the last remark of Observation 8. For the sake of clarity, a little

background is necessary.

The notion of fractional cascading, developed in [CG], is concerned with the problem of batching repeated binary

searches. Let G be a connected graph whose maximum degree is bounded by a constant. With each node t0 E G is associated

a dictionary D(w) (i.e. an array of sorted numbers). Let rn be the total size of all the dictionaries. F~actional cascading is a

method for preprocesslng G so that contiguous searches can be carried out in constant time. More precisely, if x has to be

searched in D(wl),.. i, D(wt), where for each i, wl is adjacent to some wy (j < i), this preprocessing allows us to do so in

O(logm) time for D(tul) and then O(1) time for each of the others, D(t~) , D(wz). The interesting feature of fractional

cascading is that its application increases the original size of the data structure by at most a constant factor. We also mention

that the preprocessing can be done in linear time. The relevance of fractional cascading to the problem at hand is immediate.

Since the easy structures are handled via a simple dictionary search, fractional cascading will allow us to handle all of them

300

in O(k) time after O(log n) preliminary work. Incidentally, note that the graph spanned by the nodes in W and their visited

descendents is not connected, but these nodes together with all nodes in V do form a connected subgraph. Consequently, the

fractional cascading scheme will have to visit the easy structures in V as well, in order to ensure the connectivity condition.

This is not a problem, however, since there are only O(logn) such nodes, hence O(logn) spurious visits, at unit cost each.

The preprocessing takes O(nlog 2 n) time, since each node requires O(plogp) steps, where p is the number of points stored

in the subtree of the node. We conclude.

T heo r e m 9. Let S be a set of n points in E °. In O(nlog 2 n) preprocessing, it is possible to construct an O(n) space data

structure so that domination searching w.r.t. S can be done in O(k + log 2 n) query time (k = output sise).

It is possible to generalize Theorems 7 and 9 to higher dimensions. Every increase of one in dimension will result in

the introduction of a factor of log n in both space and search time. The technique involves a canonical decomposition of the

query into O(log n) queries of lesser dimensionality. The technique is due to Bentley [B]. It is standard and has been applied

before on such numerous occasions that we will dispense with any further explanation.

T he o r e m 10. Let ~q be a set of n points in E d (d > 2). In O(nlogd- ln) (reap. O(n2)) preprocessing, it is possible to

construct an O(n log d-3 n) space data structure so that domination searching w.r.t. ,q can be done in O(k ÷ log d-z n) (resp.

O(logd-2n + klogn)) query time (k = output sise).

[B]

[C]

[c1]

[c~.]

ICe]

[C~L]

[DE]

lEeS]

[SW]

[GBT]

[GS]

[KI

R E F E R E N C E S

Bentley, J.L. Multidimensional divide and conquer, Comm. ACM, 23, 4 (1980), 214-229.

Cha~elh, B. Filtering search: u new approach to query-answering, Proc. 24th Annu. IEEE Symp. Found. Comput. Sci.

(1983), 122-132. To appear in SIAM J. on Comput.

Cha~elle, B. A functional approach to data structures and its use in multidimensional searching, Brown Univ. TR, No.

CS-86-16, Sept. 1985. Preliminary version in Proc. 26th FOCS, 1985.

Chaselh, B., Edelsbrunner, H. Optimal Solutions for a Claus of Point Retrieval Problems, Tech. Rep. No. CS-84-16,

Brown Univ., Providence, 1984.

Chazelh, B., Guibas, L.J. Fractional cascading: a data structuring technique with geometric applications, Proc. 12th

ICALP, LNCS, Springer-Verlag, pp. 90--99.

Chaselle, B., Guibas, L.J., Lee, D.T. The power of geometric duality, Proc. 24th Annu. IEEE Syrup. Found. Comput.

Sci. (1983), 217-225. Also, BIT 25(1), 76-90, 1985.

Dobkin, D.P., Edelsbrunner, H. Space searching for intersecting objects Proc. 25th Annu. IEEE Symp. Found. Comp.

Sci. (1984), 387-392.

Edelsbrunner, H., Guibas, L., Stolfi, J. Optimal point location in a monotone subdivision, SIAM J. on Comput., to

appear.

Edelsbrunner, H., Welzl, E. Halfplanar range search in linear apace and O(n °'egs) query time, Rep. Fl11, Inst. Inform.

Proc., Tech. Univ. Gras, Austria, 1983.

Gabow, H.N., Bentley, J.L., Tarjan, R.E. Scaling and related techniques for geometry problems, Proc. 16th Annu. ACM

Symp. on Theory of Comput. (1984), 135-143.

Guibas, L. J., Stolfi, J. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams,

Proc. 15th Annu. ACM Syrup. on Theory of Comput. (1983), 221-234.

Kirkpatrick, D.G. Optimal search in planar subdivisions, SIAM J. on Comput., Vol. 12, No. 1, pp. 28-35, 1983.

301

[KLP] Kung, H.T., Luccio, F., Preparata, F.P. On #ndinf the mazima of a act of vectors, J. ACM, 22 (1975), 469-476.

JLT 1 Lipton, R.J., Tarjan, R.E. Applications o/a planar separator theorem, SIAM J. on Comput., Vol. 9, No. 3, pp. 615-627,

Aug. 1980.

IM] McCreight, E.M. Priority search trees, Rep. CSL-81-5, Xerox PARC, Palo Alto, 1981.

[MP] Muller, D.E., Preparata, F.P. Findinf the intersection of two eonvez polyhedra, Theoret. Comput. Sci., ? (1978),

217-236.

INS] Newman, W.M., Sproull, R.F. Principles of interactive computer fraphica, McGraw-Hill, 1973.

[W] Willard, D.E. Polygon retrieval, SIAM J. Comp., 11 (1982), 14~-1e5.

[Y] Yao, F.F. A 3-apace ~ partition and its applications, Proc. 15th Annu. ACM Syrup. on Theory of Comput. (258-263),

1983.

I

i J
gl - -

-- -- |"lh- l

I
~ "~ v a v 4

Fig.] : The map fo r {Pl p7) and query potnt q.
Ftg. 2.: 11,1< t e ts Impossible by construct |on.

0

0 -- 0 --~ I ~ - ~

Fig. 3: Directed graph f o r the map in Fig. 1.

o

Fig. 4. Range query wi th t r t ang le ABC.

v2

v3

V4

vS

vl

Fig. 5: Set V = { V l , . . . v 7) and nodes in ~.

302

