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1. I n t r o d u c t i o n  

Let ,.c, be a set of n points in d-dimenslonal Euclidean space E a and let D be a domain of subsets of E d called ranges. 

Range searching with respect to S and D refers to the task of preprocessing $ so that for any q E D, the subset of points of S 

that lie in q can be computed effectively. Typically, D is the set of all ranges patterned after some fixed shape, e.g. rectangles, 

disks, triangles in g 2, tetrahedra in E s, etc. In all cases, the understanding is that  the preprocessing is a one-shot operation 

whose cost is amortized over many queries. For this reason, it is traditional to measure the performance of a range search 

algorithm by means of S{n), the storage required, and Q(n), the time needed for answering any query. Let Sq = S N q denote 

the set to he computed. Two important classes of range searching need be distinguished. In count-mode, range searching 

involves computing only the cardinality of Sq, whereas in report-mode, every element of Sq is to be computed explicitly. 

These two modes of operations often widely differ in complexity. One reason for the discrepancy comes from the 

opportunity offered in report-mode to amortise the search cost over the individual points of the output [CI. The existence of 

fairly efficient range search algorithms for a variety of problems motivates the following kind of questions. What problems 

can be solved within a given time and/or  space complexity? In particular, what can be done - -and  how efficiently-- if 

only linear storage is available? The main contribution of this paper is to propose a number of linear space algorithms for 

range search problems in E 2 and E s. Before proceeding any further, let us introduce some terminology. Homotheti¢ range 

searching in E 3 has the specifications: S = set of n points in E2; D = set of triangles with sides parallel to three fixed 

directions. Domination search in E s refers to: S = set of ~. points in Es; D -- {(-co,  z] x ( -co ,  V] x ( -co ,  z] I z, y, z E ~}. 

We summarise our main results; k denotes the output size. 

1. Homothetic range searching in E2: S(n) = O(n) and Q(n) = O(k + log n). 

2. Domination search in ES: S(n) = O(n) and Q(n) = O(kiogn). 

3. Domination search in Es:  S(n) = O(n) and Q(n) -- O(k + log 2 n). 

The complexity class of interest in this work is characterized by the conditions: S(n) --- O(n) and Q(n) = O(k + log c n), 

for some constant c. The main contribution of our work lies in the fact that  neither of the problems listed above was known 

to be in this class before. The only (major) range searching algorithms previously proven in this class are: 

1. D is the set of isothetic rectangles adjacent to a fixed line [M,C] (recall that  a figure is isothetic if it is made of edges 

parallel to the axes). 

2. D is the set of halfplanes [CGL]. 

3. D is the set of trapezoids with two right angles adjacent to a fixed line [CG] (note that the last two problems are special 

cases of this one). 

4. D is the set of translates of a fixed convex range [CE]. 

In [CI] it is shown that  in count-mode orthogonal range searching (D = [zl, z2] x [Yl, Y2]) can he done in linear space 

and logarithmic time, but in report-mode a factor log e n must be added to either time or space. Another complexity class 

worthy of interest in this context is characterized by the conditions: S(n) = O(n) and Q(n) = O(k + ha), for some constant 

< 1. The following problems have been shown to belong to this class: 1) S = set of n points in E ~, D = set of all triangles 

[W,EW]; 2) S = set of n points in E 3, D = set of all tetrahedra [Y]. See also [DE] for more general sets of problems in the 

complexity class in question. 

All the results of this paper are based on an optimal solution to a paper-stabbing problem. Suppose that you have n 

sheets of paper attached to one corner of your desk; assume that sheets are different in size and shape but that  none of them 

is completely hidden behind any other. A query comes as a needle which you poke through the first k sheets at an arbitrary 

point in the desk. The question is to enumerate these sheets in optimal time and space. Our solution to this problem can be 
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viewed as a generalization of McCreight's priority search tree [M]. Since the underlying structure is an acyclic directed graph 

instead of a tree, one might call it a priorigy search dug. 

2, O n  a P a p e r - S t a b b i n g  P r o b l e m  

We endow E ~ wi th  a Car tes ian system of reference (0 ,  zy). The coordinates of a point  p are denoted (p=, p~). We say 

tha t  a point  p dominates a point  q, a property denoted q -< p, if and only if qx < p~ and q~ _< p~. Let S = ( p , , . . . , p , )  be a 

sequence of points  pi = (xl, yl) satisfying the following 

Appearance Property': for any i , j ,  the relat ion pl "~ py implies i < ] .  

Informally, the appearance property s t ipulates  tha t  applying the painter's algorithm to the rectangles P~ -- {p 6 E ~ [ 

p -< Pl}, in the order i = n , . . . ,  1, leaves each rectangle at  least  par t ly  visible (Fig. l ) .  For any point  q 6 E 2 and any integer 

k (1 <_ k < n), define Sq,~ to be the set of points  in { p , , . . . , P k }  domina t ing  q. We formulate the paper-stabbin 9 problem as 

follows: 

Preprocess S so that for any q in E 2 and any integer k (with 1 <_ k < n), the set Sq.k can be computed ef~cientIy. 

Before proceeding wi th  the detai led description of our solution, a word on the in tui t ion behind it  might  be useful. Since 

only O(a)  space is allowed, there is l i t t le  more we can do than  form the p lanar  graph of the visible par ts  of rectangles R~ 

(Fig. l) ,  and prsprocess i t  for efficient point  locat ion [LT,K,EGS] (i.e. retr ieval  of the face containing an arbi t rary query 

point).  This  allows us to find the face containing q in logari thmic time. After this  pre l iminary step, one wil l  a t t empt  to 

cross through the subdivision both  upward and rightward. Every edge in the subdivision corresponds to some point in S, 

so we might  want  to stop the traversal  upon encountering points outside of the desired range (determined by k). This may 

fail to give all  the points  of Sq,k, so addi t ional  explorat ion based on some par t icular  face ordering will  be needed. We next 

substant ia te  this  intui t ion.  

I)  - The Map of S, Its Properties, Its Construction 

Wlog assume tha t  all  points of S lie in the North-East  quadrant ,  and for convenience tha t  all  z~ (resp. y~) are palrwise 

dist inct .  We define the map of S, denoted ~ ( S ) ,  to be the isothetic - l una r  subdivision obta ined as follows (Fig. l) :  for 

each i = 1 , . . . ,  a in turn,  extend a horizontal  segment p~hl and a vert ical  segment pivi from pl, unt i l  h i t t ing either another 

segment or one of the axes. More formally, let py be the point of S wi th  max ima l  x-coordinate such tha t  ] < i and yl < yj- 

If py is well-defined, we have hlx = zy, else h~= = 0. In all  cases, hly = y~. Similarly,  v~= = z~; let Pl be the point of S with 

maximal  y-coordinate such tha t  l < i and zl  < zl. If pl is well-defined, we have v~  = Yl, else vi~ : 0. The point Pl is called 

the anchor of any edge on the segments pihl or pivl. 

L e m m a  1. Let s be any vert ical  (resp. horizontal) segment tha t  does not  pass through any point  of S. Consider the bottom- 

up (resp. left-to-right) sequence of edges of M(S) intersected by s and let (pq . . . .  ,pi,) be the corresponding sequence of 

anchors. We necessarily have i ,  < . . .  < it .  

Proof: Because of symmetry,  we restr ict  ourselves to the avertical" case. Let s= be the x-coordinate of s. Since s does not 

contain any point  of S, for each 1 < l _< t, we have 

~ , ,  < ~ < zi , .  (1) 

For the sake of contradict ion,  assume tha t  for some l (1 < l < t), we have it+x < it (Fig.2). From the appearance property of 

S and the definition of p~, we have Pi, ~ P~t+, and y~ < Yil+x, hence zi~ > zi~+,. But  from the definition ofh~ t and it+x < il, 

this leads to h~,= >_ z~,., (Fig.2), which contradicts  (1). | 
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Next we show how to set up the map )4(S). We assume that ~ (S)  is represented by any of the standard structures for 

planar subdivisions: the DCEL (doubly-connected-edge-list representation IMP] or the q~tud-edge structure [GS D. Computing 

.q(S) in O(n log n) time is elementary. The construction proceeds incrementally, by inserting each point p x , . . . , p ,  in this 

order. Let M~ be the subset of maxima in Si = (p, . . . . .  p,}, i.e. Mt = {p E S~ ] p 7~ q, for all q E St - (p)}. We can represent 

M~ in a dynamic search tree, sorted by y-coordinatea. Inserting Pt+* involves searching for I/t+x in the tree, computing h~+,, 

traversing ~(Si)  to find v~, updating the map, deleting dominated points from the tree, and adding Pt to it. These operations 

are standard enough to make further elaboration unnecessary. 

As will appear shortly, we need an efficient method for solving the following retrieval problem. Let q be a point in 

E ~ with R u = {(z,y) [ z = qx and y_> qv} and R® = {(z,~) [ y = qy and z_> q®}. Let Iy(q) (reap. It(q)) be the set 

of intersections between R u (reap. Rz) and the edges of ~(S) ,  sorted by increasing y-coordinates (reap. z-coordinates). 

Preprocess )~(S) so that for any q E E 2, the points of In(q) and It(q) can be computed in O(1) time per report, after 

O(logn) time preliminary work. A data structure, known as a hies-graph, has been described in [C] for solving precisely 

this problem. With the hive-graph, the points in ly(q) (reap. I¢(q)) are visited and reported in the correct order. It will be 

crucial later on to be able to stop this process at an arbitrary point, without paying the price for the remaining points in 

In(q) (reap. I=(q)). We will not detail the method here, but roughly speaking, it involves building a closely knit subdivision 

over the set of segments and preproceasing it for efllclent point location. The preproceasing required by the algorithm takes 

O(n log , )  time and the space used by the data structure is O(n). 

H) - Completing the Data Structure 

As we mentioned earlier, being able to cross through ~ (S )  along vertical or horizontal segments may not be quite 

sufficient to solve the paper-stabbing problem. Consider query point q together with k = 7 in Fig.1. Points p4, Ps, and pe 

anchor edges which intersect the vertical and horizontal rays emanating from q; this is not true for p7 which, however, is 

in S,.7. To remedy this flaw we use a directed graph G = (V, E), whose vertices are in one-to-one correspondence with the 

points of S and whose edges express the segment adjacenciea in ~(S}. G is defined as follows: V = {to*, . . . ,w ,} ;  E - 

{(tot, toy) [ hi E p~v~ ore i E pth~} (Fig.3). We adopt a node-based representation whereby each node tot of G has associated 

with it a linked list E(tot) of outgoing edges. E(wt) = {to~ . . . . . .  to~,, }, with ix < . . .  < ik~ and (wi, tot,) . . . . .  (tot, tott~ ) E E. 

We complete the description of the data structure by mentioning that each edge in .M(S) should have a pointer to its 

supporting node in G (an edge e is said to be ~upportsd by tot iff it lies on either pth~ or ptvt). Of course, for any i (1 < i < n) 

point Pt should be retrievable in constant time from tol. It is clear that G with all its required pointers can be computed 

in O(n) time once ~ (S )  is available in DCEL or quad-edge form. We omit the details. Next we list some of the salient 

properties of O. 

L e m m a  2. G is scycllc and each node has indegree at most two. 

Proof: Whether h~ lles on pivi or vt lies on pihy, the inequality ] < i holds, therefore G is acyclic. Since h~ and v~ lle on 

unique segments of .M(S), the indegree is at most two. I 

Note in passing that O is not necessarily connected (Fig.3). 

HI) - The Query Algorithm 

We are now ready to describe the algorithm for computing Sq.k = {pt E S [ q ~ pt and i _< k}, given a query (q, k). For 

convenience, we assume that q® # z , , . . . , z ,  and qv # y , , . . . , l l , .  Recall that I®(q) (reap. In(q) ) is the ordered sequence 

of intersections between .~I(S) and the upward (reap. rightward) ray from q. Let p be any point of an edge e of ~(S) ;  we 

designate by ct(p) the anchor of e. Let J ,  = {tot E V I i _< k and Pt = ~(P) for some p in I~(q)} and Jy = {tot E V ] i _< k 

and p~ = ~(p) for some p in Iv(q)). As a preliminary step, we compute J= and J~. This can be done optimally by using 
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the hive-graph structure mentioned in §2.1. This is possible because, by virtue of Lemma 1, the order of reports corresponds 

to increasing indices, i.e. the anchors of points in l=(q) (resp. ly(q)) form an increasing sequence of indices. As a result, 

each sequence of reports may stop as soon as an anchor Pi (J > k) is discovered. After this operation, which necessitates 

O(logn + I J= U Ju[) time, we are ready to explore the graph (7. 

Initially, ~qq,~ = ~ and we define J = J= U Jr. If J = ~, terminate. Otherwise, mark every node in J .  Then, as long as 

there are marked nodes in G, pick any of them, to~, and perform the following steps. 

S tep  I:  ~qq,k ~-- ~qq,k U{p~}. Unmark to~. 

S tep  2: Let E(w~) = {wi=,..., w~=} be the set of nodes emanating from to~ and let i,~ be the largest index less than k, i.e. 

i,~ = max{y I J ~ { i l , . . . , i l}  and j _< k}. If im is well-defined, mark nodes w~=,..., to~,. 

Theorem 8. Let S be a sequence of n points in the North-East quadrant which satisfies the appearance property. There is 

a data structure that takes O(n log n) time for construction and O(n) space, such that for any query (q, k) the points in Sq,k 

can be reported in O([5'q,k[ + logn) time. This is optimal. 

Proof: We successively establish the correctness of t~e method described above (part 1 below) and then analyze its perfor- 

mance (part 2 below). 

Part 1. Given the organization of each set of outgoing edges in sorted lists, it suffices to show that for each p~ E Sq,k- (J= U Jr) 

there exists in G a (directed) path toi=,..., t0j=, with 3a = i, t0y= E J= U Jr, py=,..., py= E s~,~. We prove this fact by induction 

on the ascending sequence of indices in 5q,~. The basis case being obvious, let p, E Sq,~ - (J= U Jr).  Since p~ is not in J=, ui 

lies on pjhy for some j (1 < j _< n), so O has an edge from wy to w~. Also, u~y > qy implies that q -< pj, and since clearly 

j < i, we have py E .qq,k. By induction hypothesis there exi ts  a directed path from some wi~ to wy. This concludes the 

argument. 

Par~ 2. The computation of Jr= and Jv takes O(logn + I Jr  U JrD time, as already observed. The remainder of the algorithm 

has a complexity proportional to the number of edges of G traversed. Let us call a good node, a node to~ such that p~ E Sq.k, 

and a bad node, any other. Let H be the subgraph of G induced by the good nodes. Prom Lemma 2, it follows that for each 

good node to~ at most two bad nodes need to be visited. The running time of the algorithm is therefore proportional to the 

number of edges in H. This number is proportional to the number of vertices in H, since each vertex has indegree at most 

two (Lemma 2). | 

3. Homothe t ie  Range  Searching 

The homothetic range search problem refers to the case where the query domain D is the set of all polygons obtained 

by submitting a fixed simple m-gon to an arbitrary translation and an arbitrary scaling transformation. More precisely, let 

P be the simple m-gon. A query is specified by a pair (q,c), with q E E 2 and ¢ E ~; the homothet of P is the polygon 

Pq,c = {p E E 2 ] there is a point v E P such that p= = qffi + cv= and py = qv + e%}. The input to the problem, denoted S 

as usual, is a set of n points in E 2 and the set to be computed is Bq = .q N Pq,e. In the following, the number of sides of the 

query polygon, m, is taken to be a constant. We state our main result. 

Theorem 4. Let S be a set of n points in E 2. In O(nlogn) preprocessing, it is possible to construct an O(n) space data 

structure so that homothetic range searching w.r.t. S can be done in O(k+logn) query time (k = output size). The method 

is optimal. 

Proof: By triangulating the query polygon if necessary, one can always assume that P is a triangle. We set up a coordinate 

system such that two sides of P are parallel to the coordinate axes, and if P is translated so as to have its two sides collinear 

with the coordinate axes, then P is contained in the North-East quadrant (note that this system will not be orthogona] 
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in general). We easily ensure that each point in S lies in the North-East quadrant. Let az + by + 1 = 0 be an equation 

of the line passing through the third side of the triangle P. In O(nlogn) time, sort the points of S according to their 

projections on a line perpendicular to this line. Let S = (Pl,...,P,~) be the resulting sequence; if p~ = (:c~,y~) we have 

azl + byl ~ • .. ~_ az,~ + byn. It is easy to see that S has the appearance property of the previous section, so it is possible 

to prepare the grounds for the paper-stabbing problem. Let ABC be the query triangle, with AB (resp. AC) parallel to 

the z (resp. y) axis (Fig.4). Let H be the halfplane delimited by the line passing through BC and containing ABC, and let 

/c = IS ~ HI; note that k is easily computed in O(log n) time. S ~ ABC is exactly the output of the paper-stabbing problem 

on query input (A, k). | 

4. The D o m i n a t i o n  Search P r o b l e m  in E 3 

We endow E s with a Cartesian system of coordinates (O, zyz). The notion of domination introduced in Section 2 

generalizes easily to higher dimensions: a point q E E s dominates a point p E E 3, denoted p -< q iff Px ~ qx, Pv -~ qu and 

pffi ~ q~. Let S = {Pl, . . . ,Pn} be a set of n points in E 3. Domination searching can be phrased as follows: preprocess S 

so that for any query q E E 3 the set Sq = {p [ p E S and p -< q} can be computed effectively. Let S(n) and Q(n) denote 

respectively the space and query time required by an algorithm for domination searching in E 3, and let k denote the output 

size. The best solution known so far achieves S(n) = O(nlogn), Q(n) = O(k + logn) [GBT]. We will next describe two 

linear space data structures for this problem, one achieving Q(n) = O(klog n) and the other Q(n) = O{k + log 2 n). 

Let Pl = (zl, Yi,zi)- For convenience, we again assume that none of the three sets of coordinates has duplicates. The 

notion of minima is crucial to our approach. A point Pl is called a minimum of S if it does not dominate any other point in 

S. This definition carries over directly to E 2, so we may refer to minima in E 2 without further explanation. Assume for the 

time being that each point of S is a minimum. We put ourselves in the conditions of Theorem 3 by 

1. defining a new relation 4" as follows: p -<* q iff q -< p ; 

2. sorting the points of S so that zl < ... < zn, and defining S" = ((zl, yl),-.., (zn, Pn)) C_ E 2. 

Since each p~ is a minimum, it is immediate to see that the sequence 8" satifles the appearance property w.r.t. -<° (§2). 

Given a query q, we reduce the domination problem in E 3 to a paper-stabbing problem in which -<" has been substituted 

for -<. A query q = (qz, qu, qz) is transformed in O(logn) time into a query (qx, qv, k) for the paper-stabbing problem, with 

k = l{P~ E S [ z~ ~ q=}[. We conclude with a result which will be the cornerstone of our ensuing developments. 

Lemma 5. Let S be a set of n points in E 3, all of which are minima. In O(r~ log n) preprocessing, it is possible to construct 

an O(n) space data structure so that domination searching w.r.t. S can be done in O(k + logn) query time (k = output 

size). The method is optimal. 

I) - A Simple Linear-Space Solution 

From now on, S is taken to be an arbitrary set of n points in E 3. Recall that Sq, the set to be computed, consists of the 

points of S dominated by the query point q. In preprocessing, we compute the sequence of layers of S, denoted (/~1,-.-,/ 'p). 

These layers are subsets of S obtained by removing the minima of S, computing the new set of minima, removing it and 

so forth. Let •(S) denote the set of minima of 8. The following algorithm provides a formal definition of layers, as well a 

method for computing them. 

298 



i~--0 
while S # 

begin  
i* - - i+1 
£~ . -  ~(s) 
S.--S-£~ 

end 
p.--i 

Kung et al {KLP] have shown how to compute the minima of a set of n points in E a in 0 ( .  log . )  time. This leads to an 

O(n 2 log . )  time, O( . )  space algorithm for computing the layers of S. This can be improved by resorting to a simpler, but 

more space-consuming technique. Set up a directed graph over the points of S by placing an edge from pi to pj iff pl -< Pi. 

Removing all the sources of the graph gives ~,  and iterating on this process gives /~2,..., ~p in O(r~ 2) time and space. We 

omit the details. 

Lemma  6. For any i (I < i < p), S q N ~ + ,  • ~ implies .qqN~ # ~. 

Proof: Each point p in ~;+, dominates at least one point in ~i. | 

From Lemms 6 ,  a possible line of attack follows trivially. We apply the result of Lemma 5 to LI, ~2, . . .  in turn, until 

we fail to report any point in ,.qq, at which stage the algorithm terminates. This leads to 

Theorem 7. Let S be a set o f .  points in E 3. In 0 ( .  2) preprocessing, it is possible to construct an O(n) space data 

structure so that domination searching w.r.t. S can be done in O(klogn) query time (k = output size). 

I I )  - A More E/Bcient Algorithm 

We next show how a recursive strategy allows us to take the running time of the previous solution down to O(k+log 2 n). 

To be rigorous, this transformation constitutes an improvement only for values of k = n(log . ) .  Before proceeding with the 

description of the algorithm, we need to make a short digression. Let V be a set o f .  points in E ~, with each point being 

a minimum. Let Vq = {v 6 V I ~ "< q} be defined for any point q E E 2. Domination search in two dimensions calls for 

computing Vq efficiently, given any query point q. Of course, this problem can be solved optimally by application of Lemma 

5.  A much simpler solution is based on the following remark. Let V = {vl , . . . ,  tJ.} be given by increasing z-coordinates. 

The points of V~ always form a contiguous chain (possibly empty) of the form {v~, V~+l,-.., oj}. Computing Vq can be done 

in optimal O(] - i + l o g . )  time by searching for qz in V (regarded for this purpose as s dictionary of z-coordinates). 

Observat ion  8. Let S be a set of . points in E 2, all of which are minims. In O(nlogn) preprocessing, it is possible to 

construct an 0 ( . )  space data structure so that domination searching can be done in O(k + l o g . )  query time (k = output 

size). Answering s query essentially involves searching for an item in a dictionary. 

This last remark about the reduction of domination search in E 2 to a simple dictionary look-up is of great importance, 

as will be apparent below. Let's go back to our original problem, i.e. domination search in E s. 

The data structure, denoted D(S), is a binary tree defined recursively as follows: 

1. If S = ~ then D(S) is the empty tree. 
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2. Otherwise, let S* be the projection of S onto the yz-plane. We define P as the set of minima of S*, i.e. P = {p E S* [ 

q ~ p for all q ~ `9" - {p}}, and M -- {p = (pffi, Pv, P,) e ,-q I (P,, Pv) E P} (clearly, M is a set of minima in E3). It is then 

possible to build the data structures of Lemma 5 and Observation 8 for M and P, respectively, which we denote II(S) 

and E{S). Both data structures are assigned to the root r of D(S). Define V = ,9- M and let (p~ .... ,p~J be the 

sequence of points in V sorted by increasing x-coordinates. Let l = [m/2J, VI = {pi~,--. ,p~,}, and V2 - {Pi,+~,..- ,P~). 

D(VI) (resp. D(V2)) is assigned the left (reap. right) subtree of r. Since each point of .q is represented only twice in T, 

the storage required for the entire data structure is clearly O(n). The data structures E and H will be referred to later 

on as the eas~/and hard structures, respectively. We are now ready to describe the query algorithm. 

Step I: In O(log n) time, retrieve the nodes of T that canonically decompose (-co, qz]- To do so, use T as a search tree to 

locate the leaf corresponding to p~ s.t. z~ _< q= < x~+1. Let vl,...,vh be the corresponding search path; vl is the root and 

u~, is the leaf that stores p((Fig.5). 

Step 2: Query the hard structure at each v( (1 _< ~ _< h). 

Step $: Let W" be the sequence of left children of (v1,...,uh-1) that are net nodes of the search path (this sequence is 

obtained by tracing the search path and recording the left child of each node witnessing a right turn -- see square nodes in 

Fig.5). Mark every node of IV. 

Step  4: While T has marked nodes, pick any, unmark it, and query its easy structure. If this leads to any report, mark its 

children (if any). 

The correctness of the algorithm is based on a number of observations, simple enough to have their proofs omitted. 

1. All the points in Sq are stored in v l , . . . , vh  and in the subtrees rooted at the nodes of W. 

2. With respect to the subset of S associated with any node that is either in 14/ or is a descendent of a node in W, the 

problem to be solved is equivalent to domination search in a set of minima in E ~. 

3. If the easy structure at v fails to report any point, no point stored in any descendant of v lies in .qq. 

Let Tq be the subtree of T visited during the computation and let k -- ISql be the output size. The algorithm takes 

O(log2n + klogn) time, since 1) every node visited that is neither a leaf of Tq nor of the form uy contributes at least 

one distinct entry to Se; 2) each node visited requires O(logn) search time; 3) the number of nodes vy is O(log,~). This 

disappointing performance can be improved by exploiting the last remark of Observation 8. For the sake of clarity, a little 

background is necessary. 

The notion of fractional cascading, developed in [CG], is concerned with the problem of batching repeated binary 

searches. Let G be a connected graph whose maximum degree is bounded by a constant. With each node t0 E G is associated 

a dictionary D(w) (i.e. an array of sorted numbers). Let rn be the total size of all the dictionaries. F~actional cascading is a 

method for preprocesslng G so that contiguous searches can be carried out in constant time. More precisely, if x has to be 

searched in D(wl),.. i, D(wt), where for each i, wl is adjacent to some wy (j < i), this preprocessing allows us to do so in 

O(logm) time for D(tul) and then O(1) time for each of the others, D(t~) .... , D(wz). The interesting feature of fractional 

cascading is that its application increases the original size of the data structure by at most a constant factor. We also mention 

that the preprocessing can be done in linear time. The relevance of fractional cascading to the problem at hand is immediate. 

Since the easy structures are handled via a simple dictionary search, fractional cascading will allow us to handle all of them 
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in O(k) time after O(log n) preliminary work. Incidentally, note that the graph spanned by the nodes in W and their visited 

descendents is not connected, but these nodes together with all nodes in V do form a connected subgraph. Consequently, the 

fractional cascading scheme will have to visit the easy structures in V as well, in order to ensure the connectivity condition. 

This is not a problem, however, since there are only O(logn) such nodes, hence O(logn) spurious visits, at unit cost each. 

The preprocessing takes O(nlog 2 n) time, since each node requires O(plogp) steps, where p is the number of points stored 

in the subtree of the node. We conclude. 

T heo r e m  9. Let S be a set of n points in E °. In O(nlog 2 n) preprocessing, it is possible to construct an O(n) space data 

structure so that domination searching w.r.t. S can be done in O(k + log 2 n) query time (k = output sise). 

It is possible to generalize Theorems 7 and 9 to higher dimensions. Every increase of one in dimension will result in 

the introduction of a factor of log n in both space and search time. The technique involves a canonical decomposition of the 

query into O(log n) queries of lesser dimensionality. The technique is due to Bentley [B]. It is standard and has been applied 

before on such numerous occasions that we will dispense with any further explanation. 

T he o r e m  10. Let ~q be a set of n points in E d (d > 2). In O(nlogd- ln)  (reap. O(n2)) preprocessing, it is possible to 

construct an O(n log d-3 n) space data structure so that domination searching w.r.t. ,q can be done in O(k ÷ log d-z n) (resp. 

O(logd-2n + klogn)) query time (k = output sise). 
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