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Abstract 
 

Cryptographic processing is a critical component of 
secure networked computing systems.  The protection 
offered by cryptographic processing, however, greatly 
depends on the methods employed to manage, store, and 
exercise a user’s cryptographic keys.  In general, 
software-only key management schemes contain numerous 
security weaknesses.  Thus, many systems protect keys 
with distributed protocols or supplementary hardware 
devices, such as smart cards and cryptographic 
coprocessors.  However, these key protection mechanisms 
suffer from combinations of user inconvenience, 
inflexibility, performance penalties, and high cost. 

In this paper, we propose architectural enhancements 
for general-purpose processors that protect core secrets 
by facilitating virtual secure coprocessing (VSCoP).  We 
describe modest hardware modifications and a trusted 
software library that allow common computing devices to 
perform flexible, high-performance, and protected 
cryptographic computation.  The hardware additions 
include a small key store in the processor, encryption 
engines at the cache-memory interface, a few new 
instructions, and minor hardware platform modifications.  
With these enhancements, users can store, transport, and 
employ their secret keys to safely complete cryptographic 
operations in the presence of insecure software.  In 
addition, we provide a foundation with which users can 
more securely access their secret keys on any Internet-
connected computing device (that supports VSCoP) 
without requiring auxiliary hardware such as smart cards.     
 
1. Introduction 
  
Security systems generally employ cryptographic 
algorithms to provide many critical security functions such 
as confidentiality, integrity, authentication, and privacy.  
For example, various implementations of secure electronic 
voting, distributed data storage, and virtual private 
networks use encryption and related tools to achieve 
essential security goals.  The utility provided by most 
cryptographic operations is generally based upon the 
secrecy and integrity of small pieces of data known as 
cryptographic keys.  For the purposes of this paper, 

cryptographic keys may consist of any secret information 
used to perform a security service, such as AES keys [26], 
decryption exponents, passphrases, PINs, biometric data, 
and even credit card numbers.  We refer to a user’s 
collection of cryptographic keys as the user’s key ring.   

In common platforms such as personal computers, 
users often perform cryptographic operations in the clear.  
This means that the users temporarily or permanently store 
their secret keys and associated sensitive information in 
unprotected system RAM or other storage devices.  When 
a user exercises secret keys in the clear, an unauthorized 
party may inspect the contents of memory to obtain the 
secret key material.  Such system penetration can be 
realized by exploiting one of the numerous security 
vulnerabilities that occur in operating systems and 
application software [11, 30].  In addition, since the secret 
key is often a small quantity of information – perhaps only 
16 bytes in size – an attacker may expose and make use of 
the secret key faster than the user can react to an intrusion.   

Following secret key compromise, the user must 
initiate the painful process of revoking certificates, 
resetting PINs, changing passwords, etc.  If the user is 
unaware of such exposure or the user requires 
considerable time to complete the key revocation process, 
a malicious party can inflict significant damage.  Such 
damage may include irreversible disclosure of medical 
records, theft of private correspondence, and unauthorized 
access to copyrighted audio and video.  If cryptographic 
keys protect valuable assets such as online banking 
accounts, the results of key compromise can be truly 
devastating.   

The management and protection of cryptographic keys 
is therefore a critical component of secure computing 
systems.  Due to the numerous security vulnerabilities that 
continue to plague software, local software-only key 
protection techniques are unsatisfactory.  A software 
intrusion that exploits a common vulnerability may enable 
an attacker to remotely penetrate a network-connected 
device and expose keys that provide access to all of a 
user’s secrets and information.  Therefore, the most secure 
key management schemes involve a set of distributed hosts 
or a protected hardware device. However, existing 
hardware-based key protection mechanisms suffer from a 
variety of disadvantages, including high cost, inflexibility, 
and inconvenience to users. 



1.1. Our Proposal 
Master Key  

In this paper, we describe new architectural and software 
enhancements for general-purpose processors and 
platforms that protect users’ secrets.  With processor 
transistor counts approaching 1 billion, we believe that a 
small percentage of the transistor budget should be applied 
to improve security.  Our enhancements effectively enable 
the general-purpose processor to operate as a virtual 
secure coprocessor (VSCoP) when needed [23].  We 
identify a minimal set of protected registers, system states, 
and algorithms to enable secure and efficient key 
utilization and storage in the presence of insecure 
networks, application software, and operating systems.  
We define a Concealed Execution Mode (CEM) for 
general-purpose processors that protects computations 
involving users’ keys.  In addition, we describe a special 
trusted software library, the Cryptographic Operations 
Library (COL), which is used in the CEM to safely 
perform computation using secret keys.  To further 
improve the security offered by virtual secure 
coprocessing, we propose methods for securely 
transporting keys to protected storage within the processor 
for future use in the CEM.  The performance and 
implementation costs of our enhancements are modest.  
Users can employ concealed execution while 
simultaneously running non-secured threads on a system.  
Also, we only require low cost changes to the general-
purpose processor and the hardware platform.       

Our solution provides many benefits for individual 
users.  First and foremost, we provide high security.  Users 
can employ secret keys to perform computations on 
general-purpose platforms without leaking any sensitive 
key material to the insecure software and hardware 
environment.  We seek to ensure the security of all 
cryptographic keys, whereas some key management 
schemes only protect limited classes of keys such as RSA 
keys.  In addition, our system furnishes ubiquitous and 
convenient key access.  Users can securely access their 
cryptographic key ring from any network-enabled device 
(that contains our enhancements) without having to carry 
and use a smart card or other protected, auxiliary hardware 
devices.  VSCoP-enabled devices also do not need to be 
pre-authorized in order to securely utilize secret keys, as 
may be required in existing systems.  Furthermore, since 
the cryptographic operations that we provide to 
applications are implemented in software instead of 
hardware, the system can support a wide range of security 
functions.  Users also benefit from the higher performance 
of general-purpose processors as opposed to the low 
performance of constrained cryptographic processors 
found in smart cards and other cryptographic tokens. 
 
1.2. Outline 

  
The rest of the paper is organized as follows.  In Section 2, 
we describe our design approach and the high-level 
implications of our proposed solution.  In Section 3, we 

present the details of the virtual secure coprocessing 
implementation.  We describe the proposed processor, 
hardware platform, OS, and software features needed to 
achieve our security goals.  In Section 4, we explain how 
the enhanced hardware and system software can serve as a 
virtual secure coprocessor via user initialization, device 
initialization, and protected operation.  We investigate the 
performance impact of our proposal in Section 5.  In 
Section 6, we discuss prior related work, and we conclude 
in Section 7.   
 
2. Protecting Cryptographic Keys 
 
2.1.  Cryptographic Key Rings 
 
We now describe the characteristics and structure of a 
user’s cryptographic key ring.  Figure 1a shows an 
example of the hierarchical organization of a 
cryptographic key ring, which can potentially contain 
thousands of keys.  A key ring includes a single master 
key that is used to encrypt and authenticate the integrity of 
all of the first level keys, and thus the security of the key 
ring fundamentally depends on the measures taken to 
protect the master key.  In addition, since all the keys in a 
key ring are cryptographically protected by the master key, 
a user can deposit his key ring (minus the master key) in a 
publicly accessible network or storage device without 
risking key exposure or compromise. 

In this paper, we define master keys to be 128-bit keys 
for use in symmetric-key encryption or hashing 
algorithms.  Furthermore, we define this master key to be 
the output of a cryptographically-strong one-way hash of 
the user’s passphrase (although this could be 
supplemented with hardware token information in 
practice).  Hence, users should carefully select passphrases 
with sufficient entropy to thwart off-line attacks [31, pp. 
87-94]. 

Figure 1b depicts the data organization of an 
individual key.  Each key consists of a key identification 
number (KIN), the key’s parent KIN, an algorithm 
identifier, the key itself (in encrypted form), and the key 
hash.  The KIN is a non-secret 128-bit integer that 
uniquely identifies the key.  The key’s parent KIN is the 
identifier of the key used to encrypt and authenticate the 
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Figure 1.  (a) Key ring and (b) key structure 



current key, and the algorithm identifier specifies the 
algorithm (or set of algorithms) permitted to use the key.  
The key hash is the keyed cryptographic hash message 
authentication code (HMAC) for the entire key data 
structure (minus the key hash) that can be used to verify 
the integrity of the key.  This guards against adversaries 
that seek to forge and inject bogus keys into a user’s key 
ring.  Examples of algorithms that can be used to perform 
the encryption and hashing include AES and SHA-1, 
respectively [24]. 
 
2.2.  Our Approach 
 
Our goal is to secure the storage and utilization of a user’s 
secret keys on general-purpose platforms.  That is, we seek 
to defend keys against physical and software-based attacks 
that involve one or both of the following: 

 
• Unauthorized exposure or undetectable corruption of 

data that represents secret keys or that can be used to 
infer nontrivial information concerning secret keys 

• Undetectable corruption, unauthorized insertion, or 
unauthorized execution of code that directly performs 
computations on secret keys  

 
Because of increasing network connectivity and the 
escalation of software security vulnerabilities, remotely 
launched software attacks are our principal concern.  
Although we hope to prevent some physical attacks, our 
efforts are focused on software-based attacks.   

To achieve these security goals, we propose restricting 
the device security perimeter and modifying the traditional 
access control paradigm with respect to users’ 

cryptographic keys.  The security perimeter of a 
computing device is the boundary that separates the trusted 
domain from the untrusted environment.  We restrict the 
security perimeter for cryptographic keys in the system to 
the physical boundary of the general-purpose processor 
chip, as shown in Figure 2.  Memory that is off the 
processor chip, network interface cards, disks, buses, and 
any other peripherals will now be treated as being insecure 
and untrusted.  This change can prevent many physical 
probing attacks that occur outside of the processor, such as 
attempts to read sensitive information from system buses 
or from memory swap files stored on disks.    

In addition, we create a new disjoint region in the 
access control paradigm, as shown in Figure 3.  The new 
region consists of processor-protected secrets that are 
inaccessible to the OS kernel and application software.     
The OS and other software can only perform operations 
using the secrets through a special hardware/software 
interface, which is illustrated by the dotted lines in Figure 
3b.  The new region is not included within the kernel 
ellipse because operations that are permitted to execute 
within the new region do not require and should not be 
allowed to access all system information.  This change can 
prevent many software attacks that regularly circumvent 
software-based security mechanisms to expose secrets. 

Although trusted computing bases (TCBs) seek to 
achieve similar paradigm shifts for general software (e.g., 
[35]), they do not ensure special protection for users’ 
critical secrets.  That is, the compartmentalization features 
of TCBs can only provide the long-term protection of keys 
if all “trusted” software and hardware external to the 
processor proves to be perpetually impenetrable.  Our 
proposal does not rely on this critical assumption.    

(a) (b) 

Off-chip cache 

Processor Chip 

On-chip cache 

Main memory 

Disk

Other I/O

Network

Video

Off-chip cache

Processor Chip 

On-chip cache

Disk

Video

Network

Other I/OMain memory

Figure 2.  (a) Traditional and (b) proposed security perimeters for critical secrets 

 

Kernel 

Privileged 
software 

Unprivileged software Unprivileged software 

(a) (b) 

 
Privileged 
software 

Kernel Processor
Secrets 

Figure 3.  (a) Traditional and (b) proposed access control paradigms 



3.  Virtual Secure Coprocessing 
 
We realize the new access control paradigm and the new 
security perimeter for cryptographic keys by enabling what 
we call virtual secure coprocessing (VSCoP).  A virtual 
secure coprocessor is a general-purpose processor that 
functions as a secure coprocessor when needed.  We 
provide new processor architecture and software features 
that enable a user to safely employ cryptographic keys for 
a limited period of time in the presence of potentially 
insecure application software and operating systems.  By 
preventing unauthorized exposure or use of sensitive keys, 
VSCoP can enhance security and privacy for many 
applications.   
  We build the virtual secure coprocessor around two 
secrets stored within the general-purpose processor: the 
user secret and the device secret.  The user secret is the 
master key of the user’s cryptographic key ring and is 
maintained by the processor in special secured volatile 
memory for limited periods of time.  The device secret is 
used by the processor to perform a variety of security 
functions that enable protected storage and utilization of 
the user’s secret keys.  With OS, platform, and processor 
support, the two secrets can be used to enable the 
Concealed Execution Mode (CEM).  The CEM protects 
the execution of a special software library called the 
Cryptographic Operations Library (COL) that will be the 
only module in the system privileged to access a user’s 
cryptographic key ring.   

Invoking the Concealed Execution Mode does not 
require the suspension of ordinary threads.  Our proposal 
enables secure context switching between CEM and non-
CEM threads; multitasking capabilities are not sacrificed.  
In addition, the user can employ the CEM to securely 
perform cryptographic computations without the 
participation of an auxiliary hardware device such as a 
smart card.  A user’s secret keys are not bound to any 
particular device, so a user can successfully and securely 
employ his cryptographic key ring from any computing 
device without conducting a pre-authorization procedure. 

We now describe the architectural and software 
enhancements needed to enable virtual secure 
coprocessing. 
 
3.1. New Processor Features 
 
In the processor, we choose to enable concealed execution 
via dynamic memory protection rather than on-chip 
protected storage in order to avoid constraining the CEM 
to a limited memory space.  The processor architecture 
support required to implement the virtual secure 
coprocessor includes a few new registers in the processor 
chip, cryptographic engines at the cache-memory 
interface, new cache line flag bits, and a pseudorandom 
number generator (PRNG).  Figure 4 illustrates a typical 
processor with the new components shown in bold.  We 
assume that the processor die contains split first level (L1) 
data and instruction caches and a unified second level (L2) 
cache.  However, we could easily modify the system to 
support other configurations.   

First, we create special storage within the processor 
for the user and device secrets.  We implement a minimum 
of 4 new registers: the 128-bit Device Master Key, the 
128-bit User Master Key, the 256-bit PRNG seed, and the 
2-bit CEM Status register.  The system does not permit the 
contents of any of these four registers to exit the processor 
in unsecured (i.e., unencrypted and unauthenticated) form.  
Also, none of these register values are set at the factory; 
the register contents are defined by the user in the field.     

The master key of a user’s cryptographic key ring is 
stored in the User Master Key register.  The 2-bit CEM 
Status register consists of two 1-bit flags that indicate 
whether the CEM is in use for the current instruction 
stream and whether any thread on the system is currently 
employing the CEM.  We do not need or want to preserve 
these two registers in the device when power is turned off, 
so we implement these registers using volatile SRAM.  
When power is removed, the contents of these registers 
will be drained (i.e., cleared to zeroes).   

The Device Master Key, which is used to authenticate 
software and to protect memory, must be maintained in the 
processor when power is turned off.  The seed register for 
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the pseudorandom number generator must also be 
preserved when power is removed, for the processor does 
not have an existing mechanism for securely generating a 
random seed value for the PRNG that an attacker could not 
predict.  Thus, we use one of many possible non-volatile 
memory technologies to implement these two registers.  

The PRNG is used to enable secure context switching.  
Many pseudorandom number generators exist; we suggest 
applying AES encryption to generate a pseudorandom 
number using the 256-bit PRNG seed register similarly to 
the method described in [1]. 

The remaining processor enhancements support 
concealed execution of trusted COL software.  This 
involves verifying the authenticity of COL code as well as 
ensuring the secrecy and integrity of sensitive data.  The 
processor performs the hash verification of trusted COL 
code and protected data using a hardware-based hash 
engine as instructions enter the on-chip L2 cache from 
external caches or main memory.  We append to each 
cache line a keyed MAC of the memory address of the first 
word in the cache line, the secret Device Master Key, and 
the contents of the (data or instruction) cache line itself.  
This keyed MAC can be a 16-byte AES-CBC-MAC [24, 
26], which is an acronym for the Advanced Encryption 
Standard employed in cipher block chaining mode to 
produce a message authentication code.  The three inputs 
to the hash function serve to prevent unauthorized code or 
data transpositions within protected memory, to preclude 
hash forgeries, and to prevent the unauthorized 
modification of code and data, respectively.   

To reduce the overhead associated with embedding 
hash results in code and data, we compute hashes for 
entire cache lines rather than for individual bytes or words.  
Hence, for a processor with 64-byte cache lines, the hash 
message authentication code information increases code 
size by 25 percent.  In addition, we can implement an 
optional address translator in hardware that converts 
hashed code and data addresses to and from regular code 
addresses so programs are not required to accommodate 
the awkward 16-byte hash values.     

Upon verifying the instructions or data, the hash 
values are discarded rather than stored in the L1 or L2 
caches.  Assuming that we do not allow self-modifying 
code to execute in the Concealed Execution Mode, there is 
no need to maintain hash values within the processor chip 
or to re-verify code and data prior to use.  Hence, we 
discard hash values following verification, but we add a 
CEM Verified flag bit to each cache line that indicates 
whether the hash for that line has been validated.  During 
concealed execution, if fetched code or data does not 
possess a valid MAC, the processor can either throw an 
exception or simply exit the Concealed Execution Mode 
with an error condition.   

Sensitive data that leaves the processor chip during 
concealed execution is encrypted via the AES cipher [26] 
or some other symmetric-key encryption algorithm in 
cipher block chaining (CBC) mode [24].  Cache line 
encryption and decryption is performed at the processor 

boundary outside of the L2 cache using the Device Master 
Key.  We require another extra bit for each cache line, the 
CEM Secured bit, which indicates whether any of the 
current contents of the cache line contain sensitive 
information generated during concealed execution.  The 
processor sets a cache line’s CEM Secured bit when 
trusted software executes a write to secured memory or 
executes a load that fetches (and validates) a secured cache 
line from external memory.  If a cache line’s CEM 
Secured bit is set, the processor will prohibit non-CEM 
threads from accessing that cache line.  These two new bits 
per cache line, CEM Secured and CEM Verified, allow us 
to implement compartmentalized, secure memory in a 
simple and low-cost manner.  With these bits, we can 
partition the on-chip cache memory space into secured and 
non-secured memory very flexibly and inexpensively on a 
cache line basis. 

There exist attacks on external memory that remain to 
be addressed: secured data replay attacks.  In some 
situations, an adversary may replace encrypted data and its 
associated hash value (that has been evicted from the 
processor) in external memory with legitimate but stale 
encrypted data and an associated stale hash from previous 
concealed execution operations.  When the encrypted data 
is pulled back into the processor, the processor as it is 
currently defined cannot differentiate the stale hash from 
the fresh hash. There are many solutions to this problem 
that experience varying degrees of security and 
implementation cost [23].  For example, the memory 
authentication system presented in [15], which is based 
upon Merkle hash trees, could be cleanly integrated with 
our proposal to protect against such replay attacks.  

Furthermore, an attacker could benefit from 
knowledge of the sequence of instructions fetched during 
concealed execution.  Hence, while in the CEM, we shield 
the value of the program counter and any other 
information related to instruction sequence from external 
observation.  We achieve this goal by never allowing such 
sensitive information to reach the processor package’s pins 
while in the Concealed Execution Mode.  In addition, we 
must disable testing scan chains and other processor 
hardware debugging features that may dump secret 
information from the processor during CEM execution.  
There are many inexpensive ways to realize this goal, 
including blowing fuses in the processor directly following 
factory testing.  

The hash engine, encryption engine, and the PRNG 
can all be implemented using a single AES module, which 
requires as few as 25,000 gates [2].  The four new 
processor registers consume only 514 bits of register 
storage with read and write control.  Also, the additional 
cache line flag bits do not significantly increase the size of 
the cache memories.  In a processor with 64-byte cache 
lines, the new cache line flag bits increase storage 
requirements by less than 1%.  Hence, with the possible 
exception of the non-volatile memory required for two of 
the registers, the implementation complexity is small.   
  



3.2. New Hardware Platform Features 
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The processor additions facilitate most of the concealed 
execution functionality, but the platform assists in moving 
secrets to/from the processor using simple new features.  

Upon receiving a used or new device, one should reset 
the device secrets in order to guarantee that neither the 
factory nor a previous owner will have knowledge of the 
PRNG seed or the Device Master Key used to protect a 
new user’s secrets.  Also, for similar reasons, before 
transferring the device to an untrusted party, it would be 
desirable to reset the device secrets to zeroes.  Thus, we 
must provide support for resetting the Device Master Key 
and the PRNG seed in the processor.   

However, this feature should be tied to a physical 
action in order to prevent a software attacker from 
replacing the Device Master Key with one used to 
authenticate a malicious COL that could expose user key 
bits.  We can prevent such an attack by implementing a 
physical “Device Reset” button (similar to that of many 
PDAs) that must be physically pressed while the device is 
turned on in order to reset the Device Master Key and 
PRNG seed registers in the processor to zeroes.  The 
platform can confirm a successful reset by illuminating a 
new VSCoP Status Light (or LED) on the exterior of the 
device to “red” when the device secrets equal zero.  Upon 
writing new values to the device secret registers, which the 
processor will only permit to occur after the device secrets 
have been physically reset, the VSCoP Status Light is set 
to “blue”.  Note that only the platform hardware (and not 
any software) can to respond to the Device Reset button or 
influence the VSCoP status light.  

The hardware platform (rather than the potentially 
insecure OS) also assumes responsibility for gathering and 
hashing the user authentication information to generate the 
User Master Key.  During user authentication, the platform 
temporarily prevents keyboard or similar input from 
reaching OS I/O buffers.  Instead, the platform sends these 
user inputs (e.g., a passphrase) directly to the processor 
chip.  The processor then hashes the information to obtain 
the user’s master key.  A user initiates this procedure by 
pressing a special “Authenticate” button on the device.  
While the user authentication information is being 
inputted, the VSCoP Status Light blinks “green”, and after 
the operation is complete, the platform turns the Status 
Light to a solid green to indicate that user authentication 
information is loaded into the processor. 

Although the platform hardware can inform the OS 
that the user is entering authentication information, the 
hardware should not allow any software to intercept this 
authentication data.  Hence, we avoid man-in-the middle 
attacks from malicious or corrupted kernels.  However, we 
do not prevent more complex physical attacks in which an 
adversary steals a device, installs a sniffer that can 
intercept user authentication information at the hardware 
level, and then returns the device to the oblivious user.    

After a user has used his keys to complete a particular 
task (such as a remote electronic vote), the user may wish 
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n Function 

m 
Enters the CEM.  CEM Status register bits are set 
to 1’s.  All subsequently fetched instructions are 
cryptographically validated before execution.   

 
Exits the CEM.  CEM-secured cache lines 
invalidated; general-purpose registers are reset to 
zeroes.  CEM Status bits are reset. 

e 
Stores a 64-bit datum to secured memory.  The 
CEM Secured cache line bits are set for every 
cache line touched by this instruction.   

d 
Loads a 64-bit datum from secured memory.  The 
CEM Secured cache line bits are checked to 
guarantee the integrity and secrecy of the data.   

_mv
Transfers information from a register to 
individually addressable 64-bit chunks of the 
Device Master Key and the PRNG seed. 

mv 
Transfers 64-bit blocks of information to a register 
from individually addressable 64-bit chunks of the 

User Master Key. 
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This allows the system to avoid complexities caused by 
sharing secured memory.  All instructions that enter the 
processor following the execution of begin_cem are 
cryptographically validated using the Device Master Key 
or a fresh session key.   

int Encrypt(input, output, isize, osize, mode,   
        keyring, KIN, algorithm, initial_info) 
int KeyedHash(input, output, isize, osize, KIN, 
        keyring, mode, algorithm, initial_info) 
int AddKeyToRing(algorithm, parent, KIN,  
        keyring, initial_info, output, osize) 

In the CEM, privileged software can securely transfer 
data to and from memory using the cem_load and 
cem_store instructions.  These instructions prevent 
spoofing or exposure of data using the processor’s hash 
engine, encryption engine, and the new cache line flag 
bits.  Note that programs running in the Concealed 
Execution Mode can also complete unsecured memory 
loads and stores, which are essential for transferring the 
inputs and results of the cryptographic function from and 
to the relevant software application.  For example, an 
encryption function running in the CEM must possess the 
ability to access unencrypted source data from the 
unsecured data memory space of the calling application in 
order to complete the encryption operation. 

Figure 5.  Example functions in the COL API 

Upon completion of a COL function, the COL 
executes the end_cem instruction to exit the CEM.  At 
this time, all of the general-purpose register values 
associated with the CEM instruction stream are reset to 
zeroes, and the CEM Status register is reset to 0.  Cache 
lines that contain secured CEM data are invalidated using 
existing cache line flags to prohibit reuse of results from 
previous CEM invocations.  Alternatively, cache line 
contents could be cleared to zeroes for extra security. 
 
3.4. OS Support 

 
To enable virtual secure coprocessing, we must implement 
minor changes to the operating system.  We do not wish to 
suspend the execution of other processes while a CEM 
function is executing, so we must provide support for 
secure OS context switching.  We secure such preemptive 
context switches by using the CEM Status registers, the 
PRNG, and the on-chip encryption and hash engines [23].  
The PRNG is employed to generate a session key that 
encrypts and authenticates the sensitive context before 
evicting it to memory.  Note that if we were to employ the 
same session key to encrypt the registers for every CEM 
context switch, the system would be vulnerable to data 
replay attacks.  When a new key is requested from the 
PRNG, the processor writes a new value to the PRNG seed 
register that is a nonlinear function of the original seed.  
Then, the new seed is used to generate the session key.  

The OS should enable users to access their encrypted 
key rings from remote storage, i.e., provide a mechanism 
for fetching an encrypted key ring over a network and 
delivering that encrypted data to the virtual secure 
coprocessor.  Also, since we only allow one process to 
employ the CEM at a given time, we must implement an 
OS mechanism for queuing CEM requests in order to 
avoid possible CEM contention between processes.  The 
Cryptographic Operations Library, which is the only 
library that is permitted to use the CEM, does not include 
routines that consume unbounded processing time.  Hence, 

deadlock will not occur in processes that are waiting for 
another process to relinquish the CEM.  Note related 
proposals and devices, such as the IBM secure 
coprocessors [32], also require that secure execution 
requests be performed serially.    

 
3.5. Software Support 
 
Most legacy application code does not need to be changed 
to implement VSCoP.  Only applications that wish to 
invoke the CEM would possibly need to be modified to 
call the Cryptographic Operations Library (COL). 

The COL is a trusted, shared code module that 
applications can employ to securely perform cryptographic 
procedures with a user’s secret keys.  This library is the 
only software that is authenticated using the Device 
Master Key and permitted to employ the Concealed 
Execution Mode.  We envision the COL as being an 
operating system component, but application software 
developers could certainly develop and distribute this 
library as well.  

We list a few functions from the COL API in Figure 
5.  The COL API is structured similarly to PKCS # 11, the 
Cryptographic Token Interface Standard [29].  A software 
application could interpret the COL API like the PKCS 
#11 interface: entry points to procedures implemented by a 
hardware device.  The COL also contains functions that 
allow an application to generate and add keys to the user 
key ring.  Let us consider the high-level operation of the 
COL function Encrypt.  When a software application 
calls Encrypt, the program jumps to the appropriate 
function and enters the Concealed Execution Mode.  
Starting with the master key stored in the processor, the 
COL traverses the cryptographic key ring until the desired 
user key is decrypted and authenticated.  The COL then 
applies that key to perform the desired encryption 
operation on the input data, and the result is copied to the 
memory range specified by the output data pointer.  Upon 
completion, the COL will terminate concealed execution, 
and control will be returned to the calling application.   

The COL functions must be constructed carefully to 
avoid leaking any keys or sensitive intermediate 
information [9].  The function will fail gracefully if, for 
example, a buffer address points to unallocated memory, 
the key is not authorized for use in the algorithm specified 
in the function call, or the key integrity check fails.  By 
“fail gracefully,” we mean that the COL will return an 
error condition without crashing or revealing secret 
information.  To simplify the necessary architectural 
support and eliminate certain security vulnerabilities, we 
require that the COL be entirely self-contained.  That is, 



the COL cannot call a function in external library, and the 
COL cannot make any system calls to the kernel.  This 
means that all necessary libraries must be statically linked 
into the COL at compile-time.  In addition, the COL must 
statically allocate any memory that may ultimately be 
required to securely store intermediate data variables.  

Also, while a user master key is loaded into the 
processor, it is conceivable that an attacker could 
compromise the operating system and then attempt to 
instruct the COL to perform cryptographic computation 
with secret keys (although an attacker cannot obtain the 
actual key values).  To provide added protection against 
such malicious code execution that may occur between the 
loading and the clearing of the user master key, VSCoP 
can be integrated with the attestation, secure booting, and 
general code verification techniques provided by proposed 
trusted computing bases (e.g., [19, 25, 35]).  
 
4. Applying VSCoP 
 
We now provide a summary of the steps involved in 
applying the new enhancements to protect secret keys.  We 
define three major steps: device initialization, user 
initialization, and protected operation.   

Device Initialization.  Device initialization occurs 
when a user first obtains a computing device containing 
our proposed security features.  In this step, the user 
installs the Cryptographic Operations Library, the only 
software module that will be permitted to access users’ 
keys.  First, if the device secrets have not already been 
reset to zero by the factory or a previous user, the user 
presses the Device Reset button to wipe the device.  Note 
that the new user can employ a previously used device to 
securely store and utilize his cryptographic keys without 
the risk of exposing his secrets or previous users’ secrets.  
Next, the installation procedure writes new random values 
to the Device Master Key and PRNG seed registers.   

At this point, the user verifies the authenticity of the 
COL by checking its digital signature using software-
based Public Key Infrastructure (PKI) techniques.  Then, 
the COL is signed using the Device Master Key via a 
keyed MAC.  Note that PKI and asymmetric encryption 
techniques are not implemented in hardware and are not 
required by the Concealed Execution Mode; public-key 
operations are only employed in software at installation 
time.  During COL installation, a malicious OS kernel can 
interfere with the MAC generation process to facilitate the 
installation of a corrupted and dangerous COL.  To 
prevent such attacks, the user should only install the COL 
when the OS kernel is guaranteed to be uncompromised.  
This condition is difficult to satisfy at arbitrary times, so it 
is most prudent to install the COL immediately following 
or during the installation of a validated OS kernel.  

User Initialization.  User initialization occurs when a 
user creates a new cryptographic key ring with an 
initialized device.  This operation simply involves 
selecting a master key for the key ring, which is the output 
of a cryptographically strong one-way hash of a user-

supplied passphrase.  As keys are added to the ring, a user 
can store his encrypted key ring locally or remotely.  By 
depositing the key ring in on-line accessible storage, the 
user can access his secret keys and perform protected 
computations on any VSCoP-enabled networked device. 

Protected Operation.  Protected operation is the 
process in which an initialized user securely employs a 
secret key in an initialized device.  This process begins 
with a user securely inputting his passphrase into the 
device.  The system hardware then computes the user’s 
master key and stores the result as the user secret.   

Next, when a software application needs to perform a 
cryptographic operation that involves one of the user’s 
secret keys, the application makes an appropriate call to a 
function in the Cryptographic Operations Library as if it 
were an interface to a secure coprocessor.  Thereupon, the 
processor verifies the integrity of the COL using the 
device secret.  We note that we do not need to ensure the 
secrecy of individual library instructions, as the library 
routines are not confidential.  If verification is successful, 
the processor enters the Concealed Execution Mode and 
begins executing instructions in the called COL routine.  
In order to prevent a potential attacker from exposing any 
user secrets during the CEM, the processor maintains the 
secrecy and integrity of all sensitive data that is available 
to other processes or is released from the processor chip.  

After a user has completed an operation that requires 
the use of his key ring, the user can elect to clear the 
device of all information related to his secret keys by 
pressing the Authenticate button. 
 
5. Performance Analysis 
 
The performance impact of our proposal is negligible for 
software packages that do not employ the Cryptographic 
Operations Library.  However, performance changes may 
be experienced by programs (such as SSL and secure 
storage software) that employ user key rings with the 
COL.  In such software, performance degradation may 
occur due to the increased quantity and costs of memory 
accesses during COL operations.  By hashing and possibly 
encrypting/decrypting some information at the processor 
boundary, we add latency to external memory accesses.   

It is important to note that since the COL only 
contains cryptographic functions, we only need to evaluate 
performance degradation associated with those 
cryptographic functions.  Thus, we obtain performance 
statistics by simulating the execution of common 
cryptographic routines in the Concealed Execution Mode: 
the RSA encryption algorithm [28], the AES encryption 
algorithm [26], and the MD5 one-way hash function [27].  

To obtain the results, we use a modified version of the 
SimpleScalar cycle-accurate superscalar processor 
simulator [10].  The processor model is based upon the 
enhanced processor and memory system described in 
Section 3.  We implement the benchmarks in C and 
compile for the Alpha instruction set architecture using 
gcc with the –O2 optimization flag.  During execution, 



we provide the benchmarks with 1 megabyte of input data 
to be encrypted or hashed.  We conduct simulations for a 
4-way superscalar processor with 64 KB 1-cycle L1 
instruction cache, a 64 KB 2-cycle L1 data cache, and a 2 
MB 12-cycle unified L2 cache.  The initial external 
memory access latency is 100 cycles, and the memory bus 
can transfer 8 bytes every 4 cycles.      

80 bytes from off-chip memory: 

We model our proposed enhancements to the interface 
between the L2 cache and external memory as follows.  
We use 128-bit AES-CBC to enable data 
encryption/decryption and 128-bit AES-CBC-MAC to 
provide code and data authentication [24, 26].  The AES-
CBC encryption and decryption of 64-byte cache lines can 
be completed with 4 serial AES operations and 4 parallel 
AES operations, respectively.  The initialization vector 
(IV) is equivalent to the address of the cache line.  MAC 
computation for authenticating both 64-byte instruction 
and data cache lines requires a latency of 5 AES 
operations.  We use 5 rather than 4 AES operations to 
compute the MAC in order to properly hash all four 16-
byte blocks of the cache line as well as the 8-byte address 
of the cache line.  The AES encryption of a 16-byte datum 
requires 10 rounds of work, and we conservatively 
estimate that one AES round can be completed in at most 
two processor cycles.  Hence, the total latencies involved 
in encryption/decryption and MAC computation are at 
most 80 and 100 cycles, respectively.   

We can parallelize the processing of the 
encryption/decryption and MAC calculation to improve 
performance.  As shown in Figure 6, for secure data cache 
line loads, the decryption can be performed in parallel with 
the MAC computation without incurring any additional 
latency.  Secure data cache line stores operate similarly to 
data cache line loads, but the first 16-byte AES encryption 
operation must be completed before the MAC computation 
begins.  The remaining encryption operations can be 
completed in parallel with the MAC operations.  The 
processing time of secure loads and secure stores is 
therefore equivalent to 5 and 6 serial AES operations, 
respectively.  Authenticated instruction cache line loads 
simply require a complete MAC computation, so the added 
latency is 5 serial AES operations.  Hence, the maximum 
external memory access penalties incurred by VSCoP (per 
64-byte cache line) for secure data loads, secure data 
stores, and authenticated instruction loads are 100, 120, 
and 100 cycles, respectively.   

Despite the increase in external memory access 
latencies, our simulations show that the performance 
impact of the proposed enhancements for the benchmark 
programs is negligible (i.e., less than 1%) when using the 
memory parameters described above.  This results from 
the fact that secured data employed by the benchmarks is 
rarely evicted to external memory; most external memory 
activity involves unsecured data.  Also, the number of 
static instructions employed by the benchmarks is modest, 
so the number of instruction fetches (and subsequent 
authentications) from external memory is relatively low.   

 

6. Related Work 
 
Researchers have proposed several hardware and software 
techniques for protecting cryptographic keys against 
unauthorized observation, modification, and use.  We 
summarize prior work concerning distributed software-
based and hardware-based key management schemes.  
Some techniques protect vendors and content providers 
from copyright violations and software piracy in untrusted 
hosts, whereas other techniques protect users from 
physical theft and attacks by malicious code.   

Unlike VSCoP, no related work facilities the high-
performance and secure utilization of key rings from any 
Internet-connected device; enables a wide array of 
cryptographic techniques; avoids the use of potentially 
expensive, auxiliary devices such as coprocessors, smart 
cards, or sets of servers; and provides strong protection for 
keys while in storage and use.  
 
6.1. Software-based Techniques 
 
Distributed software-only approaches seek to protect 
certain types of cryptographic keys by requiring an 
adversary to quickly compromise several hosts or by 
enabling effective revocation mechanisms when key 
information is exposed.  Some proposals allow a user to 
reconstruct cryptographic keys directly preceding use by 
engaging in a secure protocol that involves the 
participation of several servers (e.g., [13, 14]).  In other 
solutions, users can perform certain cryptographic 
operations that employ secret keys with the aid of 
untrusted servers; when a client device or an untrusted 
server is compromised, the secret keys can be disabled 
(e.g., [22]).  These and other distributed schemes can 
effectively defend against certain attacks that involve 
limited classes and types of keys.  
 
6.2. Cryptographic Coprocessors and Tokens 
 
One of the first proposals to suggest using physically 
secure hardware processing devices to enable security 
features unattainable by software-only techniques was 
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presented in [7].  Since that time, researchers have 
proposed a rich variety of applications and architectures 
for such hardware (e.g., [17, 36]).  These physically secure 
devices perform cryptographic operations and other 
services using secret information that cannot be extracted 
from the hardware device.  Examples of such devices 
include highly fortified cryptographic modules and 
cryptographic smart cards.  

The IBM secure coprocessor boards are high-end 
tamper-resistant hardware modules that perform 
cryptographic operations (using secret keys), secure 
booting, and secure program loading for applications 
requiring a high level of security such as banking systems 
[12, 32, 33].  These products offer exceptional physical 
security for cryptographic keys, but they are too costly, 
inconvenient, and bulky for mobile computers and 
information appliances.  

Extremely low-cost, portable alternatives to 
cryptoprocessors and secure coprocessors are 
cryptographic tokens.  These devices include smart cards, 
PDAs [6], and other small, physically tamper-resistant 
hardware components [3].  Some tokens simply protect 
user secrets by requiring a password to access the 
information stored within the token, and other tokens 
perform cryptographic operations using the stored secrets 
without leaking key information to the untrusted 
environment [3, 8].  These devices cannot provide the 
same degree of security as powerful cryptoprocessors, but 
they cost much less and they facilitate increased user 
convenience.  However, these devices have restricted 
capabilities: performance can be poor and the number of 
supported cryptographic operations and protocols is often 
limited.  Also, physical tamper resistance is difficult to 
implement at low costs [4, 20].   

 
6.3. Trusted Computing Bases 
 
As currently defined, trusted computing bases (TCBs) only 
provide limited protection for user cryptographic keys.  
The Trusted Computing Group (TCG) [35], which was 
formerly known as the Trusted Computing Platform 
Alliance, Intel’s LaGrande Technology (LT) [18], and 
ARM’s TrustZone technology [5] seek to provide a trusted 
hardware base for many types of computing devices.  
These technologies support varying degrees of system 
attestation, limited protection of user secrets and inputs, 
secure booting, and process isolation.  In these systems 
secret information that is inaccessible to the end user is 
embedded in tamper-resistant hardware modules such as 
on-board cryptographic coprocessors or general-purpose 
processors.  Microsoft’s Next Generation Secure 
Computing Base (NGSCB) [25], formerly known as 
Palladium, seeks to provide resources for secure (i.e., 
validated and isolated) code execution via trusted 
hardware computing bases.  With such operating system 
support, a trusted device can complete operations such as 
verifying the integrity of installed software and preventing 
unauthorized access to copyrighted media and code. 

 A user can employ certain resources provided by 
TCBs to encrypt a sensitive key for storage, but keys must 
be used on in the clear in a single pre-specified device to 
perform computations.  Although the TCB may ensure that 
cryptographic keys are only released to trusted 
environments, these trusted environments might not be 
secure.  That is, “trusted” does not imply “dependable”, 
and the trusted software environment is vulnerable to 
software bugs that could lead to the unauthorized exposure 
of sensitive cryptographic keys.  Such bugs in kernel and 
application software are inevitable and can enable the 
complete subversion of the TCB mechanisms that provide 
limited protection for user secrets.   

In addition, most TCBs do not defend against 
hardware-based attacks.  For instance, by physically 
monitoring and/or modifying data in the system buses and 
main memory, some security features of the trusted 
computing bases can be defeated.  The Aegis project [34] 
seeks to address this problem by cryptographically 
protecting certain code and data that enters or exits the 
general-purpose processor.  

We emphasize that our proposal is not designed to 
replace TCB components.  By enabling additional 
protection for the most sensitive pieces of information 
(i.e., cryptographic keys), our solution complements rather 
than supplants the security services provided by these 
systems.  TCB services, such as secure bootup and 
attestation, are essential to achieving robust system 
security, and therefore our solution should enhance rather 
than replace TCBs. 
 
6.4. General-purpose Architecture for Secure 
Computation 
 
Techniques for incorporating cryptographic functionality 
into general-purpose processor architecture have also been 
proposed.  Recent work has addressed processor-based 
mechanisms for authenticating trusted software and 
verifying the integrity of physical memory [15, 19, 34].  In 
addition, by adding encryption and data authentication 
capabilities to general-purpose processors, it is possible to 
enable shielded program execution [16, 21, 34].  Such 
systems, e.g., eXecute Only Memory (XOM), preclude 
unauthorized modification and observation of software by 
unsecured or untrusted components outside of the 
processor chip.  This involves obfuscating and 
authenticating instructions and program dataflow.   

The primary objective of shielded execution in XOM 
and related proposals is the prevention of software 
tampering and of valuable proprietary code exposure.  
Whereas XOM enables external parties to protect sensitive 
information when the external parties’ software is being 
employed on an untrusted user's machine, our proposal 
enables a user to protect his secret information on his 
machine from external parties.  Although some 
components of these proposals and our solution overlap, 
they differ in fundamental design goals, benefits to users, 
and several implementation issues. 



7.  Conclusion 
 
The protection of cryptographic keys is essential for 
network, computer, and storage security.  Many existing 
key protection solutions suffer from poor performance, 
inconvenience, high cost, and incomplete security.  We 
present a secure key management alternative for personal 
computing and embedded platforms through virtual secure 
coprocessing (VSCoP).  We describe architectural and 
software enhancements that provide flexible, efficient, and 
protected use of users’ cryptographic keys.  In future 
work, we will explore closer integration of VSCoP with 
proposed TCBs and software verification systems. 
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