
Protecting Cryptographic Keys and Computations
via Virtual Secure Coprocessing

John P. McGregor and Ruby B. Lee

Princeton Architecture Laboratory for Multimedia and Security (PALMS)
Department of Electrical Engineering

Princeton University
{mcgregor, rblee}@princeton.edu

 This work was supported in part by NSF CCR-0208946.

Abstract

Cryptographic processing is a critical component of
secure networked computing systems. The protection
offered by cryptographic processing, however, greatly
depends on the methods employed to manage, store, and
exercise a user’s cryptographic keys. In general,
software-only key management schemes contain numerous
security weaknesses. Thus, many systems protect keys
with distributed protocols or supplementary hardware
devices, such as smart cards and cryptographic
coprocessors. However, these key protection mechanisms
suffer from combinations of user inconvenience,
inflexibility, performance penalties, and high cost.

In this paper, we propose architectural enhancements
for general-purpose processors that protect core secrets
by facilitating virtual secure coprocessing (VSCoP). We
describe modest hardware modifications and a trusted
software library that allow common computing devices to
perform flexible, high-performance, and protected
cryptographic computation. The hardware additions
include a small key store in the processor, encryption
engines at the cache-memory interface, a few new
instructions, and minor hardware platform modifications.
With these enhancements, users can store, transport, and
employ their secret keys to safely complete cryptographic
operations in the presence of insecure software. In
addition, we provide a foundation with which users can
more securely access their secret keys on any Internet-
connected computing device (that supports VSCoP)
without requiring auxiliary hardware such as smart cards.

1. Introduction

Security systems generally employ cryptographic
algorithms to provide many critical security functions such
as confidentiality, integrity, authentication, and privacy.
For example, various implementations of secure electronic
voting, distributed data storage, and virtual private
networks use encryption and related tools to achieve
essential security goals. The utility provided by most
cryptographic operations is generally based upon the
secrecy and integrity of small pieces of data known as
cryptographic keys. For the purposes of this paper,

cryptographic keys may consist of any secret information
used to perform a security service, such as AES keys [26],
decryption exponents, passphrases, PINs, biometric data,
and even credit card numbers. We refer to a user’s
collection of cryptographic keys as the user’s key ring.

In common platforms such as personal computers,
users often perform cryptographic operations in the clear.
This means that the users temporarily or permanently store
their secret keys and associated sensitive information in
unprotected system RAM or other storage devices. When
a user exercises secret keys in the clear, an unauthorized
party may inspect the contents of memory to obtain the
secret key material. Such system penetration can be
realized by exploiting one of the numerous security
vulnerabilities that occur in operating systems and
application software [11, 30]. In addition, since the secret
key is often a small quantity of information – perhaps only
16 bytes in size – an attacker may expose and make use of
the secret key faster than the user can react to an intrusion.

Following secret key compromise, the user must
initiate the painful process of revoking certificates,
resetting PINs, changing passwords, etc. If the user is
unaware of such exposure or the user requires
considerable time to complete the key revocation process,
a malicious party can inflict significant damage. Such
damage may include irreversible disclosure of medical
records, theft of private correspondence, and unauthorized
access to copyrighted audio and video. If cryptographic
keys protect valuable assets such as online banking
accounts, the results of key compromise can be truly
devastating.

The management and protection of cryptographic keys
is therefore a critical component of secure computing
systems. Due to the numerous security vulnerabilities that
continue to plague software, local software-only key
protection techniques are unsatisfactory. A software
intrusion that exploits a common vulnerability may enable
an attacker to remotely penetrate a network-connected
device and expose keys that provide access to all of a
user’s secrets and information. Therefore, the most secure
key management schemes involve a set of distributed hosts
or a protected hardware device. However, existing
hardware-based key protection mechanisms suffer from a
variety of disadvantages, including high cost, inflexibility,
and inconvenience to users.

1.1. Our Proposal
Master Key

In this paper, we describe new architectural and software
enhancements for general-purpose processors and
platforms that protect users’ secrets. With processor
transistor counts approaching 1 billion, we believe that a
small percentage of the transistor budget should be applied
to improve security. Our enhancements effectively enable
the general-purpose processor to operate as a virtual
secure coprocessor (VSCoP) when needed [23]. We
identify a minimal set of protected registers, system states,
and algorithms to enable secure and efficient key
utilization and storage in the presence of insecure
networks, application software, and operating systems.
We define a Concealed Execution Mode (CEM) for
general-purpose processors that protects computations
involving users’ keys. In addition, we describe a special
trusted software library, the Cryptographic Operations
Library (COL), which is used in the CEM to safely
perform computation using secret keys. To further
improve the security offered by virtual secure
coprocessing, we propose methods for securely
transporting keys to protected storage within the processor
for future use in the CEM. The performance and
implementation costs of our enhancements are modest.
Users can employ concealed execution while
simultaneously running non-secured threads on a system.
Also, we only require low cost changes to the general-
purpose processor and the hardware platform.

Our solution provides many benefits for individual
users. First and foremost, we provide high security. Users
can employ secret keys to perform computations on
general-purpose platforms without leaking any sensitive
key material to the insecure software and hardware
environment. We seek to ensure the security of all
cryptographic keys, whereas some key management
schemes only protect limited classes of keys such as RSA
keys. In addition, our system furnishes ubiquitous and
convenient key access. Users can securely access their
cryptographic key ring from any network-enabled device
(that contains our enhancements) without having to carry
and use a smart card or other protected, auxiliary hardware
devices. VSCoP-enabled devices also do not need to be
pre-authorized in order to securely utilize secret keys, as
may be required in existing systems. Furthermore, since
the cryptographic operations that we provide to
applications are implemented in software instead of
hardware, the system can support a wide range of security
functions. Users also benefit from the higher performance
of general-purpose processors as opposed to the low
performance of constrained cryptographic processors
found in smart cards and other cryptographic tokens.

1.2. Outline

The rest of the paper is organized as follows. In Section 2,
we describe our design approach and the high-level
implications of our proposed solution. In Section 3, we

present the details of the virtual secure coprocessing
implementation. We describe the proposed processor,
hardware platform, OS, and software features needed to
achieve our security goals. In Section 4, we explain how
the enhanced hardware and system software can serve as a
virtual secure coprocessor via user initialization, device
initialization, and protected operation. We investigate the
performance impact of our proposal in Section 5. In
Section 6, we discuss prior related work, and we conclude
in Section 7.

2. Protecting Cryptographic Keys

2.1. Cryptographic Key Rings

We now describe the characteristics and structure of a
user’s cryptographic key ring. Figure 1a shows an
example of the hierarchical organization of a
cryptographic key ring, which can potentially contain
thousands of keys. A key ring includes a single master
key that is used to encrypt and authenticate the integrity of
all of the first level keys, and thus the security of the key
ring fundamentally depends on the measures taken to
protect the master key. In addition, since all the keys in a
key ring are cryptographically protected by the master key,
a user can deposit his key ring (minus the master key) in a
publicly accessible network or storage device without
risking key exposure or compromise.

In this paper, we define master keys to be 128-bit keys
for use in symmetric-key encryption or hashing
algorithms. Furthermore, we define this master key to be
the output of a cryptographically-strong one-way hash of
the user’s passphrase (although this could be
supplemented with hardware token information in
practice). Hence, users should carefully select passphrases
with sufficient entropy to thwart off-line attacks [31, pp.
87-94].

Figure 1b depicts the data organization of an
individual key. Each key consists of a key identification
number (KIN), the key’s parent KIN, an algorithm
identifier, the key itself (in encrypted form), and the key
hash. The KIN is a non-secret 128-bit integer that
uniquely identifies the key. The key’s parent KIN is the
identifier of the key used to encrypt and authenticate the

File Root
Key

PGP Private
Key

Banking
PIN

Directory
Key

File A Key File B Key

PGP Session
Key

KIN

Algorithm

Identifier(s)

Parent KIN

Key
Hash

Encrypted
Key

Material

(a) (b)
Figure 1. (a) Key ring and (b) key structure

current key, and the algorithm identifier specifies the
algorithm (or set of algorithms) permitted to use the key.
The key hash is the keyed cryptographic hash message
authentication code (HMAC) for the entire key data
structure (minus the key hash) that can be used to verify
the integrity of the key. This guards against adversaries
that seek to forge and inject bogus keys into a user’s key
ring. Examples of algorithms that can be used to perform
the encryption and hashing include AES and SHA-1,
respectively [24].

2.2. Our Approach

Our goal is to secure the storage and utilization of a user’s
secret keys on general-purpose platforms. That is, we seek
to defend keys against physical and software-based attacks
that involve one or both of the following:

• Unauthorized exposure or undetectable corruption of

data that represents secret keys or that can be used to
infer nontrivial information concerning secret keys

• Undetectable corruption, unauthorized insertion, or
unauthorized execution of code that directly performs
computations on secret keys

Because of increasing network connectivity and the
escalation of software security vulnerabilities, remotely
launched software attacks are our principal concern.
Although we hope to prevent some physical attacks, our
efforts are focused on software-based attacks.

To achieve these security goals, we propose restricting
the device security perimeter and modifying the traditional
access control paradigm with respect to users’

cryptographic keys. The security perimeter of a
computing device is the boundary that separates the trusted
domain from the untrusted environment. We restrict the
security perimeter for cryptographic keys in the system to
the physical boundary of the general-purpose processor
chip, as shown in Figure 2. Memory that is off the
processor chip, network interface cards, disks, buses, and
any other peripherals will now be treated as being insecure
and untrusted. This change can prevent many physical
probing attacks that occur outside of the processor, such as
attempts to read sensitive information from system buses
or from memory swap files stored on disks.

In addition, we create a new disjoint region in the
access control paradigm, as shown in Figure 3. The new
region consists of processor-protected secrets that are
inaccessible to the OS kernel and application software.
The OS and other software can only perform operations
using the secrets through a special hardware/software
interface, which is illustrated by the dotted lines in Figure
3b. The new region is not included within the kernel
ellipse because operations that are permitted to execute
within the new region do not require and should not be
allowed to access all system information. This change can
prevent many software attacks that regularly circumvent
software-based security mechanisms to expose secrets.

Although trusted computing bases (TCBs) seek to
achieve similar paradigm shifts for general software (e.g.,
[35]), they do not ensure special protection for users’
critical secrets. That is, the compartmentalization features
of TCBs can only provide the long-term protection of keys
if all “trusted” software and hardware external to the
processor proves to be perpetually impenetrable. Our
proposal does not rely on this critical assumption.

(a) (b)

Off-chip cache

Processor Chip

On-chip cache

Main memory

Disk

Other I/O

Network

Video

Off-chip cache

Processor Chip

On-chip cache

Disk

Video

Network

Other I/OMain memory

Figure 2. (a) Traditional and (b) proposed security perimeters for critical secrets

Kernel

Privileged
software

Unprivileged software Unprivileged software

(a) (b)

Privileged
software

Kernel Processor
Secrets

Figure 3. (a) Traditional and (b) proposed access control paradigms

3. Virtual Secure Coprocessing

We realize the new access control paradigm and the new
security perimeter for cryptographic keys by enabling what
we call virtual secure coprocessing (VSCoP). A virtual
secure coprocessor is a general-purpose processor that
functions as a secure coprocessor when needed. We
provide new processor architecture and software features
that enable a user to safely employ cryptographic keys for
a limited period of time in the presence of potentially
insecure application software and operating systems. By
preventing unauthorized exposure or use of sensitive keys,
VSCoP can enhance security and privacy for many
applications.
 We build the virtual secure coprocessor around two
secrets stored within the general-purpose processor: the
user secret and the device secret. The user secret is the
master key of the user’s cryptographic key ring and is
maintained by the processor in special secured volatile
memory for limited periods of time. The device secret is
used by the processor to perform a variety of security
functions that enable protected storage and utilization of
the user’s secret keys. With OS, platform, and processor
support, the two secrets can be used to enable the
Concealed Execution Mode (CEM). The CEM protects
the execution of a special software library called the
Cryptographic Operations Library (COL) that will be the
only module in the system privileged to access a user’s
cryptographic key ring.

Invoking the Concealed Execution Mode does not
require the suspension of ordinary threads. Our proposal
enables secure context switching between CEM and non-
CEM threads; multitasking capabilities are not sacrificed.
In addition, the user can employ the CEM to securely
perform cryptographic computations without the
participation of an auxiliary hardware device such as a
smart card. A user’s secret keys are not bound to any
particular device, so a user can successfully and securely
employ his cryptographic key ring from any computing
device without conducting a pre-authorization procedure.

We now describe the architectural and software
enhancements needed to enable virtual secure
coprocessing.

3.1. New Processor Features

In the processor, we choose to enable concealed execution
via dynamic memory protection rather than on-chip
protected storage in order to avoid constraining the CEM
to a limited memory space. The processor architecture
support required to implement the virtual secure
coprocessor includes a few new registers in the processor
chip, cryptographic engines at the cache-memory
interface, new cache line flag bits, and a pseudorandom
number generator (PRNG). Figure 4 illustrates a typical
processor with the new components shown in bold. We
assume that the processor die contains split first level (L1)
data and instruction caches and a unified second level (L2)
cache. However, we could easily modify the system to
support other configurations.

First, we create special storage within the processor
for the user and device secrets. We implement a minimum
of 4 new registers: the 128-bit Device Master Key, the
128-bit User Master Key, the 256-bit PRNG seed, and the
2-bit CEM Status register. The system does not permit the
contents of any of these four registers to exit the processor
in unsecured (i.e., unencrypted and unauthenticated) form.
Also, none of these register values are set at the factory;
the register contents are defined by the user in the field.

The master key of a user’s cryptographic key ring is
stored in the User Master Key register. The 2-bit CEM
Status register consists of two 1-bit flags that indicate
whether the CEM is in use for the current instruction
stream and whether any thread on the system is currently
employing the CEM. We do not need or want to preserve
these two registers in the device when power is turned off,
so we implement these registers using volatile SRAM.
When power is removed, the contents of these registers
will be drained (i.e., cleared to zeroes).

The Device Master Key, which is used to authenticate
software and to protect memory, must be maintained in the
processor when power is turned off. The seed register for

Unified
L2

Cache

PRNG

Device Master Key (128 bits)

L1
Instr.
Cache

L1
Data

Cache

User Master Key (128 bits)

PRNG Seed (256 bits)

New Registers:

Original
Processor

Core

to
external
memory

CEM Validated Bits

Processor
boundary CEM Secured Bits

Figure 4. New processor features

CEM Status (2 bits)

Encryption
Engine

Hash
Engine

the pseudorandom number generator must also be
preserved when power is removed, for the processor does
not have an existing mechanism for securely generating a
random seed value for the PRNG that an attacker could not
predict. Thus, we use one of many possible non-volatile
memory technologies to implement these two registers.

The PRNG is used to enable secure context switching.
Many pseudorandom number generators exist; we suggest
applying AES encryption to generate a pseudorandom
number using the 256-bit PRNG seed register similarly to
the method described in [1].

The remaining processor enhancements support
concealed execution of trusted COL software. This
involves verifying the authenticity of COL code as well as
ensuring the secrecy and integrity of sensitive data. The
processor performs the hash verification of trusted COL
code and protected data using a hardware-based hash
engine as instructions enter the on-chip L2 cache from
external caches or main memory. We append to each
cache line a keyed MAC of the memory address of the first
word in the cache line, the secret Device Master Key, and
the contents of the (data or instruction) cache line itself.
This keyed MAC can be a 16-byte AES-CBC-MAC [24,
26], which is an acronym for the Advanced Encryption
Standard employed in cipher block chaining mode to
produce a message authentication code. The three inputs
to the hash function serve to prevent unauthorized code or
data transpositions within protected memory, to preclude
hash forgeries, and to prevent the unauthorized
modification of code and data, respectively.

To reduce the overhead associated with embedding
hash results in code and data, we compute hashes for
entire cache lines rather than for individual bytes or words.
Hence, for a processor with 64-byte cache lines, the hash
message authentication code information increases code
size by 25 percent. In addition, we can implement an
optional address translator in hardware that converts
hashed code and data addresses to and from regular code
addresses so programs are not required to accommodate
the awkward 16-byte hash values.

Upon verifying the instructions or data, the hash
values are discarded rather than stored in the L1 or L2
caches. Assuming that we do not allow self-modifying
code to execute in the Concealed Execution Mode, there is
no need to maintain hash values within the processor chip
or to re-verify code and data prior to use. Hence, we
discard hash values following verification, but we add a
CEM Verified flag bit to each cache line that indicates
whether the hash for that line has been validated. During
concealed execution, if fetched code or data does not
possess a valid MAC, the processor can either throw an
exception or simply exit the Concealed Execution Mode
with an error condition.

Sensitive data that leaves the processor chip during
concealed execution is encrypted via the AES cipher [26]
or some other symmetric-key encryption algorithm in
cipher block chaining (CBC) mode [24]. Cache line
encryption and decryption is performed at the processor

boundary outside of the L2 cache using the Device Master
Key. We require another extra bit for each cache line, the
CEM Secured bit, which indicates whether any of the
current contents of the cache line contain sensitive
information generated during concealed execution. The
processor sets a cache line’s CEM Secured bit when
trusted software executes a write to secured memory or
executes a load that fetches (and validates) a secured cache
line from external memory. If a cache line’s CEM
Secured bit is set, the processor will prohibit non-CEM
threads from accessing that cache line. These two new bits
per cache line, CEM Secured and CEM Verified, allow us
to implement compartmentalized, secure memory in a
simple and low-cost manner. With these bits, we can
partition the on-chip cache memory space into secured and
non-secured memory very flexibly and inexpensively on a
cache line basis.

There exist attacks on external memory that remain to
be addressed: secured data replay attacks. In some
situations, an adversary may replace encrypted data and its
associated hash value (that has been evicted from the
processor) in external memory with legitimate but stale
encrypted data and an associated stale hash from previous
concealed execution operations. When the encrypted data
is pulled back into the processor, the processor as it is
currently defined cannot differentiate the stale hash from
the fresh hash. There are many solutions to this problem
that experience varying degrees of security and
implementation cost [23]. For example, the memory
authentication system presented in [15], which is based
upon Merkle hash trees, could be cleanly integrated with
our proposal to protect against such replay attacks.

Furthermore, an attacker could benefit from
knowledge of the sequence of instructions fetched during
concealed execution. Hence, while in the CEM, we shield
the value of the program counter and any other
information related to instruction sequence from external
observation. We achieve this goal by never allowing such
sensitive information to reach the processor package’s pins
while in the Concealed Execution Mode. In addition, we
must disable testing scan chains and other processor
hardware debugging features that may dump secret
information from the processor during CEM execution.
There are many inexpensive ways to realize this goal,
including blowing fuses in the processor directly following
factory testing.

The hash engine, encryption engine, and the PRNG
can all be implemented using a single AES module, which
requires as few as 25,000 gates [2]. The four new
processor registers consume only 514 bits of register
storage with read and write control. Also, the additional
cache line flag bits do not significantly increase the size of
the cache memories. In a processor with 64-byte cache
lines, the new cache line flag bits increase storage
requirements by less than 1%. Hence, with the possible
exception of the non-volatile memory required for two of
the registers, the implementation complexity is small.

3.2. New Hardware Platform Features

Instructio

begin_ce

end_cem

cem_stor

cem_loa

device_key

user_key_

The processor additions facilitate most of the concealed
execution functionality, but the platform assists in moving
secrets to/from the processor using simple new features.

Upon receiving a used or new device, one should reset
the device secrets in order to guarantee that neither the
factory nor a previous owner will have knowledge of the
PRNG seed or the Device Master Key used to protect a
new user’s secrets. Also, for similar reasons, before
transferring the device to an untrusted party, it would be
desirable to reset the device secrets to zeroes. Thus, we
must provide support for resetting the Device Master Key
and the PRNG seed in the processor.

However, this feature should be tied to a physical
action in order to prevent a software attacker from
replacing the Device Master Key with one used to
authenticate a malicious COL that could expose user key
bits. We can prevent such an attack by implementing a
physical “Device Reset” button (similar to that of many
PDAs) that must be physically pressed while the device is
turned on in order to reset the Device Master Key and
PRNG seed registers in the processor to zeroes. The
platform can confirm a successful reset by illuminating a
new VSCoP Status Light (or LED) on the exterior of the
device to “red” when the device secrets equal zero. Upon
writing new values to the device secret registers, which the
processor will only permit to occur after the device secrets
have been physically reset, the VSCoP Status Light is set
to “blue”. Note that only the platform hardware (and not
any software) can to respond to the Device Reset button or
influence the VSCoP status light.

The hardware platform (rather than the potentially
insecure OS) also assumes responsibility for gathering and
hashing the user authentication information to generate the
User Master Key. During user authentication, the platform
temporarily prevents keyboard or similar input from
reaching OS I/O buffers. Instead, the platform sends these
user inputs (e.g., a passphrase) directly to the processor
chip. The processor then hashes the information to obtain
the user’s master key. A user initiates this procedure by
pressing a special “Authenticate” button on the device.
While the user authentication information is being
inputted, the VSCoP Status Light blinks “green”, and after
the operation is complete, the platform turns the Status
Light to a solid green to indicate that user authentication
information is loaded into the processor.

Although the platform hardware can inform the OS
that the user is entering authentication information, the
hardware should not allow any software to intercept this
authentication data. Hence, we avoid man-in-the middle
attacks from malicious or corrupted kernels. However, we
do not prevent more complex physical attacks in which an
adversary steals a device, installs a sniffer that can
intercept user authentication information at the hardware
level, and then returns the device to the oblivious user.

After a user has used his keys to complete a particular
task (such as a remote electronic vote), the user may wish

to wipe all
performing
hardware se
the user’s
“Authentica
processor to
from all re
processor re
platform tu
“blue” to in
the device.

3.3. New I

We extend t
instructions
enable the C
include b
cem_load
Some of t
additions d
functionality

At dev
used to writ
Key register
way”, howe
the contents
that require
seed registe

Only so
the User M
instruction.
software to
processor ha

When
Execution M
library, the
CEM Status
that only on
Table 1. New instructions

n Function

m
Enters the CEM. CEM Status register bits are set
to 1’s. All subsequently fetched instructions are
cryptographically validated before execution.

Exits the CEM. CEM-secured cache lines
invalidated; general-purpose registers are reset to
zeroes. CEM Status bits are reset.

e
Stores a 64-bit datum to secured memory. The
CEM Secured cache line bits are set for every
cache line touched by this instruction.

d
Loads a 64-bit datum from secured memory. The
CEM Secured cache line bits are checked to
guarantee the integrity and secrecy of the data.

_mv
Transfers information from a register to
individually addressable 64-bit chunks of the
Device Master Key and the PRNG seed.

mv
Transfers 64-bit blocks of information to a register
from individually addressable 64-bit chunks of the

User Master Key.

traces of his key ring from the device. By
such a wipe, no future system software or
curity breaches can reveal or employ any of
secret keys. To achieve this goal, the

te” button can be pressed again to inform the
 clear user key data and COL state information
levant locations in cache memory and new
gisters. Following the successful wipe, the

rns the VSCoP Status Light from “green” to
dicate that user keys are no longer contained in

nstructions

he Instruction Set Architecture (ISA) with new
 to exercise the new hardware features to
oncealed Execution Mode. These instructions
egin_cem, end_cem, cem_store,

, device_key_mv, and user_key_mv.
hese instructions operate similarly to ISA
escribed in [21]. We summarize the
 of our proposed instructions in Table 1.

ice initialization time, device_key_mv is
e values to the PRNG seed and Device Master
s. The device_key_mv instruction is “one-
ver; it cannot be employed by software to read
 of those two special registers. All operations
 reading the Device Master Key and PRNG
rs are implemented in processor hardware.
ftware running in CEM can obtain contents of
aster Key register via the user_key_mv

 However, user_key_mv cannot be used by
write values to the User Master Key; only the
rdware can write values to that register.

an application wishes to enter the Concealed
ode by calling a function in a privileged

 begin_cem instruction is executed. The
 registers are then checked and used to ensure
e process employs the CEM at any given time.

This allows the system to avoid complexities caused by
sharing secured memory. All instructions that enter the
processor following the execution of begin_cem are
cryptographically validated using the Device Master Key
or a fresh session key.

int Encrypt(input, output, isize, osize, mode,
 keyring, KIN, algorithm, initial_info)
int KeyedHash(input, output, isize, osize, KIN,
 keyring, mode, algorithm, initial_info)
int AddKeyToRing(algorithm, parent, KIN,
 keyring, initial_info, output, osize)

In the CEM, privileged software can securely transfer
data to and from memory using the cem_load and
cem_store instructions. These instructions prevent
spoofing or exposure of data using the processor’s hash
engine, encryption engine, and the new cache line flag
bits. Note that programs running in the Concealed
Execution Mode can also complete unsecured memory
loads and stores, which are essential for transferring the
inputs and results of the cryptographic function from and
to the relevant software application. For example, an
encryption function running in the CEM must possess the
ability to access unencrypted source data from the
unsecured data memory space of the calling application in
order to complete the encryption operation.

Figure 5. Example functions in the COL API

Upon completion of a COL function, the COL
executes the end_cem instruction to exit the CEM. At
this time, all of the general-purpose register values
associated with the CEM instruction stream are reset to
zeroes, and the CEM Status register is reset to 0. Cache
lines that contain secured CEM data are invalidated using
existing cache line flags to prohibit reuse of results from
previous CEM invocations. Alternatively, cache line
contents could be cleared to zeroes for extra security.

3.4. OS Support

To enable virtual secure coprocessing, we must implement
minor changes to the operating system. We do not wish to
suspend the execution of other processes while a CEM
function is executing, so we must provide support for
secure OS context switching. We secure such preemptive
context switches by using the CEM Status registers, the
PRNG, and the on-chip encryption and hash engines [23].
The PRNG is employed to generate a session key that
encrypts and authenticates the sensitive context before
evicting it to memory. Note that if we were to employ the
same session key to encrypt the registers for every CEM
context switch, the system would be vulnerable to data
replay attacks. When a new key is requested from the
PRNG, the processor writes a new value to the PRNG seed
register that is a nonlinear function of the original seed.
Then, the new seed is used to generate the session key.

The OS should enable users to access their encrypted
key rings from remote storage, i.e., provide a mechanism
for fetching an encrypted key ring over a network and
delivering that encrypted data to the virtual secure
coprocessor. Also, since we only allow one process to
employ the CEM at a given time, we must implement an
OS mechanism for queuing CEM requests in order to
avoid possible CEM contention between processes. The
Cryptographic Operations Library, which is the only
library that is permitted to use the CEM, does not include
routines that consume unbounded processing time. Hence,

deadlock will not occur in processes that are waiting for
another process to relinquish the CEM. Note related
proposals and devices, such as the IBM secure
coprocessors [32], also require that secure execution
requests be performed serially.

3.5. Software Support

Most legacy application code does not need to be changed
to implement VSCoP. Only applications that wish to
invoke the CEM would possibly need to be modified to
call the Cryptographic Operations Library (COL).

The COL is a trusted, shared code module that
applications can employ to securely perform cryptographic
procedures with a user’s secret keys. This library is the
only software that is authenticated using the Device
Master Key and permitted to employ the Concealed
Execution Mode. We envision the COL as being an
operating system component, but application software
developers could certainly develop and distribute this
library as well.

We list a few functions from the COL API in Figure
5. The COL API is structured similarly to PKCS # 11, the
Cryptographic Token Interface Standard [29]. A software
application could interpret the COL API like the PKCS
#11 interface: entry points to procedures implemented by a
hardware device. The COL also contains functions that
allow an application to generate and add keys to the user
key ring. Let us consider the high-level operation of the
COL function Encrypt. When a software application
calls Encrypt, the program jumps to the appropriate
function and enters the Concealed Execution Mode.
Starting with the master key stored in the processor, the
COL traverses the cryptographic key ring until the desired
user key is decrypted and authenticated. The COL then
applies that key to perform the desired encryption
operation on the input data, and the result is copied to the
memory range specified by the output data pointer. Upon
completion, the COL will terminate concealed execution,
and control will be returned to the calling application.

The COL functions must be constructed carefully to
avoid leaking any keys or sensitive intermediate
information [9]. The function will fail gracefully if, for
example, a buffer address points to unallocated memory,
the key is not authorized for use in the algorithm specified
in the function call, or the key integrity check fails. By
“fail gracefully,” we mean that the COL will return an
error condition without crashing or revealing secret
information. To simplify the necessary architectural
support and eliminate certain security vulnerabilities, we
require that the COL be entirely self-contained. That is,

the COL cannot call a function in external library, and the
COL cannot make any system calls to the kernel. This
means that all necessary libraries must be statically linked
into the COL at compile-time. In addition, the COL must
statically allocate any memory that may ultimately be
required to securely store intermediate data variables.

Also, while a user master key is loaded into the
processor, it is conceivable that an attacker could
compromise the operating system and then attempt to
instruct the COL to perform cryptographic computation
with secret keys (although an attacker cannot obtain the
actual key values). To provide added protection against
such malicious code execution that may occur between the
loading and the clearing of the user master key, VSCoP
can be integrated with the attestation, secure booting, and
general code verification techniques provided by proposed
trusted computing bases (e.g., [19, 25, 35]).

4. Applying VSCoP

We now provide a summary of the steps involved in
applying the new enhancements to protect secret keys. We
define three major steps: device initialization, user
initialization, and protected operation.

Device Initialization. Device initialization occurs
when a user first obtains a computing device containing
our proposed security features. In this step, the user
installs the Cryptographic Operations Library, the only
software module that will be permitted to access users’
keys. First, if the device secrets have not already been
reset to zero by the factory or a previous user, the user
presses the Device Reset button to wipe the device. Note
that the new user can employ a previously used device to
securely store and utilize his cryptographic keys without
the risk of exposing his secrets or previous users’ secrets.
Next, the installation procedure writes new random values
to the Device Master Key and PRNG seed registers.

At this point, the user verifies the authenticity of the
COL by checking its digital signature using software-
based Public Key Infrastructure (PKI) techniques. Then,
the COL is signed using the Device Master Key via a
keyed MAC. Note that PKI and asymmetric encryption
techniques are not implemented in hardware and are not
required by the Concealed Execution Mode; public-key
operations are only employed in software at installation
time. During COL installation, a malicious OS kernel can
interfere with the MAC generation process to facilitate the
installation of a corrupted and dangerous COL. To
prevent such attacks, the user should only install the COL
when the OS kernel is guaranteed to be uncompromised.
This condition is difficult to satisfy at arbitrary times, so it
is most prudent to install the COL immediately following
or during the installation of a validated OS kernel.

User Initialization. User initialization occurs when a
user creates a new cryptographic key ring with an
initialized device. This operation simply involves
selecting a master key for the key ring, which is the output
of a cryptographically strong one-way hash of a user-

supplied passphrase. As keys are added to the ring, a user
can store his encrypted key ring locally or remotely. By
depositing the key ring in on-line accessible storage, the
user can access his secret keys and perform protected
computations on any VSCoP-enabled networked device.

Protected Operation. Protected operation is the
process in which an initialized user securely employs a
secret key in an initialized device. This process begins
with a user securely inputting his passphrase into the
device. The system hardware then computes the user’s
master key and stores the result as the user secret.

Next, when a software application needs to perform a
cryptographic operation that involves one of the user’s
secret keys, the application makes an appropriate call to a
function in the Cryptographic Operations Library as if it
were an interface to a secure coprocessor. Thereupon, the
processor verifies the integrity of the COL using the
device secret. We note that we do not need to ensure the
secrecy of individual library instructions, as the library
routines are not confidential. If verification is successful,
the processor enters the Concealed Execution Mode and
begins executing instructions in the called COL routine.
In order to prevent a potential attacker from exposing any
user secrets during the CEM, the processor maintains the
secrecy and integrity of all sensitive data that is available
to other processes or is released from the processor chip.

After a user has completed an operation that requires
the use of his key ring, the user can elect to clear the
device of all information related to his secret keys by
pressing the Authenticate button.

5. Performance Analysis

The performance impact of our proposal is negligible for
software packages that do not employ the Cryptographic
Operations Library. However, performance changes may
be experienced by programs (such as SSL and secure
storage software) that employ user key rings with the
COL. In such software, performance degradation may
occur due to the increased quantity and costs of memory
accesses during COL operations. By hashing and possibly
encrypting/decrypting some information at the processor
boundary, we add latency to external memory accesses.

It is important to note that since the COL only
contains cryptographic functions, we only need to evaluate
performance degradation associated with those
cryptographic functions. Thus, we obtain performance
statistics by simulating the execution of common
cryptographic routines in the Concealed Execution Mode:
the RSA encryption algorithm [28], the AES encryption
algorithm [26], and the MD5 one-way hash function [27].

To obtain the results, we use a modified version of the
SimpleScalar cycle-accurate superscalar processor
simulator [10]. The processor model is based upon the
enhanced processor and memory system described in
Section 3. We implement the benchmarks in C and
compile for the Alpha instruction set architecture using
gcc with the –O2 optimization flag. During execution,

we provide the benchmarks with 1 megabyte of input data
to be encrypted or hashed. We conduct simulations for a
4-way superscalar processor with 64 KB 1-cycle L1
instruction cache, a 64 KB 2-cycle L1 data cache, and a 2
MB 12-cycle unified L2 cache. The initial external
memory access latency is 100 cycles, and the memory bus
can transfer 8 bytes every 4 cycles.

80 bytes from off-chip memory:

We model our proposed enhancements to the interface
between the L2 cache and external memory as follows.
We use 128-bit AES-CBC to enable data
encryption/decryption and 128-bit AES-CBC-MAC to
provide code and data authentication [24, 26]. The AES-
CBC encryption and decryption of 64-byte cache lines can
be completed with 4 serial AES operations and 4 parallel
AES operations, respectively. The initialization vector
(IV) is equivalent to the address of the cache line. MAC
computation for authenticating both 64-byte instruction
and data cache lines requires a latency of 5 AES
operations. We use 5 rather than 4 AES operations to
compute the MAC in order to properly hash all four 16-
byte blocks of the cache line as well as the 8-byte address
of the cache line. The AES encryption of a 16-byte datum
requires 10 rounds of work, and we conservatively
estimate that one AES round can be completed in at most
two processor cycles. Hence, the total latencies involved
in encryption/decryption and MAC computation are at
most 80 and 100 cycles, respectively.

We can parallelize the processing of the
encryption/decryption and MAC calculation to improve
performance. As shown in Figure 6, for secure data cache
line loads, the decryption can be performed in parallel with
the MAC computation without incurring any additional
latency. Secure data cache line stores operate similarly to
data cache line loads, but the first 16-byte AES encryption
operation must be completed before the MAC computation
begins. The remaining encryption operations can be
completed in parallel with the MAC operations. The
processing time of secure loads and secure stores is
therefore equivalent to 5 and 6 serial AES operations,
respectively. Authenticated instruction cache line loads
simply require a complete MAC computation, so the added
latency is 5 serial AES operations. Hence, the maximum
external memory access penalties incurred by VSCoP (per
64-byte cache line) for secure data loads, secure data
stores, and authenticated instruction loads are 100, 120,
and 100 cycles, respectively.

Despite the increase in external memory access
latencies, our simulations show that the performance
impact of the proposed enhancements for the benchmark
programs is negligible (i.e., less than 1%) when using the
memory parameters described above. This results from
the fact that secured data employed by the benchmarks is
rarely evicted to external memory; most external memory
activity involves unsecured data. Also, the number of
static instructions employed by the benchmarks is modest,
so the number of instruction fetches (and subsequent
authentications) from external memory is relatively low.

6. Related Work

Researchers have proposed several hardware and software
techniques for protecting cryptographic keys against
unauthorized observation, modification, and use. We
summarize prior work concerning distributed software-
based and hardware-based key management schemes.
Some techniques protect vendors and content providers
from copyright violations and software piracy in untrusted
hosts, whereas other techniques protect users from
physical theft and attacks by malicious code.

Unlike VSCoP, no related work facilities the high-
performance and secure utilization of key rings from any
Internet-connected device; enables a wide array of
cryptographic techniques; avoids the use of potentially
expensive, auxiliary devices such as coprocessors, smart
cards, or sets of servers; and provides strong protection for
keys while in storage and use.

6.1. Software-based Techniques

Distributed software-only approaches seek to protect
certain types of cryptographic keys by requiring an
adversary to quickly compromise several hosts or by
enabling effective revocation mechanisms when key
information is exposed. Some proposals allow a user to
reconstruct cryptographic keys directly preceding use by
engaging in a secure protocol that involves the
participation of several servers (e.g., [13, 14]). In other
solutions, users can perform certain cryptographic
operations that employ secret keys with the aid of
untrusted servers; when a client device or an untrusted
server is compromised, the secret keys can be disabled
(e.g., [22]). These and other distributed schemes can
effectively defend against certain attacks that involve
limited classes and types of keys.

6.2. Cryptographic Coprocessors and Tokens

One of the first proposals to suggest using physically
secure hardware processing devices to enable security
features unattainable by software-only techniques was

d1 d2 d3 d4 MAC

AES

addr.

AES

AES AES AES

64 bytes to L2 cache

0?

AES-1 AES-1 AES-1 AES-1

IV

Figure 6. Secure data cache line load

presented in [7]. Since that time, researchers have
proposed a rich variety of applications and architectures
for such hardware (e.g., [17, 36]). These physically secure
devices perform cryptographic operations and other
services using secret information that cannot be extracted
from the hardware device. Examples of such devices
include highly fortified cryptographic modules and
cryptographic smart cards.

The IBM secure coprocessor boards are high-end
tamper-resistant hardware modules that perform
cryptographic operations (using secret keys), secure
booting, and secure program loading for applications
requiring a high level of security such as banking systems
[12, 32, 33]. These products offer exceptional physical
security for cryptographic keys, but they are too costly,
inconvenient, and bulky for mobile computers and
information appliances.

Extremely low-cost, portable alternatives to
cryptoprocessors and secure coprocessors are
cryptographic tokens. These devices include smart cards,
PDAs [6], and other small, physically tamper-resistant
hardware components [3]. Some tokens simply protect
user secrets by requiring a password to access the
information stored within the token, and other tokens
perform cryptographic operations using the stored secrets
without leaking key information to the untrusted
environment [3, 8]. These devices cannot provide the
same degree of security as powerful cryptoprocessors, but
they cost much less and they facilitate increased user
convenience. However, these devices have restricted
capabilities: performance can be poor and the number of
supported cryptographic operations and protocols is often
limited. Also, physical tamper resistance is difficult to
implement at low costs [4, 20].

6.3. Trusted Computing Bases

As currently defined, trusted computing bases (TCBs) only
provide limited protection for user cryptographic keys.
The Trusted Computing Group (TCG) [35], which was
formerly known as the Trusted Computing Platform
Alliance, Intel’s LaGrande Technology (LT) [18], and
ARM’s TrustZone technology [5] seek to provide a trusted
hardware base for many types of computing devices.
These technologies support varying degrees of system
attestation, limited protection of user secrets and inputs,
secure booting, and process isolation. In these systems
secret information that is inaccessible to the end user is
embedded in tamper-resistant hardware modules such as
on-board cryptographic coprocessors or general-purpose
processors. Microsoft’s Next Generation Secure
Computing Base (NGSCB) [25], formerly known as
Palladium, seeks to provide resources for secure (i.e.,
validated and isolated) code execution via trusted
hardware computing bases. With such operating system
support, a trusted device can complete operations such as
verifying the integrity of installed software and preventing
unauthorized access to copyrighted media and code.

 A user can employ certain resources provided by
TCBs to encrypt a sensitive key for storage, but keys must
be used on in the clear in a single pre-specified device to
perform computations. Although the TCB may ensure that
cryptographic keys are only released to trusted
environments, these trusted environments might not be
secure. That is, “trusted” does not imply “dependable”,
and the trusted software environment is vulnerable to
software bugs that could lead to the unauthorized exposure
of sensitive cryptographic keys. Such bugs in kernel and
application software are inevitable and can enable the
complete subversion of the TCB mechanisms that provide
limited protection for user secrets.

In addition, most TCBs do not defend against
hardware-based attacks. For instance, by physically
monitoring and/or modifying data in the system buses and
main memory, some security features of the trusted
computing bases can be defeated. The Aegis project [34]
seeks to address this problem by cryptographically
protecting certain code and data that enters or exits the
general-purpose processor.

We emphasize that our proposal is not designed to
replace TCB components. By enabling additional
protection for the most sensitive pieces of information
(i.e., cryptographic keys), our solution complements rather
than supplants the security services provided by these
systems. TCB services, such as secure bootup and
attestation, are essential to achieving robust system
security, and therefore our solution should enhance rather
than replace TCBs.

6.4. General-purpose Architecture for Secure
Computation

Techniques for incorporating cryptographic functionality
into general-purpose processor architecture have also been
proposed. Recent work has addressed processor-based
mechanisms for authenticating trusted software and
verifying the integrity of physical memory [15, 19, 34]. In
addition, by adding encryption and data authentication
capabilities to general-purpose processors, it is possible to
enable shielded program execution [16, 21, 34]. Such
systems, e.g., eXecute Only Memory (XOM), preclude
unauthorized modification and observation of software by
unsecured or untrusted components outside of the
processor chip. This involves obfuscating and
authenticating instructions and program dataflow.

The primary objective of shielded execution in XOM
and related proposals is the prevention of software
tampering and of valuable proprietary code exposure.
Whereas XOM enables external parties to protect sensitive
information when the external parties’ software is being
employed on an untrusted user's machine, our proposal
enables a user to protect his secret information on his
machine from external parties. Although some
components of these proposals and our solution overlap,
they differ in fundamental design goals, benefits to users,
and several implementation issues.

7. Conclusion

The protection of cryptographic keys is essential for
network, computer, and storage security. Many existing
key protection solutions suffer from poor performance,
inconvenience, high cost, and incomplete security. We
present a secure key management alternative for personal
computing and embedded platforms through virtual secure
coprocessing (VSCoP). We describe architectural and
software enhancements that provide flexible, efficient, and
protected use of users’ cryptographic keys. In future
work, we will explore closer integration of VSCoP with
proposed TCBs and software verification systems.

Acknowledgements

The authors wish to thank Sean Smith and the anonymous
referees for their helpful comments and suggestions.

References

[1] American National Standards Institute, “American National
Standard X9.17: Financial Institution Key Management,” 1985.
[2] Amphion Corporation, “AES Encryption/Decryption”
available at http://www.amphion.com/cs5265.html, 2002.
[3] R. Anderson, Security Engineering, John Wiley and Sons,
Inc., New York, NY, 2001.
[4] R. Anderson and M. Kuhn, “Low cost attacks on tamper
resistant devices,” Security Protocols: 5th International
Workshop, Springer Verlag LNCS, no. 1361, pp. 125-136, 1997.
[5] ARM Corporation, “A New Foundation for CPU Systems
Security: Security Extensions to the ARM Architecture,”
available at http://www.arm.com/pdfs/TrustZone.pdf, May 2003.
[6] D. Balfanz and E. W. Felten, “Hand-Held Computers Can
Be Better Smart Cards,” Proc. of the 1999 USENIX Security
Symposium, 1999.
[7] R. M. Best, “Preventing Software Piracy with Crypto-
Microprocessors,” Proc. of IEEE Spring COMPCON ’80, pp.
466-469, 1980.
[8] M. Blaze, “High-Bandwidth Encryption with Low-Bandwidth
Smartcards,” Proceedings of the Workshop on Fast Software
Encryption, pp. 33-40, February 1996.
[9] M. Bond and R. Anderson, “API-Level Attacks on
Embedded Systems,” IEEE Computer, vol. 34, no. 10, pp. 67-75,
Oct. 2001.
[10] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” University of Wisconsin-Madison Computer
Sciences Department Technical Report, no. 1342, June 1997.
[11] CERT Coordination Center, http://www.cert.org/, 2002.
[12] J. Dyer, R. Perez, S. Smith, M. Lindemann, “Application
Support Architecture for a High-Performance, Programmable
Secure Coprocessor,” Proceedings of the 22nd National
Information Systems Security Conference, October 1999.
[13] W. Ford and B. S. Kaliski, Jr., “Sever-assisted Generation of
a Strong Secret from a Password,” Proceedings of the 5th IEEE
International Workshop on Enterprise Security, 2000.
[14] J. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure
Distributed Storage and Retrieval,” Proc. of the 11th Inter.
Workshop on Distributed Algorithms, Springer-Verlag LNCS, no.
1320, pp. 275-289, 1997.
[15] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S.
Devadas, “Caches and Merkle Trees for Efficient Memory

Authentication,” Proc. of the Ninth International Symposium on
High Performance Computer Architecture (HPCA-9), Feb. 2003.
[16] T. Gilmont, J.-D. Legat, and J.-J. Quisquater, “An
Architecture of Security Management Unit for Safe Hosting of
Multiple Agents,” Proc. of the International Workshop on
Intelligent Communications and Multimedia Terminals, pp. 79-
82, November 1998.
[17] P. Gutmann, “An Open-source Cryptographic Coprocessor,”
Proceedings of the 2000 USENIX Security Symposium, 2000.
[18] Intel Corporation, “LaGrande Technology Architectural
Overview,” avail. at http://www.intel.com/technology/security/,
September 2003.
[19] D. Kirovski, M. Drinic, and M. Potkonjak, “Enabling
Trusted Software Integrity,” Proc. of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), October 2002.
[20] P. Kocher, J. Jaffe, and B. Jun, “Differential Power
Analysis,” Advances in Cryptology – CRYPTO ’99, Springer-
Verlag LNCS, no. 1666, pp. 388-397, 1999.
[21] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.
Mitchell, and M. Horowitz, “Architectural Support for Copy and
Tamper Resistant Software,” Proceedings of ASPLOS-IX, pp.
168-177, 2000.
[22] P. MacKenzie and M. Reiter, “Networked Cryptographic
Devices Resilient to Capture,” Proceedings of the 22nd IEEE
Symposium on Security and Privacy, pp. 12-25, 2001.
[23] J. P. McGregor and R. B. Lee, “Virtual Secure Coprocessing
on General-purpose Processors,” Princeton University
Department of Electrical Engineering Technical Report CE-
L2002-003, Nov. 2002.
[24] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, LLC, Boca
Raton, FL, 1997.
[25] Microsoft, “Next-Generation Secure Computing Base,”
avail. at http://www.microsoft.com/resources/ngscb/, June 2004.
[26] National Institute of Standards and Technology, “Advanced
Encryption Standard,” FIPS Publication 197, Nov. 2001.
[27] R. L. Rivest, “The MD5 Message Digest Algorithm,” RFC
1321, available at http://www.ietf.org/rfc/rfc1321.txt, April 1992.
[28] R. L. Rivest, A. Shamir, and L. Adelman, “A Method for
Obtaining Digital Signatures and Public-key Cryptosystems,”
Communications of the ACM, 21(2), pp. 120-126, Feb. 1978.
[29] RSA Security, Inc., “PKCS #11 v2.11: Cryptographic
Token Interface Standard,” available at
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/, Nov. 2001.
[30] The SANS Institute, “The Twenty Most Critical Internet
Security Vulnerabilities,” http://www.sans.org/top20/, Oct. 2002.
[31] R. E. Smith, Authentication: From Passwords to Public
Keys, Addison-Wesley, 2002.
[32] S. W. Smith, E. R. Palmer, S. H. Weingart, “Using a High-
Performance, Programmable Secure Coprocessor,” Proc. of the
International Conf. on Financial Cryptography, pp.73-89, 1998.
[33] S. W. Smith and S. H. Weingart, “Building a High-
Performance, Programmable Secure Coprocessor,” Computer
Networks, 31(8), pp. 831-860, April 1999.
[34] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas, “AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing,” Proceedings of the 17th
International Conference on Supercomputing (ICS), 2003.
[35] Trusted Computing Group,
http://www.trustedcomputinggroup.org, June 2004.
[36] J. D. Tygar and B. Yee, “Dyad: A System for Using
Physically Secure Coprocessors,” Carnegie Mellon University
Technical Report CMU-CS-91-140R, May 1991.

	Protecting Cryptographic Keys and Computations
	via Virtual Secure Coprocessing(
	John P. McGregor and Ruby B. Lee
	Abstract
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

