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Abstract

System security as it is practiced today is a losing
battle. In this paper, we outline a possible compre-
hensive solution for binary-based attacks, using vir-
tual machines, machine descriptions, and random-
ization to achieve broad heterogeneity at the ma-
chine level. This heterogeneity increases the “cost”
of broad-based binary attacks to a sufficiently high
level that they cease to become feasible. The conver-
gence of several recent technologies appears to make
our approach achievable at a reasonable cost, with
only moderate run-time overhead.

1 Insecurity

Today, security is a losing battle. There is always one
more bug, and generally that means there is also al-
ways one more exploitable bug. To close these holes,
administrators must keep up with a constant stream
of patches and fixes; these are not always themselves
entirely benign relative to the functioning of the sys-
tems they protect.

Worse, numbers are on the side of the hackers.
Sooner or later after an exploitable bug is discov-
ered, canned exploit scripts for the bug begin to cir-
culate. Only one person need write such a script;
once the script exists, any passing vandal (or auto-
mated worm) can use it to break into thousands of
computers. This puts administrators, who have to

patch machines individually or in small groups, at
a huge disadvantage.

Some techniques have been developed to block
whole classes of attacks: for example, StackGuard
[5] effectively prevents a certain type of buffer-
based attack; the more recent PointGuard [4] protects
against a wider range of such attacks. Recent work
in shepherded execution [10] has the potential to stop
code-injection attacks and many flow-of-control at-
tacks. However, most of these tools are quite spe-
cific in nature, and in many cases they amount to an
arms race between exploit writers and security tool
developers, with both sides becoming increasingly
creative and clever. This means that while they help,
they don’t really offer a lasting solution to the under-
lying problem of security bugs.

2 Monoculture

Observe that most exploit scripts that circulate
widely target only the most commonly deployed
platforms. In the early 1990s this meant that
most circulating exploits were for Sparcs running
SunOS. Today it means that most exploits target
Intel-architecture computers running either Windows
or Linux. Exploits for the same bugs that target other
platforms circulate much less readily.

Why is this? The short answer is that most exploits,
particularly those for remotely-exploitable vulnera-
bilities, are not portable because they arebinary.



They rely on specific machine-level characteristics
of the target platform in order to work: word size,
byte order, calling conventions, compiler peculiari-
ties, program load addresses, even the instruction set
itself. Different machine architectures, and, often,
different operating systems on the same architecture,
are slightly different in these respects, so that while
all platforms may be vulnerable, any particular ex-
ploit must be customized for one specific platform.
There are thus diminishing returns for targeting any-
thing but the most common platforms. For example,
the Morris worm attacked only two platforms, even
in the relatively heterogeneous world of 1988 [12].

As the OS market continues to consolidate, the most
common platforms become relatively more common
still, and this problem worsens. Much has been writ-
ten recently about the risks ofmonoculture[8]. As in
biology, a certain degree of heterogeneity is healthy
[6]: it provides protection for both the individual, be-
cause the individual may be resistant to any particu-
lar problem, and for the population as a whole, be-
cause any particular problem is unlikely to be able to
affect everything at once.

Individual sites can leverage this principle to a cer-
tain degree by running exposed services on less com-
mon platforms, a practice the authors have person-
ally found to be useful. However, doing so is an in-
stance of security by obscurity: it does not scale, and
successful exploit scripts might always appear. Fur-
thermore, the supply of suitable platforms is limited.

3 My Own Private Architecture

Imagine instead that every site, or every host, were
able to run on its own unique machine architecture.

Provided that each unique architecture is sufficiently
different from all others, no canned exploit script
would work onany target: every exploit would have
to be written explicitly for the particular host it was
attacking. This eliminates the economies of scale
that hackers currently leverage: administrators still

must patch machines individually, but hackers must
target machines individually as well. Furthermore, it
puts the so-called “script kiddies” out of business en-
tirely: with no canned exploit scripts, breaking into
systems by rote is no longer possible.

The possible advantages for the security and integrity
of the Internet are enormous. So the question arises:
how can this level of architectural diversity be de-
ployed? It is obviously infeasible to invent millions
of new machine architectures and fabricate them in
hardware.

The answer, we argue, lies in combining two re-
cently popular ideas: virtual machine monitors and
machine descriptions. We envision a virtual machine
monitor that runs standalone on commodity hard-
ware and presents an appearance indistinguishable
from a (perhaps slower) exotic machine implemented
directly in hardware.

It seems to be generally accepted at present that a
good virtual machine monitor is sufficient to con-
tain attacks (and hackers) within the virtual machine
and prevent direct attacks on the host. For example,
Garfinkel et al. [7] recently proposed a system whose
entire security basis rests on using a virtual machine
monitor this way. Similarly, honeypots are routinely
built using virtual machines [13].

Other recent work [2], as well as experience with
JVMs, suggests that the overhead from the virtual
machine can be made tolerable – although probably
not negligible, particularly if the virtualized machine
has properties that do not map well onto commodity
hardware.

At the same time, recent work on machine descrip-
tions has shown that it is possible to generate not just
compiler backends, for which the technique is rou-
tine, but also virtual machine monitors, assemblers,
linkers, debuggers, and other architecture-dependent
tools, all from concise machine descriptions [11].
We believe that it is also practical to generate the
architecture-dependent parts of a kernel and standard
C library from machine descriptions. This claim is



discussed in more detail below.

Pulling all these pieces together, it becomes possible,
in principle, to generate all the machine-dependent
parts of a complete operating system, as well as the
virtual machine monitor for running it, all from a
concise machine description. Thus, installing a ma-
chine that uses its own unique machine architecture,
given the description for that architecture, is as sim-
ple as recompiling the world.

In an open source world this is clearly a viable propo-
sition: while installing by building the world takes
longer than installing by copying binaries from CD,
it is equally automatable and incurs only a one-time
cost. Note, however, that even in a closed-source
world, precisely the same principles can be made to
apply: if software is shipped as Java byte code, Mi-
crosoft .NET byte code, or any other similar abstrac-
tion at a higher level than raw machine code, it can be
compiled to run natively on the unique architecture.

4 Machine Description Space

A crucial part of this approach is that the space of
possible machine descriptions be large enough to of-
fer statistical protection against various kinds of at-
tacks. This means that, among other things, it should
not be feasible to mount an attack by exhaustively
trying exploits for all possible machine types against
a single target. Furthermore, the number of de-
ployed systems sharing the same machine descrip-
tion should be small.

For the sake of argument, suppose 100 attacks can be
made per second and we want, on average, to resist
a week of continuous attack. This requires slightly
under227 distinct machines. This is also probably
enough to cover the deployed population. Note that
this can be achieved with only 27 independent binary
decisions about the architecture.

If possible, we would like this mechanism to pro-
tect against all reasonably foreseeable binary attacks.

To this end, we will divide the set of binary attacks
into two categories. The first of these is thecode
injection attack. This category includes any attack
that inserts machine code into a target program, then
persuades that program to execute that code. (At-
tacks that insert standalone executables into the sys-
tem may fall into this category, if the executables are
binaries; but since in general such executables may
be scripts, such attacks are not strictly binary and we
do not consider them.) Traditional buffer overflow
attacks,printf format string attacks, and so forth
are all code injection attacks.

An examination of the possibilities associated with
tweaking the instruction set, and with varying the in-
struction coding, will show that there are thousands
of bits of variation possible, far beyond the 27 we
require. Thus we conclude that randomizing the ar-
chitecture easily blocks code injection attacks. How-
ever, code injection can already be defeated by other
means, such as applying an XOR pad to the instruc-
tion stream [9] or, in many cases, even the simple
technique of disallowing execution from writeable
memory.

We thus turn to the second category of binary attack,
the state corruption attack. This category includes
attacks that modify the state of a program in order to
persuade it to perform actions it shouldn’t, but that
do not inject any code. This includes direct attacks
on the flow of control, such as buffer overflow at-
tacks that work by provoking a jump directly into
the standard library, or more complex attacks on pro-
gram data like many based on integer overflows and
free-twice bugs. State corruption attacks are a much
more challenging and interesting problem.

Getting enough bits of variation to block state cor-
ruption attacks appears feasible, but not entirely triv-
ial. We suggest the following techniques as a begin-
ning; more can probably be invented by creatively
abusing the C standard.

1. The differing size of various operations with
different instruction sets and instruction encod-
ings generates variability in the layout of pro-



gram code. We expect this effect to be relatively
small, because differences will tend to cancel
out. Thus, somewhat arbitrarily, we assign it
two bits of space.

2. The number of registers. This affects the layout
of the stack and of code as different numbers of
registers need to be saved and restored. There
will probably be either 8, 16, 32, or 64 regis-
ters, as these are the powers of two in the useful
range. This gives two bits of description space.

3. The machine byte and word sizes can be cho-
sen from a list of possible combinations. It
may prove necessary to use only 8-bit bytes and
32-bit or 64-bit words. However, in principle
it is possible to use 9-bit or 10-bit bytes with
36-bit or 40-bit words, 40-bit words with 8-bit
bytes, 16-bit bytes, 24-bit bytes that will hold
Unicode natively, or other things. Doing so
would be advantageous because such platforms
would exhibit totally different behavior in the
face of integer overflow bugs. Supposing eight
viable possibilities, this gives another three bits
of space.

4. There are normally only two endiannesses, but
historically the VAX used a third. We can in fact
use any possible byte ordering for words. The
number of choices depends on the word size,
but we shall suppose we get five bits of space
on average.

5. The representation of signed integers gives
us one bit of space, for the choice between
two’s complement and sign-magnitude. (The
C99 standard apparently no longer allows one’s
complement.)

6. Stack direction (up or down) gives another bit.

7. Using one stack or two (splitting call and data
stacks like a Forth machine) gives yet another
bit.

8. Moving to less hardware-oriented properties,
there is a wide variety of possible function-
calling conventions, with different ordering,

alignment, padding, registerization, stack ad-
justment, return value handling, and so forth.
Calling conventions have been shown to be
quite complex [1], and even with a fairly sim-
ple model there are probably at least 8 bits of
description space to be used.

9. Likewise, various models can be used for align-
ment padding in stack frames and data struc-
tures, and possibly inserting small numbers of
NOPs into code. This gives potentially another
8 bits of description space.

This adds up to 31 bits to defend against state corrup-
tion attacks. This is more than the 27 bits we need.
However, it is notmuchmore; some of those bits
may not apply to some attacks. However, because
both the figure of 27 bits and our analysis of the bits
available are fairly conservative, we feel the descrip-
tion space is probably large enough to be useful, even
against state corruption attacks.

Note that in addition to things that are, strictly speak-
ing, part of the machine architecture, anything else
that can be parameterized can be tweaked using sim-
ilar techniques. This is a subject for future work.

One particularly radical possibility is to use a ran-
dom character set in place of ASCII or Unicode. This
would protect against exploits that carry well-known
filenames (e.g.,/bin/sh ) and possibly against ex-
ploits that carry source code or scripts. However, this
is likely to be excessively difficult to deploy.

5 Machine Descriptions for Kernels

We claim that it should be possible to generate the
machine-dependent parts of a kernel, and C standard
library, from machine description files. (Recall that
the remaining tools we will need have already been
addressed by other work [11].)

An examination of the machine-dependent directo-
ries of the NetBSD kernel reveals three categories



of machine dependencies. First, there are concepts
that are equivalent to concepts that the compiler
and toolchain have to know. This category includes
things such as the sizes of standard types and the
linker relocation codes; these are solved problems.
Second, there are features where heterogeneity pro-
vides little benefit, like the way bus configuration is
done or the basic way the processor handles excep-
tions. These would be research issues if generating
kernels forreal machines, but for current purposes
they can be ignored. The third category consists of
issues that we must address.

This third category in turn breaks down into three
subcategories:

1. context switches, in their various forms (user-
to-kernel, process-to-process, signal delivery,
etc.) and their ramifications (trap frames,
struct siginfo , etc.), because our various
architectures will have different register sets;

2. small chunks of assembly code that will differ
across architectures, such as spinlock handling;

3. and the virtual memory system, because our
various architectures will have different word
sizes and thus different address space sizes.

Context switches are all, we believe, readily gener-
ated given the list of registers in the architecture and
various flags associated with them specifying their
properties (callee-save, which is the stack pointer,
etc.) – the code involves little more than reading and
writing these registers to memory.

The small chunks of assembly code are probably ei-
ther enumerable (there are only so many ways to im-
plement spinlocks, for example), or are code gener-
ation problems more or less equivalent to compila-
tion and can be handled along similar lines. (For
example, themcount code used in profiling is an
ordinary machine-independent function with special
register handling requirements.)

The virtual memory system is a bigger issue; how-
ever, our research group has been working on this

problem and we believe it is tractable even in the
general case of wildly differing real MMUs. For the
purposes of this problem, there is little value to hav-
ing more than one basic MMU design that can vary
slightly according to machine parameters. Param-
eterizing the machine-dependent VM machinery to
support this should be quite straightforward.

(We are not aware of any existing work aiming to
generate kernel components from machine descrip-
tions apart from our own work in progress.)

6 Randomization

One final question remains: how do you generate the
unique machine descriptions? While it may be suf-
ficient to simply write them down, doing so is not
necessarily a trivial undertaking.

Our idea is to generate them randomly. Given the
size of the space of possible machines, as discussed
above, random generation offers both unpredictabil-
ity and a statistical approximation of global unique-
ness; these are highly desirable properties. Us-
ing randomization to promote heterogeneity is, of
course, not new; it was proposed by Forrest et al. in
1997 [6] and has been the basis of much work since.
The significant point in this paper is not the use of
randomization; it is the breadth and scope of it.

One obvious question is whether random genera-
tion of machine descriptions is even possible. Apart
from the instruction set, the description space out-
lined above is framed in terms of either-or choices or
choices among a small number of alternatives. These
choices are, of course, easily randomized. Ramsey’s
machine descriptions [11] are descriptive, not algo-
rithmic, and thus in principle randomizable as well.

There is also always a temptation to make machine
descriptions Turing-complete. While we can avoid
this for any new tools we develop, it may be a prob-
lem for existing tools. The machine descriptions
used bygcc are essentially Lisp code, and in addi-



tion to the formal machine description a large quan-
tity of architecture-specific C preprocessor macros
are required. Directly generating all this randomly
is a dubious proposition. Most likely, it will be nec-
essary to determine how to generate agcc machine
description from a simpler, non-Turing-complete de-
scription of our own devising. This may be difficult.

Other randomization not tied to the machine descrip-
tion, such as the link-time or run-time address ran-
domization proposed by Bhatkar et al. [3] and Xu et
al. [14] can furthermore be used as a complementary
approach to provide even more heterogeneity.

7 Major Caveat

This entire scheme depends on itnot being possible
to generate binary exploits from machine descrip-
tions. If that turns out not to be true, this tech-
nique becomes merely another round in the arms
race. Some benefits may still accrue if it is possible
to keep your machine description secret.

It is not clear how practical it is or will be to generate
exploits from machine descriptions.

8 Other Caveats

Despite the reassuring analysis above, it may turn
out that in some cases it is possible to write an ex-
ploit that works for any target machine with a certain
description property, or a certain set of them small
enough to allow attacking a considerable number of
machines at once. Note that even if this should be the
case, it is still unlikely thatall machines would be
vulnerable: even if half the machines running ran-
dom architectures are vulnerable, we still come out
ahead.

Likewise, if the machine description space turns out
not to be large enough, it may be possible to try all
possible forms of an attack, or even write worms that

do this in an automated fashion. Ten milliseconds
per attempt may be unrealistically slow in this case.

It is not necessarily important to keep your machine
description secret: even if you post it on your web
page, you are still more or less immune to attack by
worms and “script kiddies”. To attack you, someone
would have to target you explicitly: first download
your machine description, then prepare a customized
attack specifically against your machine. This as-
sumes, of course, that the major caveat above does
not become a problem. If it does, then not only do
you need to keep your machine description secret,
but there is another interesting catch: it may be pos-
sible to infer portions of your machine description,
even remotely, by issuing partial attacks and observ-
ing the results. This could conceivably narrow the at-
tack space, even against a completely unknown ma-
chine, enough to allow an attack to succeed in a short
period of time.

It may turn out to be possible to attack the virtual ma-
chine monitor. Our technique will do nothing to pre-
vent code injection or other attacks against the virtual
machine monitor itself, if it should turn out to have
suitable bugs. By making the virtual machine moni-
tor relatively simple and small, it should be possible
to keep the risk of such bugs low.

And, of course, this technique only protects against
binary exploits. It does nothing to stop semantically-
based attacks (such as/tmp symlink race condi-
tions) or logic errors, and it will not prevent denial
of service.

9 Other Comments

It is not necessarily required, or even desirable, for
absolutely every deployed machine to be unique. A
site with a large server farm could choose, at the
risk of having a targeted attacker take over that en-
tire server farm, to use only one architecture across
the farm; this could help contain deployment costs.



On the other hand, it is also possible to aim for a
certain degree of uniqueness in time: a truly para-
noid site might rebuild with a fresh machine descrip-
tion every week, or, indeed, every day, just to rule
out the possibility that someone might be preparing
a targeted attack.

10 Challenges

There will be numerous challenges in attempting to
build and deploy this system. Some have already
been noted: working withgcc ’s machine descrip-
tions, for example. Others are not so obvious.

First, the toolchains and debuggers based on machine
descriptions will need to move out of the lab and into
production. This is potentially a large step.

Though we believe it perfectly feasible, generat-
ing kernel components from machine descriptions is
likely to be a challenging research project.

Virtual machine technology as it stands achieves
good performance for sane architectures. However,
we are deliberately pursuing insane architectures.
Efficiency will take work.

Vast amounts of both system and application code
are bound to turn out not to be as portable as
everyone thought. Even though mainstream 64-
bit machines have been in the field for more
than ten years, code still appears that assumes
sizeof(long) == 4. Much more will break on the
architectures proposed in this paper. Addressing this
may turn out to be an extremely large project. (Ar-
guably, however, it is worthwhile on its own merits.)

Relatedly, testing and debugging will become more
interesting in this environment. One might argue that
expecting code to work correctly on a brand new and
entirely untested architecture is unreasonable. On
the other hand, in practice, portable code is more
robust, precisely because it has been tested under a
range of varying circumstances. It is not obvious

a priori which effect will dominate in the long run.
Since each architecture is completely deterministic
once generated, deterministic bugs will stay deter-
ministic; this is to be distinguished from compile-
time or run-time randomization, which makes debug-
ging and testing a guessing game.

We will want our compilers to be more aggressive
about identifying machine-dependent or undefined
behavior; however, as optimizers grow smarter this
is becoming increasingly important anyway.

11 Is It Worthwhile?

Given all the challenges, the question arises whether
this idea is really worth pursuing, given that many
existing techniques offer a large measure of protec-
tion without being anywhere near so intrusive.

The answer to this question comes in two parts. The
first is technical: randomizing the entire architecture
offers a markedly higher level of protection (over
more limited techniques) against clever, unantici-
pated state corruption attacks. It is also, as a com-
prehensive approach, more robust from a systemic
perspective than a patchwork of partial techniques.

The second, and perhaps more important, answer
is social and environmental: in the long run,
widespread adoption of architectual heterogeneity
has the potential to change the security landscape.
While one cannot realistically hope for all canned
exploits, “script kiddies”, and worms to go away,
binary-based ones would. It is not clear that attacks
based on logic errors, injecting portable script code,
and so forth wouldn’t take up the slack; however, it
is not clear that such attacks can or would, either.

12 Conclusion

In this paper, we have proposed a technique that has
the potential to radically alter the security landscape.



It has a number of possible drawbacks and limita-
tions, but also has a considerable potential benefit.
We believe it to be a viable idea worth pursuing, de-
spite the amount of work involved.
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