
Historical Spatio-Temporal Aggregation
YUFEI TAO
City University of Hong Kong, Hong Kong, China

DIMITRIS PAPADIAS
Hong Kong University of Science and Technology, Hong Kong, China

Spatio-temporal databases store information about the positions of individual objects over time. However, in many
applications such as traffic supervision or mobile communication systems, only summarized data, like the number of
cars in an area for a specific period, or phone-calls serviced by a cell each day, is required. Although this
information can be obtained from operational databases, its computation is expensive, rendering online processing
inapplicable. In this paper, we present specialized methods, which integrate spatio-temporal indexing with pre-
aggregation. The methods support dynamic spatio-temporal dimensions for the efficient processing of historical
aggregate queries without a-priori knowledge of grouping hierarchies. The superiority of the proposed techniques
over existing methods is demonstrated through a comprehensive probabilistic analysis and an extensive
experimental evaluation.

Categories and Subject Descriptors: H.2 [Database Management]; H3.3 [Information Storage and Retrieval]
General Terms: Algorithms, Experimentation
Additional Key Words and Phrases: Aggregation, Access Methods, Cost Models

1. INTRODUCTION

Spatio-temporal databases have received considerable attention during the past few years due to the accumulation of

large amounts of multi-dimensional data evolving in time, and the emergence of novel applications such as traffic

supervision and mobile communication systems. Research has focused on modeling [Sistla et al. 1997, Güting et al.

2000, Forlizzi et al. 2000], historical information retrieval [Vazirgiannis et al. 1998, Pfoser et al. 2000, Kollios et al.

2001, Tao and Papadias 2001], indexing of moving objects [Kollios et al. 1999, Agarwal et al. 2000, Saltenis et al.

2000, Hadjieleftheriou et al. 2002, Saltenis and Jensen 2002, Tao et al. 2003a], selectivity estimation [Choi and

Chung 2002, Hadjieleftheriou et al. 2003, Tao et al. 2003b], etc. All these approaches assume that object locations

are individually stored, and queries retrieve objects that satisfy some spatio-temporal condition (e.g., mobile users

inside a query window during a time interval, or the first car expected to arrive at a destination, etc.).

The motivation of this work is that many (if not most) current spatio-temporal applications require summarized

results, rather than information about individual objects. As an example, traffic supervision systems monitor the

number of cars in an area of interest [Denny et al. 2003], instead of their ids. Similarly mobile phone companies use

the number of phone-calls per cell in order to identify trends and prevent potential network congestion. Other

applications focus directly on numerical aggregate data with spatial and temporal aspects, rather than moving

objects. As an example consider a pollution monitoring system, where the readings from several sensors are fed into

a database that arranges them in regions of similar or identical values. These regions should then be indexed for the

This research was supported by the grants CityU 1163/04E and HKUST 6197/02E from Hong Kong RGC.
Authors' addresses: Yufei Tao, Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong; email:
taoyf@cs.cityu.edu.hk; Dimitris Papadias, Department of Computer Science, Hong Kong University of Science and Technology, Clear Water
Bay, Hong Kong; email: dimitris@cs.ust.hk.
This is a preliminary release of an article accepted by ACM Transactions on Information Systems. The definitive version is currently in
production at ACM and, when released, will supercede this version. Permission to make digital/hard copy of part of this work for personal or
classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

This is the Pre-Published Version

2

efficient processing of queries such as "find the areas near the center with the highest pollution levels yesterday".

Although summarized results can be obtained using conventional operations on individual objects (i.e., accessing

every single record qualifying the query), the ability to manipulate aggregate information directly is imperative in

spatio-temporal databases due to several reasons. First, in some cases personal data should not be stored due to legal

issues. For instance, keeping historical locations of mobile phone users may violate their privacy. Second, the

individual data may be irrelevant or unavailable, as in the traffic supervision system mentioned above. Third,

although individual data may be highly volatile and involve extreme space requirements, the aggregate information

usually remains fairly constant for long periods, thus requiring considerably less space for storage. For example,

although the distinct cars in a city area usually change rapidly, their number at each timestamp may not vary

significantly, since the number of objects entering the area is similar to that exiting. This is especially true if only

approximate information is kept, i.e., instead of the precise number of objects we store values to denote ranges such

as high or low traffic etc.

We consider, at the finest aggregation unit, a set of regions that can be static (e.g., road segments), or volatile (e.g.,

areas covered by antenna cells, which can change their extents according to the weather conditions, allocated

capacity, etc.). Each region is associated with a set of measures (e.g., number of cars in a road segment, phone-calls

per cell), whose values are continuously updated. We aim at retrieving aggregate measures over regions satisfying

certain spatio-temporal conditions, e.g., "return the number of cars in the city center during the last hour" (a formal

problem definition is presented in Section 3). An important fact that differentiates spatio-temporal from

conventional aggregation is the lack of pre-defined groupings on the aggregation units. Such groupings (e.g.,

product types) are taken into account in traditional data warehouses so that queries of the form "find the average

sales for all products grouped-by product type" can be efficiently answered. In spatio-temporal scenarios, the spatial

and temporal extents of queries do not confine to pre-defined groupings, and cannot be predicted (e.g., queries can

inquire about the traffic situation in any district of arbitrary size at any time interval).

This paper presents several multi-tree indexes that combine the spatial and temporal attributes to accelerate query

processing involving static or volatile spatial dimensions. The proposed indexes support ad-hoc groupings, arbitrary

query windows and historical time intervals. Furthermore, we perform a comprehensive analysis for the existing and

proposed solutions, which provides significant insight into their behavior and reveals the superiority of our methods.

This analysis leads to a set of cost models directly applicable for query optimization in practice. The rest of the

paper is organized as follows. Section 2 describes related work in the context of spatial, spatio-temporal databases

and conventional data warehouses. Section 3 formally describes the problem and elaborates its characteristics.

Section 4 presents the proposed solutions, while Section 5 analyzes their performance. Section 6 contains an

extensive experimental evaluation and Section 7 concludes the paper with a discussion on future work.

2. RELATED WORK

Section 2.1 introduces the spatial and spatio-temporal indexes fundamental to our discussions. Then, Section 2.2

surveys existing techniques for multi-dimensional aggregate processing and Section 2.3 reviews traditional data

3

warehouses and their extensions for spatio-temporal data.

2.1 Spatial and spatio-temporal access methods

Spatial access methods [Gaede and Günther 1998] manage multi-dimensional (typically 2D or 3D) rectangles, and

are often optimized for the window query, which retrieves the objects intersecting a query box. One of the most

popular indexes is the R-tree [Guttman 1984] and its variations, most notably the R*-tree [Beckmann et al. 1990].

Each intermediate entry r of an R-tree has the form <r.MBR, r.pointer>, where r.MBR is the minimum bounding

rectangle that tightly encloses all objects in its sub-tree pointed to by r.pointer. For leaf entries, r.MBR stores the

corresponding data rectangle whose actual record is referenced by r.pointer. Figure 1a illustrates four 2D rectangles

R1,…, R4, together with the node MBRs of the corresponding R-tree (node capacity=2) shown in Figure 1b. Based

on their spatial proximity, R1, R2 are grouped together into node N1 (whose parent entry is R5) and R3, R4 into N2

(parent entry R6). Given a window query qR (e.g., the grey rectangle in Figure 1a), the qualifying objects (i.e., R1, R2,

R3) are retrieved by visiting those nodes whose MBRs intersect qR.

R 5

R 1 R 3

R 4

R 6

R 2

qR

R1 R2 R3 R4

R5 R6

ponters to the actual records

N1 N2

R1 R2 R3 R4

R5

numbers of objects in the sub-trees

N1 N2

R6

150 75 132 12

225 144

(a) Data region and node extents (b) R-tree (c) Aggregate R-tree

Fig.1. R-tree example

A spatio-temporal index, on the other hand, manages moving objects. In [Vazirgiannis et al. 1998] the movements of

2D rectangles are modeled as 3D boxes indexed with a 3DR-tree. Specifically, the temporal projection of a box

denotes the period when the corresponding object remains static, while the spatial projection corresponds to the

object’s position and extents during that period. Whenever an object moves to another position, a new box is created

to represent its new static period, position, and extents. A spatio-temporal window query involves, in addition to a

spatial region qR, a time interval qT, and returns objects intersecting qR during qT. If we model the query also as a 3D

box (bounding qR and qT), the qualifying objects are those whose 3D representation intersects the query box. A

similar idea is applied in [Pfoser et al. 2000] for storing objects' trajectories.

While the 3DR-tree stores all data versions in a single tree, the partially persistent technique [Becker et al. 1996,

Varman and Verma 1997, Salzberg and Tsotras 1999] maintains (in a space efficient manner) a separate (logical) 2D

R-tree for each timestamp, indexing the regions that are alive at this timestamp. The motivation is that the number of

records valid at a timestamp is much lower than the total number of data versions in history; hence, a query with

short interval (compared to the history length) only needs to search a small number of R-trees, each indexing a

limited number of objects. A popular index is the Multi-version R-tree (MVR-tree) [Kumar et al. 1998, Tao and

Papadias 2001]. An entry r has the form <r.MBR, r.tst, r.ted, r.pointer>, where [r.tst,r.ted] denotes the lifespan, i.e., the

time interval during which r was alive (ted=“*”implies that the entry is still alive at the current time). For leaf entries,

r.MBR denotes the MBR of the corresponding object, while for intermediate entries it encloses all the child entries

alive in its lifespan. The semantics of r.pointer are similar to the ordinary R-tree.

4

Figure 2a shows an example where R1 moves to a new position R1' at timestamp 5 (triggering the change of the

parent entry R5 to R5'), and Figure 2b illustrates the corresponding MVR-tree. The (logical) R-trees for time interval

[1,4] involve entries in nodes N1, N2, N4 (observe the lifespans of their parent entries), while starting from timestamp

5, the logical trees consist of nodes N5 and N3, which replace N4 and N1, respectively. Note that N2 is shared (i.e., it is

the child node of both N4 and N5) because none of its objects issued an update. The window query algorithm of the

MVR-tree is the same as that of normal R-trees, except that search is performed in the logical trees responsible for

the query timestamps. If the number of involved timestamps is small, only few R-trees are accessed, in which case

the MVR-tree is more efficient than the 3DR-tree. This benefit comes, however, at the cost of data duplication. In

Figure 2, for example, although region R2 does not issue any update, two separate copies R2, R2' are stored in N1, N3

respectively. As a result, the MVR-tree performs worse for queries involving long temporal intervals and consumes

more space than the corresponding 3DR-tree [Tao and Papadias 2001].

R5

R1
R 3

R 4

'

'

R2
'R2=

R6
'R6=R1 qR

R5

R5 [1, 4] R6 [1, 4] R5 [5, *] R6 [5, *]'

R1 [5, *] R2 [5, *]

N1

N3

N4 N5
lifespan of the entry

'

'

'

R1 [1, 4] R2 [1, 4] N2

R3 [1, *] R4 [1, *]

(a) R1 moves at timestamp 5 (b) The corresponding MVR-tree

Fig.2. The multi-version R-tree

2.2 Multi-dimensional aggregate methods

The aggregate R-tree (aR-tree) [Jurgens and Lenz 1998, Papadias et al. 2001] augments traditional R-trees with

summarized information. Figure 1c shows an example aR-tree for the regions of Figure 1a. Each leaf entry contains

a set of numerical measures, which are the objectives of analysis (e.g., the number of users in a cell, the number of

phone call made). The measures of intermediate entries are computed using some distributive1 aggregation function

(e.g., sum, count, max), and summarize the information in the corresponding subtrees. In Figure 1c we assume that

there is a single measure per leaf entry (i.e., data region); the measure for intermediate entries is based on the sum

function, i.e., the measure of entry R5 equals the sum of measures of R1 and R2 (e.g., the total number of users in the

regions indexed by its subtree). The same concept has been applied to a variety of indexes [Lazaridis and Mehrotra

2001].

The aR-tree (and other multi-dimensional aggregation structures) aims at the efficient processing of the window

aggregate query. Such a query specifies a window qR and returns the aggregated measure of the regions intersecting

qR (instead of reporting them individually). For instance, if the query window qR of Figure 1a is applied to the aR-

tree of Figure 1c, the result should be 150+75+132 (i.e., the sum of measures of regions R1, R2, R3). Since R5.MBR is

covered by qR, all the objects in its sub-tree must satisfy the query. Thus, the measure (225) stored with R5 is

1 A function fagg is distributive [Gray et al. 1996] if, given S1∪S2=S and S1∩S2=∅, fagg(S) can be obtained from
fagg(S1) and fagg(S2), namely, the aggregate result for S can be computed by further aggregating disjoint subsets S1, S2.

5

aggregated directly, without accessing its child node. On the other hand, since R6.MBR partially intersects q, its sub-

tree must be visited to identify the qualifying regions (only R3). Hence, the query is answered with only 2 node

accesses (root and N2), while a traditional R-tree requires 3 accesses.

Multi-dimensional aggregate processing has also been studied theoretically, leading to several interesting results.

Zhang et al. [Zhang et al. 2001] propose the MVSB-tree that efficiently solves a window aggregate query on two-

dimensional horizontal interval data (i.e., find the number of intervals intersecting a query window) in O(logB(N/B))

I/Os using O((N/B)logB(N/B)) space, where N is the dataset cardinality and B the disk page capacity. Their idea is to

transform a query to four “less-key-less-time” and two “less-key-single-time” queries, which are supported by two

separate structures that constitute a complete MVSB-tree. This solution also answers aggregate queries on 2D points

(e.g., find the number of points in a query window) with the same performance by treating each point as a special

interval with zero length. The aP-tree [Tao et al. 2002b] achieves the same time and space complexity using a

simpler conversion of a window aggregate query to two “vertical range queries”. Govindarajan, et al. [Govindarajan

et al. 2003] present the CRB-tree that further lowers the space consumption, and supports data points of arbitrary

dimensionality.

The above techniques target point/interval objects (they are inapplicable to regions), while Zhang et al. [Zhang et al.

2002] develop two versions of the ECDF-B-tree for answering aggregate queries on rectangular data with different

space-query time tradeoffs. Specifically, in the d-dimensional space, the first version consumes

O((N/B)logB
d−1(N/B)) space and answers a query in O(B·logB

d(N/B)) I/Os, while the corresponding complexities of

the second version are O(N·Bd−2logB
d−1(N/B)) (for space) and O(logB

d(N/B)) (for query cost). Both versions, however,

require relatively high space consumption, limiting their applicability in practice. Aggregate processing on one-

dimensional intervals has also been addressed in the context of temporal databases [Kline and Snodgrass 1995,

Gendrano et al. 1999, Moon et al. 2000, Yang and Widom 2003]. Zhang et al. [Zhang et al. 2002, Zhang et al. 2003]

study spatial and temporal aggregation over data streams.

2.3 Data warehouses

A considerable amount of related research has been carried out on data warehouses and OLAP in the context of

relational databases. The most common conceptual model for data warehouses is the multi-dimensional data view.

In this model, each measure depends on a set of dimensions, e.g., region and time, and thus is a value in the multi-

dimensional space. A dimension is described by a domain of values (e.g. days), which may be related via a hierarchy

(e.g., day-month-year). Figure 3 illustrates a simple case, where each cell denotes the measure of a region at a

certain timestamp. Observe that although regions are 2-dimensional, they are mapped as one dimension in the

warehouse.

The star schema [Kimball 1996] is a common way to map a data warehouse onto a relational database. A main table

(called fact table) F stores the multi-dimensional array of measures, while auxiliary tables D1, D2, …, Dn store the

details of the dimensions. A tuple in F has the form <Di[].key, M[]> where Di[].key is the set of foreign keys to the

dimension tables and M[] is the set of measures. OLAP operations ask for a set of tuples in F, or for aggregates on

groupings of tuples. Assuming that there is no hierarchy in the dimensions of the previous example, the possible

6

groupings in Figure 3 include: (i) group-by Region and Time, which is identical to F, (ii)-(iii) group-by Region

(Time), which corresponds to the projection of F on the region- (time-) axis, and (iv) the aggregation over all values

of F which is the projection on the origin (Figure 3 depicts these groupings for the aggregation function sum). The

fact table together with all possible combinations of group-bys composes the data cube [Gray et al. 1996]. Although

all groupings can be derived from F, in order to accelerate query processing some results may be pre-computed and

stored as materialized views.

regions

T1 T2 T3 T5

R1

R2

R3

4R

150

75

132

12

150

80

127

12

145

85

125

12 12

127

90

130135

90

127

12

aggregate results over timestamps

369 369 367 364

T4

359

60

638

420

710

1828

aggregate results
over regions

FACT TABLE

total sum

time

Fig.3. A data cube example

A detailed group-by query can be used to answer more abstract aggregates. In our example, the total measure of all

regions for all timestamps (i.e. 1828) can be computed either from the fact table, or by summing the projected

results on the time or region axis. Ideally the whole data cube should be materialized to enable efficient query

processing. Materializing all possible results may be prohibitive in practice as there are O(2n) group-by

combinations for a data warehouse with n dimensional attributes. Therefore, several techniques have been proposed

for the view selection problem in OLAP applications [Harinarayan et al. 1996, Gupta 1997, Gupta and Mumick

1999, Baralis et al. 1997, Shukla et al. 1998]. In addition to relational databases, data warehouse techniques have

also been applied to spatial [Han et al. 1998, Stefanovic et al. 2000] and temporal [Mendelzon and Vaisman 2000,

Hurtado et al. 1999] databases. All these methods, however, benefit only queries on a predefined hierarchy. An ad-

hoc query not confined by the hierarchy, such as the one in Figure 3 involving the gray cells, would still need to

access the fact table, even if the entire data cube were materialized. In the next section we formally define spatio-

temporal aggregate processing and explain the inefficiency of existing techniques.

3. PROBLEM DEFINITION AND CHARACTERISTICS

Consider N regions R1, R2,…, RN, and a time axis consisting of discrete timestamps 1, 2,…, T, where T represents the

total number of recorded timestamps (i.e., the length of history). Following the conventional spatial object modeling,

each region Ri (1≤i≤N) is a two-dimensional minimum bounding rectangle of the actual shape (e.g., a road segment,

an antenna cell, etc). The position and area of a region Ri may vary along with time, and we refer to its extent at

timestamp t as Ri(t). Each region carries a set of measures Ri(t).ms, which also changes with time (sometimes we

refer to Ri(t).ms as the aggregate data of Ri(t)). Note that this modeling trivially captures static objects, for which

Ri(t) remains constant for all timestamps t. Further, it also supports region insertions/deletions, i.e., the

7

emergence/disappearance of new/existing objects. In this case, the dataset cardinality N should be interpreted as the

total number of distinct regions in the entire history. At a timestamp t, if a region Ri (1≤i≤N) is inactive (i.e., it has

been deleted or has not been inserted at this time), its extent Ri(t) and measure Ri(t).ms are set to some default “void”

values. Without loss of generality, to simplify discussion in the sequel we do not consider such

appearances/disappearances, and assume that N regions are active at all timestamps.

In practice the measures of regions change asynchronously with their extents. In other words, the measure of Ri

(1≤i≤N) may change at a timestamp t (i.e., Ri(t).ms≠Ri(t−1).ms), while its extent remains the same (i.e.,

Ri(t)=Ri(t−1)), and vice versa. To quantify the rates of these changes, we define the measure agility ams(t), as the

percentage of regions that issue measure modifications at time t (e.g., if ams=100%, then all regions obtain new

measures each timestamp); similarly, the extent agility aext(t) characterizes the percentage for extent changes. In

some cases the extent agility is 0 (e.g., road segments are static). Even for volatile regions (i.e., aext(t)>0), ams(t) is

usually considerably higher than aext(t), which is an important property that must be taken into account for efficient

query processing.

We aim at answering the spatio-temporal window aggregate query, which specifies a rectangle qR and a time

interval qT of continuous timestamps. The goal is to return the aggregated measure Agg(qR, qT, fagg) of all regions

that intersect qR during qT, according to some distributive aggregation function fagg, or formally:

Agg(qR, qT, fagg)=fagg{Ri(t).ms ⎪Ri(t) intersects qR and t∈qT}.

If qT involves a single timestamp, the query is a timestamp query; otherwise, it is an interval query. For the

following examples and illustrations, we use the static (dynamic) regions of Figure 1 (2), assuming that a region

corresponds to the coverage area of an antenna cell. For each data region Ri(t) there is a single measure Ri(t).ms (we

use the measures of Figure 3) representing the number of phone-calls initialized in Ri at timestamp t and the

aggregate function is sum. A spatio-temporal window aggregate query (qR, qT) retrieves the total number of phone-

calls initiated during qT in cells intersecting qR. Application to other aggregate functions and query types is, as

discussed in Section 7, straightforward. Next, we describe how to adapt existing methods to spatio-temporal

aggregation, and explain their inefficiency.

• Using a 3D aggregate R-tree

We can consider the problem as multi-dimensional aggregate retrieval in the 3D space and solve it using one of the

existing aggregation structures (discussed in Section 2.2). Assume for instance that we use aR-trees. Whenever the

extent or measure of a region changes, a new 3D box is inserted in a 3D version of the aR-tree, called the a3DR-tree.

Using the example of Figure 3, four entries are required for R1: one for timestamps 1 and 2 (when its measure

remains 150) and three more entries for the other timestamps. Given a spatio-temporal window aggregate query, we

can also model it as a 3D box, which can be processed in a way similar to Figure 1c. The problem of this solution is

that it creates a new box duplicating the region’s extent, even though it does not change. Since the measure changes

are much more frequent than extent updates, the a3DR-tree incurs high redundancy. The worst case occurs when

aext(t)=0: although the extent of a region remains constant, it is still duplicated at the rate of its measure changes.

Bundling the extent and aggregate information in all entries significantly lowers the node fanout and compromises

8

query efficiency, because as analyzed in Section 5, more nodes must be accessed to retrieve the same amount of

information. Note that redundancy incurs whenever the extent and measure changes are asynchronous, i.e., the

above problem also exists when a new box is spawned because of an extent update, in which case the region’s

measure must be replicated.

• Using a data cube

Following the traditional data warehouse approach we could create a data cube, where one axis corresponds to time,

the other to regions, and keep the measure values in the cells of this two-dimensional table (see Figure 3). Since the

spatial dimension has no one-dimensional order we store the table in the secondary memory ordered by time and

build a B-tree index to locate the pages containing information about each timestamp. The processing of a query

employs the B-tree index to retrieve the pages (i.e., table columns) containing information about qT; then, these

regions (qualifying the temporal condition) are scanned sequentially and the measures of those satisfying qR are

aggregated. In the sequel, we refer to this method as column scanning.

Even if there exists an additional spatial index on the regions, the simultaneous employment of both indexes has

limited effect. Assume that first a window query qR is performed on the spatial index to provide a set of ids for

regions that qualify the spatial condition. Measures of these regions must still be retrieved from the columns

corresponding to qT (which, again, are found through the B-tree index). However, the column storage does not

preserve spatial proximity, and hence the spatially qualifying regions are expected to be scattered in different pages.

Therefore, the spatial index has some effect only on very selective queries (on the spatial conditions). Furthermore,

recall that pre-materialization is useless, since the query parameters qR and qT do not conform to pre-defined

groupings.

4. PROPOSED SOLUTIONS

Our solutions are motivated by the facts that (i) the extent and measure updates are asynchronous and (ii) in practice,

measures change much more frequently than extents (which may be even static). Therefore, the two types of updates

should be managed independently to avoid redundancy. In particular, the proposed solutions involve two types of

indexes: (i) a host index, which is an aggregate spatial or spatio-temporal structure managing region extents, and (ii)

numerous measure indexes (one for each entry of the host index), which are aggregate temporal structures storing

the values of measures during the history. Figure 4 shows a general overview of the architecture. Given a query, the

host index is first searched, identifying the set of entries that qualify the spatial condition. The measure indexes of

these entries are then accessed to retrieve the timestamps qualifying the temporal conditions. Since the number of

records (corresponding to extent changes) in the host index is very small compared to the measure changes, the cost

of query processing is expected to be low. As host indexes we use variations of the R-tree due to its popularity,

flexibility (i.e., applicability to spatial or spatio-temporal data), low space consumption (O(N/B)) and good

performance in practice. For similar reasons, we use aggregate B-trees as measure indexes. Nevertheless, the same

concept can be applied with other spatial or temporal aggregate structures. In Section 4.1, we first solve the case of

static regions (i.e., aext(t)=0). Then, Sections 4.2 and 4.3 address the general problem involving volatile regions

9

(aext(t)>0). Section 4.4 proposes a space-efficient structure for managing multiple measure indexes.

host index
(indexing regions' extents)measure indexes

(indexing regions' measures)

Fig.4. Overview of the proposed solution

4.1 The aggregate R-B-tree

The aggregate R- B-tree (aRB-tree) adopts an aR-tree as the host index, where an entry r has the form <r.MBR,

r.aggr, r.pointer, r.btree>; r.MBR and r.pointer have the same semantics as a normal R-tree, r.aggr keeps the

aggregated measure about r over the entire history, and r.btree points to an aggregate B-tree which stores the

detailed measure information of r at concrete timestamps. Figure 5 illustrates an example using the data regions of

Figure 1a and the measures of Figure 3. The number 710 stored with R-tree entry R1, equals the sum of measures in

R1 for all 5 timestamps (e.g., the total number of phone calls initiated at R1). The first leaf entry of the B-tree for R1

(1, 150) indicates that the measure of R1 at timestamp 1 is 150. Since the measure of R1 at timestamp 2 is the same,

there is no a special entry, but this knowledge is implied from the previous entry (1, 150). Similarly, the first root

entry (1, 445) of the same B-tree indicates that the aggregated measure in R1 during time interval [1,3] is 445. The

topmost B-tree stores aggregated information about the whole space, and its role is to answer queries involving only

temporal conditions (similar to that of the extra row in Figure 3).

1 150 3 145 4 135 5 130

1 445 4 265

1 75 2 80 3 85 4 90

1 155 3 265

1 132 2 127 3 125 4 127

1 259 3 379

1 12

B-tree for R1

B-tree for R2 B-tree for R3

B-tree for R4

1 225 2 230 4 225 5 220

1 685 4 445

B-tree for R5

1 144 2 139 3 137 4 139

1 283 3 415

B-tree for R61 369 3 367 4 364 5

1 4 723

B-tree for the whole space

359

1105

R1 710 R2 420 R3 638 R4 60

R51130 R6 698R-tree Root

host index

N1 N2

Fig.5. An aRB-tree (c.f. regions in Figure 1a and measures in Figure 3)

To illustrate the processing algorithms, consider the query "find the number of phone-calls initiated during interval

qT=[1,3] in all cells intersecting the window qR shown in Figure 1a". Starting from the root of the R-tree, the

algorithm visits the B-tree of R5 since the entry is totally contained in qR. The root of this B-tree has entries (1,685),

(4,445) meaning that the aggregated measures (of all data regions covered by R5) during intervals [1,3], [4,5] are 685

10

and 445, respectively. Hence the contribution of R5 to the query result is 685. The second root entry R6 of the R-tree

partially overlaps qR, so we visit its child node, where only entry R3 intersects qR, and thus its B-tree is retrieved. The

first entry of the root (of the B-tree) suggests that the contribution of R3 for the interval [1,2] is 259. In order to

complete the result we will have to descend the second entry and retrieve the measure of R3 at timestamp 3 (i.e.,

125). The final result equals 685+259+125, which corresponds to the sum of measures in the gray cells of Figure 5.

The pseudo-code for the algorithm is presented in Figure 6 for the general case where the query has both spatial (qR)

and temporal (qT) extents. Purely spatial queries (e.g., find the total sum of measures - throughout history - for

regions intersecting qR) can be answered using only the R-tree, while purely temporal queries (e.g., find the total

sum of measures during qT for all regions) can be answered exclusively by the topmost B-tree. In general, the aRB-

tree accelerates queries regardless of their selectivity because (i) if the query window qR (interval qT) is large, many

nodes in the intermediate levels of the R- (B-) tree will be contained in qR (qT) so the pre-calculated results are used,

and visits to the lower tree levels are avoided; (ii) If qR (qT) is small, the aRB-tree behaves as a spatio-temporal

index.

1 function aRB_node_aggregate(Xi, qR, qT)
2 // Xi is a pointer to a node of the aRB-tree. Initially it points to the root
3 // qR is the spatial and qT the temporal query window, respectively
4 for every entry r ∈ Xi do {
5 if (qR contains r.MBR) or (Xi is a leaf node and qR intersects r.MBR) then {
6 partial_result := B_node_aggregate(r.btree, qT) // visit the corresponding B-tree
7 result := fagg(result, partial_result) // fagg is the aggregation function
8 } else if qR partially overlaps r.MBR then {
9 partial_result := aRB_node_aggregate(r.pointer, qR, qT) // visit recursively the
10 result := fagg(result, partial_result) // aRB sub-tree
11 } // end if
12 } // end for
13 return result

1 function B_node_aggregate(Bi, qT)
2 // Bi is a pointer to a node of the B-tree. Initially it points to the root
3 for every entry (i.e. interval) b ∈ Bi do {
4 if (qT contains b) or (Bi is a leaf node and qT intersects b) then
5 result := fagg(result, b.aggr) // use the pre-aggregated result
6 else if qT partially overlaps b then {
7 partial_result := B_node_aggregate(b.pointer, qT) // visit recursively the B-subtree
8 result := fagg(result, partial_result)
9 } // end if
10 } // end for
11 return result

Fig.6. Query processing using the aRB-tree (single window queries)

Incremental maintenance of the aRB-tree is straightforward. Assume, for example, that at the next timestamp 6

region R1 changes its measure. To update the aRB-tree, we first locate R1 in the R-tree (in Figure 5), by performing

an ordinary window query using the extent of R1, after which the B-tree associated with R1 is modified to include the

new measure. A change at the lower level may propagate to higher levels; continuing the previous example, after

updating R1.btree, we backtrack to the parent entry R5, and modify its B-tree (according to the new aggregate of R1).

11

A faster way to perform updates is by following a bottom-up approach2. In particular, we can build a hash index on

region id and associate each region with a pointer to the last entry of the B-tree that stores its measure. When new

information about a region arrives, the hash index is used to locate directly the appropriate B-tree entry where the

measure is stored (thus avoiding the window query on the R-tree). Then, the change propagates upwards the B-tree

and the R-tree, updating the affected entries. Similar update policies can be applied for volatile regions discussed in

subsequent sections.

4.2 The aggregate multi-version R-B-tree

When the extents of data regions change with time, the aRB-tree is inadequate because its host index is a spatial

access method, which does not support moving objects. To overcome this problem, we propose the aggregate multi-

version R-B-tree (aMVRB-tree), which adopts the MVR-tree (discussed in Section 2.1) as the host index.

Specifically, each entry r in the MVR-tree has the form <r.MBR, r.lifespan, r.aggr, r.pointer, r.btree>, where (i) the

meanings of r.MBR, r.lifespan, r.pointer are the same as the normal MVR-tree, (ii) r.aggr keeps the aggregated

measure of r during its lifespan (instead of the whole history as in the aRB-tree), and (iii) r.btree points to a B-tree

storing its concrete measures. Figure 7 shows an example for the moving regions in Figure 2a. The value 580 stored

with R1, for example, equals the sum of its aggregate values during interval [1,4] (the lifespan of R1). On the other

hand, the B-tree of R1' (i.e., the updated version of R1) contains a single entry (5,130), indicating its measure 130 at

the current time 5.

R5 [1, 4]

N1 N2 N3

N4 N5
R6 [1, 4]

R1 [1, 4]
R2 [1, 4]

R3 [1, *]
R4 [1, *]

R5 [5, *] R6 [5, *]

R1 [5, *]
R2 [5, *]1 150 3 145 4 135

1 445 4 135

B-tree for R1

580

1 75 2 80 3 85 4 90

1 155 3 175

B-tree for R2

330

1 132 2 127 3 125 4 127

1 259 3 379

B-tree for R3

1 12
B-tree for R4

638

60

' 130

90

5 130

B-tree for R1 '
5 90

B-tree for R2

'

1 225 2 230 4 225

1 685 4 225

B-tree for R5

1 144 2 139 3 137 4 139

1 283 3 276

B-tree for R6

910

5 220

B-tree for R5 '

5 139

B-tree for R6

220 139559 '

'

'

'

host index

Fig.7. An aMVRB-tree (c.f. regions in Figure 2a and measures in Figure 3)

Consider a query asking for the number of phone-calls initiated during interval qT=[1,5] in all cells intersecting the

window qR in Figure 2a. Since R5.MBR is inside qR during time interval [1,4], its child node (at N4) is not visited.

Furthermore, R5.btree is not retrieved either because its lifespan [1,4] is contained in the query interval [1,5];

instead, the summary data (910) of R5 at node N4 are simply aggregated. On the other hand, N2 must be accessed

because its parent R6.MBR partially overlaps qR. Inside N2, only R3 intersects qR, and we aggregate its summary

2 Bottom up updates using hash indexes have been used extensively in spatio-temporal applications involving

12

(638) without retrieving its B-tree (as its lifespan [1,*]=[1,5] is also included in qT). Searching the logical R-tree

rooted at N5 is similar, except that shared nodes should not contribute more than once. Continuing the example, node

N3 is accessed (R5' partially overlaps qR) without retrieving any B-tree (because the lifespans of R1' and R2' are

enclosed by qT). Further, since N2 has already been processed, we do not follow R6'.pointer, even though R6'.MBR

partially intersects qR. In Figure 7, the entries that contribute to the query are shaded.

In order to avoid multiple visits to a shared node via different parents, we search the MVR-tree in a breadth-first

manner. Specifically, at each level, the algorithm visits all the necessary nodes before descending to the lower level.

In Figure 7, for example, nodes N4 and N5 (i.e., the root level of the MVR-tree) are searched first, after which we

obtain an access list, containing the ids of nodes N2, N3 to be visited at the next level. Thus, multiple visits are

trivially avoided by eliminating duplicate entries from the access list. Figure 8 illustrates the complete query

algorithm of aMVRB-trees, where function B_node_aggregate is shown in Figure 6.

1 function aMVRB_tree_aggregate(qR, qT)
2 initiate an empty access list AL
3 for each root r responsible for some timestamp of qT
4 let r.lifespan be the bounding lifespan of all entries in r
5 insert (r.id, r.lifespan) into AL
6 result := aMVRB_node_aggregate(AL, qR, qT)

1 function aMVRB_node_aggregate(pAL, qR, qT)
2 // pAL (passed from the parent level) is the access list of nodes to be visited at this level
3 result := 0 and initiate an empty access list AL
4 for every entry pe ∈ pAL retrieve the node X whose id equals pe.id
6 for every entry r ∈ X do {
7 if (qR contains r.MBR) or (X is a leaf node and qR intersects r.MBR) then {
8 if (qT covers the r.lifespan and r.lifespan ⊆ pe.lifespan) then result := fagg(result, r.aggr[])
10 else { // qT intersects but does not cover the lifespan of the entry
11 partial_result := B_node_aggregation(r.btree, qT)
12 result := fagg(result, partial_result)}
13 } else if qR partially overlaps r then {
14 if there is an entry e in AL whose id equals r.pointer then
15 e.lifespan := e.lifespan ∪ (r.lifespan ∩ pe.lifespan)
16 else insert (r.pointer, r.lifespan ∩ pe.lifespan) into AL}
17 } //end for
18 partial_result := aMVRB_node_aggregate(AL, qR, qT) //access the next level
19 result := fagg(result, partial_result)

Fig. 8. Query processing using the aMVRB-tree

Note that, the algorithm visits the B-trees of only those entries in the MVR-tree whose lifespans cover the starting or

ending timestamps of qT; for (MVR) entries whose lifespans include only the intermediate timestamps of qT, the

relevant aggregate data stored in the MVR-tree are used directly. Furthermore, although in Figure 7 we show a

separate B-tree for each MVR-tree entry, the B-trees of various entries can be stored together in a space efficient

manner, described in Section 4.4. Finally, the aMVRB-tree can be incrementally maintained in a way similar to aRB-

trees. Specifically, given the new spatial extent and aggregate value of a region, the update algorithm first locates

the corresponding entry in the MVR-tree (or inserts an entry if the region incurs extent change), modifies the

intensive updates [Kwon et al. 2002, Lee et al. 2003].

13

information in its B-tree, and then propagates the changes to higher levels of the MVR-tree.

4.3 The aggregate 3-dimensional R-B-tree

As mentioned in Section 2.1, the MVR-tree still involves data duplication3, which has negative effects on the space

consumption and query performance. To eliminate this problem, we develop the a3DRB-tree (aggregate 3-

dimensional R-B-tree), by adopting the 3DR-tree as the host index. Towards this, we follow the “3D box”

representation of (discretely) moving rectangles (see Sections 2.1 and 3), but unlike the a3DR-tree, a new box is

necessary only for extent changes (i.e., not for measure changes); hence, there is no redundancy. Specifically, an

entry in the host index has the form <r.MBR, r.lifespan, r.btree, r.aggr>, where r.MBR, r.btree are defined as in

aRB-trees, and r.aggr stores aggregated data over r.lifespan. Figure 9 shows an example using the moving regions of

Figure 2a. Region R1 changes to R1' at timestamp 5, which creates a new box and a new node R7 containing it.

at time 5

B-tree for

time

R5

R1

R2

R3

R4

R6

R1
R7

B-tree for R3B-tree for R1 B-tree for R4

B-tree for R5 B-tree for R6

B-tree for R2

R'1B-tree for R7

'

R1 dies

x

y

Fig. 9. Example of a3DRB-tree

As with the a3DR-tree, a spatio-temporal aggregate query is modeled as a 3D box representing the spatial and

temporal ranges. The query algorithm follows the same idea as those for aRB- and aMVRB-trees. Specifically, it

starts from the root of the 3DR-tree, and for each entry r one of the following conditions holds: (i) the entry is

covered by both (qR and qT) query extents. In this case, its pre-computed aggregate data r.aggr is simply used

(subtree or B-tree accesses are avoided), (ii) the entry's spatial extent is covered by qR, and its temporal extent

partially overlaps qT. The B-tree pointed by r.btree is accessed to retrieve aggregate information for qT, (iii) the

entry's spatial extent partially overlaps qR, and its temporal extent overlaps (or is inside) qT. In this case the

algorithm descends to the next R-tree level and the same process is applied recursively, and (iv) if none of the

previous conditions holds, the entry is ignored.

Although both aMVRB- and a3DRB-trees aim at volatile regions, they have two important differences. (i) The

a3DRB-tree maintains a large 3DR-tree for the whole history, while the aMVRB-tree maintains several small trees,

each responsible for a relatively short interval. This fact has implications on their query performance as discussed in

Section 5. (ii) The aMVRB-tree is an on-line structure (i.e., it can be incrementally updated), while the a3DRB-tree

3 The data duplication in the MVR-tree does not involve regions’ measures (as is the case in a3DR-trees), but is
caused by the partially persistent framework.

14

is off-line, meaning that all the region extents must be known in-advance4. Specifically, to create an a3DRB-tree, we

should first build the underlying 3DR-tree according to regions’ spatial extents and lifespans, after which the B-trees

of the entries are constructed chronologically by scanning the aggregate changes. Similar to aRB- and aMVRB-trees,

for each aggregate change, the algorithm first identifies the leaf entry of the corresponding region (that produces the

change), and then modifies its B-tree. Finally, the update propagates to higher levels of the tree.

4.4 Management of B-trees

Maintaining a separate B-tree for each entry of the aMVRB- (a3DRB-) tree can lead to considerable waste of space if

the B-tree contains too few entries. Consider, for example, Figure 7, where region R1 changes to R1' at timestamp 5;

thus, R1.btree contains only 4 entries although in practice a page has a capacity of 100-1000 entries. If such situation

happens frequently, the average page utilization in the B-trees may be very low. To solve this problem we propose

the B-File (BF), which is a space-efficient storage scheme for multiple B-trees. A BF possesses the following

properties: (i) the B-trees stored in the same BF manage disjoint sets of keys, which in our case correspond to

timestamps (any timestamp can be indexed by at most one B-tree in the same BF), (ii) all the nodes (except,

possibly, for the last node of each level) are full (since deletions never happen), and (iii) the search algorithms are

the same as those of conventional B-trees (a BF is merely a compact storage scheme for multiple B-trees, each

maintaining its logical integrity).

Figure 10a illustrates an example BF, which stores the B-trees of two regions R and R' (for simplicity, in each B-tree

entry we include only the timestamps and not the aggregate values). The lifespan of R is [1,19], while that of R' is

[20,*] (R' is currently alive). The B-tree of R consists of two levels while, up to timestamp 30, the B-tree of R' has

only one level. Note that the root pointers of R and R' point to nodes at different levels. The insertion of 35 (in the B-

tree of R') causes node B to overflow, and a new node C is created (Figure 10b). An entry 35, pointing to node C, is

inserted into A, which becomes the root of the B-tree of R'.

If the live B-tree dies (e.g., R' ceases to exist), the corresponding BF becomes vacant and may be used for any B-tree

created at later timestamps. Whenever a new B-tree needs to be initiated, we first search for vacant BFs. If such a

BF does not exist, a new one is initiated. In practice, the creation of new BFs is infrequent because, when an object

changes its position or extent, the new entry (in the MVR- or 3DR-trees) can use the vacant BF of the previous

version. As analyzed in the next section, the BF can achieve significant space savings for highly dynamic datasets.

R R'[1, 19] [20, *)

1 10

10 13. . . 15 20 25

B

30

A

R R'[1, 19] [20, *)

1 10

10 13. . . 15 20 25

B

30

C

A

35

35

(a) Before insertion (b) After insertion

Fig.10. A B-File example

4 Otherwise, we have to store unbounded boxes inside the 3DR-tree, which affects query performance severely. The
same problem exists for the a3DR-tree and, in general, any structure based on 3DR-trees.

15

5. PERFORMANCE ANALYSIS

This section theoretically proves the superiority of our solutions and provides cost models for query optimization.

Since column scanning ignores the spatial conditions and (as shown in Section 6) has inferior performance, we focus

on the a3DR-tree and the proposed aRB-, aMVRB- and a3DRB-trees (collectively called multi-tree structures). In

Section 5.1 we present a unified (high-level) model that describes the behavior of all structures. Then, Sections 5.2-

5.4 develop the complete formulae for space consumption and query cost of each method, assuming uniform

locations and velocities. Section 5.5 provides significant insight into the characteristics of alternative solutions, and

Section 5.6 extends the analysis to general datasets. Table I lists the symbols that will be frequently used in our

derivation.

Table I. List of frequent symbols

Symbol Description
N total number of data regions
D region density
T number of timestamps in history

aext extent agility of the dataset
ams measure agility of the dataset

qR, qS, qT query region, side length, and query interval
h height of the host tree
Ni number of nodes at the i-th level of the host tree
aPi access probability of a level-i node in the host tree
Ei number of level-i B-trees to be searched

NABi cost of searching a level-i B-tree

5.1 A unified model

To facilitate discussion, let us first consider the following regular datasets. At the initial timestamp 1, N regions

with density5 D distribute uniformly in the 2D unit data space [0,1]2. Then, at each of the subsequent T−1

timestamps, (i) aext percent of the regions change their positions randomly so that the spatial distribution is still

uniform (for static dimensions aext =0), and (ii) ams percent modify their aggregate values, where the extent (aext) and

measure (ams) agilities remain fixed at all timestamps. Further, each region has the same chance to produce changes,

i.e., aext (ams) corresponds to the probability that a region changes its extent (measure) at each timestamp. Such

regular data allow us to concentrate on the most crucial factors that affect the performance of each method. We will

show, in Section 5.6, that the results obtained from the regular case can be easily extended to general datasets

(without the above constraints), using histograms.

The objective of analysis is to predict (i) the number of node accesses in answering a spatio-temporal aggregate

query, and (ii) the structure size (in terms of the number of nodes). For this purpose, we separate the derivation for

the host index (i.e., the R-, MVR- and 3DR-trees in the aRB-, aMVRB- and a3DRB-trees, respectively) from that for

the measure indexes (i.e., aggregate B-trees). For convenience we say that a measure index (interchangeably, a B-

tree) is at level-i, if the corresponding host entry (i.e., pointing to the B-tree) is at the i-th level of the host tree. Also,

5 The density D of a set of rectangles is the average number of rectangles that contain a given point in space.
Equivalently, D can be expressed as the ratio of the sum of the areas of all rectangles over the data space area.

16

we define the lifespan of a B-tree node as the range of timestamps covered by the sub-tree rooted at it. Particularly,

the lifespan of the root (of the B-tree) is also the lifespan of the entire B-tree. For example, for R1.btree (i.e., a level-

0 B-tree) in Figure 5, the extents of the first and second leaf nodes are [1,3] and [4,5] respectively, while that of the

root is [1,5]. Obviously, the query cost (structure size) equals the sum of the costs (sizes) of the host and measure

indexes:

NA = NAhost + NAms, and Size = Sizehost + Sizems (5-1)

The a3DR-tree is a special case of our framework that consists of only the host index, i.e., Sizems=NAms=0 in

Equation 5-1. For regular datasets, as defined earlier, the data characteristics are the same across the whole spatio-

temporal space, leading to similar properties in all parts of the index. This has several important implications: (i) for

all structures, the MBRs of the host entries at the same level have similar sizes, (ii) for a3DR-, aMVRB-, a3DRB-

trees, the lengths of the host entries’ lifespans are also similar, and (iii) for the proposed structures, the B-trees of the

same level manage an equal number of timestamps (i.e., their lifespans are equally long). In particular, property (iii)

is most obvious for the aRB-tree: the B-tree of a host entry at the leaf level indexes all the ams·T measure changes of

the corresponding data region, where ams and T are the measure agility and number of recorded timestamps,

respectively.

Next we investigate Equation 5-1. Let h be the height of the host index (the leaves are at level 0), Ni the number of

nodes at the i-th (0≤i≤h−1) level, and aPi the probability that a level-i node is visited for answering a query q. Then,

NAhost can be represented as:

()
1

0

h

host i i
i

NA N aP
−

=

= ⋅∑ (5-2)

The above equation already gives the cost (albeit at a coarse level) of the a3DR-tree which has no measure indexes.

For the proposed multi-tree solutions, we still need to consider NAms, which depends on two factors: (i) the number

Ei of B-trees at the i-th level (of the host index) that need to be searched, and (ii) the cost NABi of accessing each

level-i B-tree. Then, NAms (and hence the total cost NA in Equation 5-1) can be derived as: ()
1

0

h

ms i Bi
i

NA E NA
−

=

= ⋅∑ , and

combining with Equation 5-2,

()
1

0

h

i i i Bi
i

NA N aP E NA
−

=

= ⋅ + ⋅∑ (5-3)

Now we qualitatively compare, using Equation 5-3, the performance of the a3DR-tree and multi-tree structures.

Towards this, we relate the query cost to the measure agility ams that determines the total number of records (recall

that ams>>aext). In the formula for the a3DR-tree, Ei=NABi=0, but Ni (i.e., the number of nodes at the i-th level)

includes all the extent and measure changes. In particular, since Ni grows linearly with the measure agility ams, the

cost of the a3DR-tree is linear to ams. On the other hand, for the multi-tree structures, Ni is very low since it is

decided by only the number of extent changes (i.e., not related to ams), which is much smaller than the number of

measure changes. As a result, the overall cost NA is dominated by that of searching the measure indexes. Further, as

the number Ei of B-trees searched depends only on the host index it is also independent of ams. As will be explained

17

shortly, the cost NABi of searching each B-tree is logarithmic to the measure agility ams, and therefore the overall

query time of the multi-tree structures is logarithmic to ams, which explains their superiority over the a3DR-tree.

NABi is logarithmic to ams because regardless of how many timestamps are involved in the interval qT, the query

accesses at most two complete paths (from the root to the leaf) in a B-tree. Recall that a node is accessed, if and only

if, its lifespan includes the starting or ending timestamp of qT, and the number of such nodes at each level (of the B-

tree) is at most 2! This is illustrated in Figure 11a, which shows a two-level B-tree and the corresponding query

range qT. Leaf nodes B and D are visited because their extents partially intersect qT, while leaf node C is not

accessed since its extent is contained (in qT); consequently, the aggregate measure stored in the parent entry c is used

directly. Figure 11b shows another query, where qT is not totally contained in the lifespan of the B-tree. In this case,

the cost is even lower, i.e., the algorithm only visits a single path from the root to leaf level (e.g., the nodes visited

are the root and node B).

a b c d e

A B C D E

qT

a b c d e

A B C D E

qT
(a) Query interval is covered by the B-tree’s lifespan (b) Query interval intersects the B-tree’s lifespan

Fig.11. Two cases of searching a measure index

In the aRB-tree, a measure index stores all the ams·T changes of a single (static) data region in history. Hence its

height is ⎡logbB(ams·T/bB)⎤ (where bB is the node capacity of the B-tree), and NABi is at most twice this number. The

situation is more complex for the aMVRB- and a3DRB-trees, but as will be explained in Sections 5.3 and 5.4, the

height of a measure index is roughly ⎡logbB[(ams/aext)/bB]⎤ so that NABi is also proportional to log(ams). In the rest of

the section, we extend the above analytical framework for each structure and derive cost models as functions of the

data and query properties (specifically, D, N, T, ams, aext, qR, qT). Our discussion utilizes some previous results in the

literature of index analysis, which will be well separated from our contributions at the beginning of each subsection.

5.2 Cost model for aRB-trees

The analysis of the aRB-tree is based on the following lemmas.

Lemma 5.1 [Pagel et al. 1993]: Let r and s be two m-dimensional rectangles that uniformly distribute in the unit

universe [0,1]m, and let ri (si) be the side length of r (s) along the i-th dimension (1≤i≤m). Then, (i) the probability

for r and s to intersect is ∑m
i=1(ri+si), (ii) the probability for r to contain s is ∑m

i=1(ri−si) if ri≥si for 1≤i≤m, or 0

otherwise, and (iii) the probability for r to intersect, but not contain, s is ∑m
i=1(ri+si)−∑m

i=1(ri−si) if ri≥si on all

dimensions 1≤i≤m, or ∑m
i=1(ri+si) otherwise. ■

Lemma 5.2 [Theodoridis and Sellis 1996]: Let an R-tree indexing N two-dimensional regions with density D that

distribute uniformly in the data space. The side length si of the MBR of a level-i node (0≤i≤h–1, where h is the

height of the tree) is:

18

1

1

i
R

i i
fs D
N

+

+=

2

1 0

1
where 1 , and is the node fanout of the tree.i

i R
R

D
D D D f

f+

⎛ ⎞−
= + =⎜ ⎟⎜ ⎟
⎝ ⎠

 ■

We first derive the formula that predicts the query cost of the aRB-tree, by re-writing the components of Equation 5-

3, specifically, h, Ni, aPi, Ei, NABi, as a function of the dataset properties. The first two components are

straightforward: given that the R-tree indexes N regions and the node fanout is fR, the height of the tree h=⎡logfR

(N/fR)⎤, while the number of nodes at the i-th level is Ni=⎡N/fR
i+1⎤. The derivation of aPi is also easy. For simplicity,

let us consider that the query region qR is a square6 with side length qS. As discussed in Section 4.1, a node in the R-

tree of the aRB-tree is searched if and only if its MBR intersects, but is not contained in, qR. Therefore, according to

lemma 5.1 (condition iii), we have (after some simplification) aPi=4·qS·si if qS>si, otherwise aPi=(qS+si)2. Thus it

remains to derive Ei (i.e., the number of level-i B-trees searched), and NABi (i.e., the number of node accesses in

searching a level-i B-tree), for which we prove the following results.

Lemma 5.3: Given an aRB-tree and a spatio-temporal aggregation query, whose region is a square with length qS,

the number Ei of B-trees searched at the i-th level of the host index equals:

() ()

()

2
2

0 0

0 2

, if >

, otherwise

S S S

S

DN q q s q sN
E

DN qN

⎧ ⎡ ⎤
+ − −⎪ ⎢ ⎥⎪ ⎣ ⎦= ⎨

⎪ +⎪⎩

 if i=0 (leaf level),

() ()

()

2 2
1 1

2
1 1

, if > and >

, if > and <

0, otherwise

i S i S i S i S i
R

ii S i S i S i
R

N q s q s q s q sf
NE q s q s q sf

− −

− −

⎧ ⎡ ⎤− − −⎣ ⎦⎪
⎪
⎨= −
⎪
⎪
⎩

 if i>0,

where the side length si of a level-i node in the R-tree is given by Lemma 5.2.

Proof: The B-tree associated with a leaf entry of the R-tree is searched, if and only if (i) the entry’s MBR intersects

the query region qR, and (ii) the MBR of the node containing the entry intersects, but is not contained in, qR. Thus,

the number E0 of such leaf entries equals the difference between the total number of (i) leaf entries (whose MBRs)

intersect qR, and (ii) entries in the leaf nodes completely contained in qR. Given that there are N (N/fR) leaf entries

(leaf nodes), and the node fanout of the R-tree is fR, E0 can be represented as N·P1− fR·(N/fR)·P2, where P1 (P2)

denotes the probability that a leaf entry (node) intersects (is contained in) qR. Since an object (node) MBR is a

square with side length D/N (s0), the derivation of P1 and P2 follows Lemma 5.1 directly, leading to the final

representation of E0 shown in Lemma 5.3.

The derivation of Ei for higher levels i>0 is similar, except that the conditions for a level-i B-tree to be searched is

19

slightly different. Specifically, the conditions include (i) the corresponding (level-i) host entry’s MBR is contained

in qR, and (ii) as with the case of E0, the MBR of the node including the entry intersects, but is not contained in, qR.

Given that there are N/fR
i (N/fR

i+1) entries (nodes) at the i-th level of the R-tree, Ei can be represented as

(N/fR
i)·P1'−fR·(N/fR

i+1)·P2', where P1' (P2') is the probability that an entry (node) is contained in qR. The final form of

Ei in Lemma 5.3 is obtained after solving P1' and P2' using Lemma 5.1 (applying the MBR extent of the entry/node

given in Lemma 5.2). ■

Lemma 5.4: Given an aRB-tree and a spatio-temporal aggregation query, whose interval consists of qT timestamps,

the cost NABi of searching a B-tree at the i-th level of the host index equals:

1

0

Bih

Bi Bij
j

NA NA
−

=

= ∑ , where

min 2, if >

min 1 , otherwise

j
B

jmsi T
msiB

Bij

msi
j jT msi

B B

bTa q ab
NA

a Tq ab b

⎧ ⎛ ⎞⎡ ⎤⋅⎪ ⎜ ⎟⎢ ⎥⎢ ⎥⎪ ⎝ ⎠= ⎨
⎛ ⎞⎡ ⎤⎪ + ⋅ ⋅⎜ ⎟⎢ ⎥⎪ ⎢ ⎥⎝ ⎠⎩

, hBi=⎡logbB(amsi·T/bB)⎤, amsi=1−(1− ams(i−1))fR and ams0=ams

Proof: Let us first consider the B-trees associated with the leaf entries of the R-tree. Each of these trees indexes all

the measure changes of a particular data region in history, the number of which equals ams·T. Thus, the height of the

B-tree equals hBi=⎡logbB(ams·T/bB)⎤. At each level 0≤j≤hBi−1 of the B-tree, (i) there are totally NBj=⎡ams·T/bB
j⎤ nodes,

so (ii) each node covers T/NBj timestamps. As shown in Figure 11a, if the query lifespan qT is longer than that of a

node, two node accesses are necessary (unless level-j is the root). Otherwise, the query only visits those nodes

whose lifespans intersect qT, and according to Lemma 5.1, the probability of such intersection is (T/NBj+qT)/T. In this

case, the expected number NAB0j of node accesses at level-j of the B-tree equals NBj·(T/NBj+qT)/T=1+qT ·ams/bB
j.

The analysis generalizes to the B-trees at higher levels, except that the probability amsi (that a level-i B-tree receives

a new measure change at each timestamp) varies. Interestingly, amsi (i≥1) can be derived from ams(i-1) based on the

following observation (for i=0, ams0=ams). Let e1 be a level-i entry in the R-tree and e2 be any entry in the child node

of e1; then, whenever a measure change is inserted into the B-tree of e2, a change is also inserted into that of e1.

Given that the average number of entries in the child node of e1 equals the node fanout fR, we have amsi=1−(1−

ams(i−1))fR. Replacing ams with amsi in the derivation for NAB0j, we obtain the same representation for NABij, and thus

complete the proof. ■

Based on Lemmas 5.3, 5.4, the following theorem presents the query cost (in terms of number of node accesses) of

the aRB-tree as a function of the dataset properties and query parameters.

Theorem 5.1 (aRB-tree query cost): Given a spatio-temporal aggregation query, whose region is a square with

length qS and interval includes qT timestamps, the cost of the aRB-tree equals:

6 The simplification of square query windows is common in the R-tree analysis; the extension to general query
windows is trivial (according to Lemma 5.1).

20

() ()

() ()
()

2
20

0

log / 1
2 2

1 1
1

4 2 log 1

4 2 log 1

B

f RR

B

S ms
aRB S S b

R B

N f

S i msi
i i S i S i b

BR Ri

N q s a TDNA N q q sf N b

N q s a TN q s q s bf f

⎡ ⎤−⎢ ⎥

+ −
=

⎡ ⎤ ⎡ ⎤⎡ ⎤⋅ ⋅ ⋅⎛ ⎞= + + − − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

⎧ ⎫⎡ ⎤⎡ ⎤⋅ ⋅ ⋅⎛ ⎞⎡ ⎤+ − − − ⋅ −⎜ ⎟⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭
∑

where N is the dataset cardinality, D the density of data regions, T is the total number of timestamps in history, ams is

the measure agility, fR the node fanout of the R-tree, bB is the node capacity of the B-tree, si is given in Lemma 5.2,

and amsi is given in Lemma 5.4.

Proof: This theorem can be obtained by applying Lemmas 5.3, 5.4 to Equation 5-3. Note that the presented formula

corresponds to the costs of “typical” queries, whose regions and intervals are large enough so that we consider the

most expensive case in each conditioned expression that appears in Lemmas 5.3 and 5.4. ■

We also prove the following Theorem for the size of the aRB-tree.

Theorem 5.2 (aRB-tree size): The number of nodes of the aRB-tree equals:

()()log / 1 log / 1

1 1
0 0

f R b msi BR BN f a T b

msi
i i jaRB

R R Bi j

a TN NSize f f b

⎡ ⎤ ⎡ ⎤− ⋅ −⎢ ⎥ ⎢ ⎥

+ +
= =

⎡ ⎤⋅⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑ ∑

where amsi is given in Lemma 5.4.

Proof: The number of nodes at the i-th level (0≤i≤h−1) of the R-tree is Ni=N/fR
i+1, where N is the number of data

regions, fR the node fanout, and h=⎡logfR(N/fR)⎤ is the height of the tree. Thus, the size of the R-tree is ∑i=0~h−1N/fR
i+1.

As for the measure index size, let us first focus on a level-i B-tree, which, as discussed in Lemma 5.4, indexes amsi·T

measures, where amsi is the probability that a new measure is inserted into this tree at each timestamp. Following the

same reasoning as the R-tree size analysis, the size of such a B-tree equals ∑j=0~hBi⎡amsi·T/bB
j+1⎤, where hBi=⎡logbB

(amsi·T/bB)⎤ is the height of the tree, and bB is the node capacity of the B-tree (recall that each B-tree is packed).

Since the total number of level-i B-trees equals N/fR
i (the entries at the i-th level of the R-tree), the total size of the

measure indexes is ∑j=0~h−1(N/fR
i·∑j=0~hBi⎡amsi·T/bB

j+1⎤). The formula presented in the theorem corresponds to the sum

of the sizes of the host and measure indexes. ■

5.3 Cost model for aMVRB-trees

Our analysis of the aMVRB-tree uses the following lemma on the MVR-tree, which allows us to circumvent the

discussion on the complex behavior of multi-version structures.

Lemma 5.5 [Tao et al. 2002a]: Given N regions (with density D) evolving for T timestamps with extent agility aext,

the following estimates hold for the corresponding MVR-tree: (i) the height is h=⎡logfMVR(N/fMVR)⎤, where fMVR is the

node fanout7; (ii) the total number of nodes (entries) at the i-th level is Ni = N/fi+1
MVR+ aext·N·(T−1)/(bMVR−fMVR)i+1

7 The fanout of the MVR-tree should be interpreted as the number of entries in a node that are alive at one
timestamp. Note that this is different from the number of entries in a node, which include entries alive at all the
timestamps of the node’s lifespan.

21

(Ni·[bMVR −aext·fi+1
MVR/(bMVR−fMVR)i]), where bMVR is the node capacity; (iii) the side length si a node at the i-th level, and

the number ti of timestamps covered by its lifespan, are:

1

1

i
MVR

i i
fs D

N

+

+=
2

1 0

1
1 ,i

i
MVR

D
D D D

f+

⎛ ⎞−
= + =⎜ ⎟⎜ ⎟
⎝ ⎠

 () 1

1

i
MVR MVR

i i
ext MVR

b f
t

a f

+

+

−
=

⋅
;

(iv) the lifespan eti of an entry at the i-th level covers ti·fMVR/[bMVR −aext·fi+1
MVR/(bMVR−fMVR)i] timestamps. ■

The above lemma provides the estimation of h and Ni, while for the other components (i.e., aPi, Ei, NABi) in

Equation 5-3, we prove the following results:

Lemma 5.6: Given a spatio-temporal aggregation query, whose region is a square with length qS and interval

includes qT timestamps, then the probability aPi that a level-i node of the host MVR-tree is accessed, can be

represented as: aPi=4·qS·si(ti+qT)/T, if qS>si; otherwise, aPi=(qS+si)2(ti+qT)/T, where si, ti are given by Lemma 5.5.

Proof: A node in the host MVR-tree is searched if (i) its MBR intersects, but is not contained in, the query region qR,

and (ii) its lifespan intersects the query interval qT. The formulae presented correspond to the product of the

probabilities of (i) and (ii) in Lemma 5.1, applying the MBR extent and lifespan of a node/entry in the MVR-tree

from Lemma 5.5. ■

Lemma 5.7: Given a spatio-temporal aggregation query, whose region is a square with length qS and interval

includes qT timestamps, the number of level-i B-trees searched in the aMVRB-tree equals:

() ()

()

2
2

0 0
0

0 2

0

2 21 , if >
1

2 21 , otherwise
1

T
S S S

T

T
S

T

qDN q q s q sN et q
E

qDN qN et q

⎧ ⎛ ⎞⎡ ⎤ −
+ − − +⎪ ⎜ ⎟⎢ ⎥ + −⎣ ⎦⎪ ⎝ ⎠= ⎨

⎛ ⎞−⎪ + +⎜ ⎟⎪ + −⎝ ⎠⎩

 if i=0 (leaf level),

() ()

()

2 2
1 1

2
1 1

2 2
1 , if > and >

1

2 2
1 , if > and <

1
0, otherwise

T
i S i S i S i S i

MVR i T

T
ii S i S i S i

MVR i T

qN q s q s q s q sf et q

qNE q s q s q sf et q

− −

− −

⎧ ⎛ ⎞−⎡ ⎤− − − +⎪ ⎜ ⎟⎣ ⎦ + −⎝ ⎠⎪
⎪
⎨ ⎛ ⎞−

= − +⎜ ⎟⎪ + −⎝ ⎠⎪
⎪⎩

 if i>0,

where si, eti are given in Lemma 5.5.

Proof: A timestamp query is answered in the same way as in the aRB-tree, using only the logical R-tree (in the

MVR-tree) responsible for the query timestamp. Thus, the estimation of Ei is reduced to that of the aRB-tree (note

that, for qT=1, the presented formulae have the same form as those in Lemma 5.3). For interval queries, since a B-

tree is searched only if its host entry’s lifespan covers either the starting or ending timestamp of qT, we compute Ei

as c1+c2−c3, where c1 (c2) is the number of B-trees searched at the logical R-tree responsible for starting (ending)

timestamp of qT, and c3 is the number of common B-trees included in c1 and c2 (i.e., their host entries cover the entire

qT). Note that c1 and c2 are identical because they both correspond to the Ei estimation of timestamp queries, which

is already solved earlier (by reducing to the aRB-tree). Further, given that the lifespan of a level-i host entry covers

22

eti timestamps (given in Lemma 5.5), the probability that the lifespan covers qT, provided that it covers the starting

or ending timestamp of qT, equals (eti−qT)/(eti+qT) if qT≤eti, in which case c3 can be obtained as c1·(eti−qT)/(eti+qT). If

qT>eti, then the entry’s lifespan cannot contain qT, and thus c3=0. The formulae presented in the lemma correspond

to the final form after simplification. ■

Lemma 5.8: Given an aMVRB-tree and a spatio-temporal aggregation query, whose query interval consists of qT

timestamps, the cost NABi of searching a B-tree at the i-th level of the host index equals:

1

0

Bih

Bi Bij
j

NA NA
−

=

= ∑ , where:

()

()

min 2, , if min , >

min 1 min , , , otherwise

j
msi i B

T i
B msi

Bij
msi msi i

jT i
BB

a et bq etb a
NA

a a etq et bb

⎧ ⎛ ⎞⋅⎡ ⎤
⎜ ⎟⎪ ⎢ ⎥⎢ ⎥⎝ ⎠⎪= ⎨
⎛ ⎞⋅⎡ ⎤⎪ + ⋅⎜ ⎟⎢ ⎥⎪ ⎢ ⎥⎝ ⎠⎩

, hBi=⎡log bB (amsi·eti/ bB)⎤, amsi=1−(1− ams(i−1)) fMVR ,

ams0=ams and eti is given in Lemma 5.5.

Proof: This lemma can be proved in the same way as Lemma 5.4, except that each B-tree does not manage all the

timestamps in history, but rather the timestamps in the lifespan of the associated host entry. Similar to Lemma 5.4,

amsi represents the probability that a new measure change is inserted into the B-tree of a host entry at the i-th level.

Consequently, if the lifespan of the entry covers eti timestamps, its B-tree consists of amsi·eti records. The correctness

follows by replacing amsi·T with amsi·eti in the proof of Lemma 5.4. ■

Now we are ready to present the complete models for the cost and space consumption of the aMVRB-tree.

Theorem 5.3 (aMVRB-tree query cost): Given a spatio-temporal aggregation query, whose region is a square with

length qS and interval includes qT timestamps, the cost of an aMVRB-tree equals:

() () () () ()

()
()

()

() ()

2
20 0

0 0
0

1 1

2 2
1

1 2 24 1 2 1
1

1
4

2 21 2
1

ext S T T
aMVRB S S B

MVR MVR MVR T

ext S i i T
i i

MVR MVR MVR

T
i S i S i

MVR i T

a N T q s t q qN DNA N q q s hf Nb f T et q

a N T q s t qN
f Tb f

qN q s q s hf et q

+ +

−

⎛ ⎞⋅ ⋅ − ⋅ + ⎛ ⎞⎡ ⎤ −
= + + + − − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥− + −⎣ ⎦ ⎝ ⎠⎝ ⎠

⎛ ⎞⋅ ⋅ − ⋅ +
⎜ ⎟+
⎜ ⎟−⎝ ⎠

⎛ ⎞−⎡ ⎤+ − − − +⎜ ⎟⎣ ⎦ + −⎝ ⎠
()

()log / 1

1
1

f MVRMVR N f

i

Bi

⎡ ⎤−⎢ ⎥

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪

−⎪ ⎪
⎩ ⎭

∑

where N is the dataset cardinality, D the density of data regions, T is the total number of timestamps in history, ams is

the measure agility, fMVR the node fanout, bB is the node capacity of a B-tree, si, ti, eti are given in Lemma 5.5, and hBi

is given in Lemma 5.8.

Proof: The theorem follows by applying Lemmas 5.6-5.8 to Equation 5-3. ■

Theorem 5.4 (aMVRB-tree size): The number of nodes of the aMVRB-tree equals:

()
()

()log / 1

1 1
0

1f MVRMVR N f
ext msi

i iaMVRB i
BMVR MVRi MVR MVR

a N T a TN NSize bf fb f

⎡ ⎤−⎢ ⎥

+ +
=

⎡ ⎤⋅ ⋅ − ⋅= + +⎢ ⎥
−⎢ ⎥⎣ ⎦

∑

where amsi is given in Lemma 5.8.

23

Proof: The proof is similar to Theorem 5.2, except that the B-trees of the host entries (in the MVR-tree) with disjoint

lifespans are stored compactly in a B-File. ■

5.4 Cost models for a3DR- and a3DRB-trees

The a3DR-tree does not involve any measure index, but includes all the extent and measure changes in a single

structure. Thus, based on Equation 5-3, its query cost depends only on h, Ni, and aPi, as solved in the following

lemma.

Lemma 5.9: Given N data regions (with density D) evolving for T timestamps with extent (measure) agility aext

(ams), the total number of records in the a3DR-tree equals N+N·(T−1)·(aext+ams−aext·ams). As a result, its height is

h=logf 3DR {[N+N·(T−1)·(aext+ams−aext·ams)]/f3DR}, and the number Ni of nodes at the i-th level equals

Ni=[N+N·(T−1)·(aext+ams−aext·ams)]/fi+1
3DR. The probability aPi that a level-i node is accessed during a square query,

with length qS and interval qT, can be represented as:

() () () ()
() ()

2 2

2

/ / , if > and >

/ , otherwise
S i T i S i T i S i T i

i

S i T i

q s q t T q s q t T q s q t
aP

q s q t T

⎧ + + − − −⎪= ⎨
+ +⎪⎩

where the side length si of a node at the i-th level and the number ti of timestamps covered by its lifespan can be

computed using extent regression functions [Tao and Papadias 2004]. Note that conventional R-tree analysis (e.g.,

[Theodoridis and Sellis 1996, Theodoridis et al. 2000]) assumes that nodes have similar extents on each dimension,

which does not hold for spatio-temporal applications (nodes may be elongated on the temporal dimension).

Proof: A record is inserted into the a3DR-tree at a timestamp when a data region issues an extent or measure change

(with probabilities aext and ams, respectively). Thus, a region has probability aext+ams−aext·ams to create a record in the

a3DR-tree every timestamp. Since the dataset contains N regions evolving for T−1 timestamps, the 3DR-tree has

totally N+N·(T−1)·(aext+ams−aext·ams) records. Regarding aPi, recall that a node in the host 3DR-tree is searched if its

3D box (bounding its MBR and lifespan) intersects, but is not contained in, the query box (bounding qR and qT). The

presented equations result from the application of Lemma 5.1. ■

On the other hand, since the host index of the a3DRB-tree manages only extent changes, the number of records in it

equals N+N·(T−1)·aext; thus, its height is h=logf3DR{[N+N·(T−1)·aext]/f3DR}, and the number Ni of nodes at the i-th

level equals Ni=[N+N·(T−1)·aext]/fi+1
3DR. Further, since the conditions for a node (in the host index) to be accessed are

the same as those for the aMVRB-tree, the estimation of aPi is the same as Lemma 5.6. Similarly, Lemmas 5.7 and

5.8 also predict Ei and NABi for the a3DRB-tree, except that (i) fMVR should be replaced as f3DR·ti-1/ti (for i≥1), and (ii)

et0=1/aext (where aext is the extent agility), while eti=ti-1 for i≥1. The following theorems summarize the complete

models for the a3DR- and a3DRB-trees. The sizes of the a3DR-tree and a3DRB-trees are derived in a way similar to

Theorems 5.2 and 5.4.

Theorem 5.5 (a3DR-, a3DRB-trees query costs): Given a spatio-temporal aggregation query, whose region is a

square with length qS and interval includes qT timestamps, the costs of the a3DR- and a3DRB-trees are:

24

()() () () () ()
1

2 2
3 1

0 3

1h
ext ms ext ms

a DR S i T i S i T ii
i DR

N N T a a a a
NA q s q t q s q t

f T

−

+
=

+ − + − ⋅ ⎡ ⎤= + + − − −⎣ ⎦⋅∑

() () () () ()

() ()

() () () ()

2
20 0

3 0 0
3

1
3

2 2
1

13 1

1 2 24 1 2 1
1/ 1

1
4

2 21 2 1
1/

ext S T T
a DRB S S B

DR ext T

ext S i i T
i
DR

T
i S i S i Bi

i TDR i i

N a N T q s t q qDNA N q q s hNf T a q

N a N T q s t q
f T

qN q s q s h
s qf t t

+

−
−−

⎛ ⎞+ ⋅ ⋅ − ⋅ + ⎛ ⎞⎡ ⎤ −
= + + − − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥ + −⎣ ⎦ ⎝ ⎠⎝ ⎠

⎧ ⎛ ⎞+ ⋅ ⋅ − ⋅ +
⎪ ⎜ ⎟
⎪ ⎝ ⎠
⎨

⎛ ⎞−⎪ ⎡ ⎤+ − − − + −⎜ ⎟⎪ ⎣ ⎦ + −⋅ ⎝ ⎠⎩

()33log / 1

1

f DRDR N f

i

⎡ ⎤−⎢ ⎥

=

⎫
⎪
⎪
⎬
⎪
⎪
⎭

∑

where N is the dataset cardinality, D the density of, T the total number of timestamps in history, aext (ams) the extent

(measure) agility, f3DR the node fanout of the 3DR-tree (its value is different in the a3DR- and a3DRB-tree), si, ti, eti

are computed using extent regression functions, and hBi, amsi are given in Lemma 5.8.

Proof: The theorem follows by applying Lemmas 5.6-5.9 to Equation 5-3. ■

Theorem 5.6 (a3DR-, a3DRB-tree sizes): The number of nodes of the a3DR-, and a3DRB-trees is:

()()1

3 1
0 3

1h
ext ms ext ms

a DR i
i DR

N N T a a a a
Size

f

−

+
=

+ − + − ⋅
=∑

()()33log / 1

3 1
30 3

1f DRDR N f
ext msi

ia DRB i
BDRi DR

N a N T a TNSize bff

⎡ ⎤−⎢ ⎥

+
=

⎡ ⎤⎛ ⎞+ ⋅ ⋅ − ⋅= +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑

where N is the dataset cardinality, D the density of data regions, T is the total number of timestamps in history, aext

(ams) is the extent (measure) agility, bB is the node capacity of a B-tree and f3DR the node fanout of the 3DR-tree, and

amsi is given in Lemma 5.8.

Proof: By lemma 5.9, the total number of entries in the a3DR-tree is N+N·(T−1)·(aext+ams−aext·ams), after which the

structure size can be obtained in the same way as the R-tree size estimation [Theodoridis and Sellis 1996, Tao and

Papadias 2004]. The proof for the size of the a3DRB-tree is similar to that of Theorem 5.4. ■

5.5 Performance characteristics and simplified models

The previous equations can be used directly for query optimization. Furthermore, they mathematically reveal the

factors that determine the performance of each structure and promote our understanding about their behavior. The

first observation, which leads to simplification of the formulae, is that the query cost of each method involves a

dominant term. Specifically, the cost of the a3DR-tree is dominated by the number of leaf node accesses (a typical

phenomenon for multi-dimensional indexes). For the proposed multi-tree structures, however, the cost is dominated

by that of searching the B-trees associated with the leaf entries in the host index. In other words, the query cost on

the host index is negligible compared to the total processing time, because a leaf node access in the host index

usually necessitates visits to the associated B-trees (each involving at least one node access). Based on this fact, we

can simplify the cost of the aRB-tree (Theorem 5.1) into:

25

()
22

2 log
B

msR
aRB S S b

B

a TfDNA N q qN N b
⎡ ⎤⎛ ⎞ ⎡ ⎤⋅⎛ ⎞= + − −⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦

 (5-4)

Its advantage over the a3DR-tree (given in Theorem 5.5, setting aext to 0) becomes obvious: its cost increases only

logarithmically with ams, while that of the a3DR-tree (Theorem 5.5) grows linearly. This and the subsequent

observations are experimentally confirmed in Section 6.

Regarding the solutions for volatile data regions, an important fact is that for aMVRB- and a3DRB-trees the height

of each B-tree associated with a leaf entry in the host index is usually 1 in practice, indicating that the total number

of node accesses equals the number of qualifying B-trees. In particular, for the a3DRB-tree, the height hB0=⎡logbB

[(ams/aext)/bB]⎤ (Lemma 5.8) equals 1 as long as ams/aext<bB. Given that for typical page sizes, bB is 100-1000, this

condition holds when the regions’ measures change less than 100-1000 times faster than their extents. For the

aMVRB-tree, on the other hand, hB0=⎡logbB[(ams·et0)/bB]⎤ (Lemma 5.8), where et0 (given in Lemma 5.5) equals

(bMVR−fMVR)/[aext·(bMVR−aext·fMVR)]≤1/aext (recall that aext≤1). Thus, for aMVRB-trees, hB0≤⎡logbB[(ams/aext)/bB]⎤, i.e.,

the condition for hB0=1 is even easier to satisfy than a3DRB-trees. When the height of measure indexes equals 1, the

query cost of these two structures can be simplified as follows:

() ()
2

2
3 0

2 21
1/ 1

T
a DRB S S

ext T

qDNA N q q sN a q
⎛ ⎞⎡ ⎤ −

= + − − +⎜ ⎟⎢ ⎥ + −⎣ ⎦ ⎝ ⎠
 (5-5)

() ()
2

2
0

2 21 1 1

T
aMVRB S S

MVR MVR
T

ext MVR ext MVR

qDNA N q q sN b f q
a b a f

⎡ ⎤ −⎛ ⎞= + − − +⎢ ⎥ ⎜ ⎟−⎣ ⎦ + −⎜ ⎟⎜ ⎟−⎝ ⎠

 (5-6)

In this case the query time of the aMVRB- and a3DRB-trees is independent of the measure agility ams, in contrast to

the linear deterioration of the a3DR-tree (Theorem 5.5). Further, the relative performance of the two multi-tree

structures is also clear (through the comparison8 of Equations 5-5 and 5-6): the a3DRB-tree always outperforms the

aMVRB-tree (i.e., (bMVR−fMVR)/[aext·(bMVR−aext·fMVR)]≤1/aext) except for qT=1 (i.e., timestamp queries). Nevertheless,

recall that the aMVRB-tree has wider applicability since it is an on-line structure, while the a3DRB-tree does not

support incremental updates.

Finally, the size comparison of the a3DR-tree and the proposed methods is obvious: the multi-trees consume

significantly less space due to the lack of redundancy, which is also reflected in the cost models (Theorems 5.2, 5.4,

5.6). Specifically, observe that the total number of records stored in all trees is approximately the same; however,

the a3DR-tree has rather low fanout fa3DR (since each entry of the tree must store both extent and measure

information), while for multi-tree structures, most data (i.e., the measures) are stored in packed B-trees with large

node capacity bB (≈3fa3DR in our experimental settings), hence requiring fewer nodes.

8 Strictly speaking, the two equations are not directly comparable due to the different estimates of s0 (i.e., the side
length of the MBR of a leaf node). Nevertheless, the difference is small enough for our discussion to hold.

26

5.6 Extension to general datasets

So far we have focused on regular datasets, where the spatial distribution remains uniform and the aggregate and

extent agilities are constant throughout the history. As discussed in [Tao et al. 2002a], the analysis on general

datasets (e.g., non-uniform spatial distribution, variable agilities at different timestamps, etc.) can be reduced to that

of regular data, based on the fact that even though the overall data distribution may deviate significantly, for typical

queries with small regions (compared to the data space) and intervals (compared to the history length), the

distribution of data satisfying the query conditions is usually fairly regular. This permits the application of the

regular model at the query spatial and temporal extents, after the local data properties (i.e., data density, average

agilities, etc) are accurately estimated, which can be achieved through histograms [Tao et al. 2002a]. We adopt the

same approach in our experimental evaluation for providing cost estimations to general data. Finally, note that all

the proposed equations for structure sizes directly support non-regular data (i.e., without the need of histograms).

6. EXPERIMENTS

In this section, we evaluate the proposed methods under a variety of experimental settings. The spatial datasets used

in the following experiments include [Tiger]: (i) LA that contains 130k rectangles representing street locations, and

(ii) LB that consists of 50k road segments. Due to the lack of real spatio-temporal (aggregation) data, datasets with

static regions are created as follows. At timestamp 0, each object (in a unit spatial universe) of a real dataset is

associated with a measure (uniformly distributed in [0,10000]). Then, for each of the subsequent 999 timestamps

(i.e., T=1000), ams percent of the objects are randomly selected to change their measures by offsets uniformly

decided in [-100,100]. Dynamic datasets (volatile regions) are synthesized in a similar manner except that at each

timestamp, aext percent of the regions move their centroids (towards random directions) by distances that are uniform

in [-0.01, 0.01]. We vary ams as a dataset parameter from 1% to 20%, and aext from 1% to 9%, resulting in a total of 1

to 20 million records. In most of the combinations of ams and aext, the measure agility is (up to 20 times) larger than

the extent agility. Figure 12 shows the visualization of LA and LB, while Figure 13 illustrates the distributions of

dynamic data (created from LA with aext=5%) at timestamps 250, 500, and 1000. Notice that the distribution

gradually becomes uniform.

All implementations of R-trees use the R*-tree [Beckmann et al. 1990] update algorithms. The node size is set to 1k

bytes, so that the node capacity of the R-tree (MVR-tree) is 36 (28) entries. The 3DR-trees used in a3DR-, and

a3DRB-trees have slightly different entry formats, resulting in capacities 31 and 28, respectively. The node capacity

of a B-tree equals 127 in all cases. Each query specifies a square spatial region with side length qS (i.e., if qS =0.1,

the query occupies 1% area of the universe), and a temporal interval involving qT timestamps. The distribution of the

query regions follows that of data in order to avoid queries with empty results, while the temporal interval is

generated uniformly in [1,1000] (i.e., the entire history). The cost of a structure is measured as the average number

of node accesses for answering a workload of 200 queries with the same parameters qS and qT. In the next section,

we first measure the performance (i.e., size and query costs) of alternative methods, and then evaluate the accuracy

of the proposed cost models in Section 6.2.

27

LA LB

Fig.12. Spatial distributions

Timestamp 250 Timestamp 500 Timestamp 1000

Fig.13. Distribution changes of dynamic data (created from LA)

6.1 Structure size and query performance

We start from static regions (i.e., aext=0), and compare the proposed aRB-tree with existing solutions (described in

Section 3), namely, column scanning (ColS for short), and the a3DR-tree. The first experiment evaluates space

consumption by varying the measure agility ams from 1% to 20%. As shown in Figure 14, the aRB-tree is the

smallest structure in all cases. Despite the intermediate tree levels, it consumes less space than ColS, because it does

not replicate (in the B-trees) measures that remain constant. On the other hand the fact table approach has to create a

new column for each timestamp. The aRB-tree size is constant until 10% agility, after which it stabilizes at some

higher values. This is because, when the agility exceeds 10%, the height of a data region’s B-tree increases by one

level. Notice that for ams=10%, each data region issues around 100 (=ams·T) aggregate updates throughout the

history, which is smaller than the B-tree node capacity (127), i.e., each B-tree has one node. Similarly, for ams=15%

each B-tree manages on the average 150 records, thus it requires two levels. The a3DR-tree, on the other hand,

grows linearly with ams and consumes more space than ColS for ams>10%.

The next experiment measures the query cost as a function of qS (i.e., the extent of the query MBR), by fixing qT to

100 timestamps (i.e., 10% of the history) and ams to 10%. Figure 15a shows the results for dataset LA, varying qS

from 0.1 to 0.5. The aRB-tree outperforms its competitors significantly for all qS (notice the logarithmic scale).

Furthermore, the costs of the aRB- and a3DR-trees initially increase with qS, but decrease after qS exceeds 0.4. This

is not surprising because, for skewed distributions (see Figure 12), a large query will contain the MBRs of most

nodes, thus resulting in fewer node accesses. Similar phenomena have also been observed in [Tao et al. 2002a] for

spatial aggregation. ColS is worse than the other methods by more than an order of magnitude, because it retrieves

28

the information of all regions at each queried timestamp, and hence its cost is linear to qT, but not affected by qS.

Since ColS is significantly more expensive (by orders of magnitude) in all our experiments, we omit its results in the

sequel.

aRB a3DR ColS

0
200
400
600
800

1000
1200
1400

1% 5% 10% 15% 20%

Mbytes

ams

0

100

200

300

400

500

600

1% 5% 10% 15% 20%

Mbytes

ams
(a) LA (b) LB

Fig.14. Size vs. measure agility

aRB a3DR ColS

100

1k

10k

100k

0.1 0.2 0.3 0.4 0.5

node accesses

q S

0

1k

2k

3k

4k

5k

6k

1 50 100 150 200

node accesses

q T

0

1k

2k

3k

4k
5k

6k

7k

1% 5% 10% 15% 20%

node accesses

a ms
(a) NA vs. qS (qT =100, ams=10%) (b) NA vs. qT (qS =0.3, ams=10%) (c) NA vs. ams (qS =0.3, qT =100)

Fig.15. Node accesses for LA (static regions)

Next we fix qS to 0.3, ams to 10%, and increase qT from 1 to 200 timestamps. Figure 15b illustrates the number of

node accesses as a function of qT for the aRB- and a3DR-trees. The performance of the aRB-tree does not deteriorate

with qT because as discussed in Section 5, the cost is dominated by qS (which determines the number of host entries

whose B-trees need to be searched), while visiting each B-tree has almost the same overhead. The a3DR-tree,

however, deteriorates very fast with qT, and becomes almost five times slower than the aRB-tree when qT =200. In

Figure 15c, qS and qT are set to their median values 0.3 and 100 respectively, and ams ranges from 1% to 20%. The

cost of the aRB-tree remains the same until ams=10% because as discussed for Figure 14, the B-tree height of each

host entry does not change until this agility. For ams≥15%, each B-tree contains one more level which almost

doubles the query cost. It is worth mentioning that the aRB-tree will not deteriorate until the B-tree height increases

again, which however, will happen only at much higher agility, due to the fact that the height grows logarithmically

with the cardinality. Figure 16 shows the results of the same experiments for dataset LB, where similar phenomena

can be observed. In summary, the aRB-tree is clearly the most efficient structure for static regions, while at the same

time it consumes less space than the other approaches.

29

aRB a3DR
node accesses

q S

0

1k

2k

3k

4k

0.1 0.2 0.3 0.4 0.5

0

1k

2k

3k

0 50 100 150 200

node accesses

q T

0

1k

2k

3k

0% 5% 10% 15% 20%

node accesses

a ms

0.5k

1.5k

2.5k

3.5k

(a) NA vs. qS (qT =100, ams=10%) (b) NA vs. qT (qS =0.3, ams=10%) (c) NA vs. ams (qS =0.3, qT =100)
Fig.16. Node accesses for LB (static regions)

Having presented the results for static regions, we now proceed with volatile data (where a dataset is described by

both the aggregate ams and extent aext agilities), and compare the aMVRB- and a3DRB-trees against the a3DR-tree.

Figure 17a (17b) plots the index sizes for dataset LA as a function of ams (aext), by fixing aext (ams) to 5% (10%).

Observe that a3DRB-trees are the smallest in all cases because they do not incur redundancy. The aMVRB-tree

consumes less space than the a3DR-tree unless ams≤5% (aext≥7%) in Figure 17a (17b), because for small ams (large

aext), there are relatively few measure (many extent) changes; thus the size of an aMVRB-tree is dominated by the

MVR-tree which, due to the data duplication introduced by the multi-version technique, is larger than the a3DR-tree.

Figure 18 shows similar results for dataset LB.

 aMVRB a3DRB a3DR

0
200
400
600
800

1000
1200
1400
1600

0% 5% 10% 15% 20%

Mbytes

ams

0
200
400
600
800

1000
1200
1400

1% 3% 5% 7% 9%

Mbytes

aext
(a) Size vs. ams (aext=5%) (b) Size vs. aext (ams=10%)

Fig.17. Structure sizes for LA (volatile regions)

 aMVRB a3DRB a3DR

0

100
200

300
400
500

600
700

0% 5% 10% 15% 20%

Mbytes

ams

0

100

200

300

400

500

600

1% 3% 5% 7% 9%

Mbytes

aext
(a) Size vs. ams (aext =5%) (b) Size vs. aext (ams=10%)

Fig.18. Structure sizes for LB (volatile regions)

30

The previous diagrams (Figures 17-18) for size evaluation of aMVRB- and a3DRB-trees correspond to an

implementation using B-Files. Figures 19a and 19b illustrate the benefit ratio, i.e., the ratio of space without/with B-

Files, as a function of ams and aext, respectively for LA (the results for LB are similar). The inclusion of B-Files

results in structures that are between 10 and 27 times smaller. The aMVRB-tree receives higher improvements than

the corresponding a3DRB-tree, due to the fact that it contains more host entries and thus requires a larger number of

B-trees, leading to more space waste if B-Files are not used. For all subsequent experiments we employ the B-File

implementation.

 aMVRB a3DRB

0

5

10

15

20

25

30

1% 5% 10% 15% 20%

benefit ratio

a ms

0

5

10

15

20

25

30

1% 3% 5% 7% 9%

benefit ratio

a ext
(a) Benefit ratio vs. ams (aext=5%) (b) Benefit ratio vs. aext (ams=10%)

Fig.19. Benefits of using B-Files for LA (volatile regions)

The next set of experiments evaluates the query performance of methods for volatile regions. In Figure 20a, we fix

qT, ams, and aext to their median values, and measure the query cost as a function of qS. As expected, the proposed

structures outperform the a3DR-tree significantly, while the a3DRB-tree is even more efficient than the aMVRB-

tree.

aMVRB a3DRB a3DR

0

2k

4k

6k

8k

10k

12k

0.1 0.2 0.3 0.4 0.5

node accesses

qS

0
1k
2k
3k
4k
5k
6k
7k
8k

1 50 100 150 200

node accesses

qT
(a) NA vs. qS (qT =100, ams=10%, aext=5%) (b) NA vs. qT (qS =0.3, ams=10%, aext=5%)

0
1k
2k
3k
4k
5k
6k
7k

1% 5% 10% 15% 20%

node accesses

a ms

0
1k
2k
3k
4k
5k
6k
7k

1% 3% 5% 7% 9%

node accesses

aext
(c) NA vs. ams (qS =0.3, qT =100, aext=5%) (d) NA vs. aext (qS =0.3, qT =100, ams=10%)

Fig.20. Node accesses for LA (volatile regions)

31

Similar to Figure 15a, the costs of all approaches initially grow with qS, but decrease after the query becomes

sufficiently large (qS > 0.4). Figure 20b shows the number of node accesses as a function of qT, fixing qS, ams, aext to

0.3, 10%, 5% respectively. As predicted in Section 5.5, the aMVRB-tree performs better than the a3DRB-tree for

timestamp queries (i.e., qT =1), for which only one logical R-tree (in the aMVRB-tree) is visited. The a3DRB-tree is

the best structure for the other values of qT, while the a3DR-tree yields the worst performance in all cases. Figure

20c shows the cost by varying ams from 1% to 20%. Although the performance of a3DR-tree deteriorates

significantly when ams increases, the costs of aMVRB- and a3DRB-tees are not affected at all. Figure 20d

demonstrates the node accesses by varying aext. In general, the a3DRB-tree has the best performance (and the

smallest size), followed by the aMVRB-tree. However, the aMVRB-tree is the only on-line structure, applicable in

cases where the region extents are not known in advance. The results for dataset LB are similar and omitted.

6.2 Accuracy of the cost models

This section evaluates the accuracy of the cost models proposed in Section 5. Given the actual act and estimated est

values, the relative error is defined as |act−est|/act. Based on this, we measure the error for a query workload as the

average error of all queries involved. In order to estimate the performance for non-regular data distributions, we

maintain histograms as described in [Theodoridis et al. 2000, Tao et al. 2002a]. Specifically, the histogram for static

regions consists of a grid with H×H cells that partition the space regularly, and each cell is associated with its local

density9. For volatile data, the histogram contains a set of grids such that the i-th grid corresponds to the data

distribution at the 100·i-th timestamp (i.e., for T=1000, 11 grids are maintained). Since the variation of distribution

is slow with time, the i-th grid can be used to represent the distributions between the 100·i-th and (100·i+99)-th

timestamps [Tao et al. 2002a].

Starting with static regions, Figure 21 shows the relative error (as a function of ams) of Theorem 5.2 (5.6) that

computes the size of the aRB-tree (a3DR-tree) for datasets LA and LB. The estimated values are very accurate

(maximum error 3%) and the precision increases with ams. The minimum error will be achieved when ams=100%, in

which case the size estimation of the aRB-tree becomes trivial because each B-tree of the host entry simply contains

exactly T records, where T is the number of timestamps in history.

aRB a3DR

2.5%
2.0%

0.0%
0.5%
1.0%
1.5%

3.0%
3.5%

0% 5% 10% 15% 20%

relative error

ams

1.8%

0.0%
0.3%
0.6%
0.9%
1.2%
1.5%

2.1%

0% 5% 10% 15% 20%

relative error

ams
(a) Error vs. ams (LA) (b) Error vs. ams (LB)

Fig. 21. Size estimation accuracy

32

Next we evaluate Theorems 5.1, 5.5 that predict the number of node accesses for aRB- and a3DR-trees. Figures 22a,

22b, 22c illustrate the error as functions of qS, qT, qA for dataset LA (by setting the other parameters to their median

values in each case). A general observation is that queries incurring higher overhead can usually be better predicted,

which is consistent with previous spatial analysis [Theodoridis and Sellis 1996, Theodoridis et al. 2000, Acharya et

al. 1999]. In Figure 22a, for example, the error initially drops with qS but grows after qS exceeds 0.4, corresponding

to the same behavior as Figure 15a. Similar phenomena can also be observed in Figures 22b and 22c, where the

settings are the same as Figures 15b and 15c, respectively, as well as Figure 23 for dataset LB. It is worth

mentioning that the maximum error (about 20%) in query cost estimation is higher than that of size estimation

(Figure 21), because, as indicated in Theorems 5.1 and 5.5, the cost depends, not only on the structure size, but also

on the node extents. Hence the overall error accumulates that of estimating the node extents (i.e., the imprecision of

the previous cost models such as the one in Lemma 5.2), and the inaccuracy introduced by the histogram.

aRB a3DR

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

0.1 0.2 0.3 0.4 0.5

relative error

qS q T

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

0 50 100 150 200

relative error

a ms

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

0% 5% 10% 15% 20%

relative error

(a) Error vs. qS (qT =100, ams=10%) (b) Error vs. qT (qS =0.3, ams=10%) (c) Error vs. ams (qS =0.3, qT =100)

Fig.22. Node access estimation accuracy for LA (static regions)

aRB a3DR

qS

0%

5%

10%

15%

20%

25%

0.1 0.2 0.3 0.4 0.5

relative error

 q T

relative error

0%

5%

10%

15%

20%

25%

1 50 100 150 200
a ms

relative error

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

1% 5% 10% 15% 20%

(a) Error vs. qS (qT =100, ams=10%) (b) Error vs. qT (qS =0.3, ams=10%) (c) Error vs. ams (qS =0.3, qT =100)

Fig.23. Node access estimation accuracy for LB (static regions)

The last set of experiments evaluates the accuracy of the cost models for volatile regions. Figure 24 shows the error

of estimating the sizes of the proposed structures on both datasets LA and LB. The estimated values are accurate

(maximum error 7%) and the precision improves with extent and aggregate agilities.

9 Assuming there are n data rectangles ri (1≤i≤n) intersecting a cell c, the local density of c is defined as
∑ixi/area(c)where xi is the intersection area between c and ri, and area(c) is the area of c.

33

aMVRB(LB) a3DRB(LB)a3DRB(LA)aMVRB(LA)

ams

0%

1%

2%

3%

4%

5%

6%

7%

1% 5% 10% 15% 20%

relative error

 aext

0%
1%
2%
3%
4%
5%
6%
7%
8%

1% 3% 5% 7% 9%

relative error

(a) Error vs. ams (aext=5%) (b) Error vs. aext (ams=10%)

Fig.24. Size estimation accuracy (volatile regions)

Figure 25 demonstrates the error of Theorems 5.3, 5.5 (for query cost estimation) with respect to qS, qT, ams, and aext

for LA. Comparing the diagrams in Figures 25 and 22, notice that the observation mentioned earlier also applies to

volatile regions, i.e., the precision, in general, increases with the query overhead. Furthermore, the estimation of the

query cost is less accurate than the size, as it accumulates the error of the histograms and the corresponding models

for node extents. The results for LB are similar and omitted.

aMVRB a3DRB a3DR

qS

0%

5%

10%

15%

20%

0.1 0.2 0.3 0.4 0.5

relative error

 qT

0%

5%

10%

15%

20%

25%

0 50 100 150 200

relative error

(a) Error vs. qS (qT =100, ams=10%, aext=5%) (b) Error vs. qT (qS =0.3, ams=10%, aext=5%)

ams

0%

5%

10%

15%

20%

0% 5% 10% 15% 20%

relative error

 aext

0%

5%

10%

15%

20%

25%

1% 3% 5% 7% 9%

relative error

(c) Error vs. ams (qS =0.3, qT =100, aext=5%) (d) Error vs. aext (qS =0.3, qT =100, ams=10%)

Fig.25. Node access estimation accuracy for LA (volatile regions)

To summarize, in this section we have experimentally confirmed the efficiency of the proposed structures for spatio-

temporal aggregation. Specifically, for static regions, the aRB-tree, although consuming a fraction of the space

required by the a3DR-tree, outperforms the a3DR-tree significantly in all cases. For volatile regions, the a3DRB-

tree has the best overall performance in terms of size and query cost. Since, however, it is an off-line structure, the

aMVRB-tree becomes the best alternative for applications requiring on-line indexing. In all cases, the traditional data

34

cube approach yields disappointing results. Finally, we also demonstrated that the proposed models can predict the

performance accurately, incurring maximum error around 20% for real data distributions.

7. DISCUSSION AND CONCLUSION

Numerous real-life applications require fast access to summarized spatio-temporal information. Although data

warehouses have been successfully employed in similar problems for relational data, traditional techniques have

three basic impediments when applied directly in spatio-temporal applications: (i) no support for ad-hoc hierarchies,

unknown at the design time, (ii) lack of spatio-temporal indexing methods, and (iii) limited provision for dimension

versioning and volatile regions.

Here, we provide a unified solution to these problems by developing spatio-temporal structures that integrate

indexing with the pre-aggregation technique. The intuition is that, by keeping summarized information inside the

index, aggregation queries with arbitrary groupings can be answered by the intermediate nodes, thus saving accesses

to detailed data. The applicability of our methods is demonstrated through a set of experiments that attempt to

simulate realistic situations. In order to enable query optimization in practice, we also perform a comprehensive

performance study for the existing and proposed structures, and present efficient cost models to capture the index

sizes and query costs. Our results provide significant insights into the behavior of alternative methods, and

analytically clarify the advantages of the proposed technique.

The proposed techniques can replace the data-cube in a star-schema-like implementation of spatio-temporal data-

warehouses. Consider, for instance, the aRB-tree of Figure 5. Each leaf entry of the host R-tree can keep a pointer

(foreign key) to the record storing information about the corresponding cell (e.g., phone company than owns the

cell) in a table of regions. Given this dimension table, the system can answer queries of the form "find the total

number of phone-calls (in cells intersecting qR, during qT) initiated by customers of Hong Kong Telecom". Similar

pointers may be kept for the leaf entries of the B-trees, pointing to a dimension table with information about type of

the timestamp (e.g., peak hour, cost of phone-calls) etc.

Although for simplicity we focused on the sum function, our techniques are directly applicable to multiple measures

and functions. Consider, for instance, that queries inquire about the maximum number of phone-calls (during qT) in

some cell (intersecting qR). Each intermediate entry r in the host and measure indexes must now store the maximum

measure in its sub-tree (instead of the sum of measures). The query algorithms are exactly the same as in the case of

sum for all the structures i.e., if the extent and lifespan of r is contained in qR and qT, its max value is aggregated

directly and so on. In addition to distributive functions, the proposed techniques can also process algebraic functions

(e.g., average), since they can be expressed as scalar functions of distributive functions (e.g., sum/count). Obviously,

depending on the application needs, it is possible to have several measures (e.g., sum and max) associated with each

entry. Furthermore, it is easy to devise processing algorithms for alternative query types such as: "for every cell in

the city center (i.e., qR) find the total number of phone calls in the last hour (i.e., qT)". In this case the result contains

several tuples, one for each cell qualifying the spatial condition (i.e., similar to a group-by). Query processing must

now continue until the leaf level of the host index (the measures of intermediate entries are not aggregated), i.e., the

35

host index acts as a conventional spatio-temporal index.

A final note concerns the interpretation of the results of spatio-temporal aggregate queries, which depends on the

application semantics of Ri(t).ms. If, for instance, Ri(t).ms stores the number of mobile users (instead of initiated

phone-calls) in region Ri(t), the result should not be considered as the total number of users in qR during qT, since a

user may be counted multiple times (if he/she stays in qR for multiple timestamps). Tao et al [Tao et al. 2004]

propose a method for duplicate elimination that combines spatio-temporal aggregation structures (e.g., the aRB-tree)

with sketches [Flajolet and Martin 1985] based on probabilistic counting. Furthermore, note that our techniques,

following the relevant literature [Jurgens and Lenz 1998, Papadias et al. 2001, Zhang et al. 2002, Govindarajan et al.

2003, Zhang et al. 2003], assume that if the query partially intersects a region, the entire measure of the region

contributes to the query result. This is due to the fact that regions represent the highest resolution in the system. If

additional information about the distribution of the objects within each region is available, we could take into

account only the number of objects in the part of the region that intersects the query.

Spatio-temporal aggregation is a promising research area, combining various concepts of on-line analytical

processing and multi-dimensional indexing, which is expected to play an important role in several emerging

applications such as mobile computing and data streaming. A direction for future work includes supporting more

complex spatio-temporal measures like the direction of movement. This will enable analysts to ask sophisticated

queries in order to identify interesting numerical and spatial/temporal trends. The processing of such queries against

the raw data is currently impractical considering the huge amounts of information involved in most spatio-temporal

applications. Another topic worth studying concerns bulk updates, i.e., when a large number of regions issue updates

synchronously (e.g., every timestamp). In this case instead of processing each update individually, we could exploit

specialized bulk loading techniques adapted to the current problem.

ACKNOWLEDGEMENTS

A short version of this work appears in [Papadias et al. 2002]. We would like to thank Panos Kalnis and Jun Zhang

for several discussions that led to this paper.

REFERENCES

ACHARYA, S., POOSALA, V., AND RAMASWAMY, S. 1999. Selectivity Estimation in Spatial Databases. In
Proceedings of the ACM SIGMOD conference (June), pp. 13-24.

AGARWAL, P., ARGE, L., AND ERICKSON, J. 2000. Indexing Moving Points. In Proceedings of the ACM Symposium
on Principles of Database Systems (PODS) (May), pp. 175-168.

BARALIS, E., PARABOSCHI, S., TENIENTE, E. 1997. Materialized View Selection in a Multidimensional Database. In
Proceedings of Very Large Database Conference (VLDB) (August), pp. 156-165.

BECKER, B., GSCHWIND, S., OHLER, T., SEEGER, B., WIDMAYER, P. 1996. An Asymptotically Optimal Multiversion
B-Tree. The VLDB Journal, 5, 4, 264-275.

BECKMANN, N., KRIEGEL, H., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. In Proceedings of the ACM SIGMOD conference (May), pp. 322-331.

CHOI, Y., AND CHUNG, C. 2002. Selectivity Estimation for Spatio-Temporal Queries to Moving Objects. In
Proceedings of the ACM SIGMOD conference (June), pp. 440-451.

DENNY, M., FRANKLIN, M., CASTRO, P., PURAKAYASTHA, A. 2003. Mobiscope: A Scalable Spatial Discovery
Service for Mobile Network Resources. In Proceedings of the 4th Mobile Data Management (MDM) (Jan.),

36

pp. 307-324.
FLAJOLET, P., MARTIN, G. 1985. Probabilistic Counting Algorithms for Data Base Applications. Journal of

Computer and System Sciences, 32, 2, 182-209.
FORLIZZI, L., GÜTING, R., NARDELLI, E., SCHNEIDER, M. 2000. A Data Model and Data Structures for Moving

Objects Databases. In Proceedings of the ACM SIGMOD conference (May), pp. 319-330.
GAEDE, V., GÜNTHER, O. 1998. Multidimensional Access Methods. ACM Computing Surveys, 30, 2, pp. 123-169.
GENDRANO, J., HUANG, B., RODRIGUE, J., MOON, B., SNODGRASS, R. 1999. Parallel Algorithms for Computing

Temporal Aggregates. In Proceedings of International Conference on Database Engineering (ICDE), pp. 418-
427.

GOVINDARAJAN, S., AGARWAL, P., ARGE, L. 2003. CRB-Tree: An Efficient Indexing Scheme for Range Aggregate
Queries. In Proceedings of International Conference on Database Theory (ICDT) (Jan.), 143-157.

GRAY, J., BOSWORTH, A., LAYMAN, A., PIRAHESH, H. 1996. Data Cube: a Relational Aggregation Operator
Generalizing Group-by, Cross-tabs and Subtotals. In Proceedings of International Conference on Database
Engineering (ICDE), pp. 152-159.

GUPTA, H. 1997. Selection of Views to Materialize in a Data Warehouse. In Proceedings of International
Conference on Database Theory (ICDT) (Jan.), pp. 98-112.

GUPTA, H., MUMICK, I. 1999. Selection of Views to Materialize Under a Maintenance-Time Constraint. In
Proceedings of International Conference on Database Theory (ICDT) (Jan.), pp. 453-470.

GÜTING, R., BÖHLEN, M., ERWIG, M., JENSEN, C., LORENTZOS, N., SCHNEIDER, M., VAZIRGIANNIS, M. 2000. A
Foundation for Representing and Querying Moving Objects. ACM Tran. Datab. Syst., 25, 1, 1-42.

GUTTMAN, A. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the ACM
SIGMOD conference (June), pp. 47-57.

HADJIELEFTHERIOU, M., KOLLIOS, AND G., TSOTRAS, V. 2003. Performance Evaluation of Spatio-Temporal
Selectivity Estimation Techniques. In Proceedings of Statistical and Scientific Database Management
(SSDBM) (July). pp. 202-211.

HADJIELEFTHERIOU, M., KOLLIOS, G., TSOTRAS, V., AND GUNOPULOS, D. 2002. Efficient Indexing of Spatiotemporal
Objects, In Proceedings of Extending Data Base Technology (EDBT) (March). pp. 251-268.

HAN, J., STEFANOVIC, N., KOPERSKI, K. 1998. Selective Materialization: An Efficient Method for Spatial Data Cube
Construction. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD) (April), pp. 144-158.

HARINARAYAN, V., RAJARAMAN A., ULLMAN, J. 1996. Implementing Data Cubes Efficiently. In Proceedings of the
ACM SIGMOD conference (June), pp. 205-216.

HURTADO, C., MENDELZON, A., VAISMAN, A. 1999. Maintaining Data Cubes under Dimension Updates. In
Proceedings of International Conference on Database Engineering (ICDE) (March), pp. 346-355.

JURGENS M., LENZ H. 1998. The Ra*-tree: An improved R-tree with Materialized Data for Supporting Range
Queries on OLAP-Data. In Proceedings of International Workshop on Database and Expert Systems
Applications (Aug.), pp. 186-191.

KIMBALL, R. 1996. The Data Warehouse Toolkit. John Wiley.
KLINE, N., SNODGRASS, R. 1995. Computing Temporal Aggregates. In Proceedings of International Conference on

Database Engineering (ICDE) (March), pp. 222-231.
KOLLIOS, G., GUNOPULOS, D., AND TSOTRAS, V. 1999. On Indexing Mobile Objects. In Proceedings of the ACM

Symposium on Principles of Database Systems (PODS) (May), pp. 261-272.
KOLLIOS, G., GUNOPULOS, D., TSOTRAS, V., DELIS, A., HADJIELEFTHERIOU, M. 2001. Indexing Animated Objects

Using Spatiotemporal Access Methods. Tran. Knowl. Data Eng. (TKDE), 13, 5, 758-777.
KUMAR, A., TSOTRAS, V., FALOUTSOS, C. 1998. Designing Access Methods for Bitemporal Databases. Tran. Knowl.

Data Eng. (TKDE), 10, 1, 1-20.
KWON, D., LEE, S., LEE. S. 2002. Indexing the Current Positions of Moving Objects Using the Lazy Update R-tree.

In Proceedings of the 4th Mobile Data Management (MDM) (Jan.), pp. 113-120.
LAZARIDIS, I., MEHROTRA, S. 2001. Progressive Approximate Aggregate Queries with a Multi-Resolution Tree

Structure. In Proceedings of the ACM SIGMOD conference (June), pp. 401-412.
LEE, M., HSU, W., JENSEN, C., CUI, B., TEO, K. 2003. Supporting Frequent Updates in R-Trees: A Bottom-Up

Approach. In Proceedings of Very Large Database Conference (VLDB) (Sep.), pp. 608-619.
MENDELZON, A., VAISMAN, A. 2000. Temporal Queries in OLAP. In Proceedings of Very Large Database

Conference (VLDB) (Sep.), pp. 242-253.
MOON, B., LOPEZ, I., IMMANUEL, V. 2000. Scalable Algorithms for Large Temporal Aggregation. In Proceedings of

International Conference on Database Engineering (ICDE) (Feb.), pp. 145-154.

37

PAGEL, B.U., SIX, H.W., TOBEN, H., WIDMAYER, P. 1993. Towards an Analysis of Range Query Performance in
Spatial Data Structures. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS)
(May), pp. 49-58.

PAPADIAS, D., KALNIS, P., ZHANG, J., TAO, Y. 2001. Efficient OLAP Operations in Spatial Data Warehouses. In
Proceedings of the International Symposium on Spatial and Temporal Databases (SSTD) (July), pp. 443-459.

PAPADIAS, D., TAO, Y., KALNIS, P., ZHANG, J. 2002. Indexing Spatio-Temporal Data Warehouses. 2002. In
Proceedings of International Conference on Database Engineering (ICDE) (Feb.), pp. 166-175.

PFOSER, D., JENSEN, C, AND THEODORIDIS, Y. 2000. Novel Approaches to the Indexing of Moving Object
Trajectories. In Proceedings of Very Large Database Conference (VLDB) (Sep.), pp. 395-406.

SALTENIS, S., JENSEN, C. 2002. Indexing of Moving Objects for Location-Based Services. In Proceedings of
International Conference on Database Engineering (ICDE) (Feb.), pp. 463-472.

SALTENIS, S., JENSEN, C., LEUTENEGGER, S., AND LOPEZ, M. 2000. Indexing the Positions of Continuously Moving
Objects. In Proceedings of the ACM SIGMOD conference (June), , pp. 331-342.

SALZBERG, B., TSOTRAS, V. 1999. A Comparison of Access Methods for Temporal Data. ACM Computing Surveys,
31, 2, 158-221.

SHUKLA, A., DESHPANDE, P., NAUGHTON, J. 1998. Materialized View Selection for Multidimensional Datasets. In
Proceedings of Very Large Database Conference (VLDB) (Aug.), pp. 488-499.

SISTLA, A., WOLFSON, O., CHAMBERLAIN, S., DAO, S. 1997. Modeling and Querying Moving Objects. In
Proceedings of International Conference on Database Engineering (ICDE) (April), pp. 422-432.

STEFANOVIC, N., HAN, J., KOPERSKI, K. 2000. Object-Based Selective Materialization for Efficient Implementation
of Spatial Data Cubes. Tran. Knowl. Data Eng. (TKDE), 12, 6, 938-958.

TAO, Y., KOLLIOS, G., CONSIDINE, J., LI, F., PAPADIAS, D. 2004. Spatio-Temporal Aggregation Using Sketches. In
Proceedings of International Conference on Database Engineering (ICDE) (March), pp. 214-226.

TAO, Y., PAPADIAS, D. 2001. The MV3R-tree: A Spatio-Temporal Access Method for Timestamp and Interval
Queries. In Proceedings of Very Large Database Conference (VLDB) (Sep.), pp. 431-440.

TAO, Y., PAPADIAS, D. 2004. Performance Analysis of R*-Trees with Arbitrary Node Extents. Tran. Knowl. Data
Eng. (TKDE), 16, 6, 653-668.

TAO, Y., PAPADIAS, D., AND SUN, J. 2003a. The TPR*-Tree: An Optimized Spatio-Temporal Access Method for
Predictive Queries. Proceedings of Very Large Database Conference (VLDB) (Sep.), pp. 790-801.

TAO, Y., PAPADIAS, D., ZHANG, J. 2002a. Cost Models for Overlapping and Multi-Version Structures. ACM Tran.
Datab. Syst., 27, 3, 299-342.

TAO, Y., PAPADIAS, D., ZHANG, J. 2002b. Efficient Processing of Planar Points. In Proceedings of Extended
Database Technology (EDBT) (March), pp. 682-700.

TAO, Y., SUN, J., PAPADIAS, D. 2003b. Selectivity Estimation for Predictive Spatio-Temporal Queries. ACM Tran.
Datab. Syst., 28, 4, 295-336.

THEODORIDIS, Y., SELLIS, T. 1996. A Model for the Prediction of R-tree Performance. In Proceedings of the ACM
Symposium on Principles of Database Systems (PODS) (June), pp. 161-171.

THEODORIDIS, Y., STEFANAKIS, E., SELLIS, T. 2000. Efficient Cost Models for Spatial Queries Using R-Trees. Tran.
Knowl. Data Eng. (TKDE), 12, 1, 19-32.

TIGER. http://www.census.gov/geo/www/tiger/
VARMAN, P., VERMA, R. 1997. Optimal Storage and Access to Multiversion Data. Tran. Knowl. Data Eng. (TKDE),

9, 3, 391-409.
VAZIRGIANNIS, M., THEODORIDIS, Y., SELLIS, T. 1998. Spatio-Temporal Composition and Indexing for Large

Multimedia Applications. Multimedia Systems, 6, 4, 284-298.
YANG, J., WIDOM, J. 2003. Incremental Computation and Maintenance of Temporal Aggregates. The VLDB Journal,

12, 3, 262-283.
YAO, S. Random 2-3 Trees. 1978. Acta Informatica, 2, 9, 159-179.
ZHANG, D., GUNOPULOS, D., TSOTRAS, V., SEEGER, B. 2002. Temporal Aggregation Over Data Streams Using

Multiple Granularities. In Proceedings of Extended Database Technology (EDBT) (March), pp. 646-663.
ZHANG, D., GUNOPULOS, D., TSOTRAS, V., SEEGER, B. 2003. Spatial and Temporal Aggregation Over Data Streams

Using Multiple Granularities. Information Systems, 28, 1-2, 61-84.
ZHANG, D., MARKOWETZ, A., TSOTRAS, V., GUNOPULOS, D., SEEGER, B. 2001. Efficient Computation of Temporal

Aggregates with Range Predicates. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS) (May), pp. 237-245.

ZHANG, D., TSOTRAS, V., GUNOPULOS, D. 2002. Efficient Aggregation over Objects with Extent. In Proceedings of
the ACM Symposium on Principles of Database Systems (PODS) (May), pp. 121-132.

38

Received May 2003; revised May 2004; accepted August 2004.

