
A Reflective Framework for Discovery and Interaction in

 Heterogeneous Mobile Environments

Paul Grace a Gordon S. Blair a Sam Samuel b

a Computing Department, Lancaster University, Lancaster, UK
b Global Wireless Systems Research, Bell Laboratories, Lucent Technologies, Swindon, UK

To operate in dynamic and potentially unknown scenarios a mobile client discovers the local services that
match its requirements, and interacts with these to obtain the application functionality. However, mobile
environments are populated by heterogeneous mobile service platforms; these range from discovery
protocols including SLP, UPnP and Jini to different styles of service interaction paradigms e.g. Remote
Procedure Call, Publish-Subscribe and agent based solutions. Therefore given this type of heterogeneity,
utilizing single discovery and interaction systems is not optimal as the client will only be able to use the
services available to that particular platform. Hence, in this paper we present an adaptive middleware
solution to this problem. ReMMoC is a Web-Services based reflective middleware that allows mobile
clients to be developed independently of both discovery and interaction mechanisms. We describe the
architecture, which dynamically reconfigures to match the current service environment. Finally, we
investigate the incurred performance overhead such dynamic behaviour brings to the discovery and
interaction process.

I. Introduction
In current mobile applications, users interact with
context-based mobile services in both ad-hoc and
nomadic wireless networks. For example, querying
tourist information services, utilising local business
services, collaborating and communicating with other
nearby mobile users, and interacting with jukebox
players and other computational devices. In these
scenarios the client application or mobile user must
first discover a service that matches the requirements
and then interact with it. To support this behaviour
service discovery and interaction platforms have
emerged. Generally, these solutions fall into three
categories. Firstly, discovery platforms supported by
mobile code; examples are Centaurus [1] and Jini [2].
After discovery, the service (either a proxy to the
service or the full service) is downloaded onto the
mobile device where it then operates. Secondly, the
discovery protocol is integrated with a specific
interaction protocol, which is used to invoke the
service after the service has been discovered.
Examples are: Universal Plug and Play (UPnP) [3]
with SOAP [4], Salutation [5] with Sun Remote
Procedure Call (RPC), and Gaia [6] with Common
Object Request Broker Architecture (CORBA) [7].
Thirdly, interaction independent discovery protocols
are available e.g. Service Location Protocol (SLP)
[8]. These can be integrated with a range of
interaction protocols.
 However, there is identifiable heterogeneity in
these approaches. Heterogeneous discovery protocols
(UPnP, Jini, SLP etc.) means that clients using only
one discovery protocol will not find all available

services as they move from location to location.
Furthermore, contrasting implementations of
interaction paradigms such as RPC and publish-
subscribe, ensures that mobile clients developed upon
a single implementation will be unable to interoperate
with mobile services implemented upon an
alternative. As an example, a tourist guide client
implemented using publish-subscribe can only
interoperate with matching tourist information
publishers. This problem is particularly important to
the mobile applications that operate in many
locations where the service platform implementations
are unknown. Furthermore, the problem is likely to
become significantly worse in the future with the
emergence of new discovery and interaction
protocols.
 To address this problem we have developed
ReMMoC (Reflective Middleware for Mobile
Computing), an adaptive middleware framework,
which is independent from particular discovery and
interaction protocols. ReMMoC is able to: i) find the
required mobile services irrespective of the service
discovery protocol and ii) interoperate with services
implemented upon different interaction types. The
framework monitors the environment and the service
types in use and reconfigures itself to mirror the
current setup. ReMMoC uses the Web Services
abstraction to allow clients to be developed
independent from specific service implementation;
instead the abstraction is mapped onto the appropriate
protocol at run-time.
 In this paper, we present the design,
implementation and evaluation of ReMMoC. Section
2 presents the overall architecture principles of

components and reflections employed by ReMMoC.
The service discovery and binding frameworks are
described in section 3. Subsequently, the discovery
and interaction abstraction is defined in section 4.
Section 5 then evaluates the operation and
performance of ReMMoC in supporting typical
mobile applications. Finally, related work in this field
is identified in section 6, and overall conclusions are
drawn in section 7.

II. The ReMMoC Framework
This section describes the design of the reflective
middleware framework (ReMMoC), whose key
operation is to dynamically adapt discovery and
interaction protocols to match the current mobile
service environment, and hence overcome platform
heterogeneity. This framework is heavily influenced
by previous work from Lancaster on reflection and
components; we argue that this approach offers an
ideal solution to build such a highly dynamic
framework. The following section describes the
design philosophies that ReMMoC follows.
Subsequent sections then document the architectural
elements of the framework.

II.A The OpenORB Philosophy
The OpenORB design philosophy [9] promotes a
marriage of reflection, component technologies and
component frameworks, to develop families of
reflective middleware. Components are the building
blocks of middleware, where a component is “a unit
of composition with contractually specified
interfaces, which can be deployed independently and
is subject to third party creation” [10]. This technique
promotes configurability, re-configurability and re-
use at the middleware level. Reflection is then used to
provide a principled mechanism to inspect and
dynamically adapt the component structure. Finally,
component frameworks constrain the design space
and the scope for evolution, where a component
framework (CF) is defined as a collection of rules
and contracts that govern the interaction of a set of
components [10].
 OpenORB based middleware are built using
OpenCOM [11], which is a lightweight, efficient and
reflective component model that uses the core
features of Microsoft COM to underpin its
implementation; these include the binary level
interoperability standard, Microsoft’s IDL, COM’s
globally unique identifiers and the IUnknown
interface. Each component implements a set of
custom interfaces and receptacles. An interface
expresses a unit of service provision, a receptacle

describes a unit of service requirement and a
connection is the binding between an interface and a
receptacle of the same type. OpenCOM deploys a
standard runtime substrate per address space that
manages the creation and deletion of components,
acts upon requests to connect/disconnect components
and provides service interfaces for reflective
operations. The runtime substrate dynamically
maintains a system graph of the components
currently in use. The explicit maintenance of dynamic
dependencies between components provides the
support for introspection and reconfiguration of
component configurations.

Figure 1: The OpenCOM CF Model

To support the creation of valid software
architectures, OpenCOM promotes an additional
component framework model [12]. Here, a CF is a
single OpenCOM component (seen in figure 1),
which contains its own internal structure (a graph of
components). Each CF is extended by the
ICFMetaArchitecture interface, which provides
reflective operations to inspect and dynamically
reconfigure the framework’s local component
architecture.

II.B The ReMMoC Architecture

ReMMoC is designed to reside upon mobile devices
for client applications to be developed upon. Hence,
the architecture of ReMMoC (illustrated in figure 2)
is designed as a minimal set of OpenCOM
component frameworks to reduce resource use.
ReMMoC is a two-tier architecture consisting of a
top-level component framework into which a set of
components and component frameworks are then
plugged. There are three sections to this top-level
framework:
1. The concrete middleware section, which is

composed of two component frameworks: (1) a
binding framework for interoperation with
mobile services implemented upon different
interaction types, and (2) a service discovery
framework for discovering services advertised by
a range of service discovery protocols. The

CF
receptacles

ICFMetaArchitecture

Service
Interfaces

IMetaInterface
ILifeCycle

IConnections

OpenCOM
component
framework

IAccept

Graph of
internal
components

binding framework is configured by plugging in
different binding type implementations e.g.
SOAP RPC, Event subscriber etc. and the service
discovery framework is similarly configured by
plugging in different service discovery protocols.
A detailed description of the services provided by
the two frameworks and their properties for
reconfiguration are discussed in the following
section.

2. The abstract middleware-programming model,
which implements an API for performing service
discovery and service interaction independent of
protocol implementation.

3. The abstract to concrete mapping section, which
consists of components to map abstract service
requests to the current binding and discovery
implementations in place.

Figure 2: The overall ReMMoC Architecture

ReMMoC is flexible to meet different application
developer’s requirements. For example, the platform
can be configured to just the concrete section, or
indeed one of the two component frameworks. This
may be required for applications on low resource
embedded devices (e.g. wearable computers);
memory footprint size is significantly less and the
indirection and extra processing overhead is avoided.
Similarly, the platform is extensible to allow more
component frameworks for other non-functional
properties such as security and resource management
to be added.
 The individual aspects of the architecture and their
implementation details are now examined in the
subsequent sections.

III. Concrete Middleware

III.A The Discovery Framework
The principal function of the service discovery
framework is to provide a reconfigurable service
discovery mechanism that can perform lookup
operations across a set of different discovery
protocols. An application developer can discover the
application service that matches their requirements,
based upon matching service type and attributes,
irrespective of the discovery mechanism that is
advertising it. Hence, in one location a tourist guide
service advertised using SLP is found and in the next
location the same service type is found advertised
using UPnP. To meet this goal, the service discovery
framework has the following key characteristics:
• The framework automatically mirrors the current

environmental conditions, i.e., which discovery
protocols are in use.

• Service lookup is executed across one or more
discovery protocols in parallel (depending upon
the current setup).

III.A.1 The “Cycle and See” Philosophy
To mirror the current environment, the framework
must discover discovery protocols in use. To discover
a discover mechanism you must be aware of it in
order to test for it. Solutions promoting a fixed point
of agreement, e.g. an agreed higher-level discovery
mechanism for finding discovery protocols, are
infeasible because: 1) not all elements can be
guaranteed to use this technology, and 2) the higher-
level mechanism itself may change (this simply
moves the problem to a higher level). Therefore,
ReMMoC uses a “Cycle and See” philosophy. This
entails that the framework execute discovery of
discovery protocols by cycling through a set of tests
for each individual discovery protocol it is aware of.
The probability of services being found increases as
the number of tests to cycle through increases. “Cycle
and See” does not rely on agreement between
participating elements, and is evolvable to include
future discovery mechanisms.
 To perform these tests the framework implements
a plug-in component known as “Discover
Discovery”. Which is illustrated in figure 2. Example
tests for SLP and UPnP are as follows. For SLP you
can test the environment for service agents.
Therefore, the plug-in component creates an SLP
header containing the lookup request
“service:service-agents”, which is then multicast to
the SLP multicast address 239.255.255.253:427. Any
response from a service agent is an indication SLP is
in use. Similarly, for UPnP a HTTP/SSDP header for

Binding CF

Binding
protocol

Service
Discovery CF

Discovery protocols

ReMMoC abstract programming
Model

Binding
mappings

Discovery
mappings

Concrete

Abstract
to
Concrete

Abstract

Discover
Discovery

“upnp:rootdevice” lookup is multicast to
239.255.255.250:1900.
 We acknowledge this approach is limited in two
respects: 1) cycling through discovery protocol tests
is both time and resource consuming, and 2) you only
find discovery protocols that you are aware of.
However, tests can be performed in parallel to reduce
time, and knowledge based context information can
be used to improve performance. For example, if you
know the types of discovery protocol used in an
environment (from a previous visit, or through shared
knowledge) you can test for only these.

III.A.2 Service Lookup Personalities
Component based implementations of individual
service discovery protocols (service lookup
personalities) form the core functionality of the
discovery framework. These ensure that the
physically communicated network messages for
service lookup can interoperate with the discovery
protocols used by services in the environment. Each
individual lookup personality is designed as a
reconfigurable configuration of OpenCOM
components that implements the functionality of an
individual service discovery protocol. In ReMMoC,
we have developed two component personalities:
SLP lookup and UPnP lookup; both provide service
and attribute lookup functionality. Figure 3
demonstrates how an OpenCOM personality
implements the UPnP protocol.

Figure 3: The UPnP Lookup personality

III.A.3 Evolution of the Framework
A key aim of the discovery framework is to be
extensible to dynamically incorporate new discovery
protocols as they become available. This is especially
important in the domain of mobile computing, where
much work on creating new discovery solutions for
ad-hoc wireless networks and ubiquitous applications
is being carried out. To add a new discovery protocol

(implemented as a set of OpenCOM components) to
the framework, three tasks are carried out: 1)
ReMMoC is made aware of the new protocol type by
adding its type to an XML list in the ReMMoC
repository, 2) A new DiscoverDiscovery component
with synchronous and asynchronous tests for the
protocol is reconfigured, 3) The XML description for
the component personality, used to configure and
verify this new personality, is added to the ReMMoC
repository.

III.B The Binding Framework
The principal function of the binding framework is to
provide a configurable and dynamically
reconfigurable binding mechanism that allows mobile
clients to bind and interoperate with application
services implemented upon particular interaction
paradigms (e.g. Remote Method Invocation, Publish-
Subscribe, Asynchronous Messaging). To
interoperate with a discovered service, the binding
framework dynamically reconfigures itself to an
identical binding mechanism e.g. if a CORBA service
is found the framework becomes a CORBA client
side personality; similarly if a particular event
publisher is found the framework configures to an
event subscriber.

III.B.1 Binding Personalities
We have implemented three interaction protocols for
the binding framework: CORBA, SOAP and an event
publisher and subscriber based upon the STEAM
platform for event publication in ad-hoc networks
[13]. The particular component implementation of the
event subscriber can be seen in figure 4 .

Figure 4: An event subscriber personality

Like the discovery framework, it is possible to add
new interaction protocols dynamically to the running
framework. This simply involves adding the
interaction type to the XML list of known interaction

IUPnP

IHTTP

UPnP

HTTP

Socket

ISocket
ITCP

SSDP

ISSDPCallback

ISocket

ISSDP

ISSDPCallback

TCP

IHTTP

ISocket

ISocket

Subscribe

SOAP
Messaging Filter

SOAPtoMulticast

IP Multicast

IFilter

IMulticast

ISOAPMessaging

ISubscribe

ISOAPTransport

types and creating the XML architectural description
of the protocol, and adding it to ReMMoC repository.

III.B.2 Configuration and Reconfiguration
Configuration and dynamic reconfiguration of the
binding framework is controlled by higher-level
elements. In ReMMoC’s case the top level ReMMoC
CF receives information from the service discovery
framework to drive the correct configuration i.e. it
finds a SOAP service therefore reconfigures to
SOAP. From discovery mechanisms that return
Universal Resource Identifiers (URI) to identify
services e.g. SLP and UPnP, ReMMoC extracts the
protocol information directly e.g. “http” for SOAP
and “iiop” for CORBA. ReMMoC can also extract
the protocol information from the service attributes
for services that utilise a non-universal identifier
scheme. Once the type has been determined
ReMMoC uses the reflective operations of the
binding framework to configure this new
configuration, based upon the XML based
architectural definition stored in the ReMMoC
repository.
 ReMMoC also supports fine-grained
reconfiguration. For example, when the mobile
device switches from an infrastructure based wireless
network to an ad-hoc network the lookup and
interaction protocols can be reconfigured
accordingly. For example, both SLP and the event
subscriber personality utilise an IP multicast
component, however this can be replaced by a
probabilistic multicast component that operates by
intelligently flooding the ad-hoc network. Local
event publishers in the ad-hoc network can be
discovered and their events received [13].

IV. The ReMMoC Abstraction
Using dynamic reconfiguration to mirror protocols in
the current environment does not provide a complete
solution to the discovery and interaction problem. A
programmer using this technology would need to
explicitly program for each dynamic change, e.g.
when the discovered service is of type SOAP a SOAP
RPC invocation must be made, then when an event
publisher is found the client must subscribe for
events. Program code of this nature is inevitably
repetitive, overly long (unnecessarily consuming
memory resources) and detracts from the application
logic. Furthermore, it is impossible to predict in
advance the course of a mobile user; they are unlikely
to encounter predictable middleware implementation,
especially in newly entered locations.
 Therefore, ReMMoC promotes an overriding
discovery and interaction abstraction, which has the
following properties:

§ Applications perform general service lookup,
stating the service type with attributes that they
wish to discover.

§ Applications invoke operations on abstract mobile
services. That is, ReMMoC follows the Web
Services [14] concept of separating the
description of a service’s behaviour from its
interaction protocol.

ReMMoC takes the information from the
programming API and then maps them onto the
concrete binding and discovery protocols. We now
examine in turn both the abstraction and abstract to
concrete mappings of ReMMoC.

IV.A The Discovery Abstraction
The abstract service discovery model provides a
generic service lookup interface that hides the details
of heterogeneous discovery protocols. This takes the
form of a custom API, which is based upon the
generic features of the majority of discovery
protocols. This API is then mapped by individual
mapping components onto the implemented
interfaces exported from the discovery framework.
ReMMoC concentrates on service lookup; other
common features including leasing and service events
are not considered because they are not available in
all protocol implementations.

typedef struct _Attribute{

char* Name;
char* XMLValue;

}Attribute;

 typedef struct _ServiceReturnEvent{

char* ServiceURL;
char* ServiceType;
Attribute* List;

}ServiceReturnEvent;

HRESULT ServicesLookup(char* ServiceType, Attributes[]
 attrs, int TimeToSearch, ReMMoCServiceFindHandler cback,);
HRESULT GetAttributes(ServiceReturnEvent ServiceID,

AttributeList* list);
Figure 5: IDL definition of Discovery Interface

The IReMMoC interface provides the developer with
a generic lookup API, as described by the interface in
figure 5. This consists of two methods: Servicelookup
and GetAttributes. The required service type and list
of attributes are passed to the ServiceLookup
operation together with a handler to receive a
ServiceReturnEvent and an integer stating the time to
search for. The items of information returned are the
ServiceType, the URL (used to identify the service
location), and the Attribute list. The GetAttributes
operation returns all attributes for the identified
service.
 This abstraction relies on each protocol describing
a service by a service type as a named string, and
service attributes (properties of the service) as a name

value pair. Furthermore, this technique relies upon
the assumption that all services of the same service
type provide the same service functionality. The
abstract service binding (described later) utilises
WSDL abstract service descriptions; hence, the same
service type identifies services with the same WSDL
description. For example, the SLP and UPnP
mapping components use these assumptions to
directly map from the abstract to the concrete.

IV.B The Binding Abstraction
The ReMMoC binding abstraction is based upon the
concepts of abstract Web Services. Each service is
described by a Web Service Definition Language
(WSDL) description [14], containing the abstract
operations provided by the service. These operations
can then be implemented upon the developers choice
of concrete binding. The Web Service abstraction
was chosen for the abstract binding model of
ReMMoC for the following reasons:
• Web Services are already being heavy utilised as

the key technology in integrating existing
heterogeneous middleware platforms [15].

• Web Services are simple, compared to complex
modelling tools and languages. The simplicity of
the technique has driven the current interest in
Web Services.

HRESULT WSDLGet(WSDLService* servDesc, char* XML);
HRESULT AddMessageValue(WSDLOperation *op, char*
 elemName, VARIANT value, ReMMoC_TYPE type);
HRESULT GetMessageValue(WSDLOperation *op, char*
 elemName, VARIANT *value, ReMMoC_TYPE type);
HRESULT KnownOperationCall(ServiceReturnEvent

retLookupEvent, WSDLOperation op, int iterations,
ReMMoCResultHandler * handler);

HRESULT OperationCall(WSDLOperation op, int iterations,
 ReMMoCResultHandler* handler);

Figure 6: IDL definition of Interaction Interface

Therefore, the potential benefit of Web Services is
that they will be the most frequently used technology
for interoperability, which is the most important
factor when attempting to tackle heterogeneity.
However, there remains the possibility that Web
Services will become one of many competing open
standards to follow the predictable trends of previous
middleware standards. However, with Web Services
there is not the company driven competing standards
(there is already worldwide agreement on
technologies like XML), rather these companies are
collaborating on these meta-standards. Hence, by
complying with Web Service standards ReMMoC is
less likely to become simply another middleware.
 Figure 6 illustrates the operations provided by
ReMMoC for interacting with services. WSDLGet
takes a WSDL description and creates a data structure
to be used to invoke operations. There are two types

of operation OperationCall and KnownOperationCall;
OperationCall performs service lookup and interation
in one operation, wheras KnownOperationCall uses
the events returned from service lookup to perform
invocations on particular service instances.
 We now demonstrate how these abstract
operations are mapped to the two contrasting binding
paradigms that are implemented by the concrete
section of ReMMoC, namely Remote Method
Invocation (SOAP and IIOP) and Publish-Subscribe.
There are four abstract operations in WSDL that must
be mapped to the corresponding operations in the
concrete paradigms; these abstract operations are
formatted as follows:
1) Request-Response (input message, output

message). The service provider sends a response
to a request of its service. The information to
request a service is detailed in the input message,
while the output message contains the response.

2) Solicit-Response (output message, input message).
The service provider acts as a service requestor.
The information about the request is held in the
output message and the input message contains
the response.

3) One-Way (input message). The service provider
receives a notification message.

4) Notification (output message). The service
provider outputs a notification message.

Figure 7 illustrates how abstract messages (input and
output) that constitute each WSDL operation map to
the RMI and publish-subscribe communication
paradigms. We assume that each paradigm
understands the set of types used by the abstract
defnition. In RMI, the input/output messages of
Request-Response and Solicit-Response operations
can be mapped directly to the corresponding
synchronous RMI messages of SOAP and IIOP. The
operation name maps to the method name, the input
message to the input parameter list and the output
message to the output parameter list. Similarly,
Notifcation and One-Way operations can be mapped
as one-way messages e.g. one-way IIOP invocations
and asynchronous SOAP messages. Publish-
Subscribe however is an alternative communication
paradigm whereby there is no direct message
exchange between service requestor and provider.
The service provider publishes events and a service
requestor must filter to receive appropriate events.
Therefore unlike RMI, the mapping of WSDL to
publish-subscribe is not a direct correlation. The
request-response operation is a request of a service
based upon the input message. The input message can
be used to filter published messages and receive the
correct event, whose content maps to the output
message. The operation name maps to the event

subject, while the input message maps to the content
fillter attributes.

Figure7: Mapping WSDL to abstract operations

For these mappings to be effective, the following
assumptions are made about the current scenario:
• The service provider and service requestor are

both implemented against the same abstract
WSDL definition. That is, there is an exact
syntactic match and hence, type compatibility
between the two parties.

• There is no guarantee that the service provider
offers a semantic match to the requestor’s
operation; although there is a syntactic match, it
may not provide the required behaviour and
functionality.

V. Evaluation

V.A A typical mobile scenario
To demonstrate the capabilites of ReMMoC we
present a typical mobile scenario illustrated in figure
8. There are three locations: the user’s home, the
user’s office and a coffee bar close to the office. All
three locations are covered by an individual wireless
network hotspot; users can then connect to these
networks using PDAs or laptops. Three applications
reside across the three locations. The first application
is a stock quote service; this allows the user to
request the price of individual shares and view the
current status of their portfolio. The second
application is a chat service; this allows the user to
communicate with other local users (who may be
connected from a fixed or portable machine). Finally,
the third application is a jukebox service. At each
location a physical device within the environment
plays music (typically these are in the form of audio
speakers connected to a computational device). The
mobile user can display the list of songs available
from the jukebox on their mobile device; from here
they can then select the song they wish to play.
 To evaluate ReMMoC, a test harness was
implemented to emulate the described scenario. The
first step was to create the abstract service

descriptions for each of the applications. In the
scenario, a wireless network covers each of the three
locations; for this purpose, the 802.11b wireless
network was used, which has hotspots across the
Lancaster University campus. Services operating
from fixed machines were hosted using a desktop
machine with a 750MHz Pentium processor and
128Mbytes of RAM running the Windows 2000
operating system. Applications operating from
mobile devices were hosted upon either a Toshiba
e740 Pocket PC or a Compaq iPaq H350 (both with
the specification: 206 MHz StrongARM processor,
64 Mbytes of RAM and Windows CE 3.0 OS).

Figure8: Typical mobile scenario

V.B Evaluating ReMMoC’s behavior
We now describe the operation of ReMMoC for one
of the applications in the scenaro. The mobile user is
first at home and uses the stock quote client
application on their Pocket PC device to retrieve the
latest value of their portfolio. Later the user moves to
their office, and again checks the share prices from
the same client application. Finally, they move to the
coffee bar and when a friend wishes to know a latest
share price the user again uses their application. To
perform the operations of this interaction the
application must perform identically in all three
scenarios, the user is unaware of the changing
middleware implementation. The user interface
showing the developed stock quote application is
shown in figure 9.
 The sequence of operations for the Stock Quote
interaction case study is described in figure 10; the
application is first opened in the home location,
therefore ReMMoC Startup is initiated. This forces
the discovery framework to configure itself. A UPnP
device and SLP agent respond to protocol discovery,
therefore SLP and UPnP components are configured.
The application then invokes an OperationCall
method to find the price of IBM. This forces
ReMMoC, to perform lookup for a StockService over
the two protocols, however only UPnP responds. The

Home

SOAP Stock
Quote Service

UPnP

CORBA
Jukebox P/S Jukebox

Office

CORBA
Chat

Application

CORBA Stock
Quote Service

SLP

Coffee Bar

P/S Chat
Application

P/S Stock
Quote
Service

SLP

SLP

identified binding type is SOAP, therefore the
binding framework is configured appropriately. The
request response operation is carried out as a SOAP
method call and the resulting price is returned. The
user then moves to their office and again invokes the
same operation to find the price of BT (the
application is not shutdown and re-started).

Figure 9: Stock Quote client application

Figure 10: Operation of ReMMoC for stock quote
client application

V.C Investigating performance
This section describes the a set of tests to illustrate
the performance measures and the overhead costs of
the ReMMoC framework. These show that the core
operations of ReMMoC (i.e. service calls) have a
small performance overhead (incurred as the cost for
overcoming heterogeneity) compared to similar
operations within related technologies.

 All tests within this evaluation were executed on
the following equipment setup: a stand-alone
Compaq iPaq Pocket PC device (with a 206MHz
StrongARM processor and 64 Mbytes of system
memory) running the Windows CE 3.0 Operating
system, and a Desktop PC (Windows 2000) with
128Mbytes RAM and 750MHz processor. The
devices were connected via an IEEE 802.11b wireless
network at 11 Mbytes/s.

V.C.1 Abstract v Concrete Operation Invocations
This experiment demonstrates the overhead incurred
when invoking abstract service operations (in this
case KnownOperationCall methods are used). For
this purpose, two operations were implemented upon
both a SOAP and an IIOP service: an empty NULL
method (that performs no operation and takes no
parameters) and a getQuote operation that retrieves
stock data from a remote web site. The empty method
was invoked 100 times (using four different
component setups) from a mobile client connected
via the wireless network. From this measure, the
operations invoked per second was calculated. The
four set-ups were: 1) a concrete IIOP client
implementation, 2) a concrete SOAP client
implementation, 3) the ReMMoC platform
configured when the IIOP service has been found,
and 4) the ReMMoC platform when the SOAP
service has been found. The underlying interaction
protocols for SOAP and IIOP is identical in the
ReMMoC and non-ReMMoC set up, therefore
ReMMoC’s overhead can be evaluated. The same
experiment was then repeated for the getQuote
remote method. The incurred overhead documented
in figure 11 is composed of two factors:
• The time required to initially reconfigure the

binding framework to the correct personalty
• The time to map the abstract operations onto the

concrete invocations.
The NULL method results demonstrate the maximum
percentage overhead of the ReMMoC platform (i.e.
in addition to the cost of performing invocation
across the network). These results show that for
NULL IIOP operations there is a 54% decrease in
invocation per second throughput for abstract calls
compared to concrete calls. Similarly for SOAP,
there is an 11% throughput decrease for NULL
operations. The SOAP decrease is less because SOAP
invocations are more expensive than IIOP
invocations; therefore the overhead of the
reconfiguration time has less of an impact.
 The results for GetQuote IIOP operations
demonstrate that there is a 6% decrease in
invocations per second throughput for abstract
operations compared to concrete. Similarly for SOAP
there is an 8% decrease. This illustrates that the

Home (SLP & UPnP)

ReMMoC
Binding

(none)
Discovery

(SLP/UPnP)

Office (SLP)

ReMMoC
Binding (none)

Discovery
(SLP/UPnP)

Startup()

OperationCall(getQuote, IBM)

SLP
Agent

UPnP
Device

ReMMoC
Binding (SOAP)

Discovery
(SLP/UPnP)

Stock
SOAP

ResultCallback(Price = 24.98)

UPnP
Device

ReMMoC
Binding (SOAP)

Discovery
(SLP/UPnP)

OperationCall(getQuote, BT)

ReMMoC
Binding (IIOP)

Discovery
(SLP/UPnP)

Stock
IIOP

ResultCallback(Price = 8.65)

SLP
agent

impact of the overhead is reduced when realistic
application operations are executed. Hence, the initial
cost of reconfiguration becomes less of a factor for
operations whose logic takes longer to perform, i.e.
there is only a small decrease in invocation
throughput. However, there remains a small, fixed,
in-band overhead on each operation call due to the
abstract-to-concrete mapping; this is investigated
further in the next experiment.

2.219854378

0.856421017

1.966452323

0.786311883

33.55704698

1.507159005

15.44401544

1.417333995

0 10 20 30 40

Empty

getQuote
"IBM"

Operation Calls per Second

ReMMoC (IIOP)

IIOP

ReMMoC (SOAP)

SOAP

Figure 11: Comparison of service invocations

V.C.2 Investigating Abstract-to-Concrete Mapping
The previous test demonstrated the overhead of
ReMMoC for a fixed number of method invocations.
This experiment investigates the in-band overhead of
mapping abstract operations to concrete invocations
during ReMMoC’s operation. For this purpose, the
same four tests used in the last benchmark test (using
NULL and GetQuote operations on IIOP and SOAP
services) were carried out. However, in this case the
initial reconfiguration is not measured, only the time
for 100 invocations; from this the invocations per
second value was calculated.

2.219854378

0.856421017

2.12852004

0.805308594

33.55704698

1.507159005

32.95978906

1.417333995

0 10 20 30 40

Empty

getQuote
"IBM"

Operation Calls per Second

ReMMoC (IIOP)

IIOP

ReMMoC (SOAP)

SOAP

Figure 12: Abstract-to-concrete mapping costs during

service invocation

The results in figure 12 show that as expected for
NULL operations, there is only a small overhead for
abstract invocations. For IIOP there is a 2% decrease
in throughput, and a 2% decrease for SOAP. This is
because there is no abstract data to map, and the
overhead is simply the extra indirection due to
ReMMoC’s component architecture. Conversely, the

getQuote operation requires a mapping of one input
and one output parameter. Hence, there is an
additional in-band overhead. For IIOP there is a 5%
decrease in throughput (an additional 3% to the
NULL measure) and 7% for SOAP. Therefore, an
extra mapping overhead is attached to each
invocation, and this is dependent on the complexity
of the operation call, i.e. an operation with more
parameters will take longer to map.

V.C.3 Dynamic Reconfiguration
The final test of ReMMoC’s overhead investigated
the impact of dynamic reconfiguration. That is, how
does frequent reconfiguration affect service
invocation? For this purpose, the binding framework
was used to invoke 1000 operations of both SOAP
and IIOP methods, repeatedly switching between the
two with varying levels of frequency. In this
experiment only the binding framework of ReMMoC
was utilised, this allowed the abstraction overhead to
be minimised. In addition the IIOP and SOAP
services were hosted on the same Pocket PC as the
binding framework to remove the network
communication overhead.
 The first test involved no reflection; this is a
simulated base test (using base components, rather
than the ReMMoC framework) of the time taken to
perform 500 SOAP invocations and 500 IIOP
invocations. Subsequent tests used reflective
operations on the binding framework to switch
invocation types between SOAP and IIOP; the
frequency of reconfiguration was changed for each
test. In test two, a SOAP personality was configured
and 500 invocations were performed, the framework
was then dynamically reconfigured to IIOP and 500
invocations were made. Similarly, test three
performed 250 SOAP invocations then 250 IIOP
invocations and this was repeated once.

Test Description Time
(msecs)

Calls/
Second

% Time
increase
from test

1
1. 500 SOAP then
500 IIOP

55505 18 0

2. 500 SOAP then
500 IIOP

64543 15.49 16.3

3. 250 SOAP then
250 IIOP (x2)

69679 14.35 20.3

4. 100 SOAP then
100 IIOP (x5)

84067 11.89 51.46

5. 50 SOAP then 50
IIOP (x10)

114476 8.74 106.2

Table 1: Cost of dynamic reconfiguration

The results of the five tests performed are shown in
table 1. It can be seen that as the frequency of
reflective operations increases the time taken to

perform 1000 invocations increases. For behaviour
where reconfiguration is generally out-of-band, i.e.
infrequent compared to the number of invocations,
the additional overhead is less significant (a 16.3%
increase in time). However, as the reconfiguration
becomes more frequent, e.g. 10 reconfigurations in
1000 invocations, the overhead becomes significantly
expensive (a 106% increase in time).

V.C.4 Configuration Times
The measurements in table 2 illustrate the time taken
to configure each of the binding personalities into the
binding framework. This is a measurement of the
time taken from when the ReMMoC framework
initiates the new configuration, until the
configuration has been verified as a correct
personality by the framework. The two times
represent the time taken for the initial configuration,
and then the time for subsequent configurations. The
additional overhead is explained by the time to load
new components (DLLs) into memory.
 Table 3 then illustrates the results of experiments
breaking down the total time to configure
personalities into the binding framework. This
consists of the time to insert the personality into the
framework (using the algorithm to insert the
components and then connect them together based
upon an XML configuration description), and then to
check that the personality is valid. It can be seen that
increasing the complexity of the personality (in terms
of number of components and number of
connections) increases the time to first configure the
personality and then verify it is valid. Connecting the
components is the most expensive operation; this is
because the interfaces must be searched for (using
introspection operations) before the connections are
dynamically made.

Personality Name Total Initial
Time (mSecs)

Total Subsequent
Time (mSecs)

IIOP Client 2949 2754
SOAP Client 3876 3552
IIOP Server 2976 2733
IIOP Client and Server 6589 6291
Publish 3069 2810
Subscribe 2584 2387
Publish-Subscribe 5208 4929

Table 2: Binding configuration measurements

The frameworks are implemented for extensibility.
Each personality has an XML description that is used
to build the configuration; this allows new
personalities to be dynamically added to the
ReMMoC framework without re-implementation.
However, the discovery framework was changed for
testing purposes to perform optimised reconfiguration
i.e. the XML archirectural descriptions are replaced
by hand coded configurations the minimum. Hence,

we demostrate the trade-off between performance and
extensibility. Table 4 illustrates the time taken to
configure these optimised personalities into the
service discovery framework.

Personality

Name
Comps Conns Time to

Insert
(mSecs)

Time to
Connect
(mSecs)

Time to
check

(mSecs)

IIOP Client 5 6 628 2080 263

SOAP
Client

6 6 747 2375 273

IIOP Server 5 6 640 2086 271

IIOP Client
and Server

7 11 880 4962 521

Publish 6 5 841 1979 315

Subscribe 5 4 660 1578 234

Publish-
Subscribe

7 7 900 3113 345

Table 3: Binding configuration measurements

Personality Comps Conns. Time to
Configure

(mSecs)

Time to
Check

(mSecs)
SLP 4 9 1066 563
UPnP 5 8 1070 432
SLP & UPnP 8 17 1956 997

Table 4: Optimised framework measurements

Again, these results show that the same factors as for
the binding framework (e.g. number components and
connections) affect performance time. However,
these results show a significant improvement in
configuration time i.e. the more complex SLP &
UPnP personality takes less time to configure than
the simpler SOAP client. This measure demonstrates
that a large part of the overhead incurred during
configuration of the frameworks is for ensuring valid
operation in the face of dynamic change. An unsafe
version of ReMMoC would perform significantly
better; for example, an optimised, unsafe
configuration of SLP takes only 1.06 seconds,
compared to 3.87 seconds for the XML-based, safe
SOAP client personality configuration.

VI. Related Research
Much work has been carried out on various discovery
and interaction protocols e.g. UPnP, Jini, Centaurus
and many others, which have already been described
in this paper. These platforms although solving the
problem of discovery and interaction are creating a
new heterogeneity problem, which hinders the
creation of dynamic mobile applications that can
operate in new unknown settings. ReMMoC
addresses this issue using a Web Services, reflective

approach. Other platforms that examine this
heterogeneity platform are Universal Interoperable
Core, the Web Service Invocation Framework and
SATIN. Each is now analysed in turn.
 The Web Service Invocation Framework (WSIF)
[16] is a Java API for invoking Web Services
irrespective of how and where these services are
provided. Its fundamental goal is to achieve a
solution to better client and Web Service
interoperability by freeing the Web Services
Architecture from the restrictions of the SOAP
messaging format. WSIF utilises the benefits of
discovery and description of services in WSDL, but
applied to a wider domain of middleware, not just
SOAP and XML messages. WSIF follows the
discovery model of web services, and requires new
and existing services to be available through
advertising of the WSDL file (e.g. in a UDDI
registry). Like Web Services, the performance of the
WSIF platform will suffer due to its reliance on XML
in discovery. This doesn’t account for heterogeneous
discovery mechanisms and downloading the service
description consumes bandwidth. Furthermore,
services will be implemented and advertised without
exposing a WSDL file; these cannot be interacted
with, as the message exchange format cannot be
determined. Hence, the technique requires that all
providers follow this solution, which cannot be
guaranteed.
 SATIN [17] is a low footprint component based
middleware, which aims to address the problem of
heterogeneous service implementations in
dynamically changing mobile environments. At the
heart of SATIN is the ability to advertise and
discover service implementations that may be
advertised using different techniques; each discovery
mechanism is represented by a different capability
that can be added to the host when needed in the
environment. SATIN then utilises its own “higher
level” XML based discovery mechanism for
initialisation. For example, a host uses SATIN to find
the discovery capabilities being used and then
downloads these. The required application services
are looked up and their interaction capabilities are
downloaded to complete the cycle. The use of logical
mobility provides an elegant solution to the problem
of heterogeneity; applications do not need to know in
advance the implementation details of the services
they will interoperate with, rather they simply use
code that is dynamically available to them at run-
time. independently of SATIN, can in theory still be
utilised. SATIN relies on participants conforming to
their non-standardised architecture i.e. the SATIN
abstract discovery mechanism. Therefore, the
solution does not scale to include application services
not implemented with knowledge of these techniques.

 The Universally Interoperable Core (UIC) [18] is a
reflective middleware. The goal of the middleware is
to support interactions with multiple service
platforms from a mobile device in ubiquitous
environments. UIC provides the capability to interact
with a service implemented in CORBA, and also with
the same service type implemented in Java RMI and
SOAP. UIC uses dynamic adaptation to directly
tackle the problem of heterogeneous middleware in
mobile environments. This technique has the
potential to address the changing middleware
heterogeneity as the user moves location. However,
the design of the platform defines a standard skeleton
structure targeted to only object-oriented request
brokers (CORBA, Java RMI, and DCOM); it offers
no solution to the different interaction paradigms e.g.
publish-subscribe, data-sharing etc.). In addition,
there is no higher-level abstraction to invoke
heterogeneous services. The platform will operate for
all RMI based implementations, but it cannot be
extended to include contrasting communication
paradigms. Furthermore, UIC does not address
heterogeneous service discovery. It is utilised within
a framework that offers a single discovery
mechanism.

VII. Conclusions
This platform demonstrates that reflective
middleware offers a good solution for developing a
higher-level (or meta) middleware to solve the
problems of middleware heterogeneity. The
combination of components, component frameworks
and reflection supports appropriate adaptation of
middleware behaviour in the domains of service
binding and service discovery. In addition, ReMMoC
promotes a higher-level abstraction that provides
middleware transparency to mobile application
developers. Web Services form the base of this
abstraction, a standard the author believes will
become a widely used technology for addressing
middleware heterogeneity and middleware
integration.
 Furthermore, the following points can be extracted
from the evaluation of ReMMoC’s performance.
Abstract service invocation incurs a performance
overhead compared to the same operation performed
by a concrete middleware platform. The significance
of the service invocation overhead is reduced when
realistic service operations are performed. The
throughput of ReMMoC IIOP invocations per second
is reduced from the maximum 54% decrease to a 6%
decrease (compared to base IIOP invocations) for a
realistic mobile application operation.
 Mapping abstract operations to concrete
operations incurs an in-band operation overhead. For

NULL operations where there is no mapping, a 2%
decrease in ReMMoC invocation throughput
(compared to base IIOP) is observed. This is caused
by additional indirection. Mapping a single input and
output parameter incurs an extra 3% decrease in
throughput for ReMMoC IIOP, and an extra 5%
decrease for SOAP. Hence, this in-band overhead
increases when more parameters are mapped.
 Dynamic reconfiguration adds an additional “out-
of-band” overhead. Infrequent reconfiguration e.g. 1
reconfiguration during 1000 invocations suffers a
16% decrease in performance time. Frequent
reconfiguration e.g. 10 reconfigurations during 1000
invocations suffers a 106% decrease in performance
time. Therefore, where reconfiguration is performed
infrequently it has less of an impact on overall
throughput.
 Algorithms implemented to improve platform
extensibility (e.g. configuring personalities in the
binding framework) are significantly more expensive
than optimised configuration algorithms The
configuration of the less complex SOAP client
personality takes over three times longer than the
SLP personality Hence, a trade-off between
extensibility and performance can be made when
implementing middleware platforms.

References
[1] L. Kagal, V. Korolev, H. Chen, A. Joshi and T.
Finin, “Centaurus: A framework for intelligent
services in a mobile environment”, Proceedings of
the International Workshop on Smart Appliances and
Wearable Computing (IWSAWC), April 2001.
[2] K. Arnold, B. O'Sullivan, R. Scheifler, J. Waldo
and A. Wollrath, “The Jini Specification”, Addison
Wesley, 1999.
[3] Microsoft Corporation, “Universal Plug and Play
Device Architecture”, Version 1.0,
http://www.upnp.org/download/UPnPDA10_200006
13.htm, June 2000.
[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Nielsen, S. Thatte and D. Winer,
“Simple Object Access Protocol (SOAP) 1.1.
Technical Report”, http://www.w3.org/TR/SOAP,
May 2000.
[5] Salutation Consortium. “White Paper: Salutation
Architecture Overview”,
http://www.salutation.org/whitepaper/originalwp.pdf,
1998.
[6] M. Román, C. Hess, R. Cerqueira, A.
Ranganathan, R. Campbell, and K.Nahrstedt, “Gaia:
A Middleware Infrastructure to Enable Active
Spaces”, IEEE Pervasive Computing, 1(4), pp. 74-83,
Oct-Dec 2002.

[7] Object Management Group, “The common object
request broker: Architecture and specification”, Tech.
Report. Version 2.0, July 1995.
[8] J. Veizades, E. Guttman, C. Perkins and S.
Kaplan, “Service Location Protocol (SLP)”, Internet
RFC 2165, 1997.
[9] G. Blair, G. Coulson, A. Andersen, L. Blair, M.
Clarke, F. Costa, H. Duran-Limon, T. Fitzpatrick, L.
Johnston, R. Moreira, N. Parlavantzas and K.
Saikoski, “The design and implementation of Open
ORB 2”, IEEE Distributed Systems Online, 2(6),
Sept 2001.
[10] C. Szyperski, “Component Software, Beyond
Object-Oriented Programming”, ACM
Press/Addison-Wesley, 1998.
[11] M. Clarke, G. Blair, G. Coulson and N.
Parlavantzas, “An Efficient Component Model for
the Construction of Adaptive Middleware”,
Proceedings of Middleware 2001, Heidelberg,
Germany. November, 2001.
[12] P.Grace, G. Blair and S. Samuel, “ReMMoC: A
Reflective Middleware to Solve Mobile Client
Interperability”, Proceeding of International
Symposium of Distributed Objects and Applications
(DOA’03), Catania, Sicily, November 2003.
[13] R. Meier and V. Cahill, “STEAM: Event-Based
Middleware for Wireless Ad Hoc Networks”,
Proceedings of the International Workshop on
Distributed Event-Based Systems (ICDCS/DEBS'02),
pp. 639-644, Vienna, Austria, 2002.
[14] D. Booth, H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris and D. Orchard, “Web
Services Architecture”, W3C Working Draft,
http://www.w3.org/TR/ws-arch/, August 2003.
[15] R. Chinnici, M. Gudgin, J. Moreau and S.
Weerawarana, “Web Services Description Language
(WSDL) Version 1.2”, W3C Working Draft,
http://www.w3.org/TR/wsdl12/, March 2003.
[16] M. Duftler, N. Mukhi, A. Slominski and S.
Weerawarana, “Web Services Invocation Framework
(WSIF)”, Proceedings of OOPSLA 2001 Workshop
on Object Oriented Web Services, Tampa, Florida,
October 2001.
[17] S. Zachariadis, C. Mascolo and W. Emmerich.
“Adaptable Mobile Applications: Exploiting Logical
Mobility in Mobile Computing”. Proceedings of 5th
International Workshop on Mobile Agents for
Telecommunication Applications”, Marrakech,
Morocco, October 2003.
[18] M. Roman, F. Kon and R. Campbell, “Reflective
Middleware: From Your Desk to Your Hand”, IEEE
Distributed Systems Online, 2(5), August 2001.

