Methodology and Architecture of JIVE

Paul Gestwicki and Bharat Jayaraman
[pvglbharat]@cse.buffalo.edu
Department of Computer Science and Engineering
University at Buffalo
201 Bell Hall, Box 602000
Buffalo, NY 14260-2000

Abstract

A novel approach to the runtime visualization and analy-
sis of object-oriented programs is presented and illustrated
through a prototype system called JIVE: Java Interactive
Visualization Environment. The main contributions of JIVE
are: multiple concurrent representations of program state
and execution history; support for forward and reverse exe-
cution; and graphical queries over program execution. This
model facilitates program understanding and interactive de-
bugging. Our visualization of runtime states clarifies the
important point that objects are environments of execution.
The history of object interaction is displayed via sequence
diagrams, and in this way we help close the loop between
design-time and run-time representations. Interactive exe-
cution is made possible by maintaining a runtime history
database, which may be queried for information on vari-
able behavior, method executions, and object interactions.
We illustrate the capabilities of this system through exam-
ples. JIVE is implemented using the Java Platform Debugger
Architecture and supports the Java language and libraries,
including multithreaded and GUI applications.

1 Introduction

This paper presents several novel techniques for enhanc-
ing runtime comprehension of object-oriented programs.
Object-oriented programs differ from procedural programs
in two important ways: (i) objects are not just data struc-
tures, but serve as environments within which procedure ac-
tivations take place; (ii) object-oriented programs engender
the use of smaller methods, and more complicated inter-
actions among objects result. Runtime comprehension is
therefore enhanced by providing views of the object struc-
ture as well as the history of object interaction. Although
these observations are fundamental, to our knowledge there
is no visualization system for object oriented programs that
realizes these basic criteria. According to our methodology,
there are seven fundamental properties that a successful in-
teractive visualization must exhibit, as we will explain.
Just as graphical notations such as UML [Booch et al.
1999] clarify high-level relationships at design time, a graphi-
cal depiction of the relationships among objects and method
activations at runtime is highly desirable [De Pauw et al.

Copyright © 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

© 2005 ACM 1-59593-073-6/05/0005 $5.00

95

1993]. The visualizations presented in this paper are appli-
cable to object-oriented languages in general, but we focus
on Java in particular. This demonstrates that our methodol-
ogy can handle the nuances and complications of a general-
purpose programming language.

We identify the following major requirements for a system
that visualizes runtime states of Java:

1. Depict Objects as Environments. As noted earlier, the
execution states of object-oriented programs differs fun-
damentally from those of procedural programs since an
object is an environment within which method activa-
tions take place. There are several tools that clearly
depict method call sequences and support inspection of
objects’ internal details (see Section 2). However, these
tools depict neither the overall object structure nor the
method activations within these objects, and hence im-
portant relationships are missing in the visualization.

2. Provide Multiple Views of Execution States. The cur-
rent execution state of the program should be observ-
able at varying levels of granularity for better compre-
hensibility. The system should allow a user to view
abstract, simplified relationships or to examine spe-
cific details of an inheritance hierarchy or complex data
structure, for example. This flexibility allows the visu-
alizations to be useful for both teaching and debugging,
facilitating use by those with varied levels of experience.

3. Capture History of Ezxecution and Method Interaction.
The history of program execution should be observable
using notations such as time-sequence or collaboration
diagrams [Booch et al. 1999]. While these diagrams
were motivated by program design considerations (to
document the details of use cases), the ability to pro-
duce such diagrams at runtime helps close the loop be-
tween program design and program execution. Addi-
tionally, the visualization of program history should be
interactive, allowing the user to select the point in pro-
gram history that he or she wishes to view. For ex-
ample, selecting a method activation in a sequence di-
agram should cause the visualization tool to show the
execution state at which the method was called.

4. Support Forward and Backward Ezecution. It should
be possible to interactively step forward or backward
through program execution. This capability is espe-
cially important in debugging, since the occurrence
of an error is usually detected after the point of er-
ror [Agrawal et al. 1993]. The user should also be al-
lowed to decide the granularity of stepping, for example,
through statement-level and method-level step sizes or
by setting execution breakpoints. Moreover, these ca-
pabilities should also be supported for multithreaded
programs.

5. Support Queries on the Runtime State. One of the most
important requirements for program debugging is un-
derstanding how the variable values are changed. It
should be possible to query the runtime state for prop-
erties of variables, such as when a variable changed or
took a certain value. This requirement enforces the
perspective of a queryable database of runtime states.

6. Produce Clear and Legible Drawings. The visualiza-
tion environment should automatically arrange dia-
gram components so as to clarify the object structure
and method-calling sequence. Custom visualizations of
commonly used types such as arrays, lists, and tables
should be provided. Patterns inherent in the runtime
structure, such as shapes of known data structures,
should also represented in an intuitive manner.

7. Use Existing Java Virtual Machine. It is important for
the visualization system to run on existing Java Virtual
Machines (JVM) and not require a custom implemen-
tation of a Java interpreter. A custom JVM implemen-
tation will be hard-pressed to keep up with advances
in Java technology; for example, the new syntax sup-
ported in Java 2 Standard Edition 5.0 would require
changes to any custom compilers and interpreter. Ad-
ditionally, it should be possible to visualize programs
with graphical user-interfaces built from libraries such
as Swing and AWT.

These criteria have guided our research into effective
means of visualizing execution states and runtime details.
The fundamental steps required to develop a visualization
environment in keeping with the above requirements are:
creating a visual operational semantics for Java; developing
a model for interaction and reverse execution; generating
multiple versatile and customizable views of runtime state;
and integrating these into an application framework. The
resulting tool would be usable as a visual debugger and as a
teaching aid. To this end, we have created a prototypical tool
called JIVE: Java Interactive Visualization Environment.

The remainder of this paper is structured as follows: Sec-
tion 2 surveys the related work in order to give the con-
text and motivation for JIVE; Section 3 describes in general
how and why we provide multiple, interactive, customizable
views of Java program states and execution history; Sec-
tion 4 describes the specific changes made to our visualiza-
tion notation in order to support the nuances of Java run-
time semantics; Section 5 gives an overview of the software
architecture of JIVE, specifically focusing on its modular de-
sign and capacity for interactive execution; Section 5 also
describes our view of runtime history as a database that can
be queried for information; and Section 6 summarizes our
contributions and outlines areas of further research.

2 Related Work

In the previous section, we outlined the requirements for the
interactive visualization of Java. To the best of our knowl-
edge, there is no tool that meets all of these criteria, though
there are many projects that address one or more of our re-
quirements. A few prominent projects from each category
are identified, and their relationship to this work is discussed.

Integrated Development Environments. The system we de-
scribe is not a programming environment, but its debugging
capabilities merit comparing it to the debuggers present in
common IDEs. Common development environments such as

96

Eclipse and Microsoft VisualStudio provide integrated de-
bugging tools, but despite advances in development tools,
these debuggers are still intrinsically based upon the clas-
sic dbx. The interfaces are based on interactions of text
rather than interactions among graphical components, and
so important relationships among methods and objects are
lost. Our user studies have revealed that our notation is
significantly more useful to students who are learning the
object-oriented methodology. The simple list and tree visu-
alizations of DDD [Zeller and Lutkehaus 1996] (a front-end
to dbx) also do not capture the concept of objects as environ-
ments. The Smalltalk Inspector [Goldberg and Robson 1980]
provides a view of objects similar to the visual semantics we
propose. However, it does not provide a view of program
history, nor does it visualize object graphs or methods in
their inherited object contexts.

Visualization and Animation Tools. One important
branch of visualization research involves visual representa-
tions of performance analysis metrics such as memory usage,
time spent in methods or classes, etc. Examples include
BLOOM and Jive (not to be confused with our own sys-
tem, JIVE), a low-overhead tool for dynamic visualization of
Java [Reiss 2001; Reiss 2003]. The focus of such tools is sub-
stantially different from ours, which relates more closely to
clarifying individual program states and object interactions.

There is a branch of related work that is dedicated to ped-
agogic applications of program visualization. DYNALAB is
a tool that enhances lectures or laboratory exercises with
program animation techniques [Birch et al. 1995]. Although
it does not appear to be currently in active development,
it was one of the first systems to support reverse execution
through a virtual machine.

Another such tool is JGRASP [Hendrix et al. 2004], which
is a development environment designed for educational use.
It has integrated a true visual debugger, and it provides dy-
namic state visualization rather than animation of specific
algorithms [Brown and Sedgewick 1985]. jGRASP provides
intuitive graphical representations of program design and
runtime structure, but it does not provide a visual opera-
tional semantics for Java; the visualizations are intention-
ally abstract in order to be understood at a high level. Also,
JGRASP does not include support for interactive execution
in the reverse direction, and hence cannot provide for com-
parative analysis of program histories or querying facilities.

BlueJ is another prominent visual tool for teaching Java
programming [Kolling and Rosenberg 2001]. The main visu-
alization feature of BluelJ is its ability to program through
the creation of interactive class diagrams. BlueJ solves many
common problems of teaching the objects-first approach to
computer science, but BlueJ does not highlight the impor-
tant fact that objects are environments of program execu-
tion: it does not display structural relationship between ob-
jects, and it does not provide a visualization of method ac-
tivations in their appropriate object environments. Bluel
helps teach the objects-first approach, but it ignores some
low-level details of scoping and the complex interactions of
objects at runtime. As we illustrate, it is possible to show
such details through a combination of abstraction and eli-
sion, using multiple views and levels of granularity; this ad-
dresses the problem of information overload, that visualiz-
ing a nontrivial program’s execution in complete detail is
impractical [De Pauw et al. 2001].

Other related work is focused more on visualization than
on pedagogic applications. The “cel” visualizations of
Walker et al. show a high-level model of object-oriented
execution [Walker et al. 1998]. This technique requires the

engineer to specify what information is visualized, and it
is designed for the dynamic environment of program execu-
tion. Our approach shows a much lower-level visualization,
clarifying individual states and object interaction in history,
rather than high-level behavior such as class-level abstrac-
tions [Richner and Ducasse 1999]; our intent is significantly
different despite outward similarities.

Matrix Visual Tester (MVT) is similar to JIVE in its de-
sign and intent [Lonnberg et al. 2004]. It is designed as a
visual debugging aid, and it supports forward and reverse
execution. Both MVT and JIVE rely on abstraction and eli-
sion, automatic and user-controlled, to reduce the amount
of information presented in the visualization. MVT uses
bytecode instrumentation and allows the user to dynami-
cally change variables, whereas JIVE uses unmodified class
files and does not allow for dynamic changes to programs.
To contrast, JIVE does not perform any re-execution, and
therefore avoids the viscosity problem, which occurs when a
user steps backward and makes a change that invalidates
recorded states; MVT also does not support interactive
queries through an execution database.

Interactive Execution. Reversible execution has been ex-
plored in two general forms: re-execution [Zelkowitz 1973]
and state-saving [Balzer 1969]. The re-execution model uses
repeated executions of a program to reach the desired point
in execution. This model has the advantage that there is
not much data to be logged, but it has the obvious draw-
back that execution must be repeated each time a single
backward step is made. JIVE uses the state-saving model,
which has the drawback that transaction logs grow quickly.
However, increased processor speed and decreased cost of
memory continue to reduce the overhead of our approach.

JIVE’s state-saving mechanism uses a form of declara-
tive event recording and analysis similar to some earlier
work [Richner et al. 1998], though the events themselves
are tailored for integration with Java through the Java Plat-
form Debugger Architecture (JPDA). Our model of record-
ing program execution allows for queries that are not just
on specific states, as in the Fox query language [Potanin
et al. 2004], but also over execution history. However, this
technique precludes the possibility of effective memory-usage
and time-efficiency analysis, since JIVE imparts certain op-
erational costs on execution.

Our Previous Work. This work considerably extends our
previous work in interactive visual execution of Java. Our
earlier work [Gestwicki and Jayaraman 2002] served as a
proof of concept that a modified contour model of execution
can be used to visualize Java execution, and furthermore
that such a model supports interactive execution (forward
and reverse stepping through execution states). This earlier
model was based on a source-code transformation that con-
verts an arbitrary Java program into a self-visualizing Java
program. We have since altered our model to one that does
not use source-code transformation; this advancement frees
us from the task of writing complicated parsers that are be-
holden to the evolving Java grammar. Instead of transform-
ing the source code, we use the JPDA to initiate communica-
tion between JIVE and the program being visualized and to
monitor the program for events that affect the visualization.

Our visual semantics for Java is an extension of our pre-
vious work; we have extended the notation to support static
contexts, inner classes, threads, and Java’s unique overrid-
ing and shadowing behavior. We have further enhanced our
model by providing multiple views of the execution state at
customizable levels of detail. The history of program ex-
ecution is shown using interactive sequence diagrams that

97

allow the user to inspect arbitrary execution states with-
out having to step forward or backward to them. Another
considerable advance is the view of program execution his-
tory as an object-oriented database: it is possible to query
the execution history for information on methods, variables,
and structures, and multiple execution histories can be com-
pared. This database view of program execution is made
possible by recording key events during execution.

3 Multiple Views of Execution

In our earlier work, we showed that an extension of the con-
tour model [Johnston 1971] provides a clear depiction of
the execution of object-oriented programs [Gestwicki and
Jayaraman 2002; Jayaraman and Baltus 1996]. Contour
diagrams were introduced for understanding recursion and
scope rules in statically-scoped procedural programming lan-
guages such as Algol and Pascal. In essence, the classical
contour diagram consists of a set of nested rectangles, or
contours, where each one represents the runtime informa-
tion of the activation of a procedure-level construct. This
runtime information can include the bindings for parameters
and local variables, the source code associated with the con-
struct, the executable instructions, and appropriate linkage
information. Traditional contour diagrams are insufficient to
capture the history of execution, and large diagrams are too
detailed to facilitate the understanding of runtime states.
In order to address the first problem, we provide multiple,
customizable, abstracted views of the program state that
emphasize different aspects of execution. To depict execu-
tion history, we employ time sequence diagrams as defined
in the Unified Modeling Language.

We will consider some sample visualizations before ex-
ploring details of contour semantics for Java in Section 4.
Consider a binary search tree of integers, BST, and a sub-
class that counts duplicates, DupTree. An outline of the
implementation is given below:

class BST { ...
private BST left, right;
protected int data;
public void insert(int v) {
if (v<data)
if (left!=null) left.insert(v);
else left = makeNode(v);
else if(v>data)
if (right!=null) right.insert(v);
else right = makeNode(v);

}
class DupTree extends BST {
private int count;
public void insert(int v) {
if (v==data) count++;
else super.insert(v);

}
}

This example may be deceivingly simple to a reader who
is familiar with object-oriented methodology, but this basic
program highlights our focus on objects as environments.
The insert method of DupTree, for example, refers to a
member variable data through a reference to this, but there
is no data member defined in the DupTree class. Under-

i SO P SE

O 5
File Program Yiew Options Help
[@] qn |0t []m f B %
[Default View | Console |
javalang. Object
BST BST:1
= value int 100
main:1 -
args Javalang.... [instance o Jeft B5T BST.2
t BST BST- 1 right BST BST.2
rpal ectu.burral | || [It0iE L BST. L
v lint |25
Irpaf Imain:1
EST.2 B5T:3
walue int 50 value int 150
eft BST null left BT null
right BST null right BST null
this BsT BsT:2 this BST EST:2
1] Il I [
s T] =
imt>5 =
Ready. [main

BST.Jjava |

public class BT {

File Program Yiew Options Help

«afnivp [aa =

I

private int value;
private BT left, right;

public BET(nt) §
thiz.wvalue =

'

public woid insertnt v {
if {w < value)
I (left==null) left = new BT
else |eft. insertfy),
else if (v > waluge)
if (right==null} right = new B5T(v);
glse right.insert{y);
i

DupTree| |DupTre

<init> |

public static woid main(String[] args) { o it

BST t = hew BST{100);
Linsen(soy;
tinsert{150);
tinsen(2sy;
Linsen(7sy;
tinsert{125y;
tinser(175;

<init=_|

= Ready.

o

Figure 1: Two JIVE screenshots. The left object diagram is a detailed view, and the right is a compact view. Both screenshots
illustrate simultaneous view of the sequence diagram, and source-code highlighting is included on the left.

standing how this and data are resolved requires an un-
derstanding of inheritance and variable shadowing. Our vi-
sualization methodology is able to clarify the relationships
among these features of object-oriented languages in general
and Java in particular.

Detailed Views

One possible visualization of the binary search tree is a de-
tailed view, as shown in the left side of Figure 1. This view
shows objects’ complete states, including inherited members.
The activation of the insert method (in blue) is placed
within its proper object context, in this case, the root of
a binary search tree; its caller is the main method, shown
in the red static context in the upper-left of the screenshot.
The member tables of each contour have been expanded in
this diagram. These tables show the variables defined within
the contour’s context; the tables can be configured to show
method definitions as well, but we have found this to take
inordinate space in the visualization. It is not generally nec-
essary to show the member tables of every contour (as in
the right screenshot of Figure 1, but it is done in this fig-
ure in order to demonstrate the highest level of detail. The
screenshot also shows specifically how structural links are
built between contours: the link starts at the value cell of
the member table and is drawn to the contour being refer-
enced. This allows structural links to properly implement
static variable scoping with inheritance.

The nesting of methods within their object contexts (and
of subclass contours within their superclass contours) is used
to clarify the semantics of static scoping. For example, the
highlighted code in Figure 1 references the variables left

98

and v. The latter is defined within the method as a for-
mal parameter, and so its scope is clear; however, there is
no symbol left within the insert method activation. Such
symbols can be resolved by stepping outward through the
containment hierarchy. In this case, left is defined within
BST:1, and that is the symbol referenced by insert. This
technique is fundamental to the contour model and has been
shown to be directly applicable to object-oriented languages
that exhibit single inheritance [Jayaraman and Baltus 1996].

Compact Views

The upper-right portion of Figure 1 gives another possible
visualization of a program execution state. This is a com-
pact view, a visual paradigm in which many of the details are
elided. The nodes of the tree are shown as dark-bordered
instance contours. Each is named for the class of which
it is an instance (in this case, DupTree), and an instance
count is added to distinguish individual objects. For ex-
ample, DupTree:1 is the first instance of the DupTree class.
The instance contours make up the instance space; the static
space is made up the light-bordered static contours. There
is one static contour for each class loaded by the Java sys-
tem. A static contour is nested within its superclass’ static
contour, and so since all classes in Java are subclasses of
java.lang.0Object, all static contours are nested within the
static contour for java.lang.Object. The complications
and implications of the instance/static dichotomy will be ex-
plored in Section 4 along with other Java-specific concerns.
The arrows in the diagram are structural links, which indi-
cate that there is a reference from one object to another.
These links show the connection between nodes that form

the binary tree structure, and they correspond directly to
the left and right member variables of BST.

Sequence Diagrams

The lower-right portion of Figure 1 shows the history of exe-
cution through a sequence diagram; the visible portion shows
the beginning of the this program’s execution. Both the
static and object contours are shown as contexts along the
top of the sequence diagram since both are environments of
method execution. The method activations themselves are
shown as rectangles along the vertical lifelines of their re-
spective contexts. The main method is the leftmost method
activation, and it is responsible for the creation of the first
three tree nodes, DupTree:1, DupTree:2, and DupTree:3.
The methods labeled “<init>” indicate the creation of the
new context by calling its constructor. Java uses this sym-
bol internally to refer to constructor and instance initializer
invocations, and so we adopt the notation here. Since JIVE
is an interactive environment, we allow the user to scroll
through the sequence diagram and select contexts or method
activations, and JIVE will jump to the contour diagram vi-
sualization for those states.

Method contours represent method activations. Method
contours have a member table that contains the local vari-
ables of the method, including parameters, along with the re-
turn point and dynamic link. The member tables of method
contours, like those of instance and static contours, may be
hidden or shown on demand. Method contours are nested
within their defining contexts. The figure shows how the
insert method in DupTree calls the insert method in its
surrounding BST contour. JIVE shows the source code for
the current method, and the currently active source code
line is highlighted. Different highlighting colors can be used
for each thread to further clarify the execution state.

Call-path and Minimized Views

In a call-path view, contours with method activations are
shown in compact view and those without are in minimized
view. When minimized, contours are drawn as simple points,
as shown in Figure 2. A call-path view is convenient when
the user wishes to focus on a specific method activation or
series of method activations. The overall structure is still
visible, but visually complex details are not. If some details
were of no interest to the user, he or she could simply hide
the entire contour from view through view filtering.

Figure 2 shows a contour diagram that has been fully min-
imized. The fully minimized view is useful when one wishes
to see the overall structure without showing any contour’s
internal details. We provide convenient actions that will ex-
pand all contours, stack all contours, minimize all contours,
or show the call-path view. Additionally, the user can se-
lect any individual contour and choose to expand, stack, or
minimize it, or to show or hide its member table. This puts
control over the visualization into the domain of the user.

Analysis of Programs and Diagrams

The fact that there is a relationship between diagrams and
programs is generally accepted. It is common for those
teaching introductory computer science to use graphical no-
tations to demonstrate concepts of object-orientation. The
contour model notation provides a standard methodology
for visualizing Java runtime states. Using JIVE, we are able

99

File Program View Options Help

EEIETES

[W[a[ulv]»]

Figure 2: Minimized view of a contour diagram. All objects
are shown as simple points.

to perform a more systematic analysis of the relationship
between programs and the diagrams they engender.

Design patterns are used during system design in order to
make the best use of object-orientation [Gamma et al. 1995].
Analysis of program design is beneficial, but it does not nec-
essarily translate into understanding of runtime states. De-
sign patterns are explained in terms of their design and their
runtime behavior. Using JIVE, we are able to see and inter-
act with the runtime behaviors, providing an excellent tool
for explaining patterns to students; we have used JIVE in
this manner in a graduate-level seminar with much success.
Furthermore, a user may use JIVE as a visual debugger when
analyzing runtime states. The difference between a program-
mer’s mental model of a program and the visualization of the
program can expose the location and nature of the error.

Consider, for example, an application that uses Java’s
Swing library. The object diagram of such a program will
contain a tree-like structure of GUI objects: the root will be
a window frame, and the leaves will be buttons, text fields,
and other widgets. There should be a small number of ob-
server objects that are connected to the user-interface com-
ponents and monitor them for state changes. Essentially,
the object structure consists of a fixed hierarchy along with
instances of the observer design pattern. This structure will
repeat in different application domains as long as the pro-
grams share a similar GUI structure. It is possible that this
type of structure may occur in non-GUI applications as well:
consider the object structure of an application that processes
a hierarchical filesystem and monitors files for change. The
basic structure of these two object diagrams is the same, and
so they can be rendered in JIVE in similar ways in order to
highlight the parallels.

4 Visual Operational Semantics for Java

The original contour model semantics for procedural lan-
guages has been extended to general object-oriented lan-

guages; these extensions showed how objects are environ-
ments of execution, an essential perspective through which
the contour model can be used to clarify the semantics
of object-orientation [Jayaraman and Baltus 1996]. This
model requires significant modification in order to be ap-
plied to Java, specifically with respect to static contexts, in-
ner classes, multithreaded applications, and overriding and
shadowing. In this section, we explore these new extensions
to the contour model semantics.

Static Contexts

In the standard object-oriented contour model, runtime
states are represented with object and method contours.
This model is sufficient for a language where all runtime data
is encapsulated in objects and their methods, but Java in-
troduces the notion of static members. Variables, methods,
and inner classes can be declared as static, and these static
members are associated with a class rather than a particular
instance of the class. A static contour is introduced into the
contour diagram for each static context. Since there is only
one static contour for any class, no instance count is neces-
sary. Invocation of a static method is represented by nesting
a method contour within the appropriate static contour.

We define an implicit static link that connects an instance
contour C; to the static contour of its defining class, C.
Drawing these links explicitly for every instance of a class
will quickly reduce diagram legibility; it is sufficient to have
implicit links since the names of instance contours clearly
relate them to their corresponding static contour. Adding
a separate static space in the diagram requires that we add
the following requirement to the standard search strategy for
resolving symbols. Given a class C, a static contour C for C,
and an instance contour C:i of C: if a symbol is not found
in the member table of C:i, then the static link is followed,
and the symbol is sought within the member table of C; if the
symbol is not found in C, then attempt to resolve the symbol
in the parent of C:i. This implements the proper semantics
of Java’s scoping of static members, and it maintains the
planarity of the contour diagram.

Inner Classes

An inner class is a class defined within the context of an-
other class [Gosling et al. 2000]. We deal with anonymous
inner classes and named inner classes in the same manner,
using Java’s numbering system to identify anonymous inner
classes. Non-static inner class instances are always contained
within exactly one enclosing instance, and so to reflect this,
the instance contour for the inner object is nested within the
instance contour of the enclosing instance. Non-static inner
classes may not define static members, and so unlike non-
inner classes, there is no static counterpart to a non-static
inner class. Static inner classes are associated with a class’
static context, and so the instance contours for static inner
classes are nested within the static contour for their enclos-
ing class. Static inner classes may define static members,
and so each static inner class has a static contour; the static
contours of static inner classes require no special handling
and are treated as any other static contour.

As an example, consider an alternate binary search tree
implementation that uses inner classes. The BST2 class de-
fines a non-static inner class, Node, and the tree structure
is recursively defined over Node instances rather than BST2
instances. Figure 3 shows the object state when the second
tree node has been inserted. The two instances of the in-

100

X i

File Erugram Eiew Eptiuns ﬂelp.

Lalulw» [mla] %

T
w
AR

BST2:1

java.lang.Object: 2

fava.lang.Object:3

BST2$MNode:1]

insert2

e BST2%MNode:2

main H
— |

Figure 3: Contour diagram showing non-static inner class
instances. BST$Node is an inner class of BST. Each non-static
inner object is contained within its enclosing instance.

ner class, BST2$Node:1 and BST2$Node:2, are both nested
within the single instance of BST2, BST2:1. This figure also
serves to illustrate the problem of nested graph processing
in contour diagrams: any contour may have an arbitrarily
complex and dynamic nested contour structure.

Overriding and Shadowing

The traditional contour model for object-oriented languages
adds two intracontour links to the member table of each
instance contour: a this (or self) link that points to the
innermost object of a stack of contours, and a super pointer
that points to the superclass contour of a contour, if one ex-
ists [Jayaraman and Baltus 1996]. The intention of the this
intracontour link is to show overriding; an expression such as
this.toString() will always refer to the implementation of
toString() that is deepest in the class hierarchy. However,
due to Java’s variable shadowing and method overriding, the
meaning of the this link can be deceiving regardless of how
it is drawn. Drawing the this link as described creates a con-
tradiction when referencing shadowed variables through it.
Similarly, if this refers only to the contour containing itself,
which would provide a clear visual semantics for shadow-
ing, then the overriding of methods is not clearly expressed.
This is an inherent shortcoming of any visual operational se-
mantics for Java. It is impossible to resolve the method and
variable referencing uses of this using only one intracontour
link due to its two syntactic uses.

The complications of this are not insurmountable in
JIVE. The dichotomy between method overriding and vari-
able shadowing can still be explained using JIVE diagrams
since the different contour contexts are clearly visible in

e BIENE
H Eile Erugram Eiew thiuns ﬂelp. ¥
nir» x2al %
Chase Chaser$Runne4 |Chaser$Runner:1‘ |Chaser$Runner:2
=elinits | i ;
E <init= E E
i <ihit>i E
' E E rLlIn 1
| | rjni2 _
| i prifitl
i i print2
i |
i i prife3
i i print4
i i lih]
i i
)) print:6
i i pHHLT
] ! print8 -
Ready. lThread.—l H

Figure 4: Sequence diagram with concurrent threads. The
main thread, shown in blue, terminates after initializing the
two Chase$Runner thread objects. The other two threads
have set up a simple chase condition.

a detailed view. Since object-orientation favors encapsula-
tion of data, we expect method overriding to be much more
prevalent than variable shadowing in real Java applications.
Therefore, in JIVE, we do include a this reference in the
member table which refers to the innermost instance contour
in a collection of nested contours, and we leave the detailed
explanation of overriding and shadowing to an instructor.

Threads

Java supports multithreaded applications; in fact, every Java
program that has a Swing or AWT user-interface is in-
herently multithreaded since the JVM will automatically
start the AWT-Event thread to process user input. Mul-
tiple concurrent threads imply multiple simultaneous paths
of method calls. This is easily represented in the contour
model through visual cues on methods and their return links.
Each thread’s path of execution is drawn in a different color.
Even if the same method definition is being used by multiple
threads, each thread has its own method contour since each
thread has its own stack. The same colors are used to high-
light the multiple threads of a contour diagram and sequence
diagram as well as the source code; this enforces the interde-
pendence of the view of the current state (contour diagram
and source code highlighting) and the history of execution
(sequence diagram). The JIvE-generated sequence diagram
for a simple multithreaded program is shown in Figure 4.
The program being visualized simply starts two threads and
lets them race to a finishing condition.

101

5

In this section, we give an overview of the architecture of
JIVE. High-level descriptions are provided for the interpro-
cess communication mechanism by which JIVE and its visu-
alization client share data, the model for interactive execu-
tion, and the database query subsystem. We also present
some of the graph drawing research issues involved in JIVE.

JIVE Architecture

Two-Process Architecture

We have explored the use of source-code transformation in
order to produce visual representations of the runtime state
in previous visualization tools [Gestwicki and Jayaraman
2002]. This model is difficult to maintain for a growing lan-
guage such as Java. Each time the language or libraries
change, changes must be made to any custom compilers or
interpreters that are written.

Our current approach abandons program transformation
in favor of a two-process architecture. The visualization
environment itself runs in one process. The user provides
to JIVE the program he or she wishes to visualize, and
JIVE starts the application in a second process, called the
client process. Communication between the two processes
is made possible by the Java Platform Debugger Architec-
ture (JPDA)In order to guarantee source-code highlighting
functionality, a program must be loaded from its source code,
but JIVE can run visualizations from compiled class files as
long as they contain debug information. JIVE supports mul-
tithreaded programs that are uniprocessing, but the design
does not currently allow for visualization of distributed or
multiprocessing applications.

Once JIVE has started the client process, it registers lis-
teners via JPDA and awaits notification. When the client’s
state changes, its execution is suspended, and notification of
the event is sent to JIVE for processing. Once the data model
and the appropriate views have been updated, JIVE resumes
the client program and returns to waiting for events.

The amount of processing that the client performs before
suspending is depends on user preferences. JIVE allows for
different step sizes, including individual source code lines,
method invocations, or traditional breakpoints in the source
code. It is also possible to disable event suspension, in which
case events stream continuously into JIVE, which processes
them sequentially.

Interactive Execution

As the client program runs, it is monitored for changes;
these changes are stored by the JiveLog subsystem. The
log is coupled with a database into which execution history
is stored. The JIVE prototype uses an in-memory model
for faster queries and processing, but the entire model can
be externalized in situations with excessive data or limited
memory. The log can be saved to a file for offline analysis.
Execution events received from the client are interpreted
into a simpler set of events by JIVE. The execution his-
tory is therefore expressed through a sequence of declara-
tive events [Richner et al. 1998]. These events are memento
objects which are able to commit or un-commit themselves
from a program state model [Gamma et al. 1995]. In this
way, multiple states can be shown at once by notifying the
state models which events have been committed or rolled
back. The seven events used by JIVE correspond to the
following execution events: static context creation, object
creation, method call, method return, exception thrown and
caught, change in source line, and change in variable value.

Each of these events is encapsulated as an object, and the
object contains enough information about the event to com-
mit or un-commit itself from the execution log. Essentially,
each event contains a prototype of the change it will make
to the execution state, in a manner similar to templates or
prototype-driven programming [Ungar and Smith 1987].

Stepping backward in JIVE does not affect the client pro-
gram, only the current visualization. The client program is
suspended while the user inspects past states, and it is re-
sumed when necessary. While this model does preclude the
possibility of altering program inputs, it also avoids the prob-
lem of maintaining synchronization with external resources
such as data streams or input/output devices. For exam-
ple, when a program with a graphical user-interface is run
through JIVE and the user steps backward, the interface will
cease responding while the client process is suspended. This
is because the client’s event thread, which is responsible for
redrawing the client program’s interface and processing in-
put events, is suspended along with all other threads. If a
program were un-executed (as opposed to rewinding visual-
izations), irreversible computations may be performed, or a
stream may be read that cannot be pushed back; hence, we
abide by a general model that client programs are unilater-
ally suspended while visualizing recorded states.

Multithreaded applications are handled elegantly in our
execution model. Since we restrict to uniprocessing systems,
there is only ever one instruction being executed at a time.
JIVE is aware of the thread on which an event occurs. The
active thread is recorded in the execution log and reflected
in the visualization (see Figure 4).

Drawing Object and Sequence Diagrams

The object diagrams used in JIVE are complicated struc-
tures, and optimal drawing is difficult. There is a wide range
of research in graph drawing algorithms [Eades et al. 1999];
however, the object diagrams we describe cannot be triv-
ially converted into graphs. Specific properties of contour
diagrams that complicate automated graph drawing include:

e Nested structures. Within a contour there may be an
complex nested diagram.

o Multiple types of nodes. There are instance contours,
static contours, and method contours, and each behaves
differently. Additionally, special representations may
be required for visualization of certain Java types such
as arrays and Collection classes.

o Multiple types of edges. There are structural links and
return links, and they have different behaviors. Method
return links are tied to the life-cycle of a single method
contour. Structural links from method contexts have
substantially different lifetimes than structural links
from object members.

o Multiple types of crossings. A generally accepted graph-
drawing aesthetic is that the crossings of edges should
be minimized [Eades et al. 1999]. In contour diagrams,
there can be crossings between heterogeneous links and
between the boundaries of different types of contours.

It is possible to convert contour diagrams into multi-
graphs. Different weights can be given to different types
of links. Method return links are inherently ephemeral, as
they last only as long as the method activation; hence, we
give structural links a higher weight than return links in the
graph conversion. The resulting graph is then layered using a

102

modification of Coffman-Graham layering [Coffman, Jr. and
Graham 1972; Eades et al. 1999] for multigraphs, and the
crossings are minimized, yielding a layered graph drawing.
An inverse transformation is applied to revert the multigraph
into the contour diagram. In our preliminary testing, this
works well for simple hierarchical structures such as trees
and graphical user-interface composition. Simple greedy lay-
outs, where objects are simply drawn in the order they are
created and locked into their positions, have proven inef-
fective in our experimentation. Sequence diagrams, though
essentially simpler than object diagrams, are still difficult to
draw. Minimizing crossings and back edges (i.e. method
calls that point left) can be done by finding an optimal hor-
izontal arrangement of lifelines.

The goal of JIVE is to provide a robust environment for vi-
sualization, and its multiple concurrent views gives the user
the freedom to focus on details of interest. When using JIVE
as a teaching tool, it may be useful to show fully-detailed
contour diagrams to explain concepts such as inheritance
and aggregation. However, for larger programs, it is imprac-
tical to show this much detail. JIVE supports multiple views
with multiple levels of detail. We also have a model for fil-
tering the visualizations; for example, a user may only be
interested in their own classes, so they may apply a filter to
exclude the visualization of all classes in packages starting
with java. Another user may wish to study the Swing pack-
ages, so he or she could exclude all java classes except those
in the javax.swing package and subpackages. Default sets
of filters can be used for general application in pedagogic or
debugging applications; for example, an instructor wishing
to use JIVE could configure filters known to be useful for the
specific applications being visualized.

Runtime History Database

The interaction model maintains a complete traversable
record of program history. These storage structures can be
conceptualized as a database of runtime state information.
In a relational database, queries are performed on a table or
groups of tables, and the results of these queries can be val-
ues and new tables. In our runtime state database, queries
are performed on the history of runtime execution or on
portions thereof, and the results are values, sets of states, or
portions of program history. Furthermore, we have a visual
representation of program states and program history, and
so both queries and the results can be visual.

One aspect of runtime database querying is variable track-
ing. A variable is selected in JIVE, and its value is monitored
for changes. An instance or local variable may be tracked
in a particular object or across all instances of an object.
Static variables are tracked in the static context and for us-
age in objects of the class. When the user initializes variable
tracking, he or she specifies a condition for the variable, such
as its value being changed or within a range (for numerical
values). The result of the variable tracking is highlighted
through the JIVE interface. As an example, consider variable
tracking of the count variable in the DupTree class from the
previous examples. A user investigating the DupTree may
wish to know when the count changes to a value besides
its default of 1. In the visualization of the current state,
DupTree:2 is highlighted since it is the contour that contains
the count member that changed. Additionally, the insert
method that caused the change in count is highlighted in
the sequence diagram, and an arrow points to the specific
point at which the change was made.

JIVE’s architecture allows for the execution history

database to be written to a file for future use. A program’s
history file can be loaded and visualized as if the program
was running, but without needing to actually compile and
run the program. This serialization of execution histories
also makes it possible to compare executions. Multiple ex-
ecution histories may exist for a program as small changes
were made to it, and through JIVE, a user can visualize the
differences between program executions. It is also possible
to perform queries that span program executions, and the
results of these queries are sets of views.

6 Conclusions and Future Work

Our experience with JIVE thus far have been very positive.
Object diagrams have proven useful for debugging, especially
when JIVE clarifies the difference between a user’s imag-
ined structure and the actual structures created. The JIVE-
generated sequence diagrams have proven invaluable in ex-
plaining the behavior of various design patterns and program
constructs, and they are further clarified by the capability to
view the details of the object and method calling structure
at varied levels of detail. The color-highlighting of threads
in object and sequence diagrams has been instrumental in
explaining the behavior of multithreaded programs. This
has been especially true for programs with graphical user-
interfaces: the sequence diagram clarifies how the event-
processing thread handles user input and drawing the GUI,
and how complicated processing tasks can be deferred to
other threads. We have used different forms of the tool and
the visual semantics in introductory-level computer science
courses, intermediate undergraduate courses, and graduate-
level courses.

Though the sequence diagrams have proven highly effec-
tive in both explaining program execution and detecting
errors, program history becomes very complicated in large
or long-running programs. We are investigating means by
which the program history information can be modularized
and multiple views can be provided akin to the compact,
minimized, and detailed views of contour diagrams. In addi-
tion to the aesthetic problem of providing a comprehensible
diagram, there is a theoretical problem of how to most effi-
ciently structure a dynamically-growing sequence diagram.
This is an area where analysis of program source code may
provide an insight into the optimal ordering of lifelines before
program execution even begins.

The current interaction module supports only stepping
forward and backward or running to breakpoints, including
the start and end of a program as default breakpoints. This
model makes it inefficient to “jump” from one program state
to another distant state since all of the changes between the
two states must be processed sequentially. Despite this inef-
ficiency in processing time, it should be noted that the stated
approach is optimally efficient in storage space, since each
change that must be recorded is recorded exactly once. How-
ever, our studies confirm that shorter response-times provide
for a better atmosphere for understanding a program. The
best way to increase the effectiveness of these jumps between
states is to store redundant, composite transaction informa-
tion at key points in program execution. The source code,
when it is available, can be analyzed in order to determine
the dependencies among methods and data [Chen and Xu
2001; Grove et al. 1997]. Our current approach involves the
development of an ontology of programs in order to deter-
mine the analysis techniques that produce the best results
for different types of programs.

Generating good drawings of object diagrams is a difficult

103

problem. Despite the wide range of graph-drawing tech-
niques, the unique properties of our diagrams prevent the
direct application of known techniques. Existing dynamic
graph drawing approaches [North 1996; Moen 1990; Cohen
et al. 1992; Ryall et al. 1997] handle the problem of general
dynamic graphs, but it is not clear that diagrams of object
runtime interactions can be constructed as simple graphs.
We are investigating how to use the class diagram to predict
and generate good drawings of object diagrams.

The current set of queries supported by our model is lim-
ited, but we are currently developing a more formal query
language, improving result organization, and enhancing the
visual interfaces. The runtime history database also has
many applications outside of program visualization and com-
prehension. Comparative analysis of program execution is a
useful tool for system security testing; by running a program
many times, it may be possible to extract a mathematical
description of what “normal” execution is. If a program
then exhibits aberrant behavior, it can be marked as a po-
tential security risk. The results of the comparison can be
visualized with JIVE.

Acknowledgements

Ashim Garg contributed to the theory behind JIVE’s dy-
namic drawing capabilities. The internal representation of
states was developed with the help of Eric Crahen. Hani Gir-
gis, Akshay Hegde, and Manu Pushpendran have assisted in
the development of JIVE’s query system.

References

AcGrAawAL, H., DEMILLO, R. A., AND SPAFFORD, E. H.
1993. Debugging with dynamic slicing and backtracking.
Softw. Pract. Exper. 23, 6, 589-616.

BALzZER, R. M. 1969. Exdams: Extendable debugging and
monitoring system. In Proc. AFIPS, AFIPS Press, Mont-
vale, N.J., vol. 34, 567-580.

BircH, M. R., Boroni, C. M., GOOsEy, F. W., Par-
TON, S. D., PooLE, D. K., PratT, C. M., AND ROSS,
R. J. 1995. Dynalab: a dynamic computer science lab-
oratory infrastructure featuring program animation (ab-
stract). In SIGCSE ’95: Proceedings of the twenty-sizth
SIGCSE technical symposium on Computer science edu-
cation, ACM Press, 29-33.

BoocH, G., RUMBAUGH, J., AND JACOBSON, I. 1999. The
Unified Modeling Language User Guide. Addison Wesley
Longman, Inc., Reading, Massachusetts.

BrowN, M. H., AND SEDGEWICK, R. 1985. Techniques for
algorithm animation. IEEE Software (January), 28-39.

CHEN, Z., AND XU, B. 2001. Slicing object-oriented java
programs. SIGPLAN Not. 36, 4, 33-40.

COFFMAN, JR., E. G., AND GRAHAM, R. L. 1972. Optimal
scheduling for two-processor systems. Acta Informatica 1,
3, 200-213.

CoHEN, R. F., D1 BATTISTA, G., TAMASSIA, R., TOLLIS,
I. G., AND BErTOLAZZI, P. 1992. A framework for dy-
namic graph drawing. In Proceedings of the eighth annual
symposium on Computational geometry, ACM Press, 261—
270.

DE Pauw, W., HELM, R., KIMELMAN, D., AND VLISSIDES,
J. 1993. Visualizing the behavior of object-oriented sys-
tems. In Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and ap-
plications, ACM Press, 326-337.

DE Pauw, W., MITCHELL, N., ROBILLARD, M., SEVITSKY,
G., AND SRINIVASAN, H. 2001. Drive-by analysis of run-
ning programs. Tech. rep., IBM T.J. Watson Research
Center.

EADES, P., D1 BarTisTA, G., TaAMAssiA, R.; AND TOLLIS,
I. G. 1999. Graph Drawing: Algorithms for the Visuali-
sation of Graphs. Prentice-Hall, New Jersey.

GamMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J.
1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Longman, Inc., Read-
ing, Massachusetts.

GESTWICKI, P., AND JAYARAMAN, B. 2002. Interactive
visualization of Java programs. In IEEE Symposium
on Human-Centric Computing, Languages, and Environ-
ments, 226—235.

GESTWICKI, P., AND JAYARAMAN, B. 2004. Jive: Java
interactive visualization environment. In OOPSLA 200/
Conference Companion, 615-616.

GOLDBERG, A., AND RoBSsON, D. 1980. Smalitalk — The
Interactive Programming Environment. Addison-Wesley.

GosLING, J., Joy, B., STEELE, G., AND BRACHA, G. 2000.
The Java Language Specification, Second Edition. Addi-
son Wesley Longman, Inc., Reading, Massachusetts.

GRrROVE, D., DEFouw, G., DEAN, J., AND CHAMBERS,
C. 1997. Call graph construction in object-oriented lan-
guages. In Proceedings of the 12th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages,
and applications, ACM Press, 108—124.

HenDRrIX, T. D., Cross, II, J. H., AND BAROWSKI, L. A.
2004. An extensible framework for providing dynamic
data structure visualizations in a lightweight ide. In Pro-
ceedings of the thirty-fifth SIGCSE Technical Symposium
on Computer Science Engineering.

JAYARAMAN, B., AND Bartus, C. 1996. Visualizing pro-
gram execution. In IEEE Symposium on Visual Lan-
guages, 30-37.

JoHnsTON, J. B. 1971. The contour model of block-
structured processes. ACM SIGPLAN Notices, 255—282.

KOLLING, M., AND ROSENBERG, J. 2001. Guidelines for
teaching object orientation with java. In Proceedings of
the 6th annual conference on Innovation and technology
in computer science education, ACM Press, 33—-36.

LONNBERG, J., KORHONEN, A., AND MALMI, L. 2004. Mvt:
a system for visual testing of software. In AVI ’04: Pro-
ceedings of the working conference on Advanced visual in-
terfaces, ACM Press, 385-388.

MOEN, S. 1990. Drawing dynamic trees. IEEE Softw. 7, 4,
21-28.

104

MUKHERJEA, S., AND STASKO, J. T. 1994. Toward visual
debugging: integrating algorithm animation capabilities
within a source-level debugger. ACM Trans. Comput.-
Hum. Interact. 1, 3, 215-244.

NoORTH, S. C. 1996. Incremental layout in dynadag. In Pro-
ceedings of the Symposium on Graph Drawing, Springer-
Verlag, 409-418.

PoraNIN, A., NOBLE, J., AND BIDDLE, R. 2004. Snapshot
query-based debugging. In Australian Software Engineer-
ing Conference, 251-261.

REiss, S. P. 2001. An overview of bloom. In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, ACM
Press, 2-5.

REIss, S. P. 2003. Visualizing java in action. In SOFTVIS,
57-65, 210.

RICHNER, T., AND DUCASSE, S. 1999. Recovering high-
level views of object-oriented applications from static and
dynamic information. In Proceedings ICSM’99 (Inter-
national Conference on Software Maintenance), IEEE,
H. Yang and L. White, Eds., 13-22.

RicHNER, T., Ducassg, S., AND WuvTs, R. 1998. Under-
standing object-oriented programs with declarative event
analysis. In Object-Oriented Technology (ECOOP’98
Workshop Reader), Springer-Verlag, S. Demeyer and
J. Bosch, Eds.

Ryarr, K., MARKS, J., AND SHIEBER, S. 1997. An in-
teractive constraint-based system for drawing graphs. In
Proceedings of the 10th annual ACM symposium on User
interface software and technology, ACM Press, 97-104.

UNGAR, D., AND SMITH, R. B. 1987. Self: The power of
simplicity. In Conference proceedings on Object-oriented
programming systems, languages and applications, ACM
Press, 227-242.

WALKER, R. J., MurpHY, G. C., FREEMAN-BENSON, B.,
WRIGHT, D.; SWANSON, D., AND IsAaAKk, J. 1998. Visual-
izing dynamic software system information through high-
level models. In Proceedings of the 13th ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications, ACM Press, 271-283.

ZELKOWITZ, M. V. 1973. Reversible execution. Commun.
ACM 16,9, 566.

ZELLER, A., AND LUTKEHAUS, D. 1996. DDD - a free graph-
ical front-end for UNIX debuggers. SIGPLAN Notices 31,
1, 22-27.

