
Dynamic Screens and Static Paper 

SANDRA BAISSAC SMITH 

Skidmore, Owings & Merril 
Chicago, Illinois 

DOCUMENTATION FOR GRAPHIC SYSTEMS 

Design issues for written and 
on-line documentation have become 
the subject Of articles, 
newsletters, conferences, and 
seminars. Their importance in 
supporting and marketing software 
systems is no longer questioned. 

For the most part, this extensive 
discussion has been based on struc- 
tured systems: data base or data 
query, text editors or operating 
systems. (1) In such systems, user 
goals can be clearly identified for 
any one task. There is a single 
procedural path to accomplish the 
task and achieve the goal. 
Efficiency, and thereby docu- 
mentation effectiveness, are 
measured in terms of the time 
necessary to learn the path, and 
the number of errors encountered. 

Graphic building design systems in 
an architectural practice serve a 
dual role as an efficient means of 
drafting production, and as a 
visual too1 within the creative 
design process. These systems must 
allow the same freedom as the 
traditional pencil and yellow 
tracing paper. They may be 
conceived and designed as 
unstructured systems on several 
levels. 

Each 

Unstructured Input 
Unstructured Paths 
Unstructured Tasks 
Unstructured Data 

is a source of potential 
ambiguity, and each affects the 
documentation effort. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

0 1986 ACM 0-89791-186-5/86/0600/0139 $00.75 

This paper will discuss the types 
of problems encountered in creating 
documentation for such unstructured 
programs. Questions will be raised 
as to the approach to printed and 
on-line reference documents, as 
well as training. Examples of tasks 
and documentation will be based on 
the graphics programs developed by 
Skidmore, Owings & Merrill (SOM) 
for the use of its professional 
staff. These programs process two- 
and three-dimensional graphic data, 
interface with plotting devices and 
with engineering analysis programs. 

1. Introduction 

Graphics systems, processors and 
display units have evolved rapidly 
over the past five years. Input 
devices, once limited to 
alphanumeric keyboards, now include 

wide 
devices 

variety of interactive 
such as tablets light pens 

and mice. Where dispiay screens 
were monochromatic, they now offer 
256 different colors or more. The 
time needed to refresh a screen of 
complex data has been significantly 
reduced. Dialogue areas function 
independently of the graphic 
workspace, using a separate window 
or a separate scrolling iayer of 
the display screen. 

Building design programs have also 
evolved to take advantage of new 
technologies. However, syntax or 
user interface decisions based on 

earlier 
iyfficult to 

technology, are 
change without 

affecting the productivity of 
trained personnel. Many of the 
issues raised by SOM's current 
programs find their solution in 
today's graphic capabilities. 
Viewing these decisions and their 
impact through the needs of 
documentation can be a profitable 
exercise for the programmer as well 
as the technical writer. 

2. Unstructured Input 

The building blocks of most 
graphics systems are geometz’ic 
primitives such as nodes, lines, 

139 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F10563.10587&domain=pdf&date_stamp=1986-02-01


polygons, text, and symbols. They 
are located in three-dimensional 
space by assigning their end points 
or reference points to precise XYZ 
coordinates. Attributes such as 
color, pen weight, line type, text 
font, etc. are attached to each 
element. 

In architecture or engineering 
systems, coordinates can be entered 
by typing XYZ locations in real 
numbers at the keyboard. Coordinate 
data can also be defined by 
referring to an existing node 
number in the graphic data base. 
Both methods are cumbersome and 
slow; both leave ample margin for 
input errors. Documentation is, 
however, a straightforward affair. 

More commonly, coordinates are 
entered interactively by placing a 
graphic cursor at the desired loca- 
tion, and indicating actions with 
either a key stroke 
combination of mouse buzonsa 
Examples in written documentation 
must use graphics to portray these 
choices effectively. 

Although the use of these devices 
is enjoying considerable vogue, the 
command input entails two notions 
that do not lend themselves to 
documentation. Where screen refresh 
time is a program constraint, input 
is often imperfectly echoed. That 
is to say, the visual display may 
not clearly indicate which button 
or key has been pressed. 

Secondly, input depends on a 
spatial and temporal sequence that 
may be quite complex. Consider the 
technique SOM uses to add a 
rectangle of structural beams onto 
an underlying graph paper grid. 

The verbal explanation as written 
follows: 

Use the S key to select points off 
the graphic mesh and <ESC> to 
interrupt the continuous sequence if 
necessary. The X key will find the 
existing temporary node at the I node 
of the first beam and use it es the J 
node of the last beam element. Press 
E to enter the beam list. 

The illustration as printed is: 

S = SELECT OFF THE MESH 
X = SELECT A TEMPORARY NODE 
E = ENTER THE NODE LIST 

FIGURE 1 

Figure 1 attempts to minimize one 
inconvenience of graphic input. A 
symbol appears where the key would 
be pressed. The spatial movement of 
cross hairs is noticeably absent. 
The notion of temporal sequence, 
although implied in the numbered 
positions, is entirely lacking from 
the X E S key sequence. A full set 
of illustrations would have to 
include 17 separate images, 
indicating each spatial position of 
the cross hairs and the key used at 
that point in time. A more 
economical and effective set might 
include the first position and key, 
then the last position and keys. 

r- 

I\ 

--:--,--,--,--,--, 
I 

r-- -&;--~--~--:_i: 

sl 
;$$ x = SELECT A TEMPORARY NODE 

cl ;;$;’ E = ENTER THE NODE LIST 

FIGURE 2 

A similar problem arises when input 
is divided into subsets. Where text 
subsets of sentences and paragraphs 
may be indicated by a space or a 
carriage return, a series of 
disconnected lines or discrete 
polygons needs a more complex 
convention. SOM systems use the 
escape key as the equivalent of 
picking up the pencil. 

140 



III $ii’: S = SELECT OFF THE MESH 

rl ‘# ESC = INTERRUPT THE SEQUENCE . . . 

III .;j@ E = ENTER THE NODE LIST 

FIGURE 3 

Non-echoed input, be it through a 
mouse, tablet or function key, also 
affects tutorial preparation. 
Although recent studies seem to 
indicate that effective tutorials 
can screen out input errors, they 
have been based upon text editing 
command acquisition.(2) The 
discrepancy between the new user's 
expectation and the tutorial 
behavior is far greater with 
spatial representations. Figure 4 
shows what a novice might see if he 
placed the cross hairs incorrectly 
to enter a new node in such a 
tutorial. 

DRAF> SET HESH X 0 TO 7 Y 0 TO 4 

NOW ADD A NODE GRAPHICALLY. 
USE THE S KEY TO PICK OFF THE MESH. 
PICK THE INTERSECTION X-4, Y=l. 

DRAF> ADD NODE . 

FIGURE 4 

Command language can also be 
considered as unstructured input, 
whether it be through menu choices 
or direct entry. If we first define 
a rectangle then its color fill, or 
first choose the fill color then 
define the rectangle, the final 
result and, in many cases, the 
efficiency are the same. For other 
commands, efficiency may be greatly 
affected. Consider the two commands 
that follow: 

DELETE LINES IN . VECTOR 2 COLOR 4 
DELETE LINES COLOR 4 VECTOR 2 IN . 

The results of both commands are 
identical. Those lines that are 
within a graphically defined area, 
are blue and are in a dash line 
vector will be deleted from the 
working memory. However, the first 
formulation may mean that the 
computer works through a shorter 
list of blue dash lines. How does 
one convey that notion to a group 
of novices who will be sharing the 
same computer resource? 

Unstructured input language may, in 
other cases, have varying results 
according to the order in which 
options are used. SOM systems, 
developed when dialogue areas often 
overwrote the graphic workspace, 
allow for a maximum of operations 
within a single command. The 
resulting syntax is difficult to 
map in a reference form. Existing 
documentation conventions precede 
additive lists with an ampersand & 
and enclose optional choices in 
parentheses 0. Where the user must 
supply data, the data type is 
enclosed between left and right 
carets <>. 

A partial syntax diagram listing 
transformation options might read: 

Rotate <x angle> (ABout <list xyz>) 
&<y angle> 
&<z angle> 
X <angle> 

&Y <angle> 
&Z <angle> 

RX <angle> 
&RY <angle> 
&RZ <angle> 
&Scale <scale x> (ABout <list xyz>) 

&<scale y> 
&<scale z> 

X <scale> 
&Y <scale> 
&Z pale> 

SX <scale> (ABout <list xyz>) 
&SY <scale> 
&SZ <scale> 

141 



No hierarchy is or can be implied. 
However, the order in which data is 
translated, scaled and rotated is 
crucial. Figure 5 illustrates the 
results of repeating a polygon with 
both translation and scale options. 

U?At- REPEAT POLY I TX 3 SCALE 65 

Df?AF* REPEAT PDLY 1 SCALE -5 TX 3 

FIGURE 5 

3. Unstructured Paths 

The methods of building a graphic 
image: positioning, 
coloring, 

scaling, 
etc. are as diverse as 

the individual user's approach to 
design and the creative process. 
There is no one defined path to 
accomplish a task. Indeed, there is 
often no one defined sequence for 
options within a single command. 
Efficiency cannot be determined by 
task accomplishment, nor can the 
effectiveness of training or 
documentation. 

In training and in use, there is no 
difference between the following 
two paths to the same geometric 
construct. 

DRAF* ADD LIN . 
DRAF* REPEAT LINE RZ 15 ABOUT . CDPY 24 LINK 

r-r- 
L-L- 
I I 
L-L- 
I I 
L-I-. 
I I 
L-L- 
I I 
L-L- 
I I 
L-L- 

J 

-1 

-I 

DRAF, AM) LINE CIRCLE 24 RADIUS , 
DRAF’ REPEAT LINE SCALE B ABWT . LIN< 

- 

0 ;y$:: S l SELECT OFF THE flESH 

Cl if:: F - FIND AN EXISTING NODE 

FIGURE 6 

The dilemma becomes a subjective 
one. This flexibility can be 
detrimental in that it affects 
learning time and long-term memory. 

4. Unstructured Tasks 

In addition to the traditional 
tasks of developing working 
drawings and other architectural 
documents, tasks can include 
preliminary massing within a city 
context, site planning, development 
of alternative design details, 
presentation graphics, slides, or 
film animation. User Guides and 
other training materials must cover 
many of these tasks yet not 
overwhelm the novice user. 

With data base or text editing 
systems, the solution to training 
materials can take the form of an 
example task. To accomplish his own 
goals, the student need only follow 
the same structure with his own 
contents. The structure itself is, 
in some ways, reassuring in its 
more familiar elements. Most of us 
recognize the final product: a 
table or a page of text. Many of us 
understand the steps to achieve the 
goal by transfer of existing 
knowledge of typewriters, files, 
etc. 

To build examples of sufficient 
graphic complexity for the 
architect or engineer is another 
matter. Consider the implications 
of the following sample. 

142 



FIGURE 7 

At minimum, the concepts include 
geometric primitives, pen, and 
shading; perspective, shadow, and 
scale; filing, and retrieving 
graphic data, and converting the 
data into a plottable form. 

Despite a good grasp of both 
geometry and the desired 
architectural result, some 
constructs are arduous. Particular 
sequences may only be adequately 
explained with graphic aids. For 
example, the text: 

PAir and FIT options permit rotation 
and scale for a symbol instance to be 
specified by indicating two or more 
nodes between which it is to fit. 
The symbol definition should be 1" 
wide at each axis to be affected by 
scaling. The PAir option will scale 
and rotate the symbol instance so 
that its X axis coincides with a line 
projected between the two nodes. FIT 
2 functions in the same manner, using 
the X distance to scale all three 
dimensions. FIT 3 allows you to 
define a plane on which the symbol 
will lie, and a Y axis scale that is 
the distance between points 1 and 2 
and point 3. The 2 scale factor will 
be 0. FIT 4 defines a 
three-dimensional location for the 
symbol and a 2 axis scale that is the 
distance from points 1, 2 and 3 to 
point 4. Add the SCAle option to use 
the distance between points 1 and 2 
as a uniform XYZ scaling factor. 

FIGURE 8 

While written documentation can 
accommodate such simple 
illustrations, on-line help is 
limited by questions of response 
time, data storage space and 
terminal windowing or display 

143 



capabilities. !Che disruption factor 
of 80-character text scrolling 
across a complex graphic is high. A 
superimposed illustration would, 
for most SOM users, be entirely 
unacceptable. 

To meet the requirements of 
interactive display, or even of 
reproduction quality, graphic 
examples must therefore be simple. 
They must also be carefully chosen 
to avoid any implication of a 
limitation to the creative process 
or to the architectural 
engineering expertise of toh: 
computer novice. 

FIGURE 9 

5. Unstructured Data Management 

Management of graphic data, both 
during work sessions and in 
permanent memory, can allow the 
user complete liberty. In SOM 
systems, up to 63 "layers" or 
overlays may be used in a single 
work session as temporary divisions 
of the graphic image. Nine group 
numbers provide internal structure 
tags within the graphic data. A 
single image is often broken up and 
stored in an large number of 
graphic files. For many, these are 
not intuitive concepts. 

When files are loaded into the 
terminal display memory for 
manipulation, no display feature, 
counter or log automatically 
remains as a visual indication of 
these divisions. While the display 
can be changed to indicate layers 
or groups by color coding, most 
designers prefer to develop and 
view an image in the colors they 
have chosen for the final color 
Plot I slide or client presentation. 

Thus, any graphic or verbal 
representation of these divisions 
is, at best, artificial. It may 
also be lead to misconceptions 
about the graphic display or 
internal structure of the data. For 
example, setting a color mode to 
reflect the temporary layer 
divisions will change the color 
attributes of the data. However, 
the next time that data is loaded 
into the working memory, the colors 
will not determine any distribution 
into layers. 

In the same way, printed 
illustrations of layer divisions 
may reinforce a false notion of 
permanence, or of shading value. 
Figure 10 below was produced using 
the halftone capability of an 
electrostatic plotter. Plotting the 
data from temporary layer 2 will 
not automatically result in a 
halftone plot. 

ORAP PLOT LAYER 1 

DRAF> PLOT LAYER 2 

FIGURE 10 

144 



6. Summary 

Documentation for graphic systems 
calls for a thoughtful and 
disciplined approach to the use of 
illustration and text. The 
information to be conveyed and the 
skills to be acquired are visual in 
nature. The translation is one from 
a dynamic screen to a static paper 
or on-line display. 

Beyond issues or solutions for the 
documentation writer, the dilemmas 
outlined in this paper pose three 
challenges. 

From human factors research we need 
a better understanding of the way 
we acquire underlying skills or 
measure efficiency for graphic 
tasks. Error blocking in tutorial 
models could be extended to explore 
spatial anticipation. 

From software designers, we need 
effective ways to display and 
manage graphic examples in on-line 
materials. Dual-processing and 
windowing offer interesting 
possibilities that need to be 
evaluated in terms of their cost in 
overall system performance, network 
performance, and display response 
time. 

From application designers, we need 
a constant dialogue and cooperation 
in circumventing those display or 
syntax decisions that may make a 
powerful creative tool difficult to 
teach and to learn. 

References 

The statements herein are the 
result of general readings from 
Communications of the ACM, ACM 
Computing Surveys as well as the 
newsletters of SIGDOC, ACM special 
interest group on documentation, 
and SIGCHI, ACM special interest 
group on computer - human 
interaction. Other publications 
that draw their examples primarily 
from text or data entry systems 
include FOLIO, Sandra Pakin & 
Associates. 

Special reference is made to: 

Carroll, John M. and Dana S. Kay, 
"Prompting, Feedback and Error 
Correction in the Design of a 
Scenario Machine", Proceedings, CHI 
'85, Human Factors in Computing 
Systems. 

145 


