
ing can be selective (by specifying the names of predi-
cates to be traced). Failing predicates result in a call to a
debugger which allows exhibition of the runtime stack, and

a generation of a new level of PDSS environment. In trac-
ing, calls to built in predicates can be exhibited. We find
this an advantage. There are, however, no facilities for
single stepping, trap setting, etc. The lack of such debug-
ging facilities is undoubtedly a disadvantage, particularly in
a commercial environment.

Source Co__mments.

Statement by statement comments are not allowed. All
comments must be attached to the definition of a predi-
cate; comments attached to clauses are shifted up by the
PDSS save command. We view this as rather "unfriendly"
restriction. Code in a large Prolog program can become a
somewhat difficult to read, and allowing comments in
a_ppropriate place improves enormously the readability and
understandability of the code.

Documentation.

The quality of editorship of the manuals [1,2] is pretty
poor. Misprints, mistakes and errors abound. Some incor-
rect examples can be found, as well as erroneous and
confusing references. Beginning Prolog programmers be-
ware~

Modularity.

Modularity is one of the redeeming features of this
product. Control of interfaces between various modules is
very good, allowing hiding of information when wanted,
exporting and importing predicates as well as making
names visible or not as the application dictates. This has
good effects from software engineering point of view.
Another advantage accruing from this approach is the im-
provement of database search efficiency, by selectively
making only the relevant parts of the database visible from
the executing module.

In production mode, modules can be compiled
(pretranslated) separately and consolidated later into one
program.

Procedural Components.

MProlog provides a number of predicates which introduce
procedural components into the system. We see most of
these predicates as useful in generation of efficient
production run software. To the same aim, MProlog al-
lows definition of global variables. This of course is a
touchy issue from the software engineering point of view.
However, arguments for and against notwithstanding, the
manipulation of global variables in MProlog is very tedious.
(This might be viewed as either an advantage or a

disadvantage!)

Inverse Predicates.

Every invertabie predicate and operator provided by a lan-
guage should have an inverse provided by that language.
This is not the case in MProlog (as indeed it is not

many other languages). For example, the MProlog predi-
cate make char list begs for an inverse. This predicate
takes a strung and decomposes it into a list of its charac-
ters. It is almost an unavoidable conclusion that if
make char list is used, then one would need to do the
reverse sooner or later.

In Conclusion.

The development environment provided by MProlog ver-
sion 1.5 leaves a lot to be desired. However, most of the
disadvantages and missing features are quite easy to
eradicate. We hope that the manuals will be revised soon,
and that the communication of PDSS with the Operating
System will be of Logicware's next priority. Debugging
facilities should be expanded, to include features such as
those mentioned in the text of this article.

The production facilities of MProlog are good. Modularity
is important, particularly when it allows separate compila-
tion of modules. Usage of such precompiled modules
should be allowed in the Profile.MProlog file.

References.

1. MProlog Language Reference Logicware Inc., Release
1.5 Dec 1984

2. Logic Lab Reference Logicware Inc., Release 1.5 Dec
1984

Algorithms to Play Mastermind

T. S. Rao, G. Kazin, and D. O'Brien
Department of Mathematics & Computer Science

SUNY College
Brockport, NY 14420

Abstract: Several algorithms to play mastermind
have been published. However, the overall complexity of
the algorithm has not been discussed. In this paper, we
present three algorithms and an analysis of their com-
plexity.

1. Introduction and Terminology The problem of finding
the best algorithm to play the game of mastermind is of
considerable mathematical interest. This problem has at-
tracted the attention of many researchers recently. ([1 ..
8])

The game is played by two players, The code-maker and
the code-breaker. The code-maker makes a secret code,
S, of his choice. The code itself is a string of symbols
from a finite alphabet C. The length of the code string N is
known to both players. The code-breaker now makes a
sequence of guesses to break the code. Each guess, of
course, is a string of length N over C. For each guess G,
the code-maker responds by giving a pair of numbers (b,c)
where b is the number of positions in the secret code S
for which S[i] = G{i] and c computed as follows: We first
eliminate all positions considered in computing b We
then compute c by counting the number of S[i] that are
also in G, thus b represents the number of right symbols
in right positions and c the number of right symbols in

SIGART Newsletter, January 1986, Number 95 Page 33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1056563.1056568&domain=pdf&date_stamp=1986-01-01

wrong posit ions. (See [1] for details). An intel l igent code-
breaker wil l exploi t this in format ion in making his next
guess. The game ends whs~ the respond is (N, 0), that is
S[i] = G[i] fo r i = 1 to N. The object of the game is for the
code-breaker to break the code in the least possible n u m -
ber of guesses.

The solut ion to this problem is of importance, because it
can have appl icat ions in coding. If we t reat the secret
code as the message we want to t ransmit , then we can
just t ransmi t the sequence (b i, ci). At the other end the
receiver can use the exact same algor i thm to decode the
message. Further, in Section 3, we discuss a var iat ion of
this game where only bis are used. This would be bet ter
suited for appl icat ions in coding.

Several a lgor i thms to play the game have been published
recently. Most of these algor i thms a t tempt to min imize
the number of guesses. However, l i t t le at tent ion has been
paid to the amount of computat ion involved in generat ing
the next guess. In this paper we present three a lgor i thms
and an analysis of their complexi ty. It should be noted
that the a lgor i thms here are presented in a way that
ref lects the analysis. In actual implementat ions, however ,
many o ther heurist ics are used to reduce the number of
guesses.

In what fo l lows, C represents the f in i te alphabet of s y m -
bols, M = ICI represents the number of symbols in C and N
denotes the length of the secret code string. We also as-
sume that C contains a symbol, '$', that wi l l not be a part
o f any secret code. We emphasize that the role o f '$' is
mere ly that of space fill ing. Further, fo r any secret code
which does not contain all the symbols, a symbol not in it
can be easi ly found. If the secret code contains all s y m -
bols, then we can use a symbol that is known to be
present as the space f i l ler and modi fy the a lgor i thms ac -
cordingly.

This a lgor i thm is a simpl i f ied version of the a lgor i thm
presented in Rao [1]. We present the a lgor i thm in rather
informal steps. For simplici ty, we assume that c = {x 1, x 2,
--. , X m } .

A l g o r i t h m

Step 1: Find all the symbols, Yl ' Y2 Yk in S and thei r
corresponding f requencies ql, qz qk using guesses of
the type:

X i, X i ... X i

The response to each of these guesses wil l decide if the
symbol is present in S, and if so its f requency of occu r -
rence.

Step 2: A symbol, Yi, which is known to be present in S,
can be solved that is its correct posi t ion determined by
using guesses of the form:

vi$$... $ vi ... $... $$$... V~ $

where $ is the special symbol known not to be present in
S. Each guess wil l decide if a posi t ion is r ight fo r Yi"
Every occurrence of each Yi can be solved in this way.
Note that once a symbol is known to be in a certain pos i -
t ion, we retain it in that posit ion in all future guesses.

Observe that Step 1 wil l take a max imum of (M - 1)

guesses. Each guess, being a str ing of length N, wi l l take
N operat ions to compute it. For each symbol it takes (N -
1) guesses at wors t to solve it. Thus the a lgor i thm has an
overal l complex i ty of 0(MN + N3). If one is interested in
the number of guesses would be 0(M + N2).

3. A l g o r i t h m 2 this a lgor i thm works by dividing the
problem into smal ler subproblems. We f i rst in t roduced the
concept of a bag. A bag is essential ly a set, except that
repet i t ions are al lowed. A bag is d i f ferent f rom a list in
that there is no order ing in a bag. Thus, if all the symbols
in the secret code along wi th their f requencies are known
these can be put in bag. The algor i thm f i rst computes the
bag of these symbols and part i t ions it repeatedly into
smal ler bags until each bag has only one symbol. Each
rscursive call part i t ions the bag into two smal ler bags:
LBAG and RBAG. A final concatenat ion wil l produce the
answer.

Algorithm

Step 1: Compute Yl, Y2 Yk and ql, q2 qk as in step 1
A lgor i thm 1.

Step 2: Set LBAG = ~and RBAG = ~ (~ i s the empty bag)

Step 3: For each Yl do the fo l lowing:

Try a guess of the fo rm yiYi.., yi$$...$ where there are N/2
occurrences Yi" Let (b,c) be the response. As the number
of occurrences of Yi is qi this implies that there are b o c -
currences in the left half of S and qi -b on the r ight half.
Thus we update LBAG and RBAG:

LBAG = LBAG + {Yi Yi} (b t imes) RBAG = RBAG + {Yi
yi} (qi -b t imes) where + represents bag union.

When Step 3 is comple ted we would have par t i t ioned the
original bag of symbols into t w o bags wi th N/2 e lements
each. Step 2 and Step 3 are repeated fo r each subbag
until each smal ler bag has exact ly one e lement in it.

We observe that the complex i ty of making a new guess
again is 0(N). It takes at wors t N guesses to split the
original bag into t w o bags of size N/2. It takes another
N/2 guesses to part i t ion the left bag. Thus af ter another
N guesses we have 4 bags of size N/4. Hence we need
NlogN guesses to arr ive at N bags of size one, ~rov ing
that the complex i ty of the a lgor i thm is 0(MN + N = IogN).
The wors t number of guesses would then be 0(M + N
IogN).

A lgor i thm 2 is bet ter than A lgor i thm 1 in both the overal l
complex i ty and the number of guesses. Further, this a lgo -
r i thm is bet ter suited fo r coding appl icat ions. Observe
that the cfs, in this a lgor i thm, played no role at all. This
means that the a lgor i thm is appl icable in a more di f f icul t
mastermind game, the one in which the code -make r sup-
plies only bi's and not cfs. From the coding point of v iew,
we can just t ransmi t the sequence of bi's. In the wo rs t
case, for a message N characters we have to t ransmi t ap -
prox imate ly N log N integers. However, as repet i t ion of
characters in the message reduces the number o f guesses,
we should have to t ransmi t far fewer than NlogN integers
in an average case. (It is interest ing to note that, if S is
the secret code and G i is the i th guess that N-b i is the
Hamming Distance between S and Gi).

SIGART Newsletter, January 1986, Number 95 Page 34

4. A l g o r i t h m 3 Both the a lgor i thms presented earl ier do
not exploi t the in format ion given by the code -make r c o m -
pletely. This a lgor i thm makes bet ter use of this in fo r -
mat ion ensuring a fewer number of guesses. However,
the amount of computa t ion done in each guess increases
sharply. We f i rst observe that the response (b,c) can be
v iewed as a measure of the simi lar i ty between the guess
G and the secret code S. To formal ize the not ion we
define a simple funct ion d as:

d(S, G) = bN + c

The a lgor i thm begins wi th a list L of all the (M-1)N
str ings of length N over c - { $ } ordered in some fashion.

A lgor i thm

Step 1: Pick any e lement G f rom L as the Next guess.
Suppose (b,c) is the response. If b = N then stop else let
d 1 = d(S, G).

Step 2: It fo l lows that the secret code is one of the
str ings X for which d(X, G) = d 1. Thus we e l iminate all
str ings in L fo r which d(X, G) # d 1.

Step q and Step 2 are repeated until the secret code
is found. Observe that the f irst guess wil l e l iminate a
substantial part of L and subsequent guesses wi l l reduce L
rapidly. In pract ice this a lgor i thm can be implemented
sl ight ly dif ferently.

We use C - {$} = {0, 1, 2 M - 2 } to i l lustrate the
implementat ion. The f i rst guess wil l be 000 ... 0. Each
guess wil l be t reated as an N digit number in base M-1.
Every guess wil l be numerical ly larger than the previous
guess. Suppose G 1 G i are the f i rst i guesses and (b 1,
Cl) (b i, ci) the corresponding responses. Then the (i +
1) th guess G i wil l be the smal lest N digi t number (with
possible leadii~lg zeros) greater than G i and s u c h that

d(Gi+l, Gk)=d(S,Gk=bkN+Ck for k=l . . . i .

the process wil l of course, stop when we have d(S,Gi)
= N 2 for some i.

The above algor i thm is one of the best if the number
of guesses is the pr imary cri ter ion. However, it is one of
the wors t in terms of overall complexi ty. In the wors t
case the t ime taken to generate the next guess is ex -
ponential, thus making it unsuitable for large values of N.

5. Conc lus ion We have discussed three a lgor i thms to
solve the Mastermind problem. A lgor i thm 1 is rather
elementary. A lgor i thm 2 which proves to be the best in
terms of overal l complex i ty is suitable for coding appl ica-
t ions. However, these two a lgor i thms are not very
suitable fo r coding applications. However, these t w o a l -
gor i thms are not very suitable when used to play the
game because the guesses wi l l be predictable thus making
the game uninterest ing. A lgor i thm 3 is best sui ted fo r a
game playing program, because in this case we can as-
sume N to be a small number like 4 or 5. For such small
values the t ime taken to generate the next guess can be
ignored because the user wil l probably take more t ime to
compute his b's and c's. Further, if the a lphabet is ran-
domly shuff led at the beginning of each game the program
can appear to be very intel l igent. We have a LISP im-
p lementat ion of the A lgor i thm 3 which uses the alphabet
(0, 1 M-2). At the start of each game it randomly
shuff les the alphabet there by assuming a d i f ferent o rde r -
ing. Further, we use some heurist ics in generat ing th~

next guess such as treat ing each posi t ion as a cycle and
delet ing the impossible values f rom each cycle. Even if a
user played wi th the same secret code twice, the se -
quence of guesses wil l not be the same. It is indeed i m -
possible to f igure out the st rategy of the program by p lay -
ing wi th it several t imes.

References: (all in SIGART)
1. Rao, T.M. No. 82, Oct. 1982, 19-23
2. Gyllenskog, J., No. 84, Apr. 1983, 34-35
3. Shapiro, E., No. 85, July 1983, 28-29
4. Koppenstein, No. 81, Apr. 1984, 11-14
5. Rada, R., No. 89, July 1984, 24-25
6. Powers, D. M. W., No. 89, July 1984, 28-32.

.

An Eclectic 5th Generation
Architecture for

Ultra High Speed Computing

Larrg O. Rouse, and John F. Forbes
RDA/Logicon Forbsco

Marina del Rey, CA Fresno, CA
(213) 822-1715 (209) 233-0126

Jean-Luc Gaudiot
EE Systems Department

University of Southern California
Los Angeles, CA
(213) 743-0249

ABSTRACT

Ultra High Speed Comput ing wil l be addressed in the
form of a new comput ing archi tecture using networks of
processors, program par t i t ion/a l locat ion techniques, and
wi th specif ic design elements of the type that would be
used for database accelerat ion. This opt imum networking
archi tecture wil l merge commerc ia l ly available components
and support coordinated algor i thms and sof tware
methodo logy to ful ly exploi t potent ial gains in compu ta -
t ional speed through parallel comput ing. The network of
processors to be invest igated wil l be of value at the f ine
grain level for computat ional processes and at the large
grain level for database and communicat ion processes.
The compl imentary relat ionship of dataf low and database
techno logy wil l be sued to focus the invest igat ions wi th
an emphasis placed on hardware implementat ion. A Phase
I program, described in this paper, would analyze the
proposed architecture, including hardware and sof tware
tradeoffs, and would define an appropriate simulat ion
based methodo logy for a future Phase II program in which
the candidate designs would be tested.

Technical Summary

The abil i ty to scale the number of processors in a 5th
generat ion archi tecture is essential. Our design approach
retains this feature and can also pool local processors e f -
f ic ient ly whi le still exhibit ing low broadcast communicat ion
overhead. These per formance factors are of ten at odds in
o ther designs.

SIGART News le t t e r , Janua ry 1986, Number 95 Page 35

