
ing can be selective (by specifying the names of predi- 
cates to be traced). Failing predicates result in a call to a 
debugger which allows exhibition of the runtime stack, and 

a generation of a new level of PDSS environment. In trac- 
ing, calls to built in predicates can be exhibited. We find 
this an advantage. There are, however, no facilities for 
single stepping, trap setting, etc. The lack of such debug- 
ging facilities is undoubtedly a disadvantage, particularly in 
a commercial environment. 

Source Co__mments. 

Statement by statement comments are not allowed. All 
comments must be attached to the definition of a predi- 
cate; comments attached to clauses are shifted up by the 
PDSS save command. We view this as rather "unfriendly" 
restriction. Code in a large Prolog program can become a 
somewhat difficult to read, and allowing comments in 
a_ppropriate place improves enormously the readability and 
understandability of the code. 

Documentation. 

The quality of editorship of the manuals [1,2] is pretty 
poor. Misprints, mistakes and errors abound. Some incor- 
rect examples can be found, as well as erroneous and 
confusing references. Beginning Prolog programmers be- 
ware~ 

Modularity. 

Modularity is one of the redeeming features of this 
product. Control of interfaces between various modules is 
very good, allowing hiding of information when wanted, 
exporting and importing predicates as well as making 
names visible or not as the application dictates. This has 
good effects from software engineering point of view. 
Another advantage accruing from this approach is the im- 
provement of database search efficiency, by selectively 
making only the relevant parts of the database visible from 
the executing module. 

In production mode, modules can be compiled 
(pretranslated) separately and consolidated later into one 
program. 

Procedural Components. 

MProlog provides a number of predicates which introduce 
procedural components into the system. We see most of 
these predicates as useful in generation of efficient 
production run software. To the same aim, MProlog al- 
lows definition of global variables. This of course is a 
touchy issue from the software engineering point of view. 
However, arguments for and against notwithstanding, the 
manipulation of global variables in MProlog is very tedious. 
(This might be viewed as either an advantage or a 

disadvantage!) 

Inverse Predicates. 

Every invertabie predicate and operator provided by a lan- 
guage should have an inverse provided by that language. 
This is not the case in MProlog (as indeed it is not 

many other languages). For example, the MProlog predi- 
cate make char list begs for an inverse. This predicate 
takes a strung and decomposes it into a list of its charac- 
ters. It is almost an unavoidable conclusion that if 
make char list is used, then one would need to do the 
reverse sooner or later. 

In Conclusion. 

The development environment provided by MProlog ver-  
sion 1.5 leaves a lot to be desired. However, most of the 
disadvantages and missing features are quite easy to 
eradicate. We hope that the manuals will be revised soon, 
and that the communication of PDSS with the Operating 
System will be of Logicware's next priority. Debugging 
facilities should be expanded, to include features such as 
those mentioned in the text of this article. 

The production facilities of MProlog are good. Modularity 
is important, particularly when it allows separate compila- 
tion of modules. Usage of such precompiled modules 
should be allowed in the Profile.MProlog file. 
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Abstract: Several algorithms to play mastermind 
have been published. However, the overall complexity of 
the algorithm has not been discussed. In this paper, we 
present three algorithms and an analysis of their com-  
plexity. 

1. Introduction and Terminology The problem of finding 
the best algorithm to play the game of mastermind is of 
considerable mathematical interest. This problem has at-  
tracted the attention of many researchers recently. ([1 .. 
8]) 

The game is played by two players, The code-maker and 
the code-breaker. The code-maker makes a secret code, 
S, of his choice. The code itself is a string of symbols 
from a finite alphabet C. The length of the code string N is 
known to both players. The code-breaker now makes a 
sequence of guesses to break the code. Each guess, of 
course, is a string of length N over C. For each guess G, 
the code-maker responds by giving a pair of numbers (b,c) 
where b is the number of positions in the secret code S 
for which S[i] = G{i] and c computed as follows: We first 
eliminate all positions considered in computing b We 
then compute c by counting the number of S[i] that are 
also in G, thus b represents the number of right symbols 
in right positions and c the number of right symbols in 
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wrong posit ions. (See [1] for  details). An intel l igent code-  
breaker wil l  exploi t  this in format ion in making his next 
guess. The game ends whs~ the respond is (N, 0), that  is 
S[i] = G[i] fo r  i = 1 to N. The object  of the game is for  the 
code-breaker  to break the code in the least possible n u m -  
ber of guesses. 

The solut ion to this problem is of importance,  because it 
can have appl icat ions in coding. If we t reat  the secret  
code as the message we want  to t ransmit ,  then we can 
just t ransmi t  the sequence (b i, ci). At  the other  end the 
receiver can use the exact same algor i thm to  decode the 
message. Further, in Section 3, we discuss a var iat ion of  
this game where only bis are used. This would be bet ter  
suited for  appl icat ions in coding. 

Several a lgor i thms to play the game have been published 
recently. Most  of  these algor i thms a t tempt  to  min imize 
the number of  guesses. However, l i t t le at tent ion has been 
paid to the amount  of  computat ion involved in generat ing 
the next guess. In this paper we present three a lgor i thms 
and an analysis of  their  complexi ty.  It should be noted 
that the a lgor i thms here are presented in a way  that  
ref lects the analysis. In actual implementat ions,  however ,  
many o ther  heurist ics are used to  reduce the number  of  
guesses. 

In what  fo l lows,  C represents the f in i te alphabet of  s y m -  
bols, M = ICI represents the number of  symbols in C and N 
denotes the length of the secret code string. We also as-  
sume that  C contains a symbol, '$', that  wi l l  not  be a part 
o f  any secret  code. We emphasize that  the role o f  '$' is 
mere ly  that  of  space fill ing. Further, fo r  any secret  code 
which does not contain all the symbols, a symbol  not  in it 
can be easi ly found. If the secret code contains all s y m -  
bols, then we can use a symbol that  is known to be 
present as the space f i l ler and modi fy  the a lgor i thms ac -  
cordingly. 

This a lgor i thm is a simpl i f ied version of  the a lgor i thm 
presented in Rao [1]. We present the a lgor i thm in rather 
informal steps. For simplici ty, we assume that  c = {x 1, x 2, 
--. ,  X m } .  

A l g o r i t h m  

Step 1: Find all the symbols, Yl '  Y2 . . . . .  Yk in S and thei r  
corresponding f requencies ql,  qz . . . . .  qk using guesses of  
the type: 

X i,  X i ... X i 

The response to each of  these guesses wil l  decide if the 
symbol  is present in S, and if so its f requency of  occu r -  
rence. 

Step 2: A symbol,  Yi, which is known to be present in S, 
can be solved that is its correct  posi t ion determined by 
using guesses of  the form: 

vi$$ ... $ $vi$ ... $ ... $$$ ... V~ $ 

where $ is the special symbol  known not to  be present in 
S. Each guess wil l  decide if a posi t ion is r ight fo r  Yi" 
Every occurrence of  each Yi can be solved in this way. 
Note that  once a symbol  is known to be in a certain pos i -  
t ion, we retain it in that  posit ion in all future guesses. 

Observe that Step 1 wil l  take a max imum of (M - 1) 

guesses. Each guess, being a str ing of length N, wi l l  take 
N operat ions to compute  it. For each symbol  it takes (N - 
1) guesses at wors t  to solve it. Thus the a lgor i thm has an 
overal l  complex i ty  of  0(MN + N3). If one is interested in 
the number of guesses would be 0(M + N2). 

3. A l g o r i t h m  2 this a lgor i thm works by dividing the 
problem into smal ler  subproblems. We f i rst  in t roduced the 
concept  of a bag. A bag is essential ly a set, except that  
repet i t ions are al lowed. A bag is d i f ferent  f rom a list in 
that  there is no order ing in a bag. Thus, if all the symbols  
in the secret  code along wi th  their  f requencies are known 
these can be put in bag. The algor i thm f i rst  computes  the 
bag of  these symbols and part i t ions it repeatedly into 
smal ler  bags until each bag has only one symbol.  Each 
rscursive call part i t ions the bag into two  smal ler  bags: 
LBAG and RBAG. A final concatenat ion wil l  produce the 
answer. 

Algorithm 

Step 1: Compute Yl, Y2 ..... Yk and ql,  q2 ..... qk as in step 1 
A lgor i thm 1. 

Step 2: Set LBAG = ~and  RBAG = ~ ( ~ i s  the empty  bag) 

Step 3: For each Yl do the fo l lowing:  

Try a guess of  the fo rm yiYi.., yi$$...$ where  there are N/2 
occurrences Yi" Let (b,c) be the response. As the number  
of  occurrences of  Yi is qi this implies that  there are b o c -  
currences in the left  half of S and qi -b on the r ight half. 
Thus we update LBAG and RBAG: 

LBAG = LBAG + {Yi ..... Yi} (b t imes) RBAG = RBAG + {Yi ..... 
yi}  (qi -b t imes) where  + represents bag union. 

When Step 3 is comple ted we would  have par t i t ioned the 
original bag of  symbols into t w o  bags wi th  N/2 e lements 
each. Step 2 and Step 3 are repeated fo r  each subbag 
until each smal ler  bag has exact ly one e lement  in it. 

We observe that  the complex i ty  of  making a new guess 
again is 0(N). It takes at wors t  N guesses to split the 
original bag into t w o  bags of size N/2. It takes another  
N/2 guesses to  part i t ion the left bag. Thus af ter  another  
N guesses we have 4 bags of  size N/4. Hence we need 
NlogN guesses to arr ive at N bags of  size one, ~rov ing 
that the complex i ty  of  the a lgor i thm is 0(MN + N = IogN). 
The wors t  number  of  guesses would  then be 0(M + N 
IogN). 

A lgor i thm 2 is bet ter  than A lgor i thm 1 in both the overal l  
complex i ty  and the number  of  guesses. Further, this a lgo -  
r i thm is bet ter  suited fo r  coding appl icat ions. Observe 
that  the cfs, in this a lgor i thm, played no role at all. This 
means that  the a lgor i thm is appl icable in a more  di f f icul t  
mastermind game, the one in which the code -make r  sup-  
plies only bi's and not  cfs. From the coding point  of  v iew, 
we can just t ransmi t  the sequence of  bi's. In the wo rs t  
case, for  a message N characters we have to  t ransmi t  ap -  
prox imate ly  N log N integers. However,  as repet i t ion of  
characters in the message reduces the number  o f  guesses, 
we should have to  t ransmi t  far  fewer  than NlogN integers 
in an average case. (It is interest ing to  note that, if S is 
the secret  code and G i is the i th guess that  N-b  i is the 
Hamming Distance between S and Gi). 
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4. A l g o r i t h m  3 Both the a lgor i thms presented earl ier do 
not  exploi t  the in format ion given by the code -make r  c o m -  
pletely. This a lgor i thm makes bet ter  use of  this in fo r -  
mat ion ensuring a fewer  number  of  guesses. However,  
the amount  of  computa t ion  done in each guess increases 
sharply. We f i rst  observe that  the response (b,c) can be 
v iewed as a measure of  the simi lar i ty between the guess 
G and the secret  code S. To formal ize the not ion we 
define a simple funct ion d as: 

d(S, G) = bN + c 

The a lgor i thm begins wi th a list L of  all the (M-1)N 
str ings of length N over  c - { $ }  ordered in some fashion. 

A lgor i thm 

Step 1: Pick any e lement  G f rom L as the Next guess. 
Suppose (b,c) is the response. If b = N then stop else let 
d 1 = d(S, G). 

Step 2: It fo l lows that the secret  code is one of  the 
str ings X for  which d(X, G) = d 1. Thus we e l iminate all 
str ings in L fo r  which d(X, G) # d 1. 

Step q and Step 2 are repeated until the secret  code 
is found. Observe that the f irst guess wil l  e l iminate a 
substantial part of  L and subsequent guesses wi l l  reduce L 
rapidly. In pract ice this a lgor i thm can be implemented 
sl ight ly dif ferently. 

We use C - {$}  = {0, 1, 2 . . . . .  M - 2 }  to  i l lustrate the 
implementat ion.  The f i rst  guess wil l  be 000 ... 0. Each 
guess wil l  be t reated as an N digit  number in base M-1. 
Every guess wil l  be numerical ly larger than the previous 
guess. Suppose G 1 .. . . .  G i are the f i rst  i guesses and (b 1, 
Cl) . . . . .  (b i, ci) the corresponding responses. Then the (i + 
1) th guess G i wil l  be the smal lest N digi t  number  (with 
possible leadii~lg zeros) greater  than G i and s u c h  that  

d(Gi+l, Gk)=d(S,Gk=bkN+Ck for  k=l . . .  i .  

the process wil l  of  course, stop when we have d(S,Gi) 
= N 2 for  some i. 

The above algor i thm is one of the best if the number  
of  guesses is the pr imary cri ter ion. However,  it is one of  
the wors t  in terms of  overall complexi ty.  In the wors t  
case the t ime taken to generate the next guess is ex -  
ponential, thus making it unsuitable for  large values of  N. 

5. Conc lus ion  We have discussed three a lgor i thms to 
solve the Mastermind problem. A lgor i thm 1 is rather 
elementary.  A lgor i thm 2 which proves to be the best in 
terms of  overal l  complex i ty  is suitable for  coding appl ica-  
t ions. However,  these two  a lgor i thms are not very 
suitable fo r  coding applications. However,  these t w o  a l -  
gor i thms are not very suitable when used to play the 
game because the guesses wi l l  be predictable thus making 
the game uninterest ing. A lgor i thm 3 is best sui ted fo r  a 
game playing program, because in this case we can as-  
sume N to be a small number like 4 or 5. For such small 
values the t ime taken to generate the next guess can be 
ignored because the user wil l  probably take more  t ime to  
compute  his b's and c's. Further, if the a lphabet  is ran-  
domly shuff led at the beginning of each game the program 
can appear to be very intel l igent. We have a LISP im-  
p lementat ion of  the A lgor i thm 3 which uses the alphabet 
(0, 1 . . . . .  M-2). At  the start  of  each game it randomly 
shuff les the alphabet there by assuming a d i f ferent  o rde r -  
ing. Further, we use some heurist ics in generat ing th~ 

next guess such as treat ing each posi t ion as a cycle and 
delet ing the impossible values f rom each cycle. Even if a 
user played wi th  the same secret  code twice,  the se -  
quence of  guesses wil l  not be the same. It is indeed i m -  
possible to  f igure out  the st rategy of  the program by p lay -  
ing wi th it several t imes. 
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ABSTRACT 

Ultra High Speed Comput ing wil l be addressed in the 
form of a new comput ing archi tecture using networks of 
processors, program par t i t ion/a l locat ion techniques, and 
wi th specif ic design elements of  the type that would be 
used for  database accelerat ion. This opt imum networking 
archi tecture wil l  merge commerc ia l ly  available components  
and support  coordinated algor i thms and sof tware 
methodo logy  to ful ly exploi t  potent ial  gains in compu ta -  
t ional speed through parallel comput ing.  The network  of 
processors to be invest igated wil l  be of  value at the f ine 
grain level for  computat ional  processes and at the large 
grain level for  database and communicat ion processes. 
The compl imentary  relat ionship of dataf low and database 
techno logy wil l  be sued to focus the invest igat ions wi th 
an emphasis placed on hardware implementat ion.  A Phase 
I program, described in this paper, would analyze the 
proposed architecture, including hardware and sof tware 
tradeoffs,  and would define an appropriate simulat ion 
based methodo logy  for  a future Phase II program in which 
the candidate designs would be tested. 

Technical Summary 

The abil i ty to scale the number of  processors in a 5th 
generat ion archi tecture is essential. Our design approach 
retains this feature and can also pool local processors e f -  
f ic ient ly whi le still exhibit ing low broadcast communicat ion 
overhead. These per formance factors are of ten at odds in 
o ther  designs. 
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