ing can be selective (by specifying the names of predi-
cates to be traced). Failing predicates result in a call to a
debugger which allows exhibition of the runtime stack, and

a generation of a new level of PDSS environment. In trac-
ing, calls to built in predicates can be exhibited. We find
this an advantage. There are, however, no facilities for
single stepping, trap setting, etc. The lack of such debug-
ging facilities is undoubtedly a disadvantage, particularly in
a commercial environment.

Source Comments.

Statement by statement comments are not allowed. All
comments must be attached to the definition of a predi-
cate; comments attached to clauses are shifted up by the
PDSS save command. We view this as rather “unfriendly”
restriction. Code in a large Prolog program can become a
somewhat difficult to read, and allowing comments in
appropriate place improves enormously the readability and
understandability of the code.

Documentation.

The quality of editorship of the manuals [1,2] is pretty
poor. Misprints, mistakes and errors abound. Some incor-
rect examples can be found, as well as erroneous and
confusing references. Beginning Prolog programmers be-
ware!

Modularity.

Modularity is one of the redeeming features of this
product. Control of interfaces between various modules is
very good, allowing hiding of information when wanted,
exporting and importing predicates as well as making
names visible or not as the application dictates. This has
good effects from software engineering point of view.
Another advantage accruing from this approach is the im-
provement of database search efficiency, by selectively
making only the relevant parts of the database visible from
the executing module.

In production mode, modules can be compiled
(pretransiated) separately and consolidated fater into one
program.

Procedurai Components.

MProlog provides a number of predicates which introduce
procedural components into the system. We see most of
these predicates as useful in generation of efficient
production run software. To the same aim, MProlog al-
fows definition of global variables. This of course is a
touchy issue from the software engineering point of view.
However, arguments for and against notwithstanding, the
manipulation of global variables in MProlog is very tedious.
(This might be viewed as either an advantage or a

disadvantage!)

Inverse Predicates.

Every invertable predicate and operator provided by a lan-
guage should have an inverse provided by that language.
This is not the case in MProlog (as indeed it is not

SIGART Newsletter, January 1986, Number 95

many other languages). For example, the MProlog predi-
cate make char list begs for an inverse. This predicate
takes a string and decomposes it into a list of its charac-
ters. [t is almost an unavoidable conclusion that if
make _char _list is used, then one would need to do the
reverse sooner or later.

In Conclusion.

The development environment provided by MProlog ver—
sion 1.5 leaves a lot to be desired. However, most of the
disadvantages and missing features are quite easy to
eradicate. We hope that the manuals will be revised soon,
and that the communication of PDSS with the Operating
System will be of Logicware’s next priority. Debugging
facilities should be expanded, to include features such as
those mentioned in the text of this article.

The production facilities of MProlog are good. Modularity
is important, particularly when it allows separate compila-
tion of modules. Usage of such precompiled modules
should be allowed in the Profile.MProlog file.

References.

1. MProlog Language Reference Logicware Inc., Release
1.5 Dec 1984

2. Logic Lab Reference Logicware inc., Release 1.5 Dec
1984

Algorithms to Play Mastermind

7. M. Rao, G. Kazin, and D. O'Brien
Department of Mathematics & Computer Science
SUNY College
Brockport, NY 14420

Several algorithms to play mastermind
have been published. However, the overall complexity of
the algorithm has not been discussed. In this paper, we
present three algorithms and an analysis of their com-
plexity.

Abstract:

1. Introduction and Terminology The problem of finding
the best algorithm to play the game of mastermind is of
considerable mathematical interest. This problem has at-
tracted the attention of many researchers recently. ([1 ..

6)).

The game is played by two players, The code-maker and
the code-breaker. The code-maker makes a secret code,
S, of his choice. The code itself is a string of symbols
from a finite alphabet C. The length of the code string N is
known to both players. The code-breaker now makes a
sequence of guesses to break the code. Each guess, of
course, is a string of length N over C. For each guess G,
the code-maker responds by giving a pair of numbers (b,c)
where b is the number of positions in the secret code S
for which S[il = G[i] and ¢ computed as follows: We first
eliminate all positions considered in computing b. We
then compute ¢ by counting the number of S[i] that are
also in G, thus b represents the number of right symbois
in right positions and ¢ the number of right symbols in

Page 33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1056563.1056568&domain=pdf&date_stamp=1986-01-01

wrong positions. (See [1] for details). An intelligent code-
breaker will exploit this information in making his next
guess. The game ends when the respond is (N, 0), that is
Sli] = Glil for i = 1 to N. The object of the game is for the
code-breaker to break the code in the least possible num-
ber of guesses.

The solution to this problem is of importance, because it
can have applications in coding. If we treat the secret
code as the message we want to transmit, then we can
just transmit the sequence (b, c¢;). At the other end the
receiver can use the exact same algorithm to decode the
message. Further, in Section 3, we discuss a variation of
this game where only bs are used. This would be better
suited for applications in coding.

Several algorithms to play the game have been published
raecently. Most of these algorithms attempt to minimize
the number of guesses. Howaever, little attention has been
paid to the amount of computation involved in generating
the next guess. In this paper we present three algorithms
and an analysis of their complexity. It should be noted
that the algorithms here are presented in a way that
reflects the analysis. In actual implementations, however,
many other heuristics are used to reduce the number of
guesses.

in what follows, C represents the finite alphabet of sym-
bols, M = |C| represents the number of symbols in C and N
denotes the length of the secret code string. We also as-
sume that C contains a symbol, ‘$’, that will not be a part
of any secret code. We emphasize that the role of ‘$’ is
merely that of space filling. Further, for any secret code
which does not contain all the symbols, a symbol not in it
can be easily found. If the secret code contains all sym-
bols, then we can use a symbol that is known to be
present as the space filler and modify the algorithms ac-
cordingly.

This algorithm is a simplified version of the algorithm
presented in Rao [1]. We present the algorithm in rather
informal steps. For simplicity, we assume that ¢ = {x1, Xy,
. X}

m

Algorithm

Step 1: Find all the symboaols, Y1 Yoo o Yy in S and their
corresponding frequencies q,, 4, .. g, using guesses of
the type:

X, X X.

(L T

The response to each of these guesses will decide if the
symbaol is present in S, and if so its frequency of occur-
rence.

Step 2: A symbol, y;, which is known to be present in S,
can be solved that is its correct position determined by
using guesses of the form:

v .. $8vs .5 . 385 . y?
where $ is the special symbol known not to be present in
S. Each guess will decide if a position is right for v;
Every occurrence of each y; can be solved in this way.
Note that once a symbol is known to be in a certain posi-
tion, we retain it in that position in all future guesses.

Observe that Step 1 will take a maximum of (M - 1)

SIGART Newsletter, January 1986, Number 95

guesses. Each guess, being a string of length N, will take
N operations to compute it. For each symbol it takes (N -
1) guesses at worst to solve it. Thus the algorithm has an
overall complexity of O(MN + N3). if ons is interested in
the number of guesses would be O(M + NZ).

3. Algorithm 2 this algorithm works by dividing the
problem into smaller subproblems. We first introduced the
concept of a bag. A bag is essentially a set, except that
repetitions are allowed. A bag is different from a list in
that there is no ordering in a bag. Thus, if all the symbols
in the secret code along with their frequencies are known
these can be put in bag. The algorithm first computes the
bag of these symbols and partitions it repeatedly into
smaller bags until each bag has only one symbol. Each
recursive call partitions the bag into two smaller bags:
LBAG and RBAG. A final concatenation will produce the
answer.

Algorithm

Step 1: Compute Yie Yoo - ¥ @nd qq, Qg q, as in step 1
Aigorithm 1.

Step 2: Set LBAG = 9 and RBAG = 9 (f is the empty bag)

Step 3: For each y, do the following:

Try a guess of the form y,y... yi$$.,.$ where there are N/2
occurrences y,. Let (b,c) be the response. As the number
of occurrences of y, is q, this implies that there are b oc-
currences in the left half of S and qi'b on the right half.
Thus we update LBAG and RBAG:

LBAG = LBAG + {y; ... v;} (b times) RBAG = RBAG + {y, ...
v} (qi'b times) where + represents bag union.

When Step 3 is completed we would have partitioned the
original bag of symbols into two bags with N/2 eiements
each. Step 2 and Step 3 are repeated for each subbag
untii each smaller bag has exactly one element in it.

We observe that the compiexity of making a new guess
again is O(N). It takes at worst N guesses to split the
original bag into two bags of size N/2. It takes another
N/2 guesses to partition the left bag. Thus after another
N guesses we have 4 bags of size N/4. Hence we need
NlogN guesses to arrive at N bags of size one, proving
that the complexity of the algorithm is O(MN + N° logN).
The worst number of guesses would then be O(M + N
logN).

Algorithm 2 is better than Algorithm 1 in both the overall
complexity and the number of guesses. Further, this aigo-
rithm is better suited for coding applications. Observe
that the c's, in this algorithm, played no role at all. This
means that the algorithm is applicable in a more difficult
mastermind game, the one in which the code-maker sup-
plies only b’s and not cs. From the coding point of view,
we can just transmit the sequence of b’s. In the worst
case, for a message N characters we have to transmit ap-
proximately N log N integers. However, as repetition of
characters in the message reduces the number of guesses,
we should have to transmit far fewer than NlogN integers
in an average case. (It is interesting to note that, if S is
the secret code and G, is the i" guess that N-b, is the
Hamming Distance between S and G).

Page 34

4. Algorithm 3 Both the algorithms presented earlier do
not exploit the information given by the code-maker com-
pletely. This algorithm makes better use of this infor-
mation ensuring a fewer number of guesses. However,
the amount of computation done in each guess increases
sharply. We first observe that the response (b,c) can be
viewed as a measure of the similarity between the guess
G and the secret code S. To formalize the notion we
define a simple function d as:

d(S, G) =bN + ¢

The algorithm begins with a list L of all the (M-1)y
strings of length N over c-{$} ordered in some fashion.

Algorithm

Step 1: Pick any element G from L as the Next guess.
Suppose (b,c) is the response. If b = N then stop else let
d, = d(8, G).

Step 2: It follows that the secret code is one of the
strings X for which d(X, G) = d,. Thus we eliminate all
strings in L for which d(X, G) # d,.

Step g and Step 2 are repeated until the secret code
is found. Observe that the first guess will eliminate a
substantial part of L and subsequent guesses will reduce L
rapidly. In practice this algorithm can be implemented
slightly differently.

We use C - {$} = {0, 1, 2, ., M-2} to illustrate the
implementation. The first guess will be 000 .. 0. Each
guess will be treated as an N digit number in base M-1.
Every guess will be numerically larger than the previous
guess. Suppose G,, .., G, are the first i guesses and (by,
¢,). . (b, c) the corresponding responses. Then the (i +
1)"‘ guess G, ~will be the smallest N digit number (with
possible leadifiy zeros) greater than Gi and such that

d(G,,; GJ=d(S.G,=bN+C, for k=1 .. i.

the process will of course, stop when we have d(s.G)
= N? for some i.

The above algorithm is one of the best if the number
of guesses is the primary criterion. However, it is one of
the worst in terms of overall compiexity. In the worst
case the time taken to generate the next guess is ex-
ponential, thus making it unsuitable for large values of N.

5. Conclusion We have discussed three algorithms to
solve the Mastermind problem. Algorithm 1 is rather
elementary. Algorithm 2 which proves to be the best in
terms of overall complexity is suitable for coding applica-
tions. However, these two algorithms are not very
suitable for coding applications. However, these two al-
gorithms are not very suitable when used to play the
game because the guesses will be predictable thus making
the game uninteresting. Algorithm 3 is best suited for a
game playing program, because in this case we can as-
sume N to be a small number like 4 or 5. For such small
values the time taken to generate the next guess can be
ignored because the user will probably take more time to
compute his b's and c’'s. Further, if the alphabet is ran-
domly shuffled at the beginning of each game the program
can appear to be very intelligent. We have a LISP im-
plementation of the Algorithm 3 which uses the alphabet
(0, 1, .., M-2). At the start of each game it randomly
shuffles the alphabet there by assuming a different order-
ing. Further, we use some heuristics in generating the

SIGART Newsletter, January 1986, Number 95

next guess such as treating each position as a cycle and
deleting the impossibie values from each cycle. Even if a
user played with the same secret code twice, the se-
quence of guesses will not be the same. It is indeed im-
possible to figure out the strategy of the program by play-
ing with it several times.

References: (ail in SIGART)

. Rao, T.M. No. 82, Oct. 1982, 19-23

. Gyllenskog, J., No. 84, Apr. 1983, 34-35

. Shapiro, E., No. 85, July 1983, 28-29

. Koppenstein, No. 81, Apr. 1984, 11-14

. Rada, R., No. 89, July 1984, 24-25

. Powers, D. M. W., No. 89, July 1984, 28-32.

DR WN

An Eclectic 5th Generation
Architecture for
Ultra High Speed Computing

and John F. Forbes
Forbsco
Fresno, CA
(209) 233-0126

Larry O. Rouse,
RDA/Logicon
Marina del Rey, CA

(213) 822-1715

Jean-Luc Gaudiot
EE Systems Department
University of Southern California
Los Angeles, CA
(213) 743-0249

ABSTRACT

Ultra High Speed Computing will be addressed in the
form of a new computing architecture using networks of
processors, program partition/allocation techniques, and
with specific design elements of the type that would be
used for database acceleration. This optimum networking
architecture will merge commercially available components
and support coordinated algorithms and software
methodology to fully exploit potential gains in computa-
tional speed through parallel computing. The network of
processors to be investigated will be of value at the fine
grain level for computational processes and at the large
grain level for database and communication processes.
The complimentary relationship of dataflow and database
technology will be sued to focus the investigations with
an emphasis placed on hardware implementation. A Phase
| program, described in this paper, would analyze the
proposed architecture, inctuding hardware and software
tradeoffs, and would define an appropriate simulation
based methodology for a future Phase 1l program in which
the candidate designs would be tested.

Technical Summary

The ability to scale the number of processors in a 5th
generation architecture is essential. Our design approach
retains this feature and can also pool local processors ef-
ficiently while still exhibiting low broadcast communication
overhead. These performance factors are often at odds in
other designs.

Page 35

