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The Java Security Architecture includes a dynamic mechanism for enforcing access control checks,
the so-called stack inspection process. While the architecture has several appealing features, access
control checks are all implemented via dynamic method calls. This is a highly nondeclarative form
of specification that is hard to read, and that leads to additional run-time overhead. This article
develops type systems that can statically guarantee the success of these checks. Our systems allow
security properties of programs to be clearly expressed within the types themselves, which thus
serve as static declarations of the security policy. We develop these systems using a systematic
methodology: we show that the security-passing style translation, proposed by Wallach et al. [2000]
as a dynamic implementation technique, also gives rise to static security-aware type systems,
by composition with conventional type systems. To define the latter, we use the general HM(X )
framework, and easily construct several constraint- and unification-based type systems.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and
Features—Control structures; polymorphism; F.3.3 [Logics and Meanings of Programs]: Studies
of Program Constructs—Type structure

General Terms: Languages, Reliability, Security, Theory
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1. INTRODUCTION

The Java Security Architecture [Gong and Schemers 1998; Gong 1998], found in
the Java JDK 1.2 and later, includes mechanisms to protect systems from opera-
tions performed by untrusted code. These access control decisions are enforced
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by dynamic checks. Our goal is to make some or all of these decisions stati-
cally, by extensions to the type system. Thus, access control violations will be
caught at compile-time rather than run-time. Furthermore, these type exten-
sions constitute a statically-specified security policy, which is much preferred
to a dynamic one.

1.1 The Java Security Architecture

We now briefly review the Java security Architecture [Gong and Schemers 1998;
Gong 1998; Wallach 1999]. The stack inspection algorithm underlying the ar-
chitecture is primarily concerned with code-based access control: in a single
JVM can be found code loaded from different codebases, and code from each
codebase may have different access rights. For instance, applets should not be
allowed to read and write arbitrary files, but applets may be allowed to read and
write files in /tmp/*. Thus, applets may have a FilePermission for read/write
to /tmp/*, but no permissions to read or write any other files.

The stack inspection system is used in two different modes; these two differ-
ent modes are not stated very clearly in the literature so we review them now.
In the first mode, a checkPermission() command is executed before a critical
operation, such as a system library about to do a low-level file write; if this
command does not raise an exception, execution continues and the file is writ-
ten. For the applet example, if the applet tries to write /tmp/scratch2232, the
checkPermission() will succeed since the applet has this privilege (we will de-
scribe the checking process in more detail below). In the second mode, there may
be a need to temporarily raise privileges to allow the system to perform a privi-
leged operation for untrusted code. An example is the system may need to read
a font file, /usr/java/fonts/helvetica.fnt, so the applet can use this font, but
this would otherwise cause an exception since the applet cannot read that file:
the checkPermission() for read of /usr/java/fonts/helvetica.fnt would fail.
The doPrivileged() command is designed to solve this problem: the system
can execute doPrivileged(readFontCode) where readFontCode reads the font
and is executed with system, not applet, privileges; and, the checkPermission()
will succeed since it was executed as a system-privileged operation.

Access control decisions of checkPermission() are made using a stack in-
spection algorithm. The original requestor of an action such as a file read may
be far back on the call stack: the applet invoked some system file method which
in turn invoked other system methods . . . which finally invoked a low-level sys-
tem method to read the file which invoked checkPermission(). So, back on the
call stack is a frame owned by the applet codebase. The checkPermission()
thus searches back the stack, making sure every frame’s codebase has the
permission needed. This covers the first case of usage above. For the second
case, where a temporary raising of privileges is needed to for example, read
a font file, the doPrivileged() command adds a flagged stack frame to the
stack which performs the privileged operation; when a privilege is checked via
the checkPermission() command, the stack frames are searched most to least
recent. If a doPrivileged frame for the relevant permission is encountered,
and the codebase of every frame up to and including that one is authorized for
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the permission, the check terminates successfully: even though applet stack
frames may be further up the stack because applet code induced the font load,
its privileges are not queried.

1.1.1 Java’s Lack of Full Declarativity. The Java Security Architecture is
popular in practice and embodies several useful principles, but it also has some
weaknesses. There is a performance penalty to pay due to the need for run-
time stack inspection. The architecture also is not as declarative as it could
be, but for security policies it is important to be maximally declarative: fixed,
immutable policies have fixed meaning.

The Java policy file is a fixed declaration of privilege authorizations for code-
bases, so this aspect of the architecture is sufficiently declarative. The problem
is how this policy is enforced in the code: for example, is code from foo.com
indeed restricted at runtime from writing to "/tmp", if this is declared in the
policy file? In fact, implementation of this policy requires that there be appro-
priate insertions of checkPermissions which guard all low-level file accesses,
which are checked dynamically. Thus, a programmer must have a perfect un-
derstanding of the control flow of the underlying program to guarantee that
proper checks are in place. This obviously makes it difficult to see whether the
code is implementing the correct policy; in large programs, tens of thousands
of lines long, how can programmers have such a perfect understanding?

This article explores solutions to these problems through the use of static type
systems. If types can declare precisely the privileges needed for an invocation
of a method to avoid run-time security exceptions, these types could give a
top-level declaration of the permissions needed by each chunk of code, and
programmers could verify that the correct policies are implemented without
having to understand the complete codebase.

1.2 Our Framework

We define a security typing system which statically typechecks, and thus stat-
ically verifies success of, the run-time access control checks. This obviates the
need for stack inspection at run-time, since all the checks have been proven
to succeed at compile-time. In this article, a foundational framework is devel-
oped; there still are several important issues to be addressed before it could be
applied to a real language such as Java.

We employ several technical tools to streamline the results. We reduce the
security typing problem to a conventional typing problem using a translation-
based method inspired by Pottier and Conchon [2000]. We use a standard lan-
guage of row types [Rémy 1992b] to describe sets of privileges. We also re-use
the HM(X ) framework [Odersky et al. 1999; Sulzmann 2000], which allows a
wide variety of type systems to be defined in a single stroke, saves some proof
effort, and (most importantly) shows that our custom type systems arise nat-
urally out of a standard one. Some technical results about HM(X ) are drawn
from [Skalka and Pottier 2002]. We develop several different type systems, in-
cluding both constraint-based and unification-based systems.

We begin by defining a simplified model of the Java Security Architecture,
λsec. This calculus is equipped with a nonstandard operational semantics that
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includes a specification of stack inspection. In order to construct a static type
system for λsec, we translate it into a standard λ-calculus, called λset. The trans-
lation is a security-passing style transformation [Wallach 1999; Wallach et al.
2000]: it implements stack inspection by passing around sets of privileges at
run-time. For this purpose, λset is equipped with built-in notions of set and set
operations. The translation is proven to be correct, in that program semantics
are preserved in translation.

Then, we define a type system for λset. Because λset is a standard λ-calculus,
we are able to define our type system as a simple instance of the HM(X ) frame-
work [Odersky et al. 1999]. In fact, by using this framework, a whole family of
type systems may be succinctly defined, each with different costs and benefits.
In order to give precise types to λset’s built-in set operations, our instance uses
set types, defined as a simplification of Rémy’s record types [Rémy 1992b].

Due to correctness of the λsec-to-λset translation, and type safety within the
λset type framework, an indirect type analysis for λsec is immediately obtained.
That is, a sound typing for any λsec expression is the type of its encoding in λset.
However, a direct type system that treats λsec expressions themselves is still
desirable, for various reasons (e.g., efficiency, error reporting). Thus, we lastly
define direct type systems for λsec, which are based on, or “derived” from, analo-
gous λset type systems. As an appealing consequence of our technical approach,
a direct type safety result follows easily from indirect type safety, correctness
of the λsec-to-λset translation, and a straighforward syntactic correspondence
between the direct and indirect type systems.

This article expands on the conference paper [Pottier et al. 2001], which was
itself a refiguration of the ideas first presented in Skalka and Smith [2000].
The latter paper defined the first static type analysis for stack inspection.
There, function types are of the form τ1

�−→ τ2, where τ1 and τ2 are “ordinary”
types, and � represents a family of sets containing at least the permissions
necessary to use the function. An inference technique based on a set constraint
solution algorithm was defined to implement the system. However, the system
is non-standard and monomorphic; these shortcomings are addressed in
Pottier et al. [2001] and the current article, which extend the type analysis to a
polymorphic setting, using standard type logics with well-studied and efficient
inference methods.

2. THE SOURCE LANGUAGE λsec

This section defines λsec, a simplified model of the security architecture of the
JDK 1.2 and later. It is a λ-calculus equipped with a notion of code owner-
ship and constructs for enabling or checking privileges. For the sake of formal
simplicity, we do not define stacks explicitly; rather, stacks are implicit in λsec
evaluation contexts, and can be gleaned from them. This is in contrast to a ver-
sion of the calculus presented in Skalka [2002] with explicit stacks, inspection
thereon, and a dopriv construct, called λSsec, that clearly reflects the JDK imple-
mentation details. However, λSsec is shown to be embeddable in λsec in Skalka
[2002], ensuring confidence in the correctness of λsec as a model of the Java JDK
architecture.
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Fig. 1. Grammar for λsec.

We assume given an arbitrary set R of resources (also known as privileges).
We use r and R to range over resources and over sets thereof, respectively.
Following Fournet and Gordon [2002], we define the set of principals P as
the powerset of R, that is, we identify a principal with the set of resources to
which it has access. We use p and P to range over principals and over sets
thereof, respectively. We write nobody for the empty privilege set, that is, for
the principal with no access rights. For typing purposes, we shall require every
set of resources to be either finite or cofinite (Section 5.3).

The reader may be somewhat puzzled by the fact that both p and R range
over sets of resources. The choice of notation is intended to reflect the manner in
which a set of resources is obtained. On the one hand, the notation p represents
the set of resources associated (via an implicit access rights matrix) with some
principal name, found in the code. On the other hand, the notation R represents
an arbitrary set of resources and may be the result of a computation involving
union and intersection operations. In other words, p represents what Fournet
and Gordon refer to as a “static” set of privileges, while R represents a “dynamic”
set of privileges.

The grammar of λsec is given in Figure 1. An abstraction fix z.λx. f may re-
cursively refer to itself through the program variable z. (This conflation of the
fix and λ binders simplifies the treatment of recursion.) We write λx. f when
z does not appear free in f . The let form does not make the untyped calculus
more expressive; instead, as in ML, it is used by the type system to determine
where polymorphism may be introduced. A signed expression p.e behaves as
the expression e endowed with the authority of principal p. The body of every
λ-abstraction is required to be a signed expression—thus, every piece of code
must be vouched for by some principal. The construct enable r in e allows an
authorized principal to enable the use of a resource r within the expression
e. The construct check r then e asserts that the use of r is currently enabled.
If r is indeed enabled, e is evaluated; otherwise, execution fails. The construct
test r then e1 else e2 dynamically tests whether r is enabled, branching to e1 or e2
if this holds or fails, respectively. Versions of enable, check, and test that bear on
a set of resources R, as opposed to a single resource r, may be later introduced
as syntactic sugar.

2.1 Stack Inspection

The JDK determines whether a resource is enabled by literally examining the
runtime stack, hence the name stack inspection. We give a simple specification
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Fig. 2. Backward stack inspection algorithm.

Fig. 3. Forward stack inspection algorithm.

of this process by noticing that stacks are implicitly contained in evaluation
contexts, whose grammar is defined in Figure 1. Indeed, a context defines a path
from the term’s root down to its active redex, along which one finds exactly the
security annotations which the JDK would maintain on the stack, that is, code
owners p and enabled resources r.

To formalize this idea, we associate to every evaluation context E a finite
string |E | of principals and resources, called a stack. The rightmost letters in
the string correspond to the most recent stack frames. We write ε for the empty
stack and S1.S2 for the concatenation of the stacks S1 and S2.

|[]| = ε |E e| = |E |
|v E | = |E | |let x = E in e| = |E |

|enable r in E | = r.|E | |p.E | = p.|E | ·
We can now define a “stack inspection” algorithm. We give two variants of it,
a backward (Figure 2) and a forward one (Figure 3). Both are defined in terms
of a judgement of the form S � r, which may be read: inspecting the stack S
to check privilege r succeeds. The former algorithm scans the stack, starting
with the most recent frames, then moving towards their ancestors. The latter,
on the other hand, scans the stack in the order it was built. Furthermore, its
formulation is altered so that it internally computes not only whether access to
a given resource r is legal, but also the set of all resources that may be legally
accessed given the current stack. These algorithms are referred to as lazy and
eager, respectively, by Gong [Gong and Schemers 1998; Gong 1998]. While the
former is employed by most current JVM implementations, the latter forms
the basis of the security-passing style [Wallach 1999] translation which we will
introduce in Section 4.

The following theorem states that forward and backward stack inspection are
in fact equivalent. This initial result is later used to establish the correctness of
security-passing style (Theorem 2). Subsequently, we will write S � r without
specifying which of the two algorithms is being used. We will also write E � r
for |E | � r.

THEOREM 1. Assume given a stack S and a resource r. Let P stand for the
set of all principals that contain r. Then, the following three statements are
equivalent:
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(1) S � r holds according to the rules of Figure 2;
(2) S � r holds according to the rules of Figure 3;
(3) some suffix of S belongs to the regular language PR�r(P | R)�.

PROOF. We begin by proving that the first statement is equivalent to the
third one. First, check that the auxiliary judgment S �• r holds if and only if
some suffix of S belongs to PR�. Then, check that S � r holds, according to the
rules of Figure 2, if and only if some suffix of S belongs to the regular language
PR�r(P | R)�. Each of these checks is immediate.

We now prove that the second statement is equivalent to the third one. Let
A (respectively, B; respectively, C) be the set of stacks S such that ∃R ′ � r
p, R, S � R ′ for some (or, equivalently, for all) p, R such that p �� r ∧ R �� r
(respectively, p � r ∧ R �� r, respectively, p � r ∧ R � r). It is straightforward
to check that, according to the last three rules in Figure 3, A, B and C are the
least solutions to the following recursive equations:

A ::= P.B | (P \ P ).A | R.A
B ::= P.B | (P \ P ).A | r.C | (R \ {r}).B
C ::= ε | (P \ P ).A | (P | R).C.

An inductive argument shows that A ⊆ B ⊆ C holds. Then, through a few
rewriting steps, one can bring the equations into a form where it is evident
that A is exactly (P | R)� PR�r(P | R)�. We do not give the details. In principle,
the check can be mechanized by verifying that the minimal deterministic finite
automaton (over the 4-symbol alphabet {r}, R \ {r}, P and P \ P ) associated
with this regular expression is exactly the one described by the above equa-
tions. There remains to conclude by noticing that, according to the first rule in
Figure 3, S � r holds if and only if S ∈ A.

2.2 Operational Semantics for λsec

The operational semantics of λsec is defined by the following reduction rules:

E[(fix z.λx. f ) v] → E[ f [v/x][fix z.λx. f /z]]
E[let x = v in e] → E[e[v/x]]

E[check r then e] → E[e] if E � r
E[test r then e1 else e2] → E[e1] if E � r
E[test r then e1 else e2] → E[e2] if ¬(E � r)

E[enable r in v] → E[v]
E[p.v] → E[v].

The evaluation context E is made explicit in every rule, which allows looking
it up when needing to perform security checks. Note that it is not the case that
e → e′ implies E[e] → E[e′]. Indeed, enclosing e within a new evaluation context
E enables more privileges, possibly causing tests of the form test r then e1 else e2
to be resolved differently.

The first two rules are standard. The next rule allows check r then e to re-
duce into e only if stack inspection succeeds (as expressed by the side condi-
tion E � r); otherwise, execution is blocked. The following two rules use stack
inspection in a similar way to determine how to reduce test r then e1 else e2;
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Fig. 4. Grammar for λset.

however, they never cause execution to fail. The last two rules state that se-
curity annotations become unnecessary once the expression they enclose has
been reduced to a value. In a Java virtual machine, these rules would be im-
plemented simply by popping stack frames (and the security annotations they
contain) after executing a method.

This operational semantics constitutes a concise, formal description of Java
stack inspection in a higher-order setting. It is easy to check that every closed
term either is a value, or is reducible, or is of the form E[check r then e] where
¬(E � r). Terms of the third category are stuck; they represent access control
violations. An expression e is said to go wrong if and only if e →� e′, where e′ is
a stuck expression, holds.

3. THE TARGET CALCULUS λset

We now define a standard calculus, λset, to be used as the target of our transla-
tion. It is a λ-calculus equipped with a number of constants which provide set
operations, and is given in Figure 4. We will use e.r, e?r, e ∨ R and e ∧ R as
syntactic sugar for (.r e), (?r e), (∨R e) and (∧R e), respectively.

The constant R represents a constant privilege set. The construct e.r asserts
that r is an element of the set denoted by e; its execution fails if that is not
the case. The construct e ∨ R (respectively, e ∧ R) allows computing the union
(respectively, intersection) of the set denoted by e with a constant set R. Lastly,
the expression e?r x y dynamically tests whether r belongs to the set R denoted
by e, and accordingly invokes x or y , passing R to it. The operational semantics
for λset is as follows:

(fix z.λx.e) v → e[v/x][fix z.λx.e/z]
let x = v in e → e[v/x]

R.r → R if r ∈ R
R?r → λx.λy .(x R) if r ∈ R
R?r → λx.λy .( y R) if r �∈ R

R1 ∨ R2 → R1 ∪ R2
R1 ∧ R2 → R1 ∩ R2

E[e] → E[e′] if e → e′.

Again, an expression e is said to go wrong if and only if e →� e′, where e′ is a
stuck expression, holds.

4. SOURCE-TO-TARGET TRANSLATION

4.1 Definition

A translation of λsec into λset is defined in Figure 5. The distinguished identifiers
s and are assumed not to appear in source expressions. Notice that s may
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Fig. 5. Source-to-Target translation.

appear free in translated expressions. Translating an (unsigned) expression
requires specifying the current principal p.

One will often wish to translate an expression under minimal hypotheses,
i.e. under the principal nobody and a void security context. To do so, we define
(| e |) = [[e]]nobody[∅/s]. Notice that s does not appear free in (| e |). If e is closed,
then so is (| e |).

The idea behind the translation is simple: the variable s is bound at all times
to the set of currently enabled resources. Every function accepts s as an extra pa-
rameter, because it must execute within its caller’s security context. As a result,
every function call has s as its second parameter. The constructs enable r in e
and p.e cause s to be locally bound to a new value, reflecting the new security
context; more specifically, the former enables r, while the latter disables all priv-
ileges not available to p. The constructs check r then e and test r then e1 else e2
are implemented simply by looking up the current value of s. In the latter, s is
re-bound, within each branch, to the same value. This may appear superfluous
at first sight, but has an important impact on typing, because it allows s to be
given a different (more precise) type within each branch.

This translation can be viewed as a generalization of the security-passing
style transformation [Wallach 1999; Wallach et al. 2000] to a higher-order set-
ting. While Wallach et al. [2000] advocated this idea as an implementation
technique, with efficiency in mind, we use it only as a vehicle in the proof of our
type systems. Here, efficiency is not at stake: it is sufficient that the translation
scheme be correct. The next section is devoted to proving this (in addition to
its utility for our technical purposes, it is the first formal correctness result for
security-passing style).

One should point out that this correctness proof is made necessary only by the
fact that we chose to define the semantics of λsec at the source level (Section 2.2).
If, instead, we had chosen to consider the security-passing style translation as
a definition of λsec’s semantics, then no proof would be necessary. Banerjee and
Naumann [2001] follow the latter approach, by giving a denotational semantics
that incorporates the security-passing style translation.

4.2 Properties

A basic property of the translation is that s never appears free in the translation
of a value. Furthermore, the translation of a value does not depend on the
current principal, so we write [[v]] instead of [[v]]p.
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For the purposes of our proofs, we need to isolate a particular subclass of
target language reductions, which we wish to view as “administrative” (in a
sense to be explained later). Let →∼ be the subset of →� defined by

a ::= R | a ∨ R | a ∧ R
let s = a in e →∼ e[R/s] if a →� R

E[e] →∼ E[e′] if e →∼ e′.

Our first lemma expresses the fact that the translation implements the for-
ward stack inspection algorithm. It states that if p, R, E � R ′ holds (as per
the rules of Figure 3), then evaluating [[E[e]]]p in a context where s is bound
to R leads to evaluating [[e]]p′ , for some p′, in a context where s is bound to
R ′. Furthermore, this is a purely administrative reduction sequence. That is, it
only affects the security context, and does not reflect any computational steps
apparent in the original program. The proof of the lemma presents no diffi-
culty, because of the close similarity between the definitions of the translation
function and of the stack inspection algorithm.

LEMMA 1. Assume p, R, S � R ′ and S = |E |. Then, there exist a (target)
evaluation context E ′ and a principal p′ such that, for every source expression e,

[[E[e]]]p[R/s] →�
∼

E ′[[[e]]p′ [R ′/s]].

PROOF. By induction over the structure of E. Let θ and θ ′ stand for the
substitutions [R/s] and [R ′/s], respectively.

Case E = []. Then, S = ε and R = R ′. Thus, picking E ′ = [] and p′ = p
trivially satisfies our requirement.

Case E = E1 e1. Then,

[[E[e]]]pθ = [[E1[e]]]pθ [[e1]]pθ R.

Furthermore, the induction hypothesis, applied to E1, yields E ′
1 and p′ such

that [[E1[e]]]pθ →�
∼

E ′
1[[[e]]p′θ ′]. So, picking E ′ = E ′

1 [[e1]]pθ R fits the bill.

Case E = v E1. This case is similar to the previous one. Apply the induction
hypothesis to obtain E ′

1 and p′. Then, pick E ′ = [[v]] E ′
1 R. (E ′ is indeed an

evaluation context, because [[v]] is a value.)

Case E = let x = E1 in e1. This case is also similar. Apply the induction
hypothesis to obtain E ′

1 and p′. Then, pick E ′ = let x = E ′
1 in [[e1]]pθ .

Case E = enable r in E1. Then, S = r.S1, where S1 = |E1 |. Thus, from
p, R, S � R ′, we may deduce p, R1, S1 � R ′, where R1 stands for R ∪ ({r} ∩ p).
Define θ1 = [R1/s]. Then,

[[E[e]]]pθ = let s = R ∨ ({r} ∩ p) in [[E1[e]]]p

→∼ [[E1[e]]]pθ1.

Applying the induction hypothesis to E1 yields E ′
1, p′ such that [[E1[e]]]pθ1 →�

∼

E ′
1[[[e]]p′θ ′]. So, picking E ′ = E ′

1 meets our goal.

Case E = p1.E1. Then, S = p1.S1, where S1 = |E1 |. Thus, from p, R, S � R ′,
we may deduce p1, R1, S1 � R ′, where R1 stands for R ∩ p1. Define θ1 = [R1/s].
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Then,

[[E[e]]]pθ = let s = R ∧ p1 in [[E1[e]]]p1

→∼ [[E1[e]]]p1θ1.

Applying the induction hypothesis to E1 yields E ′
1, p′ such that [[E1[e]]]p1θ1 →�

∼

E ′
1[[[e]]p′θ ′]. So, picking E ′ = E ′

1 meets our goal.

We now come to our central lemma, stating that, if a source expression e
leads, in one computation step, to a source expression e′, then the translation
of e reduces, modulo administrative reductions, to the translation of e′.

LEMMA 2. e → e′ implies (| e |) →� · �
∼

← (| e′ |). Furthermore, if the reduction
e → e′ is a β-reduction step, then the reduction sequence (| e |) →� · involves at
least one β-reduction step.

PROOF. The assertion e → e′ must be an instance of one of the reduction
rules that define the operational semantics (Section 2.2), all of which are of the
form E[e0] → E[e′

0]. Thus, there exist E, e0, and e′
0 such that e is E[e0] and e′

is E[e′
0] and e0, e′

0 have the shape required by one of the reduction rules.
Let S = |E |. There exists a unique R such that nobody, ∅, S � R. Clearly,

for any resource r, E � r is equivalent to r ∈ R. Define θ = [R/s]. According to
Lemma 1, there exist an evaluation context E ′ and a principal p such that, for
any source expression e,

(| E[e] |) →�
∼

E ′[[[e]]pθ ].

Assume, for the time being, that [[e0]]pθ →� [[e′
0]]pθ holds. Then, we have

(| e |) = (| E[e0] |) →�
∼

E ′[[[e0]]pθ ]
→� E ′[[[e′

0]]pθ ]
�
∼

← (| E[e′
0] |) = (| e′ |)

which is the desired result. Hence, there only remains to prove [[e0]]pθ →�

[[e′
0]]pθ , which we now do, by cases on the form of e0 and e′

0. By definition of e0
and e′

0, there is one case per reduction rule.
Case e0 = (fix z.λx. f ) v, e′

0 = f [v/x][fix z.λx. f /z]. Then,

[[e0]]pθ = [[(fix z.λx. f ) v]]pθ

= ([[fix z.λx. f ]] [[v]] s)θ
= (fix z.λx.λs.[[ f ]]) [[v]] R because s cannot appear free in values

→2[[ f ]][[[v]]/x][[[fix z.λx. f ]]/z]θ
= [[ f [v/x][fix z.λx. f /z]]]θ by a straightforward auxiliary lemma
= [[e′

0]]pθ.

The auxiliary lemma mentioned above takes advantage of the fact that the
translation of a value [[v]]p does not depend upon the parameter p. We omit its
proof.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.



A Systematic Approach to Static Access Control • 355

Case e0 = let x = v in e1, e′
0 = e1[v/x]. Then,

[[e0]]pθ = [[let x = v in e1]]pθ

= let x = [[v]] in [[e1]]pθ because s is not free in [[v]]
→ [[e1]]pθ [[[v]]/x]
= [[e1]]p[[[v]]/x]θ
= [[e1[v/x]]]pθ by the same auxiliary lemma
= [[e′

0]]pθ.

Case e0 = enable r in v, e′
0 = v. Then,

[[e0]]pθ = [[enable r in v]]pθ = let s = R ∨ ({r} ∩ p) in [[v]]
→2 [[v]] = [[e′

0]]pθ.

Again, we take advantage of the fact that s does not occur free in [[v]].
Case e0 = check r then e1, e′

0 = e1. We must have E � r, hence r ∈ R. Then,

[[e0]]pθ = [[check r then e1]]pθ = let = R.r in [[e1]]pθ

→2 [[e1]]pθ because r ∈ R
= [[e′

0]]pθ.

Case e0 = test r then e1 else e2. Then, e′
0 equals ei, where i = 1 if E � r (or,

equivalently, if r ∈ R), and i = 2 otherwise. Thus, we have

[[e0]]pθ = [[test r then e1 else e2]]pθ = R?r (λs.[[e1]]p) (λs.[[e2]]p)
→3 (λs.[[ei]]p) R
→ [[ei]]pθ = [[e′

0]]pθ.

Case e0 = p1.v, e′
0 = v. Then,

[[e0]]pθ = [[p1.v]]pθ = let s = R ∧ p1 in [[v]]
→2 [[v]] = [[e′

0]]pθ

Again, we take advantage of the fact that s does not occur free in [[v]]p, and of
the fact that this expression does not depend on p.

This result is easily generalized to reduction sequences of arbitrary length:

LEMMA 3. e →� e′ implies (| e |) →� · �
∼

← (| e′ |). Furthermore, if the reduc-
tion sequence e →� e′ involves k β-reduction steps, then the reduction sequence
(| e |) →� · involves at least k β-reduction steps.

PROOF. By induction on the length of the reduction sequence e →� e′. In the
base case, we have e = e′, and the result is immediate. In the inductive case, we
have e → e1 →� e′. By applying Lemma 2, on the one hand, and the induction
hypothesis, on the other hand, we obtain

(| e |) →� · �
∼

← (| e1 |) →� · �
∼

← (| e′ |),
where the number of β-reduction steps in the sequences (| e |) →� · and (| e1 |) →� ·
is at least as high as in the source reduction sequences e → e1 and e1 →�

e′, respectively. Because the operational semantics of the target language is
deterministic, one of the two reduction sequences starting at (| e1 |) above must
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be a subsequence of the other. In either case, the diagram collapses down to

(| e |) →� · �
∼

← (| e′ |).
Furthermore, because β-reduction is not an administrative reduction, the num-
ber of β-reduction steps in the sequence (| e |) →� · is at least as high as in the
original reduction sequence e →� e′.

As a corollary, we obtain a soundness theorem for the translation. It essen-
tially states that security-passing style is a valid implementation of the Java
stack inspection discipline.

THEOREM 2. If e →� v, then (| e |) →� (| v |). If e goes wrong, then (| e |) goes
wrong. If e diverges, then (| e |) diverges.

PROOF. First, assume e reduces to a value v. Then, Lemma 3 yields (| e |) →�

· �
∼

← (| v |). Because (| v |) is a value, this diagram collapses down to (| e |) →� (| v |).
Second, assume e goes wrong. Then, e →� e′, where e′ is stuck, holds. We prove

that (| e |) goes wrong by induction on the length of this reduction sequence.
In the base case, we have e = e′, that is, e is stuck. So, e must be of the form

E[check r then e1], where ¬(E � r). Let S = |E |. There exists a unique R ′ such
that nobody, ∅, S � R ′. Necessarily, r �∈ R ′. According to Lemma 1, (| e |) may be
reduced to a term of the form E ′[[[check r then e1]]p′θ ′], where θ ′ = [R ′/s]. It is
easy to check that such a term is stuck. Hence, (| e |) goes wrong.

In the inductive case, we have e → e1 →� e′. Our induction hypothesis shows
that (| e1 |) goes wrong. Furthermore, Lemma 2 shows that (| e |) reduces to some
reduct of (| e1 |). Because reduction is deterministic, (| e |) must go wrong as well.
The result follows.

Third, assume e admits an infinite reduction sequence. This sequence must
involve an infinite number of β-reduction steps, because the semantics of λsec,
deprived of the β-reduction rule, is terminating. By Lemma 3, (| e |) admits an
infinite reduction sequence as well.

5. TYPES FOR λset

We define a type system for the target calculus as an instance of the parametric
framework HM(X ) [Odersky et al. 1999; Sulzmann 2000; Skalka and Pottier
2002]. HM(X ) is a generic type system in the Hindley–Milner tradition, pa-
rameterized by an abstract constraint system X . Section 5.1 briefly recalls its
definition. Section 5.2 defines a specific constraint system called SETS, yield-
ing the type system HM(SETS). Section 5.3 extends HM(SETS) to the entire
language λset, by assigning types to its primitive operations. Section 5.4 states
type safety results and discusses several choices for our type system, which
may be defined as either a unification- or constraint-based system, and which
is flexible with respect to the accuracy of initial type bindings.

5.1 The System HM(X )

We adopt the definition of HM(X ) given in Skalka and Pottier [2002]. The
framework is parameterized by a constraint system X , that is, by notions of
types τ , constraints C, and interpretation of constraints in a model.
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Fig. 6. The system HM(X ).

Given a constraint system, a type scheme is a triple of a set of quantifiers ᾱ,
a constraint C, and a type τ (which, in this paper, must be of kind Type; see
Section 5.2), written σ ::= ∀ᾱ[C].τ . A type environment 
 is a partial mapping of
program variables to type schemes. A judgement is a quadruple of a constraint
C, a type environment 
, an expression e and a type scheme σ , written C, 
 �
e : σ , derivable using the rules of Figure 6. These rules correspond to those
given in Skalka and Pottier [2002], less the rules relevant to stateful features,
which are not needed in this presentation. Note that via the HM-CONST rule,
populating � with initial bindings allows typing new language constants in
particular instances of HM(X ). In the case of λset, c will range over the four
primitive operators .r , ∨R , ∧R and ?r .

The following syntactic type safety theorem, in the style of Wright and
Felleisen [1994], is proven in Skalka and Pottier [2002]. Significantly, the theo-
rem holds with respect to a call-by-value λ-calculus with let in any instance of
HM(X ), and the theorem may be easily extended to incorporate additional con-
stants by proving soundness of initial bindings with respect to the semantics
of functional constants, the so-called δ-typability property.

THEOREM 3. If C, ∅ � e : σ holds and C is satisfiable, then e does not go
wrong.

We discuss δ-typability and type safety for λset more thoroughly in Section 5.4.

5.2 The Constraint System SETS

In order to give precise types to the primitive set operations in λset, we need
specific types and constraints. Together with their logical interpretation, which
defines their meaning, these form a constraint system called SETS.

The syntax of types and constraints is defined in Figure 7. The type lan-
guage features four so-called presence constructors, two standard row construc-
tors [Rémy 1992b], and a set type constructor {·}.

Presence types are used to record whether a resource r appears in a privilege
set. Pre means r is known to appear in the set, while Abs means r is known not
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Fig. 7. SETS grammar.

to appear in it. Of course, our analysis is sometimes approximate: � means that
it is not known whether r is a member of the set. Lastly, concerns of efficiency of
type inference call for a fourth presence constructor ⊥, which, roughly speaking,
means that it is irrelevant whether r appears in the set, because the code that
requires this privilege test is unreachable. In addition to these four constants,
a presence type can also be a variable.

To describe the contents of a set, we use rows of presence types. A row is a
finite description of an infinite object, namely a (possibly partial) function from
resource names to presence types. More precisely, a row describes a function
that maps almost all resources in its domain (i.e., all but a finite number of them)
to the same type. Rows can be formed using two basic building blocks. First, the
row constructor ∂ allows forming constant rows: if τ is a presence type, then ∂τ

is a row that maps all resources in its domain to τ . Second, the row constructor
(r : · ; ·) allows adding an entry to an existing row: (r : τ1 ; τ2) is a row that maps
r to the presence type τ1 and otherwise behaves as the row τ2. Lastly, a row can
also be a variable. The original presentations of rows [Rémy 1992b,1994] equip
row types with an equational theory, which, in particular, allows row entries
to commute. In our presentation, these equations are not axioms; they simply
happen to hold in our interpretation of types (given below).

A whole set is described by a row τ whose domain is R, wrapped within the
set type constructor, yielding a type of the form {τ }. To determine whether a
particular resource r appears in the set, one queries the row τ at r, yielding
a presence type. Such a query is carried out by unifying τ against (r : γ ; β),
where γ and β are fresh presence and row variables, respectively. For instance,
the singleton set {r} is one (and the only) value of type {r : Pre ; ∂Abs}. To
determine whether a resource s appears within that set, we solve the equation
(r : Pre ; ∂Abs) = (s : γ ; β). If r and s are distinct, this leads to γ = Abs
and β = (r : Pre ; ∂Abs), the former of which reflects the fact that s does not
belong to {r}. This treatment of sets is inspired by Wand and Rémy’s treatment
of records: a set is, in fact, a degenerate record where every field has unit type.

The constraint language offers standard equality and subtyping constraints,
as well as a simple form of conditional constraints. Their use will be illustrated
in Section 5.3 and 7.2.

To ensure that only meaningful types and constraints can be built, we im-
mediately equip them with kinds, defined by:

k ::= Pres | RowR | Type

where R ranges over finite subsets of R. Kinds allow distinguishing presence
types, rows, and (regular) types. Furthermore, kinds keep track of every row’s
domain: a row of kind RowR represents a function of domainR\R. In particular,
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Fig. 8. Kinding rules.

a complete row, that is, a total function from R to presence types, has kind
Row∅. For every kind k, we assume given a distinct, denumerable set of type
variables Vk . We use α, β, γ , . . . to represent type variables. From here on, we
consider only well-kinded types and constraints, as defined in Figure 8. The
purpose of these rules is to guarantee that every constraint has a well-defined
interpretation within our model, whose definition follows.

To every kind k, we associate a mathematical structure [[k]]. [[Pres]] is the
set of all four presence constructors. Given a finite set of resources R ⊆ R,
[[RowR]] is the set of total, almost constant functions from R \ R into [[Pres]].
[[Type]] is the free algebra generated by the constructors →, with signature
[[Type]] × [[Type]] → [[Type]], and {·}, with signature [[Row∅]] → [[Type]].

Each of these structures is then equipped with an ordering. Here, a choice has
to be made. If we do not wish to allow subtyping, we merely define the ordering
on every [[k]] as equality. Otherwise, we proceed as follows: First, a lattice over
[[Pres]] is defined, whose least (respectively, greatest) element is ⊥ (respectively,
�), and where Abs and Pre are incomparable. This ordering is then extended,
point-wise and covariantly, to every [[RowR]]. Finally, it is extended inductively
to [[Type]] by viewing the constructor {·} as covariant, and the constructor →
as contravariant (respectively, covariant) in its first (respectively, second) argu-
ment. This gives rise to a so-called structural, atomic subtyping relation: that
is, two related types may differ only in their presence annotations.

We may now give the interpretation of types and constraints within the
model. It is parameterized by a kind-preserving assignment ρ, that is, a function
which, for every kind k, mapsVk into [[k]]. The interpretation of types is obtained
by extending ρ so as to map every type of kind k to an element of [[k]], as follows:

ρ(τ → τ ′) = ρ(τ ) → ρ(τ ′) ρ({τ }) = {ρ(τ )}
ρ(r : τ ; τ ′)(r) = ρ(τ ) ρ(r : τ ; τ ′)(r ′) = ρ(τ ′)(r ′) (r �= r ′)

ρ(∂τ )(r) = ρ(τ ) ρ(c) = c.

Notice how the interpretation of the two row constructors reflects the infor-
mal explanation given above, and validates the expected equational theory.
Figure 9 defines the constraint satisfaction predicate · � ·, whose arguments
are an assignment ρ and a constraint C. (The notation ρ = ρ ′ [α] means
that ρ and ρ ′ coincide except possibly on α.) This definition is standard. The
last rule specifies that a conditional constraint whose components are rows
is to be interpreted point-wise, that is, as an (infinite) conjunction of condi-
tional constraints bearing on presence types. Entailment is then defined as
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Fig. 9. Interpretation of constraints.

usual: C � C′ (read: C entails C′) holds iff, for every assignment ρ, ρ � C
implies ρ � C′.

We refer to the type and constraint logic, together with its interpretation,
as SETS. More precisely, we have defined two logics, where ≤ is interpreted
as either equality or as a nontrivial subtype ordering. We will refer to them as
SETS= and SETS≤, respectively.

5.3 Dealing with the Primitive Operations in λset

The typing rules of HM(X ) cover only the λ-calculus with let. To extend
HM(SETS) to the whole language λset, we must assign types to its primitive
operations. Let us define an initial type environment �1 as follows:

R : {R : Pre ; ∂Abs}
.r : ∀β.{r : Pre ; β} → {r : Pre ; β}

∨R : ∀βγ̄ .{R : γ̄ ; β} → {R : Pre ; β}
∧R : ∀βγ̄ .{R : γ̄ ; β} → {R : γ̄ ; ∂Abs}
?r : ∀αβγ.{r : γ ; β} → ({r : Pre ; β} → α) → ({r : Abs ; β} → α) → α.

We let α, β, γ range over type variables of kind Type, Row�, Pres, respectively.
In this definition and from here on, p and R range over finite sets of resources
only. We exploit this restriction to define the following concise notation, which
is used above: if R is {r1, . . . , rn}, then R : c stands for r1 : c ; . . . ; rn : c, and
R : γ̄ stands for r1 : γ1 ; . . . ; rn : γn. We note that it is possible to deal with
cofinite sets of resources as well, by writing R̄ for R \ R and by employing the
following bindings when R is cofinite:

R : {R̄ : Abs ; ∂Pre}
∨R : ∀βγ̄ .{R̄ : γ̄ ; β} → {R̄ : γ̄ ; ∂Pre}
∧R : ∀βγ̄ .{R̄ : γ̄ ; β} → {R̄ : Abs ; β}.

Cofinite sets of resources allow modeling principals that enjoy all privileges but
a finite number. For the sake of simplicity and brevity, we deal with finite sets
of resources only in the following, although, in practice, dealing with both finite
and cofinite sets does not raise any additional difficulty.

We may also use conditional constraints to assign a more flexible type scheme
to ?r . Let �2 be the initial type environment obtained by replacing the last
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binding in �1 with:

?r : ∀ᾱβ̄γ [C].{r : γ ; β} → ({r : Pre ; β1} → α1) → ({r : Abs ; β2} → α2) → α

where C = (if Pre ≤ γ then β ≤ β1) ∧ (if Abs ≤ γ then β ≤ β2)
∧ (if Pre ≤ γ then α1 ≤ α) ∧ (if Abs ≤ γ then α2 ≤ α).

Here, the input and output of each branch (represented by βi and αi, respec-
tively) are linked to the input and output of the whole construct (represented
by β and α) through conditional constraints. Intuitively, this means that the
security requirements and the return type of a branch may be entirely ignored
unless the branch seems liable to be taken. (For more background on conditional
constraints, the reader is referred to Aiken et al. [1994] and Pottier [2000].)

5.4 The Type Systems S rel
i

Section 5.2 describes two constraint systems, SETS= and SETS≤. Section 5.3
defines two initial typing environments, �1 and �2. These choices give rise
to four related type systems, which we refer to as Srel

i , where rel and i range
over {=, ≤} and {1, 2}, respectively. Each of them offers a different compromise
between accuracy, readability and cost of analysis. In each case, Theorem 3 may
be extended to the entire language λset by proving a simple δ-typability [Wright
and Felleisen 1994] lemma, that is, by checking that �i correctly describes the
behavior of the primitive operations. This is the subject of the next section.

Despite sharing a common formalism, these systems may call for vastly dif-
ferent implementations. Indeed, every instance of HM(X ) must come with a
constraint solving algorithm. S=

1 is a simple extension of the Hindley-Milner
type system with rows, and its constraint solver is row unification [Rémy 1992a].
S=

2 is similar, but requires conditional (i.e., delayed) unification constraints. S≤
1

and S≤
2 require solving (structural) subtyping constraints, usually leading to

more complex implementations based on transitive closure computations and
on-the-fly constraint simplifications (see, e.g., Simonet [2003]). A worst-case
time bound for solving possibly conditional subtyping constraints in the pres-
ence of rows is given in Pottier [2003]: it is cubic in the size of the program and
close to linear in the number of resources that appear in the program, either
individually or as part of a principal p. In practice, for all four systems, it is
possible to design a constraint solver that scales well.

One should also point out that, when the programming language is extended
with a mechanism for declaring the type of an expression (or, in Java, of a
method), it is necessary to be able to check that the type inferred by the analysis
for this expression matches the declaration. This requires an algorithm for
deciding constraint entailment. In the setting of unification and of structural
subtyping, such algorithms exist and are efficient. In the presence of conditional
constraints, however, entailment becomes a hard problem [Su and Aiken 2001],
making the use of such constraints problematic.

5.5 Proof of δ-typability for λset

Let us first state some basic properties of sets and set types, whose proofs are
omitted.
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LEMMA 4. Let v be a closed value. If C, 
 � v : {τ } holds in Srel
i , then v is a

set R and C � (R : Pre ; ∂Abs) ≤ τ .

LEMMA 5. If C, 
 � R : {R ′ : Pre ; τ } holds in Srel
i , then R ′ ⊆ R.

LEMMA 6. If C, 
 � R : {R ′ : τ̄ ; τ } holds in Srel
i , then so do C, 
 � R ∪ R ′ :

{R ′ : Pre ; τ } and C, 
 � R ∩ R ′ : {R ′ : τ̄ ; ∂Abs}.
As mentioned in Section 5.1, extending Theorem 3 to all of λset only re-

quires proving soundness of the initial bindings for the primitive operators.
Let δ(c, v) = v′ if and only if c v → v′. We state the so-called δ-typability prop-
erty in the style of Skalka and Pottier [2002]:

LEMMA 7. In every Srel
i , for every constant c and closed value v, if C, 
 � c :

τ1 → τ2 and C, 
 � v : τ1 hold, then δ(c, v) is defined and C, 
 � δ(c, v) : τ2 holds.

PROOF. Suppose C, 
 � c : τ1 → τ2 and C, 
 � v : τ1. We consider two
cases: first, the case where C, 
 � c : τ1 → τ2 is obtained via HM-∀ ELIM and
HM-SUB; second, the case where it is obtained via HM-∀ ELIM alone. According to
the normalization result proved in Skalka and Pottier [2002], this is enough.

In the first case, HM-SUB’s premises are of the form C, 
 � c : τ ′
1 → τ ′

2 (1)
and C � τ ′

1 → τ ′
2 ≤ τ1 → τ2 (2). By properties of ≤, (2) implies C � τ1 ≤ τ ′

1
(3) and C � τ ′

2 ≤ τ2 (4). By assumption and HM-SUB, (3) implies C, 
 � v : τ ′
1

(5). According to the next case of the proof, (1) and (5) imply that δ(c, v) is
defined and C, 
 � δ(c, v) : τ ′

2 (6) holds. The result follows from (4) and (6) by
HM-SUB.

Let us now consider the second case. �i(c) is a type scheme of the form
∀ᾱ[D].τ ′

1 → τ ′
2. Because the derivation of C, 
 � c : τ1 → τ2 consists of a single

instance of HM-∀ ELIM, we have τ1 = ϕ(τ ′
1) and τ2 = ϕ(τ ′

2), where ϕ is a substitu-
tion of domain ᾱ and C � ϕ(D). We now proceed by case analysis on c and i:

Case c = .r . In this case τ1 = τ2 = {r : Pre ; ϕβ}. By Lemma 4, v is a set
R. By Lemma 5, we further obtain {r} ⊆ R, hence δ(.r , v) = v. The result
C, 
 � δ(c, v) : τ2 follows.

Case c = ∨R . In this case τ1 = {R : ϕγ̄ ; ϕβ} and τ2 = {R : Pre ; ϕβ}.
By Lemma 4, v is a set R ′, and δ(∨R , R ′) = R ∪ R ′. Then, Lemma 6 yields
C, 
 � δ(c, v) : τ2.

Case c = ∧R . In this case τ1 = {R : ϕγ̄ ; ϕβ} and τ2 = {R : ϕγ̄ ; ∂Abs}.
By Lemma 4, v is a set R ′, and δ(∧R , R ′) = R ∩ R ′. Then, Lemma 6 yields
C, 
 � δ(c, v) : τ2.

Case c = ?r and i = 1. In this case τ1 = {r : ϕγ ; ϕβ} and τ2 = ({r : Pre ; ϕβ} →
ϕα) → ({r : Abs ; ϕβ} → ϕα) → ϕα. By Lemma 4, v is a set R, so δ(?r , v)
is defined. Let us assume r ∈ R (the other case is analogous). Then, δ(?r , v)
is λx.λy .(x R). By Lemma 4, we have C � (R : Pre ; ∂Abs) ≤ (r : ϕγ ; ϕβ).
This implies C � (R : Pre ; ∂Abs) ≤ (r : Pre ; ϕβ) (we have simply made
the two rows agree at r). Because C, 
 � R : {R : Pre ; ∂Abs} holds,
HM-SUB yields C, 
 � R : {r : Pre ; ϕβ}. From this fact, it is easy to derive
C, 
 � λx.λy .(x R) : τ2.
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Case c = ?r and i = 2. In this case τ1 = {r : ϕγ ; ϕβ} and τ2 = ({r : Pre ; ϕ

β1} → ϕα1) → ({r : Abs ; ϕβ2} → ϕα2) → ϕα. By Lemma 4, v is a set R, so δ(?r , v)
is defined. Let us assume r ∈ R (the other case is analogous). Then, δ(?r , v)
is λx.λy .(x R). By Lemma 4, we have C � (R : Pre ; ∂Abs) ≤ (r : ϕγ ; ϕβ).
This implies, in particular, Pre ≤ ϕγ (we have simply looked up the two rows
at r). Because C � ϕ(D), and by definition of the satisfaction of conditional
constraints, we must then have C � ϕβ ≤ ϕβ1 and C � ϕα1 ≤ ϕα. Furthermore,
as in the previous case, we have C, 
 � R : {r : Pre ; ϕβ}. From these facts, it
is easy to derive C, 
 � λx.λy .(x R) : τ2.

6. TYPES FOR λsec

6.1 Indirect Type Systems

Section 5 defined a type system, Srel
i , for λset. Section 4 defined a translation

of λsec into λset. Composing the two automatically gives rise to a type system
for λsec, also called Srel

i for simplicity, whose safety is a direct consequence of
Theorems 2 and 3.

Definition 1. Let e be a λsec expression. By definition, C, 
 � e : σ holds if
and only if C, 
 � (| e |) : σ holds.

THEOREM 4. If C, ∅ � e : σ holds and C is satisfiable, then e does not go
wrong.

Turning type safety into a trivial corollary was the main motivation for bas-
ing our approach on a translation. Indeed, because Theorem 2 concerns untyped
terms, its proof is straightforward. (The δ-typability lemma established in Sec-
tion 5.3 does involve types, but is very straightforward.) A direct type safety
proof would duplicate most of the steps involved in proving HM(X ) correct.

Although the above theorem only mentions type safety, it is possible to also
establish a subject reduction result for λsec. Indeed, according to Lemma 2,
subject reduction for λsec follows directly from subject reduction for λset and
from the fact that administrative expansion ∼← preserves types, which is easy
to check.

6.2 Reformulation: Direct Type Systems

Definition 1, although simple, is not a direct definition of typing for λsec. But a
direct type system is desirable, for several reasons. First, given a direct type
system, it becomes unnecessary to actually translate expressions down to λset.
Also, with a direct type system, more succinct and intuitive type and judgment
forms can be adopted. Finally, understandable type error reporting is much
more feasible in a direct type system. Therefore, we define rules which allow
typing λsec expressions without explicitly translating them into λset. These so-
called direct or derived rules can be obtained in a rather systematic way from
the definition of Srel

i and the definition of the translation, making the direct
type safety proof straightforward, by appeal to the pre-existing result in λset
and Theorem 2.
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Fig. 10. Typing rules for λsec derived from S=
1 .

In these rules, the symbols τ and ς range over types of kind Type; more
specifically, ς is used to represent some security context, that is, a set of avail-
able resources. The symbols ρ and ϕ range over types of kind Row� and Pres,
respectively. The � symbol in the rules stands for an arbitrary principal. In the
source-to-target translation, all functions are given an additional parameter,
yielding types of the form τ1 → ς → τ2. To recover the more familiar and ap-
pealing notation proposed in Skalka and Smith [2000], we define the macro
τ1

ς−→ τ2 =def τ1 → ς → τ2.
Figure 10 gives derived rules for S=

1 , the simplest of our type systems. There,
all constraints are equations. As a result, all type information can be repre-
sented in term form, rather than in constraint form [Sulzmann et al. 1999],
provided types are identified modulo the (standard) equational theory for rows.
We exploit this fact to give a simple presentation of the derived rules. Type
schemes have the form ∀ᾱ.τ , and judgments have the form p, ς, 
 � e : σ . Al-
though rule ENABLE FAILURE naturally arises through the translation, it may be
desirable, in practice, to remove it. Thus, any attempt to enable a privilege by
a principal who does not own it would result in an immediate static type error.

Figure 11 gives rules for the system derived from S≤
2 , the most complex

element in our array of type systems. Judgments have the form p, ς, C, 
 � e : σ .
The most significant differences are the accuracy of the TEST rule, reflecting the
more precise binding for ?r in �2, and the addition of subtyping constraints.

Because the system presented in Figure 10 is based on unification, it is
efficient, easy to implement, and yields readable types. Also, we conjecture
that, thanks to the power of row polymorphism, it is flexible enough for many
practical uses (see Section 7). Therefore, we will focus on this system in the rest
of this article . We prove that this system is correct in Section 6.3.
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Fig. 11. Typing rules for λsec derived from S≤
2 .

6.3 Direct Type Correctness

In this section, we prove the correctness of the type system derived from S=
1 ,

that is, we prove Lemma 11. We begin by proving soundness of the derived
system with respect to S=

1 .

LEMMA 8. p, ς, 
 � e : σ implies true, (
; s : ς ) � [[e]]p : σ .

PROOF. By structural induction on the derivation of p, ς, 
 � e : σ . Let 
′

stand for (
; s : ς ).

Case VAR. In this case, e is a variable x. Because s is a distinguished variable,
we have x �= s, so 
(x) and 
′(x) coincide. Furthermore, [[x]]p is x. The result
follows by HM-VAR.

Case ABS. In this case, e is fix z.λx. f , σ is τ1
ς ′

−→ τ2 and p′, ς ′, (
; z : σ ; x : τ1) �
f : τ2 is derivable. By the induction hypothesis, true, (
; z : σ ; x : τ1; s : ς ′) �
[[ f ]]p′ : τ2 is derivable. This judgment can also be written true, (
′; z : σ ; x :
τ1; s : ς ′) � [[ f ]] : τ2. Thus, true, 
′ � fix z.λx.λs.[[ f ]] : τ1 → ς ′ → τ2 is derivable
by two applications of HM-ABS. Given the definition of [[e]]p in this case, this was
the goal.
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Case APP. In this case, e = e1 e2, σ = τ and p, ς, 
 � e1 : τ2
ς−→τ and p, ς, 
 �

e2 : τ2 are derivable. By the induction hypothesis, true, 
′ � [[e1]]p : τ2 → ς → τ

and true, 
′ � [[e2]]p : τ2 are derivable. Furthermore, true, 
′ � s : ς holds by
HM-VAR. Hence, true, 
′ � [[e1]]p [[e2]]p s : τ2 is derivable by two applications of
HM-APP. Given the definition of [[e]]p in this case, this was the goal.

Case LET. In this case, e = let x = e1 in e2, and p, ς, 
 � e1 : σ ′ and p, ς, (
; x :
σ ′) � e2 : σ are derivable. By the induction hypothesis, true, 
′ � [[e1]]p : σ ′ and
true, (
′; x : σ ′) � [[e2]]p : σ hold. The result follows by HM-LET and by definition
of [[e]]p in this case.

Case ∀ INTRO. In this case, σ = ∀ᾱ[true].τ where ᾱ∩fv(ς, 
) = ∅ and p, ς, 
 �
e : τ is derivable. By the induction hypothesis, true, 
′ � [[e]]p : τ is derivable.
Furthermore, we have ᾱ ∩ fv(true, 
′) = ∅. Thus, by HM-∀ INTRO, true, 
′ �
[[e]]p : σ is derivable. We have implicitly used the equivalences true ≡ true ∧
true and true ≡ ∃ᾱ.true.

Case ∀ ELIM. In this case, σ = [τ̄ /ᾱ]τ and p, ς, 
 � e : ∀ᾱ[true].τ is deriv-
able. By the induction hypothesis, true, 
′ � [[e]]p : ∀ᾱ[true].τ is derivable.
Furthermore, [τ̄ /ᾱ]true is true, so the result follows by HM-∀ ELIM.

Case ENABLE FAILURE. In this case, e = enable r in e′ where r �∈ p so that {r} ∩
p = ∅, ς = {ρ}, σ = τ and p, ς, 
 � e′ : τ is derivable. Now, by definition of �1,
by HM-CONST and HM-∀ ELIM, true, 
′ � ∨∅ : ς → ς is derivable. Furthermore,
true, 
′ � s : ς follows from HM-VAR. Therefore, HM-APP yields true, 
′ � s∨∅ : ς .
The induction hypothesis yields true, 
′ � [[e′]]p : τ , so also true, (
′; s : ς ) �
[[e′]]p : τ . The result follows by HM-LET and the definition of [[e]]p in this case.

Case ENABLE SUCCESS. In this case, e = enable r in e′ where r ∈ p so that
{r} ∩ p = {r}, ς = {r : ϕ; ρ}, σ = τ and p, {r : Pre; ρ}, 
 � e′ : τ is derivable.
Now, by definition of �1, by HM-CONST and HM-∀ ELIM, true, 
′ � ∨{r} : {r :
ϕ; ρ} → {r : Pre; ρ} is derivable. Furthermore, true, 
′ � s : ς follows from
HM-VAR. Therefore, HM-APP yields true, 
′ � s ∨ {r} : {r : Pre; ρ}. The induction
hypothesis yields true, (
; s : {r : Pre; ρ}) � [[e′]]p : τ , so also true, (
′; s : {r :
Pre; ρ}) � [[e′]]p : τ . The result follows by HM-LET and the definition of [[e]]p in
this case.

Case CHECK. In this case e = check r then e′ and σ = τ , ς = {r : Pre; ρ} and
p, ς, 
 � e′ : τ is derivable. Now, by definition of �1, by HM-CONST, HM-∀ ELIM,
HM-VAR and HM-APP, true, 
′ � s.r : ς is derivable. By the induction hypothesis,
true, 
′ � [[e′]]p : τ is derivable, so also true, (
′; : ς ) � [[e′]]p : τ , if is a
variable that does not appear free in e′. The result follows by HM-LET and the
definition of [[e]]p in this case.

Case TEST. In this case e = test r then e1 else e2 and σ = τ , ς = {r : ϕ ; ρ}
and p, {r : Pre ; ρ}, 
 � e1 : τ and p, {r : Abs ; ρ}, 
 � e2 : τ are derivable.
By the induction hypothesis, we have true, (
; s : {r : Pre ; ρ}) � [[e1]]p : τ . By
HM-ABS, this implies true, 
 � λs.[[e1]]p : {r : Pre ; ρ} → τ . By weakening, we
also have true, 
′ � λs.[[e1]]p : {r : Pre ; ρ} → τ . Similarly, true, 
′ � λs.[[e2]]p :
{r : Abs ; ρ} → τ holds. The result follows by definition of �1, by HM-CONST,
HM-∀ ELIM, HM-VAR, HM-APP and by definition of [[e]]p in this case.
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Case SIGN. In this case e = p′.e′, ς = {p′ : ϕ̄ ; ρ}, σ = τ and p′, ς ′, 
 � e′ : τ is
derivable, where ς ′ = {p′ : ϕ̄ ; ∂Abs}. By the induction hypothesis, true, (
; s :
ς ′) � [[e′]]p′ : τ holds, so also true, (
′; s : ς ′) � [[e′]]p′ : τ . Now, by definition of
�1, by HM-CONST, HM-∀ ELIM, HM-VAR and HM-APP, true, 
′ � s∧ p′ : ς ′ holds. The
result follows by HM-LET and the definition of [[e]]p in this case.

Our next task is to prove completeness of the derived type system with re-
spect to S=

1 . We begin with a normalization result analogous to the one proved
in Skalka and Pottier [2002].

LEMMA 9. If C, 
 � e : τ holds, then it may be derived via an instance of
SUB from a judgment C, 
 � e : τ ′, which itself follows from an instance of a
syntax-directed rule and at most one instance of ∀ ELIM.

We may now proceed to demonstrate completeness. In this lemma, we ab-
breviate type schemes ∀ᾱ[true].τ as ∀ᾱ.τ and judgements true, 
 � e : σ as

 � e : σ , omitting the trivial requirement true � true from instances of ∀ ELIM

and VAR.

LEMMA 10. (
; s : ς ) � [[e]]p : τ implies p, ς, 
 � e : τ .

PROOF. In this proof, we will write τ = τ ′ for true � τ = τ ′, which amounts to
identifying types modulo the equational theory on rows and allows us to ignore
instances of HM-SUB in the derivation d of (
; s : ς ) � [[e]]p : τ . By Lemma 9, we
may assume that d ends with a syntax-directed rule and at most one instance
of ∀ ELIM. The proof proceeds by induction on the structure of e and analysis of
the derivation d . Let 
′ = (
; s : ς ).

Case e = [[e]]p = x. By assumption, we have x �= s. The derivation d must
involve HM-VAR possibly followed by HM-∀ ELIM. As a result, τ must be of the form
[τ̄ /ᾱ]τ ′, where 
(x) = ∀ᾱ.τ ′. By VAR and ∀ ELIM, this implies p, ς, 
 � x : [τ̄ /ᾱ]τ ′.
Therefore, this case holds.

Case e = fix z.λx. f and [[e]]p = fix z.λx.λs.[[ f ]]p. By Lemma 9, we may assume
that d ends with two instances of HM-ABS, as follows:


′; z : τ1 → ς ′ → τ2; x : τ1; s : ς ′ � [[ f ]]p : τ2


′; z : τ1 → ς ′ → τ2; x : τ1 � λs.[[ f ]]p : ς ′ → τ2


′ � fix z.λx.λs.[[ f ]]p : τ1 → ς ′ → τ2
.

Here, τ is τ1 → ς ′ → τ2. Now, we have:

(
′; z : τ1 → ς ′ → τ2; x : τ1; s : ς ′) = (
; z : τ1 → ς ′ → τ2; x : τ1; s : ς ′).

This allows applying the induction hypothesis, yielding p, ς ′, (
; z : τ1 → ς ′ →
τ2; x : τ1) � f : τ2 . By ABS, this implies p, ς, 
 � fix z.λx. f : τ1 → ς ′ → τ2.

Case e = e1e2 and [[e]]p = [[e1]]p[[e2]]ps. By Lemma 9, we may assume that d
ends with two instances of HM-APP, as follows:


′ � [[e1]]p : τ ′ → ς → τ 
′ � [[e2]]p : τ ′


′ � [[e1]]p[[e2]]p : ς → τ


′(s) = ς


′ � s : ς


′ � [[e1]]p[[e2]]ps : τ
.
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By the induction hypothesis, we have p, ς, 
 � e1 : τ ′ → ς → τ and p, ς, 
 �
e2 : τ ′. The judgment p, ς, 
 � e1e2 : τ follows by APP.

Case e = let x = e1 in e2 and [[e]]p = let x = [[e1]]p in [[e2]]p. Then, d ends with
an instance of HM-LET:


′ � [[e1]]p : ∀ᾱ[D].τ ′ (
; s : ς ; x : ∀ᾱ[D].τ ′) � [[e2]]p : τ


′ � let x = [[e1]]p in [[e2]]p : τ
.

Here, we have ∃ᾱ.D ≡ true, which implies that the constraint D—a system
of equations—admits a most general unifier. In that case, the type scheme
∀ᾱ[D].τ ′ can be shown equivalent to an unconstrained type scheme, so we may
assume, without loss of generality, that D is in fact true. We may further
assume, without loss of generality, that the left-hand premise is an instance of
HM-∀ INTRO:


′ � [[e1]]p : τ ′ ᾱ ∩ fv(
′) = ∅


′ � [[e1]]p : ∀ᾱ.τ ′

The induction hypothesis yields p, ς, 
 � e1 : τ ′. We have ᾱ ∩ fv(ς, 
) = ∅, so, by
∀ INTRO, we obtain p, ς, 
 � e1 : ∀ᾱ.τ ′. Since x �= s, we have (
; s : ς ; x : ∀ᾱ.τ ′) =
(
; x : ∀ᾱ.τ ′; s : ς ), therefore the induction hypothesis yields p, ς, (
; x : ∀ᾱ.τ ′) �
e2 : τ . The result follows by LET.

Case e = enable r in e′ and [[e]]p = let s = s ∨ ({r} ∩ p) in [[e′]]p. By Lemma 9
and definition of �1, the derivation d must be of the following form, where
R = {r} ∩ p, ς = {R : ϕ̄ ; ρ} and ς ′ = {R : Pre ; ρ}:


′ � ∨R : ς → ς ′ 
′ � s : ς


′ � s ∨ R : ς ′ ᾱ ∩ fv(
′) = ∅


′ � s ∨ R : ∀ᾱ.ς ′ 
′; s : ∀ᾱ.ς ′ � [[e′]]p : τ


′ � let s = s ∨ R in [[e′]]p : τ
.

Since ς appears in 
′, the free type variables of ρ are free in 
′ as well, so the free
type variables of ς ′ are free in 
′. As a result, the type scheme ∀ᾱ.ς ′ is equivalent
to the monotype ς ′. We will thus assume, without loss of generality, that ᾱ is
empty. Since (
′; s : ς ′) = (
; s : ς ′), the induction hypothesis yields p, ς ′, 
 �
e′ : τ . As a result, p, ς, 
 � enable r in e′ : τ is derivable by ENABLE FAILURE if
r �∈ p and by ENABLE SUCCESS if r ∈ p.

Case e = check r then e′ and [[e]]p = let = s.r in [[e′]]p. By Lemma 9 and
definition of �1, the derivation d must be of the following form, where ς = {r :
Pre ; ρ}:


′ � .r : ς → ς 
′ � s : ς


′ � s.r : ς ᾱ ∩ fv(
′) = ∅


′ � s.r : ∀ᾱ.ς 
′; : ∀ᾱ.ς � [[e′]]p : τ


′ � let = s.r in [[e′]]p :
.

Since does not occur in e′, by weakening, we have 
′ � [[e′]]p : τ . As a result,
the induction hypothesis yields p, ς, 
 � e′ : τ . Thus, p, ς, 
 � check r then e′ : τ

is derivable by CHECK.
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Case e = test r then e1 else e2 and [[e]]p = s?r (λs.[[e1]]p) (λs.[[e2]]p). By Lemma 9
and definition of �1, d must be of the following form, where ς = {r : ϕ ; ρ}:


′ � ?r : {r : ϕ ; ρ} → ({r : Pre ; ρ} → τ ) → ({r : Abs ; ρ} → τ ) → τ


′ � s : {r : ϕ ; ρ}

′ � s?r : ({r : Pre ; ρ} → τ ) → ({r : Abs ; ρ} → τ ) → τ (1)


′; s : {r : Pre ; ρ} � [[e1]]p : τ


′ � λs.[[e1]]p : {r : Pre ; ρ} → τ (2)


′; s : {r : Abs ; ρ} � [[e2]]p : τ


′ � λs.[[e2]]p : {r : Abs ; ρ} → τ (3)

(1) (2)


′ � s?r (λs.[[e1]]p) : ({r : Abs ; ρ} → τ ) → τ (3)


′ � s?r (λs.[[e1]]p) (λs.[[e2]]p) : τ
.

By the induction hypothesis, p, {r : Pre ; ρ}, 
 � e1 : τ and p, {r : Abs ; ρ}, 
 �
e2 : τ hold. The judgment p, {r : ϕ ; ρ}, 
 � test r then e1 else e2 : τ follows by
TEST.

Case e = p′.e′ and [[e]]p = let s = s ∧ p′ in [[e′]]p′ . By Lemma 9 and definition of
�1, the derivation d must be of the following form, where ς = {p′ : ϕ̄ ; ρ} and
ς ′ = {p′ : ϕ̄ ; ∂Abs}:


′ � ∧p′ : ς → ς ′ 
′ � s : ς


′ � s ∧ p′ : ς ′ ᾱ ∩ fv(
′) = ∅


′ � s ∧ p′ : ∀ᾱ.ς ′ 
′; s : ∀ᾱ.ς ′ � [[e′]]p′ : τ


′ � let s = s ∧ p′ in [[e′]]p′ : τ
.

Since ς appears in 
′, the free type variables of ϕ̄ are free in 
′ as well, so the
free type variables of ς ′ are free in 
′. As a result, the type scheme ∀ᾱ.ς ′ is
equivalent to the monotype ς ′. We will thus assume, without loss of generality,
that ᾱ is empty. Since (
′; s : ς ′) = (
; s : ς ′), the induction hypothesis yields
p′, ς ′, 
 � e′ : τ . As a result, p, ς, 
 � p′.e′ : τ is derivable by SIGN.

We are now ready to demonstrate correctness of the derived type system.

LEMMA 11. nobody, {δAbs}, ∅ � e : τ holds for some τ if and only if C, ∅ �
(| e |) : τ holds for some satisfiable C and for some τ .

PROOF. Suppose on the one hand that nobody, {δAbs}, ∅ � e : τ holds. By
Lemma 8, we have true, s : {∂Abs} � [[e]]nobody : τ . Now, by definition of �1
and by CONST, we have true, ∅ � ∅ : {∂Abs}. By the substitution lemma for
HM(X ), which is proved in Skalka and Pottier [2002], this leads to true, ∅ �
[[e]]nobody[∅/s] : τ . Because true is satisfiable and because [[e]]nobody[∅/s] is (| e |),
this yields the goal.

Suppose on the other hand that C, ∅ � (| e |) : τ holds, where C is satisfiable.
Because C is satisfiable, it admits a unifier ϕ, which has the property that the
constraint ϕ(C) is equivalent to true. Thus, by the substitution lemma, we have
that true, ∅ � (| e |) : ϕ(τ ) holds. Now, as above, we have (| e |) = [[e]]nobody[∅/s]
and true, ∅ � ∅ : {∂Abs}. By a simple inverse substitution lemma, which we
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do not explicitly establish here, this implies true, s : {∂Abs} � [[e]]nobody : ϕ(τ ).
The result follows by Lemma 10.

In other words, Lemma 11 states that a closed λsec program e is well-typed
in the derived type system under the initial principal nobody and the empty
security context {∂Abs} if and only if (| e |) is well-typed in the original type
system. Furthermore, by Theorem 4, such programs cannot go wrong.

7. EXAMPLES

In this section, we give examples which illustrate the expressivity (and limi-
tations) of our type system. These examples facilitate a discussion of the dif-
ferences between the variants of the system, yielding insights into the possible
tradeoffs between precision and cost.

7.1 Security Wrappers

A library writer often needs to surround numerous internal functions with
“boilerplate” security code before making them accessible. To avoid redundancy,
it seems desirable to allow the definition of generic security wrappers. When
applied to a function, a wrapper returns a new function that has the same
computational meaning but different security requirements.

Assume given a principal p = {r, s}. Here are two wrappers likely to be of
use to this principal:

enabler = λ f .p.λx.p.enable r in f x
requirer = λ f .p.λx.p.check r then f x.

In systemS=
1 , these wrappers receive the following (most general) type schemes.

All of the type variables which appear in them are universally quantified, so
we do not give the quantifier prefix explicitly.

enabler : ∀. . . .(α1
{r:Pre ; s:γ1 ; ∂Abs}−−−−−−−−−−−→ α2)

{β1}−−→ (α1
{r:γ2 ; s:γ1 ; β2}−−−−−−−−→ α2)

requirer : ∀. . . .(α1
{r:Pre ; s:γ1 ; ∂Abs}−−−−−−−−−−−→ α2)

{β1}−−→ (α1
{r:Pre ; s:γ1 ; β2}−−−−−−−−−→ α2)

These types are very similar; they may be read as follows. Both wrappers expect
a function f which allows that r be enabled (r : Pre), that is, one which either
requires r to be enabled, or doesn’t care about its status. (Indeed, as in ML,
the type of the actual argument may be more general than that of the formal.)
They return a new function with identical domain and codomain (α1, α2), which
works regardless of r ’s status (enabler yields r : γ2) or requires r to be enabled
(requirer yields r : Pre). The new function retains f ’s expectations about s
(s : γ1). f must not require any further privileges (∂Abs), because it is invoked
by p, which enjoys privileges r and s only.

These polymorphic types are very expressive. Our main concern is that, even
though the privilege s is not mentioned in the code of these wrappers, it does
appear in their type. More generally, every privilege available to p may show
up in the type of a function written on behalf of principal p, which may lead to
very verbose types. An appropriate type abbreviation mechanism may be able
to address this problem; this is left as a subject for future work.
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7.2 Use and Types of Security Tests

In this section, we discuss two typical programming idioms involving test. One
(arguably the most common) is very simple, and may be typed in S=

1 . The other
is more complex and requires at least S=

2 . We take this opportunity to discuss
various problems related to the interpretation of conditional constraints.

Imagine an operating system with two kinds of processes, root processes and
user processes. Killing a user process is always allowed, while killing a root
process requires the privilege k. At least one distinguished principal root has
this privilege. The system functions which perform the killing are implemented
by root, as follows:

kill = λ(p : proc).root.check k then · · · – kill the process
killIfUser = λ(p : proc).root. · · · – kill the process if it is user-level.

In system S=
1 , these functions receive the following (most general) types:

kill : ∀β.proc
{k:Pre ; β}−−−−−→ unit

killIfUser : ∀γβ.proc
{k:γ ; β}−−−−→ unit.

The first function can be called only if it can be statically proven that the privi-
lege k is enabled. The second one, on the other hand, can be called at any time,
but will never kill a root process. To complement these functions, it may be
desirable to define a function which provides a “best attempt” given the current
(dynamic) security context. This may be done by dynamically checking whether
the privilege is enabled, then calling the appropriate function:

tryKill = λ(p : proc).root.
test k then kill(p) else killIfUser(p).

This function is well typed in system S=
1 . Indeed, within the first branch of the

test construct, it is statically known that the privilege k must be enabled; this
is why the subexpression kill(p) is well typed. The inferred type shows that
tryKill does not have any security requirements:

tryKill : ∀γβ.proc
{k:γ ; β}−−−−→ unit.

The sensitive action kill(p) is performed within the lexical scope of the test
construct, which is why it is easily seen to be safe. However, one can also move
it outside of the scope, as follows:

tryKill’ � λ(p : proc).root.
let action = test k then kill else killIfUser in action(p).

Here, the dynamic security check yields a closure, whose behavior depends on
the check’s outcome. It can be passed on and used in further computations.
Such a programming idiom is useful in practice, because it allows hoisting a
security check out of a loop. For instance, if we were to kill a set of processes,
instead of a single one, we would apply action successively to each element of
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the set. Thus, only one security check would have to be performed, regardless
of the number of processes in the set.

Is tryKill’ also well typed? This is more subtle. In Srel
1 , the two branches of

a test construct must receive the same type. Because the function kill requires
a non-trivial security context, it is conservatively assumed that action may do
so as well. As a result, in (say) S=

1 , tryKill’ has (most general) type ∀β.proc →
{k : Pre ; β} → unit, just as kill. Thus, it is well typed, but its type is more
restrictive than expected.

To solve this problem, we need to keep track of the fact that the behavior
(i.e., the type) of action depends on the outcome of the test, that is, on whether
the privilege k is enabled. This is precisely the reason for moving to the column
i = 2 in our array of type systems. In this column, the result of a test construct
is described by conditional constraints, which encode the desired dependency.
Indeed, in S=

2 , tryKill’ has (most general) inferred type

∀. . . .proc → {k : γ1 ; β1} → α

where
if Abs = γ1, then ∂Abs = β2

if Pre = γ1, then ∂Abs = β3

if Abs = γ1, then proc → {k : γ1 ; ∂Abs} → α = proc → {k : γ2 ; β4} → unit
if Pre = γ1, then proc → {k : γ1 ; ∂Abs} → α = proc → {k : Pre ; β5} → unit.

The four conditional constraints are generated by TEST (see Figure 11). Of
course, the meaning of such a constrained type scheme is quite obscure, but
it is possible to simplify it, as follows. First, because there is only one occur-
rence of the variable β2, this variable can be quantified locally. That is, the first
conditional constraint can be written

if Abs = γ1, then ∃β2.(∂Abs = β2)

It is now evident that this constraint is a tautology—that is, it is equivalent
to true—so it can be suppressed. The second constraint can be suppressed in
a similar way. Then, the third and fourth constraints, whose conclusions are
equations between terms of similar structure, can be decomposed into a con-
junction of conditional constraints whose conclusions are equations between
atomic terms. Performing this decomposition and again suppressing tautologi-
cal constraints, we obtain

∀. . . .proc → {k : γ1 ; β1} → α

where
if Abs = γ1, then α = unit
if Pre = γ1, then γ1 = Pre
if Pre = γ1, then α = unit.
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The second constraint above is again a tautology (of a different kind) and may
be suppressed. Thus, the simplification process yields

∀. . . .proc → {k : γ1 ; β1} → α

where
if Abs = γ1, then α = unit
if Pre = γ1, then α = unit.

It is important to note that this simplification process can be automated. We
chose to show its intermediate steps, because it would otherwise be difficult to
relate the final type scheme to the code for tryKill’. We now see that this type
scheme does not require the privilege k to be enabled: our analysis was smart
enough to prove that this code is safe.

The reader may wonder why we can’t further simplify this type scheme by
unifying α with unit, since both γ1 = Pre and γ1 = Abs imply unit = α. This
is because there remain other cases (namely γ1 = ⊥ and γ1 = �) where α is
unconstrained; as a result, these conditional constraints do not logically imply
unit = α.

To fix this apparent problem, one possibility would be to remove ⊥ and � from
the model. In that case, replacing the two constraints above with unit = α would
be a valid simplification. However, this change would effectively add disjunction
to the constraint language—indeed, it would then be possible to encode the
disjunction C1 ∨ C2 as ∃γ.(if Pre = γ , then,C1 ∧ if Abs = γ , then C2). (When ⊥
is part of the model, such an encoding becomes impossible, because of the side
condition c �= ⊥ in Figure 7.) We conjecture that the constraint satisfaction
problem would then have exponential time complexity, while it currently has
quasi-linear time complexity.

Another interesting possibility consists in giving a different interpretation
to conditional constraints. Notice that we really wish to use conditional con-
straints in only a very limited way. Indeed, we want to allow the branches of
a test construct to receive different types. But we do not wish for these types
to differ in arbitrary ways; we only wish to allow their security annotations to
differ. It is in fact possible to enforce such a restriction. Define ≈ as the binary
relation which is uniformly true on [[Pres]]. Extend it straightforwardly to [[k]]
for every kind k. Then, redefine the interpretation of conditional constraints as
follows:

ρ(τ ′) ≈ ρ(τ ′′) c ≤ ρ(τ ) ⇒ ρ � τ ′ ≤ τ ′′

ρ � if c ≤ τ then τ ′ ≤ τ ′′ .

This interpretation requires the types that appear in the conclusion of a con-
ditional constraint (here, τ ′ and τ ′′) to be equal modulo security annotations.
This allows the structure of types to be determined using rigid rules (which is
desirable, because many programming errors are then detected earlier), while
keeping the flexibility of conditional reasoning on security annotations. Under
such an interpretation, the type of tryKill’ may be simplified to

∀γ1β1.proc → {k : γ1 ; β1} → unit,
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as desired. From a practical point of view, this change in the interpretation of
conditional constraints requires implementing two unification algorithms on
top of one another—one for = and one for ≈—which is straightforward. This
variant of S=

2 may offer another good compromise between precision, efficiency,
and readability of the types inferred.

7.3 Subtyping

All of the examples given so far can be given useful types in S=
i for some i ∈

{1, 2}. In other words, these examples do not require subtyping. Nevertheless,
there are a few cases where the extra precision afforded by subtyping becomes
necessary.

Imagine we write a slightly modified version of the wrapper enabler pre-
sented in Section 7.1 as follows, where P is some arbitrary condition:

maybeEnabler � λ f .p.λx.p. if P then f x else enable r in f x.

This wrapper may or may not enable the privilege r before calling f . In S=
i , its

(most general) type is

maybeEnabler : ∀. . . .(α1
{r:Pre ; s:γ1 ; ∂Abs}−−−−−−−−−−−→ α2)

{β1}−−→ (α1
{r:Pre ; s:γ1 ; β2}−−−−−−−−−→ α2),

that is, exactly the same as that of requirer in Section 7.1. In other words, the
type system asserts, more conservatively than necessary, that maybeEnabler
requires the privilege r. How was this conclusion drawn?

Because f is bound by λ and because HM(X ) is restricted to Hindley–Milner
polymorphism, the two uses of f must receive the same type, say α1 → σ → α2.
In the second branch of the if statement, f is called with r enabled. Thus, σ

must be of the form {r : Pre ; . . .}. Since, in the first branch of the if statement,
f is called within an unmodified security context, the type-checker concludes
that the wrapped function also has {r : Pre ; . . .} as a security requirement.

The flaw is really in our use of equality constraints. Because f may be called
with r enabled, they lead us to require σ = {r : Pre ; . . .}, that is, to believe
f must be called with r enabled. This extremely coarse approximation is good
enough when f has polymorphic type, because we are then able to deal sep-
arately with each of its call sites. Here, however, polymorphism is inhibited,
making the problem unbearable.

A standard solution is to move to a system where equality is replaced with
subtyping, for example, S≤

1 . There, we obtain

maybeEnabler : ∀. . . .(α1
{r:γ ; s:γ1 ; ∂Abs}−−−−−−−−−→ α2)

{β1}−−→ (α1
{r:γ2 ; s:γ1 ; β2}−−−−−−−−→ α2)

where Pre ≤ γ ∧ γ2 ≤ γ

This type scheme is much more permissive, because γ2 ≤ γ ≥ Pre does not
allow concluding γ2 ≤ Pre (as was the case when ≤ was interpreted by equality).
Indeed, γ2 may take the value Abs, that is, the wrapped function may be called
in a context where r is disabled. The constraint Pre ≤ γ ∧ γ2 ≤ γ then requires
� ≤ γ , that is, f must be able to accept either state of the privilege r.
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Our experience seems to indicate that subtyping is useful only where poly-
morphism is inhibited, that is, when using higher-order functions. Java has no
such construct. Java does have first-class objects, which contain methods; but it
seems reasonable to require that methods be given explicit polymorphic types
by the user as part of class declarations. Considering that subtyping has sub-
stantial cost in terms of readability and efficiency, it may then be interesting
not to use it in a real-world system. However, more work is needed to confirm
this conjecture.

7.4 Expressiveness versus Discipline

It is undecidable whether the execution of a given program eventually leads
to a security failure. As a result, a safe type system equipped with decidable
type inference must be conservative, that is, reject programs that in fact do not
violate the security policy. For instance, in every Srel

i , a function f that requires
privilege r unless some condition P holds receives a type that specifies that f re-
quires r always, leading to a type error if f is invoked in a context where P holds
and r is not available. Our types, viewed as a specification language for security
policies, only have limited expressiveness. This is a curse and a blessing: while
it prevents some legitimate programming idioms, it also forces programmers to
stick to a reasonably straightforward programming style. The key, as always,
is to strike a good compromise between expressiveness and discipline.

8. DISCUSSION

8.1 Extensions

There should be no particular difficulty in extending the ideas of this paper
to more advanced language features such as exceptions, state, modules, and
threads. In fact, for some of these features, we expect the type-the-translation
approach to prove fruitful, by layering for example, an exceptions encoding on
top of the security-passing encoding.

8.1.1 Java. The approach taken here has recently been shown to be ex-
tensible to the Java bytecode language [Higuchi and Ohori 2003], so the ideas
here do transfer to the full JVM. But, modeling all the features of the Java se-
curity architecture is not possible statically. Java views privileges as first-class
objects, making static typing problematic. In our model, privileges are identi-
fiers, and expressions cannot compute privileges. It would be desirable to extend
the static framework to at least handle first-class parameters of privileges, so
for example, a Java FilePermission, which takes a parameter that is a specific
file, could be modeled. The additional expressiveness of Java’s implementation,
including dynamic addition of permissions, and dynamically computable pa-
rameters to privileges (e.g., a FilePermission for the string "/tmp/scratch"
that was created by appending strings "/tmp" and "scratch"), is very difficult
to model statically.

From a manual inspection of the Sun JDK libraries, a substantial major-
ity of the security code checks there can be statically typechecked. However,
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some of the uses are fundamentally dynamic. These include conditional check-
ing of privileges where the condition is fundamentally dynamic and so cannot
be captured statically. So, a purely static alternative would require some re-
coding of libraries, and a rethinking of where the security boundary is to be
drawn. This is a deep problem, and it remains an open question whether the
best completely static reworking of the architecture would be powerful enough
to make the limitations of the static system acceptable.

An alternative approach is to accept that a completely static approach is
not possible, and to use soft typing [Aiken et al. 1994; Wright and Cartwright
1997]. We discuss this further below, and also remark on extending our model
to include exceptions.

With the addition of JAAS in the JDK 1.4 [Lai et al. 1999], the architecture
also supports general authentication based on principals, not just codebases.
The doAs instruction enables a block of code to be executed under a particular
principal. We do not directly model JAAS, but for principals that are groups
fixed in advance, the structure is static (and, desirably, more declarative than
code that refers to specific users), and so our type system will be able to model
it. So, principals Alice and Bob are not modeled statically, but fixed groups
such as DepartmentUser and GuestUser which could contain Alice and Bob,
respectively, could be declared and checked statically; only the membership of
Alice in DepartmentUser would need to be checked dynamically.

8.1.2 Soft Typing. A soft typing system is a cross between a type system
and a static optimizer. In our context, a soft typing system would allow some
ill-typed check operations through, and mark them as requiring run-time check-
ing. In principle, there is no problem with applying the soft typing approach in
our framework, and allows our ideas to be applied directly to the JDK Security
Architecture as now defined. Marked check operations would be treated much
like test operations. The type system should provide a wealth of information
to enable an efficient implementation of these tests. The constraint-based con-
ditional type systems such as S≤

2 are particularly appropriate for soft typing
since the added expressiveness will allow more checks to be statically verified.

8.1.3 Implementation of test. Although our system statically checks
whether all check operations will succeed at run-time, there is still a need
to carry some privilege information at run-time to support test, which must
dynamically branch on presence or absence of a privilege. We believe a static
optimizer may be able to remove much of the run-time overhead of test. How-
ever, this implementation issue is beyond the scope of the current foundational
study, and is a subject for future work.

8.1.4 Exceptions. In the simple language presented so far, security viola-
tions are fatal: they cause the program to halt. However, in Java, a security
violation gives rise to an exception, which can be observed and dealt with by
any (direct or indirect) caller. Thus, if our static security type system is to be
viewed as realistic, it must be able to deal with exceptions.

For the sake of simplicity, we haven’t included exceptions in our source lan-
guage. However, it should be easy to add them as a second layer, with only
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little modification to our current proofs. In short, the idea is to introduce a new
source language, featuring exceptions in addition to the security constructs,
and to translate it down into an extension of λsec with sums. Indeed, it is a well-
known fact that exceptions can be defined in terms of sums [Wadler 1985; Moggi
1989; Spivey 1990]. Any Srel

i can then be lifted, through this new translation,
up to the new source language. This construction shows that the “typing-by-
encoding” approach can be used to account for exceptions. It also shows that
several layers of encodings can be stacked on top of one another, making the
proofs somewhat more modular.

This construction gives rise to type systems where function types carry not
only a security precondition ς , but also an effect ε, which describes the excep-
tions that may be thrown when the function is invoked. This is a standard
feature of type-based exception analyses [Guzmán and Suárez 1994; Aiken and
Fähndrich 1997; Pessaux and Leroy 2000]. In Java terms, an effect is essen-
tially a throws clause. However, a throws clause is constant, whereas, in our
type systems, effects would be allowed to contain presence variables (i.e., type
variables of kind Pres). These could be related, via constraints, to the function’s
security precondition ς , allowing properties such as “if privilege r is disabled,
then this function may throw exception E” to be encoded in the types—and
inferred by a type reconstruction algorithm.

A security check which throws an exception (instead of halting the program)
upon failure can be defined, in the new source language, by combining test
and throw. Thus, our new source language has both fatal and nonfatal forms of
security checks. It is interesting to notice that each form has its advantages.
Indeed, if a function yields a fatal error when the privilege r is disabled, then
its type will quite concisely encode the sentence “r must be enabled”, and the
type-checker will automatically enforce this condition at every call site. If, on
the other hand, the function throws an exception, then its type will more closely
encode the sentence “if r is disabled, then the function may raise an exception”,
and the type-checker will not enforce any pre-condition when calling the func-
tion. (It is still possible to manually assert, using a type annotation, that a given
call does not yield an exception, thus forcing r to be provably enabled at this
call site.) The former may be preferred, because it is more legible, and because
it documents the programmer’s intent more precisely. On the other hand, the
use of exceptions leads to a more modular programming style, because there is
often no telling, at the time a particular piece of code is written, where and how
security violations should be handled. We conclude that both forms of security
checks may be of use in practice.

8.2 Related Work

8.2.1 Other Analyses of Stack Inspection. Banerjee and Naumann [2001]
have developed an alternate proof of type safety for a programming language
equipped with stack inspection. However, the denotational semantics of their
language is in fact a security-passing style transform, which means that the cor-
rectness of this transform is taken for granted. Besson et al. [2001] and Jensen
et al. [1999] define a whole-program static analysis based on model-checking

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.



378 • F. Pottier et al.

temporal logic formulæ. Stack inspection is one (but not the only) application
of their framework. A later paper [Besson et al. 2002] takes the analysis one
step further by introducing a notion of secure calling context, symbolically rep-
resented as a temporal logic formula. However, the analysis is still not quite
compositional, because the control flow graph of the entire program must be
available. Bartoletti et al. [2001] propose a static analysis expressed as a fix-
point computation. Like Besson et al. [2001] and Jensen et al. [1991], they as-
sume that programs are represented as graphs where only security checks and
control flow are made explicit. Higuchi and Ohori [2003] impose a monomorphic
type system with subtyping, reminiscent of the one developed in Skalka and
Smith [2000], on a simple fragment on the JVM bytecode language. They note
that, since check instructions can never fail in a well-typed program, they are
no longer true operations: they are really only type annotations. For this reason,
they suggest removing check from the language and replacing it with a more
declarative type annotation mechanism. Allowing or requiring the programmer
to assign a security-annotated type to each method provides one such mecha-
nism. Koved et al. [2002] implement a flow-sensitive, context-sensitive analysis
that determines, in a conservative fashion, which access rights are required by
a piece of Java code. The analysis is precise—in particular, it keeps track of
string constants, which are used in the creation of Permission objects, whereas
we do not—and scales well. However, the paper does not contain enough detail
for the reader to be able to implement the analysis. Koved et al.’s [2002] goals
appear somewhat different from ours: They analyze unmodified Java programs,
while our intention is to require programmers to annotate method headers with
security requirements. While their approach requires less programmer effort, it
is not clear whether it allows libraries to be analyzed in isolation, and whether
it is able to provide an explanation for unexpected analysis results. We believe
that a type-based approach, although more costly in terms of programmer ef-
fort, helps enforce a discipline that the programmer understands and controls.
Naumovich [2002] describes a data flow analysis that ensures that certain priv-
ileges must be held in order to reach a certain program point. His purpose is
dual to ours. Indeed, our type system is intended to ensure that no privilege
checks may fail at runtime, but does not directly guarantee that the program
is secure, while Naumovich’s approach allows establishing security properties,
but does not eliminate the possibility of a runtime failure. On a more theoretical
level, Fournet and Gordon [2002] offer an in-depth study of the semantics of
stack inspection; they establish equivalence laws which allow compilers to opti-
mize away certain security-related instructions. Clements and Felleisen [2003]
continue this line of work by developing an alternate but equivalent implemen-
tation of stack inspection that is shown to be tail-call optimizing.

8.2.2 Other Approaches Based on a Translation. Several researchers have
proposed ways of defining efficient, provably correct compilation schemes
for languages whose security policy is expressed by a security automaton
[Erlingsson and Schneider 1999, 2000].

Walker [2000] defines a source language, equipped with such a security pol-
icy, then shows how to compile it into a dependently typed target language,
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whose type system, by encoding assertions about security states, guarantees
that no run-time violations will occur. Walker first builds the target type sys-
tem, then defines a typed translation. On the opposite, our approach consists in
defining an untyped translation, whose output we feed through a type checker
or inferencer for the target language. The composition yields a security-aware
type checker or inferencer for the source language. In principle, our approach,
which was developed with stack inspection in mind, is also applicable to se-
curity policies specified by security automata. Type inference for the target
language, where the automaton’s states and transition function are built-in
constants, seems feasible: dedicated constraint language and constraint solver
may be employed to allow statically reasoning about them. The untyped trans-
lation would thread the security automaton’s state through every computation,
making it an extra argument and an extra result of every function. Thus, in
the derived type system, every function type would carry two annotations, a
precondition and a postcondition, representing the automaton’s state upon en-
try and upon exit. Again, these annotations could be type variables, related
via constraints. In contrast with Walker’s work, our approach makes security
information visible in the type system of the source language: indeed, our aim
is not only to gain performance by eliminating many dynamic checks, but also
to define a programming discipline.

Thiemann’s [2001] approach to security automata [Thiemann 2001] may
be viewed as closely related to ours: he also starts with an untyped security-
passing translation, whose output he then feeds through a standard program
specializer. The composition automatically yields an optimizing translation.

8.2.3 The Connection with Monads. The encoding of exceptions alluded
to in Section 8.1.4 is a monadic translation [Moggi 1989]. So is the security-
passing style translation described in Section 4. In fact, an alternate semantics
for our source language can be defined by successively layering [Filinski 1999]
the following on top of a purely functional core:

(1) a failure monad, defined by F α = α + 1, representing the possibility of
abrupt program termination;

(2) a security monad, defined by S α = PrivSet → α, where PrivSet represents
privilege sets; enable, check and test can be defined as primitive operations
at this level;

(3) (optionally) an exception monad, defined by Eα = α + Exc, where Exc rep-
resents exceptions.

Choosing such a semantics for our source language would remove the need to
prove the translation sound, thus reducing even further the amount of work
needed to prove the correctness of our type system. However, our choice of a con-
cise operational semantics possibly brings us closer to the original description
of Java stack inspection.

Monadic type systems have been used as a tool to isolate [Peyton Jones and
Wadler 1993] or analyze [Wadler and Thiemann 2003] the use of impure lan-
guage features in pure functional languages. Yet, as deplored in Wadler and
Thiemann [2003], there is still “a need to create a new effect system for each
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new effect”. In this light, our work may be viewed as a systematic construc-
tion of an “effect” type system adapted to our particular effectful programming
language.

8.3 Final Remarks

From this methodological study emerge two type systems which improve on our
previous work in type systems for access control. System S=

1 infers what appear
to be very readable types, while remaining surprisingly expressive, and can be
implemented very efficiently [Rémy 1992a]. SystemS≤

2 is even more flexible and
could form the basis of a soft typing system for the Java JDK platform. These
systems were developed using a transformational technique and the system
HM(X ), which simplified proof effort and inspired design.
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