
Untestable Fault Identification through Enhanced
Necessary Value Assignments �

Vishnu C. Vimjam, Manan Syal and Michael S. Hsiao� vvimjam, msyal, mhsiao � @vt.edu
Bradley Dept. of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA-24061.

ABSTRACT
In this paper, we propose novel low-cost methods that combine
static logic implications and binary resolution to significantly in-
crease the number of non-trivial signal relations learned from the
circuit. The proposed method first applies resolution techniques
to learn new static single-node implications and then uses them to
learn powerful multi-node implications. All the newly learned re-
lations help in extracting more necessary assignments for a given
fault, potentially increasing the chance for a conflict to occur among
the necessary assignments. Experimental results on ISCAS89 and
ITC99 benchmarks show that our method can identify significantly
more untestable faults compared to existing non branch-and-bound
based techniques.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, Fault
Tolerance

General Terms
Algorithms, Design

Keywords
Untestable faults, Implications

1. INTRODUCTION
Untestable single stuck-at-faults often present tremendous chal-

lenge for ATPG engines because of the non-existence of a single
input vector/sequence that can detect these faults. This problem
becomes further complicated for sequential circuits because of the
additional process required in justifying a state that enables the de-
tection of a fault. Identifying the untestable faults through low-cost
techniques can be extremely beneficial to avoid the huge process-
ing times incurred by the ATPG engines upon handling these hard
untestable faults.
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The Single Fault Theorem presented in [4] unrolls the sequen-
tial circuit for a given number of time-frames and verifies through
combinational ATPG whether a fault is detectable by injecting it in
the right-most time-frame. If no vector can detect the fault in such
a setup, then the fault is guaranteed to be sequentially untestable.
On the other hand, if the fault-effect can be propagated to a pri-
mary output or flip-flop in the right-most time-frame, nothing can
be concluded. Usually, a larger number of unrolled time-frames
leads to more untestable faults found. Three new procedures ex-
tending the single-fault theorem were introduced in [13] to aid the
identification of a larger set of untestable faults. While these tech-
niques reduce the sequential ATPG problem to that of a combina-
tional ATPG, the complexity is still exponential in the circuit size
in the worst case.

A fault-independent algorithm, FIRE, is proposed in [1] for com-
binational circuits that identifies redundant faults requiring conflict-
ing values in the circuit. Unlike branch-and-bound methods that
have exponential complexity, FIRE’s complexity is polynomial in
the circuit size. In its implementation, redundant faults that require
conflicts on a single line were reported. Since no branch-and-bound
search is involved, it has been effective for a number of circuits.
This concept has been extended to identify sequentially untestable
faults in [2] by formulating new validation rules for propagating un-
controllability and unobservability conditions across frame bound-
aries.

Illegal states are identified using BDDs in [12] which are then
used to identify sequential untestable faults. The performance of
this technique depends on the efficiency of capturing as many ille-
gal states as possible and hence is more attractive for smaller cir-
cuits. Impossible value combinations between a gate output and its
fanins have been used in [11] to identify faults that require an lo-
cally impossible value combination as untestable. This technique
has been extended in [10] to obtain multi-line conflicts between a
gate and its immediate justification frontier which can capture more
untestable faults.

MUST, proposed in [9], aims at finding conflicts among nec-
essary multiple stem assignments for a given fault. Since it tar-
gets each fault at a time, the new necessary assignments derived
in the process can be effective in leading to a conflict if a fault is
untestable. It has been shown in [9] that the faults identified as
untestable by MUST are potentially hard for sequential ATPG en-
gines. Though powerful for small and medium-sized circuits, the
memory requirement for storing all the necessary values for the
faults limit the algorithm’s effectiveness for large circuits.

It can be seen that the performance of most of the untestable fault
identification algorithms depend on the underlying set of implica-
tions deduced from the circuit. More non-trivial relations available
allows for more untestable faults (if they exist) that an algorithm
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can identify. Techniques such as Recursive learning [6] and Ex-
tended Backward learning [5] have been proposed in the past for
computing more implications. Two procedures employing recur-
sive learning have been developed in [7] to check the inconsistency
of the set of necessary assignments for a fault. While learning of
unlimited recursion depth can capture all the necessary assignments
for a given line, it often becomes prohibitive due to the exponential
time complexity in the recursion depth. Hence a smaller recursion
depth is often desirable. Finally, finding (untestable) faults that
become untestable for all the four logic combinations of a pair of
gates was attempted in [8]. To avoid exploring all gate pairs, the
gates that lie locally close (e.g., in the same circuit level) were tar-
geted.

In this paper, we propose two novel, low-cost techniques that
can increase the set of necessary assignments for a given fault. We
combine binary resolution and static learning to deduce powerful
implications whose computation can be integrated with the compu-
tation of either extended backward or recursive learning. Using the
learned implications, our technique aims at quickly extracting non-
trivial multi-node relations that can be extremely useful for deduc-
ing more implications dynamically for a given fault. In addition,
we provide heuristics to efficiently store the necessary assignments
for each fault. Application of our technique to ISCAS and ITC
benchmarks show that significantly more untestable faults can be
identified.

The rest of the paper is organized as follows: Section 2 de-
scribes the preliminaries; Section 3 presents our contribution and
algorithms. We provide the overall algorithm in Section 4 and the
experimental results are reported in Section 5. In Section 6, we
conclude the paper.

2. PRELIMINARIES

2.1 Terms and Notations
Throughout the paper, we use the following notations: A Boolean

gate is denoted with an upper-case alphabet such as ������� etc. and
a Boolean logic value � or � is denoted with the lower-case alphabet� . A node is a value assignment to a gate ( � or � ). If a circuit has �
gates, then it has a total of 	
� nodes. In general, we represent any
node as ��� where �� � ����� � . Specifically, ����������� represents the
node for gate � with value ��������� . We use the symbol � to refer
to the union of the nodes.

A single-node implication refers to the relationship between a
pair of nodes, i.e., one node implies another node. Multi-node rela-
tions refer to a set of nodes together implying a single node. For an
AND gate � with two inputs  and ! ,  �#" � � and ! �$" � �
are single-node implications, where as �% $�&�'!$��� " �(� is a multi-
node relation. We use a curly-braced set to denote a conflicting
scenario among the set of nodes. For example, the set

� � ��� , ) �+* �
denotes that gate assignments �,� � � and )-� � 	 cannot exist
simultaneously inside the circuit. Note that a conflicting scenario
involving � -nodes has � multi-node relations within it. In general,
we use both the terms conflicting scenario and multi-node relation
inter-changeably.

A gate is said to be specified if it is assigned a logic value � .
If its value is unknown, then the gate is said to be unspecified. A
specified gate is said to be unjustified (by its inputs) if the current
assignments (if any) of its inputs do not justify the output value of
the gate. For example, an OR gate assigned to value � with none of
its inputs assigned to value � is an unjustified gate.

2.2 Implication Graph
An implication graph ./�102�&3$� of a circuit consists of vertices,

0 , which belong to the set of nodes in the circuit, and directed
edges, 3 , that represent single-node implications. If an assignment
�4�5� implies )6�7� , a directed edge from node � � to node
) � and the contra-positive edge ( ) � to � � ) are added to the graph.
Adding a new implication edge to the graph can have quadratic
impact on the total number of implications due to the transitiv-
ity property of the implications. Using a graph structure to store
the implications helps in (i) obtaining implications through several
time-frames without actually unrolling the circuit and (ii) provides
a compact way to store all the learned implications. For more de-
tails on the construction of an implication graph, the reader is re-
ferred to [3]. Below, we review the existing implication learning
techniques.

Extended Backward Learning (EBL): For a node 8$� , let a spec-
ified gate . be unjustified with � unspecified inputs �9� , �:	 ... ��� .
Let � � , � * ... �<; be the assignments to each unspecified input respec-
tively such that any specified input ��= can justify gate . . Now, the
intersection of gate assignments obtained by logic simulating the
sets ( 8>�?�@���+�
� ), ( 8$�
�@�:	
�+* ),..., ( 8$�
�@���A� ; ) are also implica-
tions of node 8 � . For the circuit shown in Figure 1, we initially
have �B� "  >� which makes gate  unjustified. Performing ex-
tended backward learning on its two unspecified inputs helps us to
learn that ��� " )C� . Via the contra-positive law, the implication
) �@" � � is also learned. Often these contra-positive implications
become very helpful in increasing the total number of non-trivial
implications in the circuit.
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Figure 1: Illustration of Implication Learning

Recursive Learning (RL): Recursive learning generalizes the con-
cept of an unjustified gate to make precise forward implications and
aims at capturing the implications common in all the justification
scenarios. Higher recursion depths help in extracting more compli-
cated implications from the circuit but are prone to an explosion in
time.

At this point, we note that implications obtained through EBL
are strictly a subset of those obtained through RL because of the
generalized unjustified gate definition used in [6]. Nevertheless,
our current implementation is based on the unjustified gate concept
of EBL and can also be applied along with RL.

2.3 Review of MUST [9]
The MUST procedure for untestable fault identification involves

two phases. The first is a preprocessing phase during which the
subset of necessary assignments is computed for each fault. Es-
sentially, if a fault f becomes untestable due to a stem assignment
�D� � , then �D�FE� is stored as a necessary stem assignment for
f. In the second phase, all such required stem assignments for each
fault are injected onto the circuit and simulated. If an implication
conflict occurs or if the fault cannot be activated or observed any-
more, then it is said to be untestable; else nothing can be concluded.

2.4 Review of Recurrence Relations [10]
Recurrence relations are used to identify gates that are sequen-

tially unachievable to a certain value ( � or � ). If a node ��� in
current time-frame (say, G ) implies the same node � � in the previ-
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ous time-frame (say, G�� � ), then random simulation is performed
to check whether the opposite node i.e., � �� is ever achievable. If
� � E� is possible, then it can be concluded that the node � � is
sequentially unachievable and all the faults that require � � �
for their detection are sequentially untestable. For more details on
recurrence relations, the reader is referred to [10].

3. RESOLUTION-BASED LEARNING
Binary resolution is a deductive step employed to obtain pow-

erful relationships by quantifying a variable. Given two set(s) of
conflicting scenarios with one set involving a node . � and the other
involving the node . �� , gate . can be eliminated from the scenarios
to obtain a new conflicting relation. For example, if

� � � ��) � � . � �
and

��� ��� . �� � are two conflicting scenarios, then the new relation� � � ��) � � � � � can be obtained by taking the union of the two sets
and eliminating the two opposing nodes of . .

In section 3.1, we use this concept to deduce powerful single-
node implications. In section 3.2, a series of resolutions are then
applied using the conflicting scenarios in the circuit to learn non-
trivial multi-node relations, which cannot be derived directly from
the single-node implications.

3.1 Learning New Single-Node Implications
Consider a gate � in the circuit. Let � represent the set of im-

plications in the intersection of two opposing nodes related to gate
� , i.e., ��� and �B� . Consider � to be non-empty, and let .'� be a
node in � . Since . � is implied by both � � and � � , . �� should be
an impossible node, i.e., . is a constant gate achievable to only one
value � . However, if the circuit has no constant gates, then no such
sets would exist. Our aim is to find conditional constants, whereby
under the presence of some other node )A� , the set � is no longer
empty for a target gate � . In other words, we want to find if the
multi-node relations ( �����@) � ) " � � and ( �B� �@) � ) " � � hold.
In such a case, it can be concluded that ) �>" � � according to the
following Lemma.

Lemma 1: If the intersection of two mutually exclusive nodes � �
and � � is non-empty under a condition ) � , then the nodes in the
intersection are implicants of node )A� . In other words, if ( �����@) � )
" � � � and ( � � �@) � ) " � � � , then ) ��" � � � , where

� � � is the
set of common implications.

Proof: The proof is straight forward with the application of bi-
nary resolution. Resolving on gate � eliminates the nodes � � and
��� from the above multi-node relations, thus resulting in )A� "� � � . �

We call node ) � as the base node, gate � as the resolver and
nodes ��� , ��� as the resolving nodes. Given Lemma 1, one can
aim at finding base nodes such that the intersecting set � of the
resolving nodes is non-empty. But, in order to avoid selecting too
many base nodes for a given resolver gate, we formulate this prob-
lem in the reverse way to find good resolver gates for a given base
node. Recall that during the application of EBL for a node ) � , we
find unjustified gates and use their unspecified inputs for justify-
ing them. We find that such unspecified inputs for an unjustified
gate are good candidate resolver gates for the base node ) � . This
heuristic selection helps in (1) capturing efficient reconvergences
of the resolving nodes through the base node and (2) keeping the
simulation overhead as small as possible since half of the work is
already being done during the EBL computation. To further reduce
the simulation costs, the two resolving nodes can be bit-packed and
simulated together.

We demonstrate this type of resolution with the help of an exam-

ple shown in Figure 2. Let the implications 3 � " � � , 3 � "��B� ,
. � "
	<� , � � "� � and � � "��C� already exist in the implication
graph. Consider the base node � � with direct implications  � , ! �
and � � . None of them can imply any other gates even when ex-
tended backward learning is iterated. Consider gate 3 which is one
of the unspecified inputs of  . Figure 2 shows how the node com-
bination ( ��� & 3'� ) leads to a conflict around gate ! . Thus we
can conclude that � �$" 3 � and hence 3 �@" � � via the contra-
positive law.
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Figure 2: Implications through Justification Enumeration

While the above implication can be learned with RL with a deep
level of recursion, our technique can find it very quickly without
any recursion. This example emphasizes that our technique can
quickly capture non-trivial relations which occur due to the recon-
vergences inside the circuit. Such internal relations are very power-
ful, and adding them to the implication graph enables us to capture
even more powerful implications during the learning process. Note
that such resolution can be performed dynamically for each fault
as is done in [15] but is subject to two major drawbacks: first, the
implications of the resolving nodes are not established beforehand
and hence it misses several crucial relations, and second, check-
ing for common implications at every decision level would need
excessive ATPG run times. In the case of static learning such as
our method, in the worst case, this is performed quadratic to the
number of nodes in the circuit.

So far we have described the case where only a single gate is
used for resolution under a base node. Note that in Figure 2, when
gate  becomes unjustified for node � � , multi-gate resolution can
also be performed using the three sets ( �����'3 � ), ( �/���'3>� ) and
( � � �'3 � ) because it automatically covers the binary resolutions on
the unspecified inputs as well as the complete justification scenarios
for  � � . Even though such an enumeration would be intuitively
more powerful, it would be expensive for taking the transitive clo-
sures on the implication graph as well as for performing logic simu-
lation. For an unjustified gate with � unspecified inputs, � �1	 ; � ���
transitive closures for the nodes would need to be performed and
	 ; � � simulations (corresponding to the 	 ; � � justifications) to
check if the intersection has any nodes in common. However, for
the case when � � 	 , only six transitive closures and three simu-
lations are needed. As done for Lemma 1, all such 3 justification
scenarios can be bit-packed and simulated together to enable faster
simulation. Hence, we resort to such an enumeration for ��� 	 but
avoid it for ��� 	 to keep the processing times low.

Next, we describe our resolution techniques for obtaining effi-
cient multi-node implications using the learned single-node impli-
cations.
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3.2 Learning Multi-Node Implications
We refer to the multi-node relation between a gate and its im-

mediate inputs as a Primary multi-node relation. For example,
(  � �'! � ) " � � forms the primary multi-node relation for the
NAND gate � with two inputs  and ! . The number of single-
node implications in a circuit with � gates is limited to 	
���@	
� ,
which is only quadratic in terms of the circuit size. The upper limit
can occur when all the gates in the circuit are constant gates. On the
other hand, multi-node relations for a given circuit can be exponen-
tial in the number of gates, since they can involve all possible com-
binations of all gates. For example, the number of multi-node rela-
tions around an OR gate ) with � inputs ��� , �:	 , ..., ��� can be
as large as 	 ���9� � ��� 	 ���:	 � ��� ... � 	 ����� � ��� 	 ��) � � , where 	 ��� � �
represents the number of single-node implications of the node ��� .
However, since the primary multi-node relation for the OR gate is
sufficient to deduce all such multi-node relations, they do not help
in increasing the necessary assignments for any fault. Instead, one
would be interested in extracting non-trivial multi-node relations
that are not covered by the primary relations.

Our algorithm targets learning of such relations. Note that multi-
node relations are in general less powerful compared to single-node
implications and hence low-cost algorithms should be employed to
identify them. The method we propose is based on simple traver-
sals on the implication graph and does not involve computation in-
tensive tasks such as logic simulation. We describe our learning in
two-phases as given below.

3.2.1 Phase I: Obtaining Conflicting Scenarios:
In this phase, we extract conflicting scenarios for each node in

the circuit. Figure 3 shows four such scenarios for AND gates, and
the discussion below can be extended to all other gate types.

Consider Figures 3(a) and 3(b). Let ��� "  $� and ) � " � � .
Then,

� � � , ! � , � � � and
� ) � , � � , 3 � � form two conflicting sce-

narios. As mentioned before, they are not useful since the primary
relations around gates � and � already cover them. Now consider
Figures 3(c) and 3(d). Let

� �>" . � , � �>" ��� , � �#"�� � and� � " 8>� . Then,
� � � , 	 � , � � � and

��� � , � � , 	 � � form two other
conflicting scenarios. Note that these are obtained due to the res-
olution on the two implied signals around the gates � and 8 and
hence are more powerful compared to the earlier two scenarios.
They can aid in extracting more useful information. For example,
if nodes ��� and 	<� are required assignments for a fault, then we can
deduce that

� �� is also needed.
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Figure 3: Conflicting Scenarios around gates

Thus, our phase I can be concluded as finding conflicting scenar-
ios such as those in Figures 3(c) and 3(d) which are obtained as a
result of at least two binary resolutions. Data from Phase I can be
extracted using just one traversal of the implication graph.

3.2.2 Phase II: Applying Resolutions in Series:
In this phase, we apply a series of binary resolutions to scenar-

ios identified in Phase I to obtain non-trivial relations that can be

extremely useful for enhancing the set of necessary assignments.
We explain our algorithm using the examples illustrated in Figure
4 where the dashed lines represent structural paths in the circuit.

Consider Figure 4(a). Let the implications  � "���� ,  �(" 	�� ,
! � " �/� , ! � " 3(� , � � " .#� , � � " � � , �/� " � � , ) � "�� �
and ) � " ��� be present in the circuit. The conflicting scenarios
obtained in Phase I for node  � would be

�  � , � � , � � �

 ��� and for

node !(� would be
� ! � , � � , .#� �
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Figure 4: To Illustrate Multi-node Extraction

Now, consider node � � . Since we are given that � � " � � ,
either  � or ! � must be true whenever � � is true. This leads to
the conflicting scenario

� � � ,  � , ! � �

�� � . Eliminating the nodes

 � ,  $� , !(� and !$� via resolution from (1), (2) and (3) would lead
to the new scenario

� � � , ��� , � � , �C� , . � �

�� � which is stored in

our first traversal of the implication graph.
Next, consider node ) � . When ) � is true, we are told that � �

and � � are also true, yielding the scenarios
� )A� , � � �


�� � and
� ) � ,

� � �

�� � . Now eliminating the nodes � � , � � , � � , � � via resolution

from (4), (5) and (6) would lead to
� � � , ) � , � � , . � �


�� � . Note
that only � � and . � are the two remaining nodes from the Phase
I (original) scenarios (1) and (2). This new relation (7) provides
an OR situation as follows: Under the condition that ) � is true, at
least one of .@� or ��� has to be true if ��� is true. Such relations are
obtained and stored during our second traversal of the implication
graph.

Finally, consider node
� � . When

� � is true, we are given that . �
and � � are true, leading to

� � � , . � �

�� � and

� � � , � � �

�� � . Hence� �� represent the common implication of .'� and ��� . By eliminat-

ing the nodes . � , . � , � � and � � via resolution from (7), (8) and
(9), we can conclude that

� )A� , ��� , � � �

 �1��� holds true. This new

scenario does not involve any of the nodes in the original conflict-
ing scenarios of (1) and (2) and hence we can stop our resolution
process.

Note that, in Phase II, the deduced relations (4) and (7) are not
useful whereas relation (10) is. Given ) � and � � are true in Figure
4(a), a regular ATPG engine cannot deduce that

� �� is also true
without performing additional analysis via conventional branch-
and-bound process. Similarly, the implied node cannot be deduced
in the other two situations, i.e., when ( )A� is true,

� � is true) and
when ( � � is true,

� � is true). Hence, extracting such non-trivial
multi-node relations would be very helpful in deducing new neces-
sary assignments for a fault with very low overhead. At the same
time, if a fault f requires all the three nodes ) � , � � and

� � to be true
for its detection, we can immediately conclude that f is untestable.

Figure 4(b) illustrates another example, given that the implica-
tions ��� "  >� , ��� " � � , ) � " .#� , ) � " !$� , 	 � " �(� ,
	��B" � � , � ��" 3 � , � � " ��� and

� �:" � � hold, our tech-
nique would learn that

� ) � , ��� , � � � holds true globally. In both
of these examples, we only needed 3 traversals on the implication
graph to obtain the relations that involve 3 nodes. Our phase II of
the algorithm can thus be generalized as applying a series of reso-
lutions on the phase I scenarios using the single-node implications
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from the implication graph. If all the nodes present in the (original)
conflicting scenarios found in Phase I are eliminated, the resulting
relation would be our newly learned multi-node relation. Thus, to
extract a relation involving � -nodes (if any exists), we would only
require � traversals on the implication graph. Note that all such
newly obtained relations can be further used iteratively to deduce
more powerful multi-node relations. In our current preliminary im-
plementation, we perform only one iteration and limit our number
of traversals to 3.

4. OVERALL ALGORITHM
We have integrated both of the proposed learning mechanisms

into our tool Untestable Fault Omitter (UFO). The overall tool flow
is given in Figure 5. As mentioned before, Extended Backward
learning of step 1(a) and our implication extraction techniques (de-
scribed in section 3.1) of step 1(b) are performed together in our
current implementation to minimize computation effort. After com-
puting implications for a node, it checks to see if that node satisfies
the recurrence relation criteria; if so, it is marked as sequentially
unachievable. Once the implication graph is built, we compute the
Phase I and Phase II of multi-node relations (described in section
3.2) in steps 2(a) and 2(b). All the learned information is then fed to
the modified MUST procedure (explained below) in step 3, which
includes both the stem analysis and untestable fault identification.

1: Build Implication Graph
    (a) ExtendedBackwardLearning();
    (b) NewResolutionImply();
    (c) CheckRecurRel();

2: MultiNodeRelations
    (a) PhaseI();
    (b) PhaseII();

3: Modified MUST();

Figure 5: Flow of UFO tool

The original MUST algorithm of [9] does not employ an impli-
cation graph and it stores the necessary stem assignments for each
fault as obtained in the pre-processing phase. Note that as more im-
plications become available, the number of assignments needed to
be stored can be huge and cause potential memory explosion. If an
implication path is present in the circuit such as ��� " ) � " � �
and if a fault f requires

� �� for its detection, then it also requires
the nodes ) �� and � �� . Storing only

� �� in the pre-processing stage
is sufficient to obtain all other necessary assignments from the im-
plication graph when fault f is targeted during the second phase of
MUST. Our current implementation thus uses a depth-first traver-
sal to go to the last node reached in a transitive closure and per-
forms MUST for a node when it is encountered in the return path.
Likewise, if there are strongly-connected components (SCCs) in
the graph, phase I of MUST needs to be performed for only one
representative node in the SCC to reduce computation costs. In
our experiments, we found that the memory needed to store the
necessary assignments was only two to three times the size of the
implication graph for a circuit.

5. EXPERIMENTAL RESULTS
Experiments for ISCAS and ITC benchmark suites were con-

ducted on a Pentium-4 2.6GHz machine having 1GB RAM and
running Linux operating system. Table 1 shows the results. First,
the maximum number of untestable faults identified among [1], [2],
[3], [5], [7], [8], [9], [10], [11], and [12] are reported under column
Prev BEST. Note that all of these works are non branch-and-bound

based techniques, similar to ours. For each circuit, #TF shows the
maximum implication learning depth set during our experiments.
A depth of n means that implications are computed across -n to
+n time-frames (i.e., a total of 2n+1 frames). Then, we show the
results of our UFO tool obtained using various procedures. EBL
Alone reports the untestable faults identified using EBL implica-
tions and MUST procedure. EBL + New SNI reports the results
obtained by using EBL and the proposed new single-node implica-
tions along with MUST, whereas EBL + New SNI + MNR reports
the results obtained by using the multi-node relations extracted in
addition to the single-node implications. The columns titled Time,
#SNI, #NEC, #MNR and #UNT report the total time (static learn-
ing + MUST) in seconds, the number of single-node implications
obtained, the sum of all necessary assignments obtained for all the
remaining faults (faults not found to be untestable) in the collapsed
fault set, the number of multi-node relations obtained, and the num-
ber of untestable faults obtained, respectively.

As shown in Table 1, the number of single-node implications
obtained with our technique can be much more compared to those
obtained from EBL alone. For example, for b07, the total num-
ber of implications increased from 54K to 189K because of our
added learning. Similarly for s9234, the number of implications
increased from 8.2M to 9.9M. Using all the newly learned rela-
tions, UFO was able to identify far more untestable faults with very
low overhead. For smaller circuits, our tool identified considerably
more faults except for s526 for which FUNI [12] could identify
62 untestable faults with the help of illegal states captured using
BDDs. For larger circuits, UFO has shown tremendous improve-
ment in many cases. For s13207.1, we were able to identify 2660
untestable faults where as the previous best was only 1125. Simi-
larly for the difficult circuit s38417, UFO identified 2028 untestable
faults whereas only 511 were identified among the previous works.
For all the circuits, the maximum amount of memory needed by
UFO was less than 17MB.

Note that for small circuits, deterministic sequential ATPG en-
gines often perform better because of the smaller search-space. But
for larger circuits, all the additional untestable faults identified by
UFO were extremely difficult for ATPG engines to identify, as the
numbers of untestable faults reported by deterministic ATPGs are
much lower than ours. Besides, UFO was able to find significantly
more number of necessary assignments for the remaining faults
(shown in boldface) as compared to EBL Alone. These non-trivial
necessary assignments obtained with low overheads indicate that
our technique can be a very helpful pre-processor and can poten-
tially speed up the sequential ATPG engines by pruning the search-
space because of the increased necessary assignment set for the
faults.

6. CONCLUSION
We have presented novel techniques based on powerful com-

binations of binary resolution and static logic implications to ex-
tract non-trivial relations from the circuits. These non-trivial rela-
tions include new single-node as well as multi-node implications.
The multi-node relations proposed could be learned after any given
depth of the recursive learning procedure as well. Experimental
results show that our learning can enable the identification of sig-
nificantly more untestable faults with low computational overhead.
Finally, our tool can be employed as a preprocessor for a determin-
istic ATPG engine to first omit the identified untestable faults and
use the necessary assignments for the rest of the faults as multiple
objectives during test generation.
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Table 1: Experimental results for ISCAS and ITC Benchmarks

Circuit
Prev

#TF
EBL Alone EBL + New SNI EBL + New SNI + MNR

BEST Time #SNI #NEC #UNT Time #SNI #NEC #UNT Time #MNR #NEC #UNT

c432 2 0 0.02 2.4K 11K 2 0.03 2.4K 11K 2 0.03 132 11.5K 4
c2670 97 0 0.3 60K 104K 107 0.5 104K 137K 115 0.53 0.5K 140K 115
s298 21 2 0.2 10.7K 33K 13 0.24 14K 36.3K 25 0.4 2.8K 39.5K 25
s386 63 2 0.51 33K 84K 67 0.72 36K 87.3K 69 0.89 7.4K 94.8K 70
s526 62* 2 0.55 20K 80K 12 0.67 22K 86K 24 0.93 7K 92K 25
s641 59 2 0.3 81K 37K 59 0.32 83K 39K 59 0.4 1K 40K 59
s713 101 2 0.4 99K 41K 101 0.42 100K 43K 101 0.46 1.5K 43.8K 101
s820 26 2 1.3 59K 299K 2 2.7 76K 336K 15 4.4 90K 436K 33
s832 28 2 1.46 58K 301K 11 2.8 75.8K 339K 25 4.8 96K 441K 46
s1238 58 2 1.2 73K 261K 53 1.93 75K 259K 59 3.4 29K 272K 62
s1423 14 2 0.8 79K 162K 14 1.0 86K 172K 14 1.2 60 173K 14
s1494 15 2 5.95 151K 778K 10 9.85 164K 791K 10 12.3 126K 899K 18
s3330 493 2 5.6 1.51M 629K 495 9 1.52M 639K 495 15.5 32K 647K 495
s4863 72 2 9.5 266K 885K 92 13.2 317K 951K 114 16.4 31K 959K 114
s5378 884 2 68 4.2M 2.5M 891 71.8 4.47M 2.58M 891 77.2 70K 2.94M 891
s9234 434 2 403 8.2M 13.8M 599 656 9.9M 14.5M 688 727 300K 14.6M 733

s9234.1 371 2 112 2.6M 5.3M 377 142 2.9M 5.8M 395 176 43K 6.0M 395
s13207 1125 2 333 16.2M 22.2M 2920 534 19.9M 31.4M 3003 640 300K 33.4M 3017

s13207.1 453 2 440 10.1M 23.9M 1444 678 17.0M 34.7M 2620 776 90K 38.8M 2660
s15850 835 2 981 23.9M 61.6M 2717 1052 26.9M 70.9M 2848 1224 181K 72.6M 2848

s15850.1 951 2 427 28.3M 26.8M 3769 482 29.0M 29.8M 3939 523 55K 31.0M 3939
s38417 511 2 2556 22.1M 82.7M 1819 2923 23.9M 87.3M 2028 3114 16.6K 88.6M 2028
s38584 2283 1 2380 70.1M 100M 2662 2912 71.4M 101.9M 2672 3033 105K 104.9M 2681

s38584.1 1653 1 2721 61.8M 100M 2416 2843 62.3M 102.2M 2423 2964 72K 105.1M 2431
b07 2 2 2.50 54K 174K 9 6.3 189K 484K 32 7.2 125K 498K 33
b09 0 2 0.26 16K 52K 4 0.4 20K 54K 9 0.5 16K 67K 9
b10 1 2 0.36 15K 60K 1 0.7 26K 63K 14 1.2 15K 92K 14
b11 75 2 9.5 170K 1M 88 12.3 197K 1.23M 112 16 109K 1.3M 116
b12 0 2 10.8 193K 660K 5 17 688K 1.9M 11 23 291K 2.2M 11
b13 26 2 0.6 43K 122K 26 0.7 45.9K 125K 30 0.75 3K 126K 30
b15 407 1 3498 13M 59.2M 600 4510 16.4M 68.3M 773 4923 250K 70.8M 784

Note (a): Prev BEST � Max #Unt faults among [1], [2], [3], [5], [7], [8], [9], [10], [11], [12] (non branch-and-bound based techniques as ours)
(b): * � Obtained using FUNI [12] which finds illegal states using BDDs for identifying untestable faults
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