Utilizing Don’t Care States in SAT-based
Bounded Sequential Problems

Sean Safarpour
Dept. Elec. & Comp. Eng.
University of Toronto
Toronto, ON

ssafarpo@eecg.toronto.edu

Goerschwin Fey
Dept. Comp. Sci.

Bremen University
Bremen, Germany

fey@informatik.uni-bremen.de

ABSTRACT

Boolean Satisfiability (SAT) solvers are popular engines used
throughout the verification world. Bounded sequential prob-
lems such as bounded model checking and bounded sequen-
tial equivalence checking rely on fast and robust SAT solvers.
In this work, we introduce a technique that improves the
performance of the underlying SAT solver for bounded se-
quential problems by taking advantage of a design’s don’t
care states. We develop cost effective methods of filtering,
replicating and applying the don’t care states to the orig-
inal problem thus reducing the search space. Experiments
demonstrate the effectiveness of the proposed method on
ISCAS’89 benchmarks.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-aided de-
sign (CAD)

General Terms

Algorithms, Performance, Verification

Keywords

Don’t Care States, Satisfiability, Bounded Model Checking,
Sequential Equivalence Checking, Unreachable states

1. INTRODUCTION

Boolean Satisfiability (SAT) solvers are common engines
in verification applications today [1] [9] [18].Much improve-
ment has been made in the area of both general and prob-
lem specific SAT solvers [10] [12] [16]. One popular im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GLSVLS’05, April 17-19, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

Andreas Veneris
Dept. Elec. & Comp. Eng.
University of Toronto
Toronto, ON

veneris@eecg.toronto.edu

Rolf Drechsler
Dept. Comp. Sci.
Bremen University
Bremen, Germany

drechsle@informatik.uni-bremen.de

provement approach is exploiting problem specific informa-
tion such as signal correlations [10], structural implications
[17], BDD-based learning [2] [6], and circuit don’t cares [14].
For sequential applications, the state space of the circuit
can provide valuable information to the SAT solver [2] [7].
In this paper, we seek to improve the SAT solver perfor-
mance specifically for bounded sequential applications such
as Bounded Model Checking (BMC) and Bounded Sequen-
tial Equivalence Checking (BSEC).

In BMC and BSEC problems, the sequential circuit is
verified for correctness only within a finite number of clock
cycles [1] [18], also known as a bound. The main advan-
tage of these techniques is that they can often find counter-
examples or errors in the design when other, more complete
techniques fail due to resource constraints. The rationale be-
hind the recent success of these techniques arises from the
fact that, in most cases, under normal operation a circuit is
exercised only for a finite number of clock cycles. Overall,
BMC and BSEC are popular techniques employed during
design verification [1] [18].

In BMC and BSEC, sequential don’t care conditions, or
simply Don’t Care States (DCS), are especially important as
they can provide valuable insight into the circuit’s behavior
over time [2] [4]. Obtaining don’t care states can be done in
several ways; while many DCS are inherently known to the
designers, others can be found through reachability analy-
sis [8] and through efficient approximation methods using
Binary Decision Diagrams (BDD) [5] [11] [13].

In this work, we propose an approach that uses DCS to
improve the SAT solver performance for BMC and BSEC
problems. First, DCS are found and extracted using exist-
ing BDD techniques [5]. Second, using our developed heuris-
tics, non beneficial DCS are identified and discarded. Given
the nature of the problem, these heuristics eliminate DCS
that overcrowd the original problem and those that do not
provide quick implications. In the third step, the remaining
DCS are replicated and applied to all time frames of the orig-
inal problem. Finally, the DCS enriched problem is solved
using a conventional SAT solver [12]. Since finding DCS
through efficient and approximate techniques can be fast,

our approach is viable for non-trivial SAT-based bounded
sequential problems. Extensive experiments on BMC and
BSEC problems demonstrate and confirm the effectiveness
of DCS.

This work is presented as follows. The next section pro-
vides an overview of the previous work in this field. Sec-
tion 3 contains background information and definitions used
throughout the paper. Section 4 proceeds to describe the
procedure of applying don’t care states to BMC and BSEC
problems, while section 5 describes the developed heuristics
in detail. The experiments are presented in section 6 and
section 7 concludes this paper.

2. PREVIOUSWORK

It is generally understood that BDD-based and SAT-based
methods are complementary in their approaches to verifica-
tion problems and much work has been done to combine
these two techniques [1] [2] [6]. More specific to our topic,
Cabodi et al [2] and Gupta et al [7] use BDDs to find ap-
proximate reachable and unreachable states to simplify the
task of SAT solvers on BMC problems.

Cabodi et al [2] focus on BMC problems that seek to an-
swer the question whether there exists a path from a source
state S to a target state T" of length k. Due to their prob-
lem statement, they are able to perform both approximate
forward and reverse traversal of the problem from state S
or T using BDDs. Their approach exploits the reachable
states that exist for each time frame and applies them to
the Conjunctive Normal Form (CNF) problem. They also
explore different methods of “dumping” or converting the
BDDs into CNF. Similarly, Gupta et al [7] use the reach-

able states in each time frame to reduce the search space.
If illegal state information is provided, they propose doing
BDD-based bounded pre-image computation to get sets of
unreachable states specific to each time frame. However, no
experimental evidence is provided in that paper to substan-
tiate the claims for the case of unreachable states. The above

approaches concentrate on sequences of reachable states for
BMC. In other words, they provide redundant information
at each step of the BMC problem to speed up the SAT solver.
Furthermore, both methods simply apply all the BDD in-
formation to the original problem without performing any
filtering. In contrast, our work focuses on a design’s gen-

eral don’t care states or unreachable states regardless of a
particular time frame. The advantage of this approach is
that the DCS information applies to all time frames as op-
posed to a specific time frame. Furthermore, not all DCS
are applied to the problem; we present two heuristics that
replicate useful DCS while eliminating DCS that might not
benefit the application. The proposed heuristics evaluate
the usefulness of the DCS in terms of their ability to pro-
duce implications without overcrowding the original prob-
lem. Finally, our method applies to both problems with
initial state constraints such as BMC and those without ini-
tial state constraints such as BSEC. We demonstrate that
in BMC problems the DCS provide redundant information
while in BSEC problems, they provide previously unavail-
able information. The details of our approach are outlined
in section 4 and 5.

3. BACKGROUND
3.1 Notation

In this paper, we consider synchronous sequential circuits
and refer to the memory elements as latch variables or state
variables. We translate the combinational part of a circuit
into its respective CNF as outlined in [9]. A SAT solver
refers to a DPLL-based search algorithm based on the tech-
niques of [3] and [16]. In this work, the same names are used
for circuit lines and SAT variables alike. Clause size denotes
the number of literals in a clause.

A literal is a Boolean variable or its complement. We refer
to a cube as a conjunction of literals [4]. We say that a cube
A covers another cube B, if the literals of A are a subset of
the input literals in B [4]. In other words, for every minterm
in B the same minterm exists in A.

Bk e

(b)

b° b b?
2

| al | a2
1 2
o 0
(©

Figure 1: The ILA model for Sequential Designs

Typically, in bounded sequential problems, the behavior
of the circuit is modeled using the Iterative Logic Array
(ILA) representation (also known as the time frame ezpan-
ston model) [8]. The ILA is created by unfolding or repli-
cating the Finite State Machine (FSM) k times. In this
represenation, each instance of the FSM in the ILA is called
a time frame. We use k throughout this paper to refer to
the number of times a circuit’s FSM is unfolded. For ex-
ample, consider the circuit in Figure 1 (a) and its transition
diagram depicted in (b). Here, the FSM is extracted and
unfolded twice (k = 2) resulting in the circuit in (c).

Through this paper, a variable v’ refers to the correspond-
ing variable v in the original circuit in time frame ¢. The
time frames in an ILA are linked together by connecting the
output of the latch in time frame i to the respective input of
the latch in time frame i + 1. Note that latch input at time
frame 1 represents the initial state condition while latch out-
put at the last time frame can be ignored/removed if it is
not a primary output.

3.2 Bounded Model Checking

In BMC, the problem is to verify that a given circuit cor-
rectly implements a set of properties for a finite number of
clock cycles k starting from some legal initial state [1]. This
problem can be formulated as a SAT problem by unfolding
the circuit for k£ time frames, generating a property circuitry

that verifies the correctness at each time frame, constraining
the initial state and converting the problem to CNF which
is given as input to the solver. Figure 2 illustrates a BMC
problem for k = 3 for the circuit in Figure 1. A SAT solver
can solve the problem returning the result SATISFIABLE if a
counter-example to the property is found; otherwise, it can-
not find such an assignment and returns UNSATISFIABLE.

Initial State Constraints
7 % 0 % 1 a(z) 2
bo Ao be Ao b? Ao

oo

Property Circuitry

Figure 2: BMC problem structure

3.3 Bounded Sequential Equivalence Checking

In BSEC, the problem is to verify that two designs imple-
ment the same function within a bound of a certain number
of clock cycles k [18]. This method of sequential equiva-
lence is especially effective when verifying retimed circuits
or pipelined circuits. The problem can be formulated by
unfolding the two designs for k time frames, tying all pri-
mary inputs together, and generating a miter circuit to check
the equivalence of the primary outputs. Figure 3 illustrates
a BSEC problem for £ = 3 time frames for the circuit in
Figure 1. An important difference between the BMC and
BSEC problems is that there are no initial state constraints
for BSEC.

0

ESI |

{ |
a
by

Figure 3: Miter construction for SEC problem

%

S

>
o O
=
>
o r
=
>
O N
Aoca pz,

>
=8
>
oL,
>
5&%

3.4 Don't Care States

Let the set of states that are reachable in a FSM be de-
noted as S, [8]. Intuitively, these are all the states that are
visited by traversing the FSM starting from a set of initial
states So. The unreachable states, S, are all of the states
not in S, [8]. Reachability analysis can yield the reachable
states of a design. Reachability analysis is a computation-
ally intensive task for large circuits and many approximation
methods exist which can efficiently provide subsets of S, or
Sw [5] [11] [13]. In this paper, the terms unreachable states
and don’t care states are used interchangeably. Note that

finding the DCS is not the topic of this work but we focus
on filtering and applying beneficial sets of DCS to improve
the performance of SAT in BMC and BSEC.

4. UTILIZING DON'T CARE STATES

In sequential circuits the set of unreachable states can of-
ten take a large fraction of the total state space [13]. There-
fore, pruning the search space associated with the don’t care
states is expected to reduce the overall search space dur-
ing BMC and BSEC. More specific to SAT solvers, adding
clauses to encode the DCS will generate more implications
and decrease the number of backtracks. Next, we discuss
the details of encoding don’t care states as CNF clauses.

We refer to a clause encoding don’t care states as a DCS
clause. To prune the search space associated with DCS; sets
of don’t care states (given in terms of functions or cubes) are
converted into CNF. Each variable appearing in the don’t
care states function is mapped to a literal taking the comple-
mented phase of the variable value. For example, to prevent
the combination {a = 1,b = 1} from occurring, the clause
(@ 4+ b) is generated. In this case, as soon as variable a (b)
is assigned a 1, either an implication results which assigns
b=0 (a =0), or a conflict is detected.

Given the repetitive nature of bounded sequential prob-
lems, each don’t care states cube can be reused for all time
frames. For example, if {a = 1,b = 0,c = 1} is a don’t care
states cube, then the following don’t care states clauses can
be applied to the problem to prevent this combination from
occurring in all k time frames:

(@ +b° +P) - (@l +b" +cl)- ...
(aF=1 4071 4 k1) - (aF +b* 4 cF)

As discussed earlier, BMC and BSEC problems are quite
similar in structure. However, the fact that BMC problems
often constrain their initial state while BSEC problems do
not, is very important for the application of DCS. In BMC,
since the initial state is applied to the problem, latch vari-
ables in all time frames are implicitly constrained to the
reachable states via the circuit structure. In other words,
when a SAT solver returns a SATISFIABLE result for BMC
problems, all latch variables inherently get assigned a reach-
able state value. As a result, the don’t care state clauses act
as redundant clauses for BMC similar to conflict clauses.
Intuitively, don’t care states provide the SAT solver “short
cuts” to find a solution quickly.

In BSEC, where the initial state variables are not con-
strained, latch variables can take on any value, even those
corresponding to illegal or unreachable states. As a result, in
BSEC, the DCS information is not redundant and provides
previously unavailable insight into the problem. The effect
of the don’t care states for BSEC problems is the pruning of
large sections of the search space. In the next section we dis-
cuss two heuristics which are specifically tuned to improve
the performance of BMC and BSEC problems.

5. PERFORMANCE HEURISTICS

Enriching the CNF with the don’t care states clauses re-
duces the problem search space. However, it is well known
that adding extra clauses (redundant or not) to problems
does not necessarily improve the SAT solver performance [6]
[12]. Here, we discuss a set of heuristics we use to minimize

the overhead generated by the DCS clauses while maximiz-
ing their ability to generate implications.

Typically, adding extra clauses to the SAT solver degrades
the performance due to at least one of the following reasons.

1. The added clause information is available directly in
another clause already present in the CNF. In this case,
the performance is reduced because the new clause
does not provide any new information while adding
maintenance overhead. For example, adding clause
(a + b+ ¢) if clause (a + b) is already in the CNF
does not provide any benefits because the correspond-
ing cube is covered by that of (a + b).

2. The added clause contains a relatively large number of
literals. In DPLL-based SAT solvers [3], clauses with
only one unassigned literal imply values on variables.
Broadly speaking, implied values from clauses are de-
sirable [12] as they generate more implications. When
a clause contains many literals, the probability of this
clause implying values early in the solving process de-
creases. This is because many assignments must be
made before all but one literal remains unassigned.
Therefore, the benefits of clauses with many literals
are either not noticed, or noticed very late in the SAT
solving process.

3. Too many clauses are added to the problem. When,
a relatively large number of clauses are added to the
problem CNF, the overhead associated with the book
keeping of clauses/literals can exceed the benefits.

The heuristics discussed here overcome the three degra-
dation concerns described above. The first concern is ad-
dressed by first compacting all don’t care states cubes using
BDDs [8]. Since the DCS information is encoded in BDDs
already, compacting them and extracting the DCS cubes is
a trivial task. This step ensures that all don’t care state
clauses provide unique information to the SAT solver. Fur-
thermore, by combining the cubes (functions), we in turn
create clauses with smaller number of literals. From this
point forward, we deal with the DCS cubes explicitly as op-
posed to symbolically within BDDs. The second and third
concerns are addressed by the following filtering heuristics.

For BMC problems, each added clause corresponding to
a DCS acts similar to a conflict clause. Since these clauses
provide redundant information, they are most useful when
containing a relatively small number of literals. As a result,
we filter out and discard any DCS cubes with more than ¢
literals. Experiments suggest that ¢ = 5 is most beneficial.
After the filtering process, any don’t care states remaining
are replicated k times and applied to all k£ time frames.

For BSEC problems, the don’t care states information is
not redundant and can be beneficial even if they contain
many literals. Here, the primary focus is to add as many
clauses as possible without over crowding the problem CNF.
To do this, we develop a heuristic which ensures that the
number of don’t care state clauses does not exceed those of
the original problem statement. Algorithm 1 describes the
details of this procedure.

The filtering process in this algorithm, first sorts all the
don’t care states cubes in ascending size. Next, starting
with the smallest-size cubes, each cube is converted to a
CNF clause, replicated for each time frame, and added to

Algorithm 1 Filter and apply don’t care states for BSEC

sort cubes in ascending size
#cubes_added = 0
for all cubes starting with smallest do
if #cubes_added < #gates_in_circuit then
for each time frame do
get time frame latch variables
convert cube to CNF clause
add clause to CNF problem
#cubes_added = #cubes_added + 1
end for
else
break loop
end if
end for

the CNF problem. This process continues until the number
of cubes added is greater than the number of total gates
in the unfolded circuit. It should be noted that the time
complexity of the filtering heuristic is O(n - k), where n is
the number of cubes and k is the number of time frames.
However, since k is a constant, the filtering process becomes
a linear function of n and the sorting function dominates
the overall procedure. As demonstrated in the experiments
section, these heuristics are cost efficient and result in sub-
stantial performance improvements.

6. EXPERIMENTS

In this section we present results confirming the effective-
ness of don’t care states in bounded sequential problems.
The experiments are conducted on a Sun Blade 100 with a
550 MHz Sparc processor and 1.6GB of memory. The BMC
and BSEC platforms are built on top of the SAT solver
zChaff [12]. The circuits from the ISCAS’89 benchmark
suite are used for both BMC and BSEC problems. A time
out of 12000 seconds is used for all experiments. The don’t

cares states are obtained using the BDD package CUDD
[15]. For all benchmarks smaller than s9234 the complete
unreachable states are found. For the larger benchmarks a
simple approximation technique that uses state abstraction
similar to the one in [5] is employed. Here, only a subset of
the state variables are considered during reachability analy-
sis. The result is a superset of the reachable states yielding
a subset of the unreachable states. For all benchmark cir-
cuits not appearing in our experiments, such as s5378 and
$35932, our reachability methods did not return any don’t
care states.

Table 1 provides some information about the benchmarks
and and their corresponding DCS. The name of the bench-
marks appear in column one, while column two and three
contain the number of gates and latches in each benchmark,
respectively. Column four shows the number of the DCS
cubes while column five presents the time required to find
them using approximate or exact techniques. It should be
noted that finding sets of DCS often requires relatively lit-
tle time when compared to the time required for BMC or
BSEC which are procedures repeated multiple times in the
digital VLSI design cycle. This makes the proposed methods
practically viable and time efficient.

ckt # org # #DCS DCS
name | gates | latches | cubes | CPU time

5298 5 14 187 0.07
$382 99 21 165 1.15
5386 118 6 10 0.01
s344 101 15 1544 11.34
5349 104 15 1705 18.6
s510 179 6 3 0.12

5526 141 21 4584 24.00
$526n 140 21 4584 24.08

5641 107 19 293 1.23
s713 139 19 293 1.22
5820 256 5 5 0.03
5832 262 5 5 0.02
51196 388 18 3702 1.29
51238 490 18 3414 1.19
51488 550 6 7 0.05
51494 558 6 7 0.04
s9234 | 2027 228 7 2.39
s13207 | 2573 669 10 1.49
s15850 | 3448 597 20 1.16
s38417 | 8709 1636 1253 299.07
538584 | 11448 | 1452 8 7.79

Table 1: Circuit and DCS properties

6.1 BMC results

We first present the experiments for the BMC problems.
Here, we use BMC to verify safety properties, where a given
property is checked to hold in every time frame. Each prop-
erty consists of arbitrary assignments to the state variables.
In other words, we are verifying that some arbitrary state
can be present in each time frame. Each problem is run
10 times with different random assignments to ensure the
fair evaluation of the technique. For example, in one run,
the state assignment {a=1, b=0, c=1} is checked to hold in
all time frames while in the next run the assignment {a=0,
b=0, c=0} could be checked.

The results of the BMC problems are presented in Table 2.
Column one lists the names of the circuits and column two
lists the bound k over which the properties are verified. The
solve times for the basic BMC problem are presented in col-
umn three, while the solve times with DCS heuristic and
the corresponding speed ups are presented in columns four
and five respectively. These experiments demonstrate that
performance improves and it never degrades. One bench-
mark that stands out is s820, where a performance improve-
ment of over 600 times is observed. In this particular case,
the DCS clauses directly guide the SAT solver to a solution
which takes approximately 0.1s for each experiment. On the
other hand the basic BMC technique without DCS informa-
tion, varies in solve time from 5s to 108s. By ignoring circuit
$820, the average speed up for BMC problems with the DCS
heuristic is 1.51 times; however, when it is included, the im-
provement surpasses 32 times.

6.2 BSEC results

For BSEC problems, each benchmark circuit is generated
from two identical circuits over k time frames as described
in section 3.3. The bound k& = 10 is used for all but a few

ckt # time basic DCS with | speed
name frames BMC heuristic up
CPU (sec) | CPU (sec)
$298 100 0.82 0.79 1.04
s344 100 3.84 1.59 2.42
$349 100 3.86 1.64 2.35
$382 100 8.19 6.97 1.18
$386 100 1.35 1.34 1.01
$510 100 2.08 2.07 1.00
$526 100 6.62 2.32 2.85
$H261 100 2.62 1.10 2.38
s641 100 2.47 2.40 1.03
s713 100 6.27 6.27 1.00
$820 100 708.36 1.10 643.96
$832 100 127.56 33.3 3.83
1196 100 5.14 5.05 1.02
s1238 100 4.89 4.86 1.01
$1488 50 804.74 656.56 1.23
$1494 50 687.04 575.00 1.20
59234 50 147.93 146.10 1.01
$13207 30 15.67 15.49 1.01
$15850 30 140.78 86.05 1.64
$38417 25 32.88 32.45 1.01
$38584 25 30.84 30.6 1.01
Average 32.10
Average* 1.51

* . average taken without s820

Table 2: DCS applied to BMC problems

problems where memory or time limits were exceeded. This
construction results in hard SAT instances where the entire
search space must be considered.

Table 3 presents the results of the BSEC problems. The
names of the circuits are listed in column one while the times
to solve the basic BSEC problems are listed in column two.
To compare the benefits of the DCS heuristics for BSEC,
column three and four contain the times and speed ups re-
spectively of adding the DCS to the initial time frame only.
Column five and six contain the solve times and speed ups
with the DCS heuristic for BSEC problems. We notice, that
no benchmarks demonstrated a reduction in performance
due to the DCS heuristics similar to the BMC problems.
For instance, for benchmark s344, by applying the DCS to
the initial time frame we see a performance improvement of
0.60 times (reduction in performance); however, when apply-
ing the BSEC heuristic to the DCS, we notice an improved
performance of 1.78 times. The results of Table 3 show a
substantial average performance improvement of 3.96 times
is achieved.

To provide more insight into the effect of the DCS for
bounded sequential problems, Figure 4 plots the sum of solve
times for all benchmarks for the BSEC problems against the
bound k. In this figure, the dark bars represent the time
required to solve the problems without any DCS knowl-
edge, while the lighter ones represent the solve time with
the DCS heuristic for BSEC. Notice that as the bound size
k increases, the performance gap between the two meth-
ods widens. This behavior illustrates that the significance
of the DCS becomes more pronounced and important for
larger (“harder”) problems.

ckt basic 1 time speed || with DCS | speed
name BSEC frame DCS | up heuristic up
CPU (sec) CPU (sec)
$298 10.76 4.69 2.29 5.53 1.95
$382 112.17 123.45 0.91 94.08 1.19
$386 5.61 5.69 0.99 4.47 1.26
s344 18.03 30.13 0.60 10.14 1.78
$349 31.32 47.03 0.67 23.41 1.34
s510 9.14 5.21 1.75 5.72 1.60
$526 1818.16 738.14 2.46 1020.18 1.78
s526n 1127.64 254.48 4.43 722.04 1.56
s641 2448.10 1241.81 1.97 152.11 16.09
s713 1596.24 263.82 6.05 108.18 14.76
$820 568.16 631.38 0.90 478.67 1.19
$832 569.35 670.80 0.85 511.09 1.11
s1196 41.59 43.21 0.96 34.31 1.21
s1238 39.14 36.9 1.06 32.3 1.15
$1488 142.06 128.31 1.11 122.37 1.16
$1494 201.49 128.53 1.57 91.12 1.50
$9234 64.72 75.04 0.86 62.84 1.03
s13207 356.87 302.45 1.18 292.02 1.22
s15850 10318.11 463.62 22.75 411.75 25.06
$38417 timeout timeout - timeout -
$38584 3355.07 3234.42 1.04 2864.91 1.17
[Average || H | 2.72 H | 3.96 ‘

Table 3: DCS applied to BSEC problems

7. CONCLUSION

In this work, we proposed a method of using don’t care
states to improve the performance of SAT solvers on bounded
sequential problems. We used fast BDD techniques to ex-
tract the DCS cubes. We developed two robust heuristics
which discard less beneficial DCS cubes by evaluating their
ability to produce implications in SAT problems that out-
weigh the overhead. Due to the repetitive nature of the
problems, the remaining DCS are applied to every time
frame thus increasing the influence of the DCS. As a re-
sult, the DCS prune sections of the search space thus in-
creasing the SAT solver efficiency. The benefits of DCS for
both BMC and BSEC problems was demonstrated through
experiments.

g

I without DCS
[JwithDCS

g

Total solve time (sec)
= N
g 8

2 3 4 5 6 7
Number of time frames k

Figure 4: Solve time vs. number of time frames

8. REFERENCES

[1] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman and
Y. Zhu, “Bounded Model Checking”, in Vol. 58
Advances in Computer, Academic Press (pre-print),
2003.

[2] G. Cabodi, S. Nocco, S. Quer, “Improving SAT-Based
Bounded Model Checking by Means of BDD-Based
Approximate Traversals”, in Proc. of IEEE DATE,
pp. 898-203, 2003.

[3] M. Davis, G. Longemann and D. Loveland, “Machine
Program for Theorem Proving”, in Comm. of ACM,
Vol. 5, pp. 394-397, 1962.

[4] S. Devadas, A. Ghosh, K. Keutzer, Logic Synthesis,
Chap.3 and Chap. 7, McGraw-Hill, 1994.

[5] S.G. Govindaraju, D.L. Dill; A.J. Hu and M.A.
Horowitz, “Approximate Reachability with BDDs
using Overlapping Projections”, in Proc. of IEEE
DAC, pp. 451-456, 1998.

[6] A. Gupta, M. Ganai, C. Wang, Z. Yang and P. Ashar,
“Learning from BDDs in SAT-based Bounded Model
Checking”, Proc. of IEEE DAC, pp. 824-829, 2003.

[7] A. Gupta, M. Ganai, C. Wang, Z. Yang, P. Ashar,
“Abstraction and BDDs Complement SAT-Based
BMC in DiVer”, Proc. of CAV, pp. 206-209, 2003.

[8] G. Hachtel and F. Somenazi, Logic Synthesis and
Verification Algorithms, Chap. 8, Kluwer Academic
Publishers, 2000.

[9] T. Larrabee, “Test Pattern Generation Using Boolean

Satisfiability,” in IEEE Trans. on CAD, vol. 11,

no. 1, pp. 4-15, 1992.

F. Lu, L.-C. Wang, K.-T. Cheng and R. Y.-Y. Huang,

“A Circuit SAT Solver with Signal Correlation Guided

Learning,” in Proc. of IEEE DATE, pp. 892-897, 2003.

I. Moon, J. Jang, D. Hachtel, F. Somenzi, J. Yan and

C. Pixely, “Approximate Reachability Don’t Cares for

CTL Model Checking”, in Proc. of IEEE ICCAD, pp.

351-358, 1998.

M.H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang

and S. Malik, “Chaff: Engineering an Efficient SAT

Solver,” in Proc. of IEEE DAC, pp. 530-535, 2001.

K. Ravi, K. McMillan, T. Shiple and F. Somenzi,

“Approximation and Decomposition of Binary

Decision Diagrams”, in Proc. of IEEE DAC, pp.

445-450, 1998.

S. Safarpour, A. Veneris, R. Drechsler and J. Lee,

“Managing Don’t Cares in Boolean Satisfiability”, in

Proc. of IEEE DATE, pp. 260-265, 2004.

F. Somenzi, “CUDD: CU decision diagram package”,

Public software, Colorado University, Boulder, 1997.

J.P.M.-Silva and K. A. Sakallah, “GRASP — A Search

Algorithm for Propositional Satisfiability”, in IEEE

Trans. on Computers, vol. 48, no. 5, pp. 506-521,

May 1999.

J.P.M. Silva and T. Glass, “Combinational

Equivalence Checking using Satisfiability and

Recursive Learning”, Proc. of IEEE DATE, pp.

145-149, 1999.

D. Stoffel, M. Wedler P. Warkentin and W. Kunz,

“Structural FSM Traversal”, in IEEE Trans. on CAD,

vol. 23, no. 5, pp. 598-619, 2004.

(10]

(11]

