
VLSI CAD Tool Protection by Birthmarking Design
Solutions

Lin Yuan, Gang Qu and Ankur Srivastava
Electrical and Computer Engineering Department and Institute for Advanced Computer Studies

University of Maryland, College Park, MD, 20742 USA

{yuanl, gangqu, ankurs}@eng.umd.edu

Abstract
Many techniques have been proposed in the past for the protection
of VLSI design IPs (intellectual property). CAD tools and algo-
rithms are intensively used in all phases of modern VLSI designs;
however, little has been done to protect them. Basically, given
a problem P and a solution S , we want to be able to determine
whether S is obtained by a particular tool or algorithm.

We propose two techniques that intentionally leave some trace or
birthmark, which refers to certain easy detectable properties, in the
design solutions to facilitate CAD tool tracing and protection. The
pre-processing technique provides the ideal protection at the cost of
losing control of solution’s quality. The post-processing technique
balances the level of protection and design quality.

We conduct a case study on how to protect a timing-driven gate
duplication algorithm. Experimental results on a large set of MCNC
benchmarks confirm that the pre-processing technique results in
a significant reduction (about 48%) of the optimization power of
the tool, while the post-processing technique has almost no penalty
(less than 2%) on the tool’s performance.

Categories and Subject Descriptors: K.5.1 [Legal Aspects of
Computing]: Hardware/Software Protection.

General Terms: Legal Aspects, Security, Algorithms.

Keywords: CAD, protection, birthmarking, intellectual property.

1. INTRODUCTION
With the recent development of web-based CAD design environ-

ment and the intellectual property (IP) based reuse design method,
the need for protocols to protect design IPs and design tools is soar-
ing. Most of the existing IP protection standards target the pro-
tection of designs in the forms of GDSII files, netlist, or FPGA
configuration bitstreams [5]. They are not developed to protect
CAD tools and algorithms. Currently, traditional software protec-
tion mechanisms such as licensing agreements and encryption are
used instead.

However, CAD tools and algorithms are obviously different from
traditional software, their piracy takes different forms and thus have
to be protected by different means. The value of CAD tools are
materialized inside the designs synthesized or solved by them. Ev-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’05, April 17–19, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

idently, while most commonly found software piracy is illegal re-
distribution [2, 8], recent legal disputes involve CAD tools and al-
gorithms are mainly on the misuse. Furthermore, the collaborated
web-based design frameworks [3] make CAD tools more vulnera-
ble than ever to unauthorized misuse.

Neither licensing agreement nor encryption is capable to detect
the misuse of CAD tools. That is, a dishonest designer illegally
uses a tool or an algorithm to generate an IP but claims that other
tools or algorithms have been used. Given the important role that
CAD tools and algorithms play in the EDA society, particularly
in the IP-based design era and the collaborated web-based design
environment, the need for effective CAD tools and algorithms pro-
tection becomes obvious and urgent.

Design Protection vs. Design Tool Protection
It is important to clarify the difference between protecting de-

signs and protecting design tools. The goal of design protection is
to provide a mechanism to verify, with certain degree of confidence,
whether a (suspicious) piece of IP is a duplicate (either partial or
identical) of another IP or contains other IPs. In design tool protec-
tion, the goal is to enable the tool and software developers to trace
the usage of their licensed or sold product. In another word, we
seek to answer the question that whether a particular CAD tool or
algorithm has been used during the design and implementation of
the suspicious IP.

Consider the scenario that engineer Alice uses Bob’s placement-
and-rout tool in her design. To protect the design itself, Alice
can embed her watermark into the design. This watermark can be
traced later on and enables her to establish her authorship of the
design. However, if Alice illegally used Bob’s tool (e.g, she did
not renew the license agreement or she got the copy of the tool
from her friend or the company that she used to work for) in her
design, Bob’s copyright of the tool would be violated. The goal
of design tool protection is to help Bob efficiently and accurately
detect whether his tool has been misused.

Existing Protection Approaches
Most CAD tools and algorithms are implemented and distributed

as software programs. Typical source code protection methods in-
clude watermarking, tamper proofing, and obfuscating [2]. They
will be helpful in proving the authorship on the software but cannot
detect the misuse of the CAD tools and algorithms.

In the constraint-based watermarking mechanism [5], designers
embed digital signatures or other traceable marks into IPs, as ad-
ditional design constraints during the design and implementation
phases. The watermark can be retrieved, if necessary, to help de-
signers establishing their authorship or to trace the source of theft,
but they do not help to verify whether a particular design tool has
been used to create the IP.

Forensic engineering techniques proposed by Kirovski et al. en-

341

able the identification of solutions generated by strategically dif-
ferent tools and algorithms [4]. They first collect statistical data
from the solutions generated by a pool of algorithms. They then
study certain problem-dependent properties of the solutions to put
the pool of algorithms into clusters. To detect which algorithm has
been applied to obtain a given solution, they simply check the given
solution for the properties that the algorithm clustering has been
performed and claim that the solution is obtained by the algorithm
that has the best fit.

The forensic engineering technique has several limitations. First,
it can only used to distinguish strategically different algorithms.
Because strategically similar algorithms will most likely find solu-
tions with similar property, therefore clustering will not be able to
separate these algorithms. Second, it requires a pool of candidate
algorithms, a large number of problem instances, and the com-
puting resource to run each algorithm on each problem instance.
Moreover, it is non-trivial to put algorithms into clusters based on
the characterization of solutions. If the solution’s properties are not
selected properly, the clustering may not be effective and could be
very misleading.

Problem, Objectives, and Contributions
In this paper, we propose protection techniques to address the

following problem: Given a (design, synthesis, or general) problem
P and a solution S , how to determine whether S is obtained by a
particular (design, synthesis) tool or algorithm.

An effective CAD tool and algorithm protection technique must
be able to 1) identify with high accuracy that whether the given
solution is generated by the target tool and algorithm; 2) retain the
performance (e.g., CPU and memory requirements) of the tool and
algorithm as well as the quality of the solutions it provides; 3) be
robust against attempts to remove the protection from the tool and
algorithm or from the solutions obtained by them.

We first demonstrate that, although it is possible to apply the
same constraint-based watermarking method [5] to protect CAD
tools and algorithms, one cannot guarantee the quality of the solu-
tion provided by such “watermarked” tools and algorithms. This
will have great impact on the performance and therefore the mar-
ket value of the tool. Furthermore, this method cannot be used to
protect tools and algorithms that are already in use. We then pro-
pose a new technique that can add protection to both existing and
new CAD tools and algorithms while maintaining the quality of the
solution.

2. GENERIC APPROACH FOR TOOL AND
ALGORITHM PROTECTION

CAD tools and algorithms usually leave plenty of traces in their
design solutions. For example, a graph coloring algorithm (such as
greedy approaches) may have very unbalanced independent sets;
and a SAT solver may prefer to assign more true values than false
to variables. Such trace reflects the strategies of the tools and algo-
rithms and will be inherent in any design solutions they find.

Our proposed birthmarking approach leverage this property and
intentionally leave some traces in the design and implementation of
the tools/algorithms, we call “birthmarks”. Birthmark can be cre-
ated either before or after the design solution is obtained, which we
refer to as pre-processing and post-processing approaches respec-
tively. The birthmarking technique has the following advantages:

• Low detection cost: “birthmark” is implemented as a certain prop-
erty, so we only need to detect the existence of such property in the
design solution. There is no need to conduct any of the expensive
operation required by the forensic engineering method.

• Low implementation cost: we suggest to create the birthmark ei-
ther before or after the design solution is obtained as a pre- or post-

processing. This avoids the intrusion to the original CAD tool and
algorithm.

• Good applicability: birthmarking approach can be used to protect
both new and existing CAD tools. It can also be used to protect
different implementation of the same algorithm, which is impossible
for any known methods.

• Compatibility with watermarking: both the birthmarking and water-
marking techniques enforce certain structures into the design solu-
tion for protection of different objectives. The proposed birthmark-
ing approach can be combined with existing watermarking tech-
niques.

• Control of solution’s quality: the proposed post-processing approach
maintains the high quality solution generated by the protected CAD
tools and algorithms.

2.1 Pre-processing Approach
The most straightforward, and yet, arguably the most secure way

to protect a tool or an algorithm is to leave trace in its strategical ap-
proach during the tool development phase. Tool developers know
the implementation details of the tool and algorithm better than
anyone else. This gives them advantages in embedding information
(trace, birthmark) into the tool that may not be easily discovered by
others. The constraint-based watermarking technique is applicable
in this case. Specifically, a large part of CAD tools are heuristic
algorithms for NP-hard problems. These heuristics need to make
many (local) decisions to reach a good solution. Some of these lo-
cal decision makings may have very little impact in the quality of
the solution. Therefore, one can use additional constraints to force
a decision, or subtly change the objective functions to guide the
heuristic to solutions with special structures.

Considering a graph related problem, when there is a tie in se-
lecting a vertex, instead of breaking the tie randomly as most of
the algorithms do, one can embed one bit information by choos-
ing the vertex with smaller index to embed a bit ‘0’ and choosing
the one with higher index for a bit ‘1’. This leaves a trace in the
tool that will assign a birthmark to each solution obtained from the
tool. The birthmark is a special structure in the solution that indi-
cates the underlying algorithm being used to obtain the solution. It
comes from, in this example, the tie breaking policy.

We call this pre-processing protection approach because the trace
is left in the design solution before or during its generation. This
approach is easy to implement during the tool/algorithm develop-
ment phase where there are normally numerous choices. It will
be secure and robust against all kinds of attacks; without the full
knowledge (e.g., understanding the source code line-by-line) of the
tool or the algorithm, it will be difficult to distinguish whether a de-
cision is made based on the strategy of the tool/algorithm or on the
embedded information. As usual, this information is encrypted us-
ing the developer’s key. Therefore, even if an attacker manages to
locate all or part of the message, it appears to be a random sequence
without the developer’s key.

However, there are two problems with this approach. First, the
impact of an additional constraint to the quality of the solution is
unpredictable due to the complexity of the problem. Thus the de-
sign solution’s quality may be out of control. This could be fatal in
most cases in the highly competitive CAD tool industry. Second, it
may not be clear how a piece of constraint will affect the solution’s
structure and makes birthmark detection a challenging problem.

2.2 Post-processing Approach
In the post-processing approach, the protected CAD tool or al-

gorithm is developed in two steps and it will generate the birth-
marked solutions internally in two phases. First, we develop the
tool or algorithm to optimize the solution’s quality. Second, we

342

modify the developed tool or algorithm to add a birthmark to the
solution. This separation of tool development and birthmark gener-
ation solves both problems associated with the pre-processing ap-
proach. We do not require the full knowledge of the tool or al-
gorithm to generate the birthmark. Therefore, second step can be
applied to protect existing CAD tools and algorithms.

In the first step, we will be able to obtain a high quality solution,
which we can use as the guideline to balance the quality of the
design solution and the protection level of the design tool. Specif-
ically, we can identify places in this solution to hide information
without causing large degradation of the solution’s quality. Note
that this cannot be achieved by the pre-processing approach be-
cause we do not know the best quality of a solution that the original
tool can provide. In the second step, we can birthmark the solu-
tion by manipulating its structure such that the quality of solution
is minimally affected. Such changes in the solution property will
be much easier to control and detect than those imposed by the pre-
processing approach.

The tool protected by post-processing approach reports only the
birthmarked solution without releasing any information about the
solution internally generated in the first step. From this reported
solution, one can detect the birthmark and thus identify whether
a given tool or algorithm has been used to generate this solution.
Unlike the pre-processing approach, robustness becomes the key
concern for the post-processing approach. Attacker may massage,
tweak, or conduct other local changes to the birthmarked design
solution in the attempt to remove or damage the birthmark. How-
ever, carefully designed post-processing technique such as spread-
ing small “birthmarks” all over the design can reduce, if not com-
pletely eliminate, the threat from this attack.

3. PROTECTING A GATE DUPLICATION
ALGORITHM

In this section, we illustrate the proposed CAD tool and algo-
rithm protection approach by developing pre- and post-processing
techniques to protect a timing driven gate duplication algorithm [7].

Given a combinational circuit, a gate duplication problem is to
find a gates duplication strategy such that the overall circuit delay
is minimized. Recently, Srivastava et al. have shown this problem
to be NP-Complete and proposed an algorithm DUP EPSILON in
the post-technology mapping phase [7]. Their algorithm first tra-
verses the network from primary outputs (PO) to primary inputs
(PI) in topologically sorted order, evaluating the following pair at
the input pins of each gate: the required times at the input pin if the
gate is duplicated; and the ones if the gate is not duplicated. Then
the algorithm traverses the network from PI to PO in topological
order deciding which gate(s) to be duplicated. The last and final
network traversal goes from PO to PI again in which the gates are
physically duplicated. To mitigate the area increase due to the du-
plicated gates, in DUP EPSILON, only gates on non-critical paths
are to be considered for duplication. For more details of the algo-
rithm, please refer to paper [7].

3.1 Protection Methods
We incorporate our protection schemes with the original gate du-

plication algorithm such that for a given gate-level circuit, we will
be able to tell whether the gate duplication algorithm has been used
to optimize the circuit delay or not.

We first pick a message in plain text and encrypt it into a 128-bit
binary sequence. We then convert the sequence into a set of con-
straints that can be embedded into the algorithm. In pre-processing
approach, we will add those additional constraints to influence the
strategical decision in the algorithm. For every gate in the network,

the first decision to be made is whether it should be duplicated or
not. If this gate were duplicated, the next decision is how to par-
tition its fanouts. Since only critical gates are considered for du-
plication, we use the critical gates with more than three fanouts as
candidates for embedding. We choose a gate according to the first
k bits in the signature (k is the base-2 logarithm of the number of
candidate gates) , and keep a record of this gate’s ID for detection.
We then use the next two bits in signature to decide whether or not
to duplicate this gate and if duplicate, how to partition its fanouts.
For example, we use bit ’0’ to decide to duplicate the gate; and bit
’1’ to not to duplicate it. If a gate is duplicated, we use bit ’0’ to
enforce that there must be a balanced partition on fanouts of this
gate, and bit ’1’ to enforce a staggered partition. We repeat this
procedure until all the signature bits have been resolved and trans-
lated into constraints. Note that the selected gates are not physically
duplicated, instead these constraints restrict the freedom of how to
duplicate the gates in the gate duplication algorithm. We refer to
this modified algorithm as DUP PREWM.

The post-processing protection approach, DUP POSTWM, can
be described as follows: we first obtain a temporary gate duplica-
tion solution by applying DUP EPSILON algorithm to the circuit
for optimization. This gives us a circuit with minimized delay. We
then modify this solution by duplicating gates off the critical paths.
This is guided by the signature binary sequence in a similar way as
in the DUP PREWM approach. The obtained new gate-level circuit
will be reported as the final timing-driven gate duplication solution.
Recall that DUP EPSILON only considers gates on critical path
for duplication because duplicating gates off critical path will less
likely help to reduce the circuit delay. DUP POSTWM duplicates
certain non-critical gates to create “birthmark” for the solution and
thus leaves trace for the gate duplication solution. Note that this
whole process is integrated with the original DUP EPSILON algo-
rithm. Since it is not trivial and desirable for tool users to under-
stand the source code of the tool line-by-line, the birthmark can be
safe.

3.2 Birthmark Detection and Security
Given a gate-level circuit, the detection process is as follows:

we topologically traverse the circuit from PO to PI, checking each
gate whose ID matches our record and see if it has been duplicated
and partitioned as the way as our pre- or post-processing protec-
tion algorithm does. If most of the gates match, we can claim that
the circuit has been optimized using our protected tool and algo-
rithm. In current integrated circuit designs, the number of gates are
usually very large ranging from a few thousands to millions. The
probability of a designer duplicating a single gate exactly as the
way we do is very small, which provides us with a strong proof of
the authorship.

There are two possible ways for an attacker to remove or corrupt
the embedded birthmark:

1) The attackers locate and merge the duplicated gates. This form
of attack is weak. First of all, it is not easy to identify the dupli-
cated gates; even if somehow the attacker finds all the duplicated
gates, he/she cannot tell which gate is duplicated by the birthmark
embedding part in the algorithm or by the normal routine. If he/she
just merge most of the duplicated gates, the delay saving achieved
by gate duplication algorithm would be greatly impaired.

2) The attackers randomly choose to duplicate some gates. In
this case, part of the birthmark will probably be tampered because
the attacker may change the fanout partition of certain gates. How-
ever, the remaining part can still be used to show the ownership by
approaches proposed in [1].

343

circuit orignal DUP EPSILON DUP PREWM improve DUP POSTWM improve
delay(ns) improve 64-bit 128-bit 256-bit 64-bit 128-bit 256-bit

c880 26.58 7.24% 5.39% 2.54% 6.24% 7.24% 7.24% 7.22%
apex6 13.69 5.48% 3.35% -1.14% 3.96% 5.48% 5.48% 4.50%
C5315 25.17 4.22% 3.26% 1.19% -1.83% 4.22% 4.22% 4.22%

x1 6.63 2.72% -1.53% 1.92% 0.78% 2.72% 2.72% 2.72%
x3 11.38 6.42% 5.74% 5.40% 2.21% 6.42% 6.42% 6.42%
i7 7.66 4.79% 2.36% -0.66% -0.34% 4.79% 4.79% 4.79%

des 18.41 5.92% 2.82% 4.70% 1.70% 5.92% 5.92% 5.92%
i10 39.42 8.91% 6.67% 2.23% 3.16% 8.91% 8.91% 8.73%
pair 21.08 6.91% 6.58% 4.97% 0.92% 6.91% 6.91% 6.48%
frg2 15.47 9.41% 8.65% 6.95% 6.38% 9.41% 9.41% 9.41%
ttt2 12.79 7.46% 7.46% 7.46% 7.46% 6.73% 7.46% 7.46%

f51m 18.89 4.50% 6.01% 4.49% 5.58% 4.50% 4.50% 4.50%
i9 13.55 0.75% -1.55% -2.00% -3.81% 0.75% 0.75% 0.75%
i8 12.85 5.01% 3.42% 1.47% 0.70% 5.01% 5.01% 5.01%
rot 16.11 4.80% 0.58% 2.09% -1.38% 4.80% 4.80% 4.51%

term1 9.65 4.47% 0.74% -1.85% -2.38% 4.15% 4.47% 4.47%
too large 11.55 5.44% 3.36% -1.16% 5.59% 5.44% 5.44% 5.44%

apex7 10.01 1.64% 1.66% 0.83% 1.66% 1.64% 1.64% 1.64%
alu2 21.05 4.49% 0.73% 1.52% 0.10% 3.86% 4.49% 4.49%
alu4 27.29 5.76% 4.32% 3.85% 1.44% 5.76% 5.30% 5.30%

average improve 5.32% 3.50% 2.24% 1.91% 5.23% 5.29% 5.20%

Table 1: Delay improvement achieved by original gate duplica-
tion algorithm, birthmarked preprocessing and postprocessing
algorithms with 64, 128 and 256 bits messages embedded re-
spectively.

4. EXPERIMENTAL RESULTS
We implement both the pre- and post-processing techniques to

protect the timing driven gate duplication algorithm DUP EPSILON.
The source code of DUP EPSILON is modified to embed birthmark
and are integrated in the SIS [6] environment. For each of the 20
MCNC benchmark circuits, we first optimize it via script.rugged
followed by technology mapping. We then optimize its delay by al-
gorithm DUP EPSILON and its protected versions DUP PREWM
and DUP POSTWM, respectively. An original message in plain
text has been hashed into 64-bit, 128-bit, and 256-bit signatures
and then embedded into the solution as birthmarks. We observe
that these three algorithms give different circuits and we are able to
recover the embedded signature bits successfully.

To measure the quality of the birthmarked solution obtained by
the protected algorithms, we report the delay improvements over
the original circuit achieved by the three algorithms in Table 1.
On average, DUP EPSILON gives 5.32% improvement. The pre-
processing approach DUP PREWM can only improve the delay by
3.5%(for 64-bit signature) to 1.91%(for 256-bit signature), depend-
ing heavily on the size of the signature. This implies that the capa-
bility of the gate duplication algorithm has been significantly weak-
ened. On the other hand, the post-processing DUP POSTWM ap-
proach can still maintain at least 5.2% delay improvement and it is
less dependent on the signature’s size. This shows that the capa-
bility of the algorithm has been preserved by the post-processing
approach. We also notice that for some circuits, i9 for example, the
pre-processing approach DUP PREWM finds solutions with lower
quality than the original circuit (the entries with negative delay im-
provement in the table). This is because that the pre-processing
approach embeds the birthmark by selecting certain gates for du-
plication and how to duplicate them. The longer is the signature,
the less freedom is left for the gate duplication algorithm to operate
for delay minimization.

Table 2 reports the circuit’s area increase caused by gate duplica-
tion. As reported in [7], gate duplication will increase the area by
8.1% on average. In DUP PREWM, the area penalty gets reduced
by up to 5.24% compared to the output of DUP EPSILON . This is
because that the birthmark embedding procedure will mark certain
gates, which would have been duplicated by the original algorithm,

circuit DUP EPSILON DUP PREWM area increase DUP POSTWM area increase
area 64-bit 128-bit 256-bit 64-bit 128-bit 256-bit

c880 545200 -1.02% -3.06% -0.26% 0.43% 1.62% 1.45%
apex6 923360 -3.62% -2.52% -4.22% 0.10% 0.60% 1.46%
c5315 2209568 -3.38% -3.99% -6.26% 0.06% 0.00% 0.36%

x1 396256 -7.26% -6.21% -5.39% 0.35% 0.82% 1.17%
x3 965584 -1.59% -1.92% -2.64% 0.10% 0.96% 1.49%
i7 806432 -2.88% -3.05% -1.21% 0.86% 0.35% 0.98%

des 4848800 -0.08% -2.00% -3.93% 0.02% 0.11% 0.38%
i10 3283264 -1.63% -3.52% -4.95% 0.03% 0.16% 0.54%
pair 2044384 -1.29% -3.59% -7.54% 0.05% 0.11% 0.59%
frg2 1099680 -0.93% -0.21% -0.76% 0.08% 0.59% 0.76%
ttt2 274224 0.00% 0.00% 0.00% 2.37% 2.03% 0.85%

f51m 198128 -8.90% -13.58% -11.24% 0.94% 0.47% 0.47%
i9 788336 -3.06% -3.65% -3.00% 0.47% 0.24% 0.35%
i8 1315440 -0.49% -3.03% -4.69% 0.00% 0.53% 0.92%
rot 1001312 -2.18% -5.93% -8.43% 0.28% 0.37% 1.53%

term1 325728 -13.53% -10.26% -8.83% 0.43% 0.00% 0.00%
too large 473280 -6.96% -4.71% -4.12% 0.69% 1.47% 2.55%

apex7 337328 -2.48% -6.88% -3.85% 1.24% 1.65% 2.34%
alu2 789728 -10.69% -11.05% -12.69% 0.59% 0.24% 0.76%
alu4 1342352 -2.63% -4.87% -10.85% 0.14% 0.76% 1.28%

average area increase -3.73% -4.70% -5.24% 0.46% 0.65% 1.01%

Table 2: Area variation in birthmarked gate duplication algo-
rithm

“not duplicable”. This reduces the number of duplicated gates and
therefore limits the area increase. The post-processing approach
DUP POSTWM will duplicate gates off critical path. Such gates
will not be considered for duplication by the original algorithm.
This results in area increase as shown in the last three columns of
Table 2.

5. CONCLUSION
In this paper, we explore the possibility of protecting tools and

algorithms directly during the design process. Pre-processing and
post-processing protection techniques are proposed. The former
embeds trace of the tool into the design solutions as their “birth-
mark” by constraining the tool development. High assurance is
achieved in this case, but the detectability of the “birthmark” is low
and the degradation of design quality could be high. The latter
finds a design solution with the best possible quality first. Then it
conducts an additional design step to “birthmarking” the design so-
lution by changing it locally without affecting the design quality. A
gate-level timing-driven gate duplication tool has been used as ex-
ample to illustrate our approach and extensive experimental results
have confirmed our conclusion.

6. REFERENCES
[1] E. Charbon. “Hierarchical Watermarking in IC Design”, CICC 98,

pp. 295-298.
[2] C.S. Collberg and C. Thomborson, ”Watermarking, tamper-proofing,

and obfuscation – tools for software protection”, IEEE Transactions
on Software Engineering, Vol. 8, 8, 2002.

[3] A. Fin and F. Fummi. “A Web-CAD Methodology for IP-Core
Analysis and Simulation”, DAC 00, pp. 597-600.

[4] D. Kirovski, D. Liu, J.L. Wong, and M. Potkonjak. “Forensic
Engineering Techniques for VLSI CAD Tools”, DAC 00, pp.
581-586.

[5] G. Qu and M. Potkonjak. Intellectual Property Protection in VLSI
Designs: Theory and Practice, Kluwer Academic Publishers, 2003.

[6] E. M. Sentovich et al., SIS: A System for Sequential Circuit
Synthesis, Memorandum No. UCB/ERL M92/41, Department of
EECS. UC Berkeley, May 1992.

[7] A. Srivastava, R. Kastner, C. Chen and M. Sarrafzadeh, “Timing
Driven Gate Duplication,” IEEE Transactions on Very Large Scale
Integrated Systems, Jan 2004

[8] http://eet.com/news/97/946news/evidence.html

344

