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Abstract

We present an algorithm for directed acyclic graphs that breaks through the O(n2)
barrier on the single-operation complexity of fully dynamic transitive closure, where
n is the number of edges in the graph. We can answer queries in O(nε) worst-case
time and perform updates in O(nω(1,ε,1)−ε + n1+ε) worst-case time, for any ε ∈ [0, 1],
where ω(1, ε, 1) is the exponent of the multiplication of an n×nε matrix by an nε×n

matrix. The current best bounds on ω(1, ε, 1) imply an O(n0.575) query time and an
O(n1.575) update time in the worst case. Our subquadratic algorithm is randomized,
and has one-sided error. As an application of this result, we show how to solve
single-source reachability in O(n1.575) time per update and constant time per query.
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1 Introduction

In this paper we present fully dynamic algorithms for maintaining information about reach-
ability in a directed acyclic graph. Throughout the paper, we denote by m and by n the
number of edges and vertices in the graph, respectively. A dynamic graph algorithm main-
tains a given property on a graph subject to dynamic changes, such as edge insertions and
edge deletions. We say that an algorithm is fully dynamic if it can handle both edge inser-
tions and edge deletions. A partially dynamic algorithm can handle either edge insertions
or edge deletions, but not both: we say that it is incremental if it supports insertions only,
and decremental if it supports deletions only.

In this paper we consider three variants of fully dynamic reachability problems, accord-
ing to the kind of queries supported. In the fully dynamic transitive closure problem we
wish to maintain a directed graph under an intermixed sequence of edge insertions, edge
deletions, and reachability queries of the form: “Is vertex y reachable from vertex x?” In
the fully dynamic single-source reachability problem we are given a source vertex s and
the query becomes: “Is vertex v reachable from source vertex s?” In the fully dynamic
st-reachability problem, we are given two specified vertices s and t, and the query becomes:
“Is vertex t reachable from vertex s?”

Research on dynamic reachability spans over two decades. Before describing the results
known, we list the bounds obtainable with simple-minded methods. If we do nothing during
each update, then we have to explore the whole graph in order to answer reachability
queries: this gives O(m + n) time per query and O(1) time per update in the worst case,
where n is the number of vertices and m is the number of edges in the graph. We note
that O(m + n) = O(n2) in the case of dense graphs.

On the other extreme, we could recompute the transitive closure from scratch after each
update; as this task can be accomplished via matrix multiplication [1, 15], this approach
yields O(1) time per query and O(nω) time per update in the worst case, where ω is the
best known exponent for matrix multiplication (currently ω < 2.376 [2]). For single-source
reachability or st-reachability, we can do better by just running a search starting from s
after each update: in the worst case this takes O(m + n) time. Again, O(m + n) = O(n2)
in the case of dense graphs.

Previous Work. To the best of our knowledge, for dynamic single-source reachability
and dynamic st-reachability there are no better bounds than the simple-minded methods.
Most of the attention has been focused on fully dynamic transitive closure. For the incre-
mental version of this problem, the first algorithm was proposed by Ibaraki and Katoh [8]
in 1983: its running time was O(n3) over any sequence of insertions. This bound was later
improved to O(n) amortized time per insertion by Italiano [9] and also by La Poutré and
van Leeuwen [14]. Yellin [17] gave an O(m∗δmax) algorithm for m edge insertions, where m∗

is the number of edges in the final transitive closure and δmax is the maximum out-degree
of the final graph. All these algorithms maintain explicitly the transitive closure, and so
their query time is O(1).

The first decremental algorithm was again given by Ibaraki and Katoh [8], with a
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running time of O(n2) per deletion. This was improved to O(m) per deletion by La Poutré
and van Leeuwen [14]. Italiano [10] presented an algorithm that achieves O(n) amortized
time per deletion on directed acyclic graphs. Yellin [17] gave an O(m∗δmax) algorithm for
m edge deletions, where m∗ is the initial number of edges in the transitive closure and
δmax is the maximum out-degree of the initial graph. Again, the query time of all these
algorithms is O(1). More recently, Henzinger and King [5] gave a randomized decremental
transitive closure algorithm for general directed graphs with a query time of O(n/ log n)
and an amortized update time of O(n log2 n).

The first fully dynamic transitive closure algorithm was devised by Henzinger and
King [5] in 1995: they gave a randomized Monte Carlo algorithm with one-sided error
supporting a query time of O(n/ log n) and an amortized update time of O(nm̂0.575 log2 n),
where m̂ is the average number of edges in the graph throughout the whole update se-
quence. Since m̂ can be as high as O(n2), their update time is O(n2.16 log2 n). Khanna,
Motwani and Wilson [11] proved that, when a lookahead of Θ(n0.18) in the updates is per-
mitted, a deterministic update bound of O(n2.18) can be achieved. Very recently, King and
Sagert [13] showed how to support queries in O(1) time and updates in O(n2.26) time for
general directed graphs; their algorithm is randomized with one-sided error. The bounds
of King and Sagert were further improved by King [12], who exhibited a deterministic
algorithm on general digraphs with O(1) query time and O(n2 log n) amortized time per
update operations. For the special case of acyclic graphis, King and Sagert [13] showed
how to perform updates in O(n2) time; again, their algorithm is randomized with one-sided
error.

We observe that fully dynamic transitive closure algorithms with O(1) query time
maintain explicitly the transitive closure of the input graph, in order to answer each query
with exactly one lookup (on its adjacency matrix). Since an update may change as many
as Ω(n2) entries of this matrix, O(n2) seems to be the best update bound that one could
hope for this class of algorithms. In the companion paper [4], we show how to realize an
O(n2) update bound for fully dynamic transitive closure on general directed graphs while
maintaining one lookup per query. Table 1 summarizes the best known bounds for the
problems considered in this paper.

Fast Query Fast Update
Problem

Query Update Query Update

Fully dynamic transitive closure O(1) O(n2) O(n2) O(1)
Fully dynamic single-source reachability O(1) O(n2) O(n2) O(1)
Fully dynamic st-reachability O(1) O(n2) O(n2) O(1)

Table 1: Previous bounds for fully dynamic reachability problems.

It seems thus quite natural to ask whether the O(n2) barrier for the single-operation time
complexity of fully dynamic reachability can be broken. We remark that this has been
an elusive goal for many years and indeed dynamic st-reachability has been posed as an
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open problem by Holm et al. [6]. Note that, in case of fully dynamic transitive closure, to
achieve subquadratic update bounds one should expect to spend more time for queries.

Our Results. In this paper, we affirmatively answer this question for acyclic graphs.
Building on previous work by King and Sagert [13], we show how to trade off query times
for updates in case of fully dynamic transitive closure on directed acyclic graphs: each query
can be answered in time O(nε) and each update can be performed in time O(nω(1,ε,1)−ε +
n1+ε), for any ε ∈ [0, 1], where ω(1, ε, 1) is the exponent of the multiplication of an n× nε

matrix by an nε × n matrix. Balancing the two terms in the update bound yields that ε
must satisfy the equation ω(1, ε, 1) = 1 + 2ε. The current best bounds on ω(1, ε, 1) [2, 7]
imply that ε < 0.575 [18]. Thus, the smallest update time is O(n1.575), which gives a query
time of O(n0.575). Our subquadratic algorithm is randomized and has one-sided error.
Next, we show how to solve dynamic single-source and st-reachability in O(n1.575) time per
update and constant time per query. Our results are summarized in Table 2.

Problem Query Update

Fully dynamic transitive closure O(n0.575) O(n1.575)
Fully dynamic single-source reachability O(1) O(n1.575)
Fully dynamic st-reachability O(1) O(n1.575)

Table 2: New bounds for fully dynamic reachability problems on directed acyclic graphs.

The remainder of this paper is organized as follows. In Section 2 we introduce one
problem on dynamic matrices, and show how to solve it efficiently. Next, we show how
to exploit this problem for the design of fully dynamic algorithms for transitive closure in
Section 3. In Section 4 we consider dynamic single-source and st-reachability. Finally, in
Section 5 we list some concluding remarks.

2 Dynamic Matrices

In this section we investigate a problem on dynamic matrices that will be central to de-
signing our fully dynamic transitive closure algorithm.

We define the problem as follows. Let M be an n× n integer matrix. We consider the
problem of performing an intermixed sequence of operations on M of the following kind:

• Init(X): perform the initialization M ← X, where X is an n× n integer matrix.

• Update(J, I): perform the update operation M ← M + J · I, where J is an n × 1
column integer vector, and I is a 1 × n row integer vector. The product J · I is an
n× n matrix defined for any 1 ≤ x, y ≤ n as:

(J · I)[x, y] = J [x] · I[y]
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• Lookup(x, y): return the integer value M [x, y].

It is straightforward to observe that Lookup can be supported in unit time and oper-
ations Init and Update in O(n2) worst-case time by explicitly performing the algebraic
operations specified in the previous definition.

In the following we show that, if one is willing to give up unit time for Lookup operations,
it is possible to support Update in O(nω(1,ε,1)−ε) worst-case time for each update operation,
for any ε, 0 ≤ ε ≤ 1, where ω(1, ε, 1) is the exponent of the multiplication of an n × nε

matrix by an nε × n matrix. Queries on individual entries of M are answered in O(nε)
worst-case time via Lookup operations and Init still takes O(n2) worst-case time.

We now sketch the main ideas behind the algorithm. We follow a simple lazy approach:
we log at most nε update operations without explicitly computing them and we perform a
global reconstruction of the matrix every nε updates. The reconstruction is done through
fast rectangular matrix multiplication. This yields an implicit representation for M which
requires us to run through logged updates in order to answer queries about entries of M .

We maintain the following elementary data structures with O(n2) space:

• an n× n integer matrix Lazy which maintains a lazy representation of M ;

• an n× nε integer matrix BufJ in which we buffer update column vectors J ;

• an nε × n integer matrix BufI in which we buffer update row vectors I;

• a counter t of the number of performed Update operations since the last Init, modulo
nε.

Before showing how to implement operations, we discuss a simple invariant property
maintained in our data structure, which guarantees the correctness of our approach. We
use the following notation:

Definition 1 We denote by BufJ〈j〉 the n × j matrix obtained by considering only the
first j columns of BufJ . Similarly, we denote by BufI〈i〉 the i × n matrix obtained by
considering only the first i rows of BufI .

Invariant 1 At any time in the sequence of operations σ, the following invariant is main-
tained:

M = Lazy + BufJ〈t〉 · BufI〈t〉.
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Update

procedure Update(J, I)
1. begin

2. t← t + 1
3. if t ≤ nε then

4. BufJ [·, t]← J

5. BufI [t, ·]← I

6. else

7. t← 0
8. Lazy ← Lazy + BufJ ·BufI

9. end

Update first increases t and, if t ≤ nε, it copies column vector J onto the t-th column of
BufJ (line 4) and row vector I onto the t-th row of BufI (line 5). If t > nε, there is no
more room in BufJ and BufI for buffering updates. Then the counter t is reset in line
7 and the reconstruction operation in line 8 synchronizes Lazy with M via rectangular
matrix multiplication of the n× nε matrix BufJ by the nε × n matrix BufI .

Lookup

procedure Lookup(x, y)
1. begin

2. return Lazy[x, y] +
∑t

j=1 BufJ [x, j] ·BufI [j, y]

3. end

Lookup runs through the first t columns and rows of buffers BufJ and BufI , respectively,
and returns the value of Lazy corrected with the inner product of the x-th row of BufJ〈t〉
by the y-th column of BufI〈t〉.

Init

procedure Init(X)
1. begin

2. Lazy ← X

3. t← 0
4. end

Init simply sets the value of Lazy and empties the buffers by resetting t.

The following theorem discusses the time and space requirements of operations Update,
Lookup, and Init. As already stated, the correctness easily follows from the fact that
Invariant 1 is maintained throughout any sequence of operations.

Theorem 1 Each Update operation can be supported in O(nω(1,ε,1)−ε) worst-case time and
each Lookup in O(nε) worst-case time, where 0 ≤ ε ≤ 1 and ω(1, ε, 1) is the exponent for
rectangular matrix multiplication. Init requires O(n2) time in the worst case. The space
required is O(n2).
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Proof. An amortized update bound follows trivially from amortizing the cost of the rect-
angular matrix multiplication BufJ · BufI against nε update operations. This bound can
be made worst-case by standard techniques, i.e., by keeping two copies of the data struc-
tures: one is used for queries and the other is updated by performing matrix multiplication
in the background.

As far as Lookup is concerned, it answers queries on the value of M [x, y] in Θ(t) worst-
case time, where t ≤ nε. 2

Corollary 1 If O(nω) is the time required for multiplying two n × n matrices, then we
can support Update in O(n2−(3−ω)ε) worst-case time and Lookup in O(nε) worst-case time.
Choosing ε = 1, the best known bound for matrix multiplication (ω < 2.376) implies an
O(n1.376) Update time and an O(n) Lookup time.

Proof. A rectangular matrix multiplication between a n × nε matrix by a nε × n matrix
can be performed by computing O((n1−ε)2) multiplications between nε×nε matrices. This
is done in O ((n1−ε)2 · (nε)ω). The amortized time of the reconstruction operation Lazy ←

Lazy+BufJ ·BufI is thus O
(

(n1−ε)2·(nε)ω+n2

nε

)

= O(n2−(3−ω)ε). The rest of the claim follows
from Theorem 1. 2

3 Breaking Through the O(n2) Barrier

In this section we present the first algorithm that breaks through the O(n2) barrier on the
single-operation complexity of fully dynamic transitive closure in the case of directed acyclic
graphs. The problem is to maintain a directed graph G = (V, E) under an intermixed
sequence of the following operations:

TC Insert(x, y): insert an edge from x to y in G;

TC Delete(x, y): delete the edge from x to y in G;

TC Query(x, y): report yes if there is a path from x to y in G, and no otherwise.

Following King and Sagert [13], we keep a count of the number of distinct paths between
any pair of vertices. These counters may be as large as 2n: as shown in [13], the wordsize
can be reduced from n to 2c lg n for any c ≥ 5 by performing arithmetic operations modulo
a random prime number. This yields O(1) for reachability queries and O(n2) for updates
on directed acyclic graphs: “yes” answers on reachability queries are always correct, while
“no” answers are wrong with probability O( 1

nc
).

To improve those bounds, we use a lazy path counting technique based on the implicit
matrix representation of Section 2. Surprisingly, these simple ideas solve a problem that
has been open for many years.

With our technique, we obtain the following bounds: queries are answered in O(nε)
time and updates in O(nω(1,ε,1)−ε + n1+ε) time, for any 0 ≤ ε ≤ 1, where ω(1, ε, 1) is the
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exponent of the multiplication of an n× nε matrix by an nε × n matrix. According to the
current best bounds on ω(1, ε, 1), this yields O(n0.575) time per query and O(n1.575) time
per update.

3.1 Lazy Path Counting

We keep a count of the number of distinct paths between any pair of vertices in graph G
by means of an instance M of the dynamic matrix data structure described in Section 2.
We assume that M [x, y] is the number of distinct paths between node x and node y in
graph G. Since G is acyclic, this number is well-defined.

We now show how to implement TC Insert, TC Delete and TC Query using the prim-
itives Update and Lookup described in Section 2. We assume all arithmetic operations are
performed in constant time.

TC Insert

procedure TC Insert(x, y)
1. begin

2. E ← E ∪ {(x, y)}
3. for z = 1 to n do

4. J [z]← M.Lookup(z, x)
5. I[z]← M.Lookup(y, z)
6. M.Update(J, I)
7. end

TC Insert first puts edge (x, y) in the graph and then, after querying matrix M, computes
two vectors J and I such that J [z] is the number of distinct paths z ; x in G and I[z] is
the number of distinct paths y ; z in G (lines 3–5). Finally, it updates M in line 6. The
operation performed on M is M ←M+J ·I: this means that the number M [u, v] of distinct
paths between any two nodes (u, v) is increased by the number J [u] of distinct paths u ; x
times the number I[v] of distinct paths y ; v, i.e., M [u, v]← M [u, v] + J [u] · I[v].

TC Delete
procedure TC Delete(x, y)

1. begin

2. E ← E − {(x, y)}
3. for z = 1 to n do

4. J [z]← M.Lookup(z, x)
5. I[z]← M.Lookup(y, z)
6. M.Update(−J, I)
7. end

TC Delete is identical to TC Insert, except for the fact that it removes the edge (x, y)
from the graph and performs the update of M in line 6 with −J instead of J . The operation
performed on M is M ←M − J · I: this means that the number M [u, v] of distinct paths
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between any two nodes (u, v) is decreased by the number J [u] of distinct paths u ; x
times the number I[v] of distinct paths y ; v, i.e., M [u, v]← M [u, v]− J [u] · I[v].

TC Query

procedure TC Query(x, y)
1. begin

2. if M.Lookup(x, y) > 0 then return 1
3. else return 0
4. end

TC Query simply looks up the value of M [x, y] and returns 1 if the current number of
distinct paths between x and y is positive, and zero otherwise.

/ � .

We are now ready to discuss the running time of our implementation of operations
TC Insert, TC Delete, and TC Query.

Theorem 2 Any TC Insert and any TC Delete operation can be performed in O(nω(1,ε,1)−ε+
n1+ε) worst-case time, for any 0 ≤ ε ≤ 1, where ω(1, ε, 1) is the exponent of the multipli-
cation of an n × nε matrix by an nε × n matrix. Any TC Query takes O(nε) in the worst
case. The space required is O(n2).

Proof. We recall that, by Theorem 1, each entry of M can be queried in O(nε) worst-case
time, and each Update operation can be performed in O(nω(1,ε,1)−ε) worst-case time. Since
I and J can be computed in O(n1+ε) worst-case time by means of n queries on M , we
can support both insertions and deletions in O(nω(1,ε,1)−ε + n1+ε) worst-case time, while a
reachability query for any pair of vertices (x, y) can be answered in O(nε) worst-case time
by simply querying the value of M [x, y]. 2

Corollary 2 Any TC Insert and any TC Delete operation requires O(n1.575) worst-case
time, and any TC Query requires O(n0.575) worst-case time. The space required is O(n2).

Proof. Balancing the two terms in the update bound O(nω(1,ε,1)−ε + n1+ε) yields that ε
must satisfy the equation ω(1, ε, 1) = 1 + 2ε. The current best bounds on ω(1, ε, 1) [2, 7]
imply that ε < 0.575 [18]. Thus, the smallest update time is O(n1.575), which gives a query
time of O(n0.575). 2

The algorithm we presented is deterministic. However, as the numbers involved may be
as large as 2n, performing arithmetic operations in constant time requires wordsize O(n).
To reduce wordsize to O(log n) while maintaining the same subquadratic bounds (O(n1.575)
per update and O(n0.575) per query) we perform all arithmetic operations modulo some
random prime number as explained in [13]. Again, this produces a randomized Monte
Carlo algorithm, where “yes” answers on reachability queries are always correct, while
“no” answers are wrong with probability O( 1

nc
) for any constant c ≥ 5.
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It is also not difficult to extend our subquadratic algorithm to deal with insertions/deletions
of more than one edge at a time. In particular, we can support any insertion/deletion of
up to O(n1−η) edges incident to a common vertex in O(nω(1,ε,1)−ε + n2−(η−ε)) worst-case
time. We emphasize that this is still o(n2) for any 1 > η > ε > 0.

4 Dynamic Single-Source and st-Reachability

In this section we show how to use the data structure presented in Section 3 to solve
dynamic single-source reachability problems. Given a directed graph G = (V, E) and
specified source vertex s ∈ V , the problem is to maintain G under an intermixed sequence
of the following operations:

s Insert(x, y): insert an edge from x to y in G;

s Delete(x, y): delete the edge from x to y in G;

s Query(v): report yes if there is a path from s to v in G, and no otherwise.

We keep the data structure of Section 3, plus an array R of integers such that R[v] > 0 if
and only if vertex v is reachable from source s. The operations can be simply implemented
as follows:

s Insert

procedure s Insert(x, y)
1. begin

2. TC Insert(x, y)
3. for z = 1 to n do

4. R[z]←TC Query(s,z)

5. end

s Delete

procedure s Delete(x, y)
1. begin

2. TC Delete(x, y)
3. for z = 1 to n do

4. R[z]←TC Query(s,z)

5. end

s Query

procedure s Query(v)
1. begin

2. return R[v]
3. end

In the following theorem we discuss the running time of the operations.
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Theorem 3 Any s Insert and any s Delete operation can be performed in O(n1.575)
worst-case time, and any s Query can be answered in constant time. The space required is
O(n2).

Proof. Each single-source update is implemented by one transitive closure update, fol-
lowed by n transitive closure queries. The bounds follow immediately from Corollary 2.

2

5 Conclusions

In this paper we have shown that a surprisingly simple technique for maintaining dynamic
matrices of integers, combined with a previous idea of counting paths [13] yields algorithms
that, for the first time in the study of fully dynamic transitive closure, break through the
O(n2) barrier on the single-operation complexity of these problems. Our algorithms work
on directed acyclic digraphs, and are randomized with one-sided error. After our work,
Sankowski [16] has presented subquadratic algorithms for fully dynamic transitive closure
on general graphs.
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