## UC Berkeley

UC Berkeley Previously Published Works
Title
Making green goop from polygon soup

## Permalink

https://escholarship.org/uc/item/32v310t0

## Author

O'Brien, James F
Publication Date
2005-06-13
DOI
10.1145/1060244.1060246

Peer reviewed

# Building Surfaces from Polygons and <br> Tracking Surfaces with Polygons 

Prof. James F. O'Brien

EECS, Computer Science
University of California, Berkeley

## Collaborators

Students at U.C Berkeley Faculty at U.C Berkeley
Okan Arikan (w/ DAF)
Adam Bargteil
Bryan Feldman
Tolga Goktekin
Erik Demaine (MIT)
David Forsyth
Jonathan Shewchuk
John Strain (Mathematics) Hayley Iben
Adam Kirk
Bryan Klingner
Ravikrishna Kolluri (w/ JRS)
Chen Shen


## Overview

- Building implicit surfaces from "polygon soup"
- Tracking surfaces using polygonal surfaces
- Some thoughts tying the two together


## Implicit Moving Least-Square

- Repairing defective polygon models
- Holes, gaps, T-junctions, self-intersections, nonmanifold structures
- Testing interior/exterior points
- Preprocessing for rapid prototyping machines
- Generating simulation envelopes


# Implicit Moving Least Squares Surfaces (ILMS) 

- True normal constraints
- No undesirable oscillatory behavior or spurious surfaces
- Integrated constraints over polygons
- Avoids dimples and bumps
- Adjustment procedure
- Tight fit, completely enclosed
- Hierarchical fast evaluation


## Background

- Implicit Partition-of-Unity
- Ohtake et al. 2003
- Moving Least Squares projection methods
- Alexa et al. 2001, 2003, Fleishman et al. 2003, Amenta et al. 2004
- Other implicit techniques
- Delaunay/Voronoi based methods
- Other model fixing/smoothing methods
- Please see paper for details and others...


## Example



Input polygons


Interpolating Implicit Surface

## Example



Approximating Implicit Surface

## MLS Interpolation / Approximation

Standard Least Square

$$
\begin{aligned}
& {\left[\begin{array}{c}
b^{\top}\left(\boldsymbol{p}_{1}\right) \\
\vdots \\
b^{\top}\left(\boldsymbol{p}_{N}\right)
\end{array}\right] c=\left[\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{N}
\end{array}\right]} \\
& \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{c}=\boldsymbol{B}^{\top} \phi
\end{aligned}
$$

## MLS Interpolation / Approximation

Moving Least Square

$$
\left[\begin{array}{c}
w\left(x, \boldsymbol{p}_{1}\right) \\
\vdots \\
w\left(\boldsymbol{x}, \boldsymbol{p}_{N}\right)
\end{array}\right]\left[\begin{array}{c}
b^{\top}\left(\boldsymbol{p}_{1}\right) \\
\vdots \\
b^{\top}\left(\boldsymbol{p}_{N}\right)
\end{array}\right] c=\left[\begin{array}{c}
w\left(\boldsymbol{x}, \boldsymbol{p}_{1}\right) \\
\ddots \\
w\left(\boldsymbol{x}, \boldsymbol{p}_{N}\right)
\end{array}\right]\left[\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{N}
\end{array}\right]
$$

$$
w(r)=\frac{1}{\left(r^{2}+\epsilon^{2}\right)}
$$

$$
B^{\top}(\boldsymbol{W}(x))^{2} B c(x)=B^{\top}(\boldsymbol{W}(x))^{2} \phi
$$

## MLS Interpolation / Approximation

## Least Square



Moving Least Square

Interpolating




## Implicit MLS Surfaces (Or curvesin2D)



## Implicit MLS Surfaces (Or curvesin2D)



## Implicit MLS Surfaces (Or curvesin2D)



## Implicit MLS Surfaces (Or curves in 2D)



## Implicit MLS Surfaces (O. anves in 2D)



## Implicit MLS Surfaces (O. anves in 2D)



## Implicit MLS Surfaces (O. anves in 2D)

## Point functions



$$
\begin{aligned}
S_{k}(x) & =\phi_{k}+\left(x-p_{k}\right)^{\top} \widehat{\boldsymbol{n}}_{k} \\
& =\psi_{0 k}+\psi_{x k} x+\psi_{y k} y+\psi_{z k} z
\end{aligned}
$$

## Implicit MLS Surfaces (O. anves in 2D)

## Point functions



$$
\begin{aligned}
S_{j}(x) & =\phi_{k}+\left(x-p_{k}\right)^{\top} \hat{n}_{k} \\
& =\psi_{0 k}+\psi_{x k} x+\psi_{y k} y+\psi_{z k} z
\end{aligned}
$$

## Implicit MLS Surfaces (Or curves in 2D)

## Point functions



## Implicit MLS Surfaces (Or curvesin2D)



## Implicit MLS Surfaces (O. anves in 2D)



## Implicit MLS Surfaces (O. anves in 2D)



Proof of good behavior in Kolluri SODA 2005


## Integrated Constraints



## Integrated Constraints

- Scattered point constraints


$$
\left(\sum_{i=1}^{N} w^{2}\left(\boldsymbol{x}, \boldsymbol{p}_{i}\right) b\left(\boldsymbol{p}_{i}\right) b^{\top}\left(\boldsymbol{p}_{i}\right)\right) \boldsymbol{c}(\boldsymbol{x})=\sum_{i=1}^{N} w^{2}\left(\boldsymbol{x}, \boldsymbol{p}_{i}\right) \boldsymbol{b}\left(\boldsymbol{p}_{i}\right) \phi_{i}
$$

## Integrated Constraints

Constraints integrated over polygons

$\left(\int_{\Omega_{k}} w^{2}(x, p) b(p) b^{\top}(p) \mathrm{d} p\right) c(x)=\int_{\Omega_{k}} w^{2}(x, p) b(p) \phi_{k} \mathrm{~d} p$

## Integrated Constraints

- Sum integrals over mesh

$\sum_{k=1}^{K}\left(\int_{\Omega_{k}} w^{2}(x, p) b(p) b^{\top}(p) \mathrm{d} p\right) c(x)=\sum_{k=1}^{K} \int_{\Omega_{k}} w^{2}(x, p) b(p) \phi_{k} \mathrm{~d} p$


## Fast Evaluation



## Fast Evaluation

$$
l_{\Omega_{0}} l_{\Omega_{1}} \cdots l_{\Omega_{B}} \cdots l_{\Omega_{K}} l_{\Omega_{E}}=l_{\Omega_{B}} w^{2}(x, p) b(p) b^{\top}(p) d p
$$

## Fast Evaluation

$$
\begin{aligned}
& \text { Nen }
\end{aligned}
$$

## Fast Evaluation



## Fast Evaluation


$\int_{\Omega_{K}}$

## Fast Evaluation



## Approximation Adjustment

- Naive approximation

- With iterative value adjustment



## Interpolating/Approximation



## Interpolating/Approximation



## Close Up





## Rapid Prototyping



"Gratuitous Goop" from SIGGRAPH 2004 Electronic Theater

"Gratuitous Goop" from SIGGRAPH 2004 Electronic Theater

## Barycentric Coordinates

- Barycentric coordinates defined for simplices are incredibly useful
- Various generalizations
- Wachspress I975, Loop \& DeRose 1989, Meyer et al. 2002, Warren et al. 2004
- Floater 2003, Malsch \& Dasgupta 2003, Horman 2004
- ... and others. (See Ju, Schaefer \& Warren in SIGGRAPH 2005.)


## Mean Value Coordinates

- Ju, Schaefer \& Warren SIGGRAPH 2005
- Equivalent to integrated MLS
- Constant basis and point functions
- Weight function

$$
w=\frac{\cos (\theta)}{r^{3}}
$$

- Very nice properties... read their paper!


## Surface Tracking

- Given a surface and velocity field
- Track surface as it moves over time
- Velocity field may be influenced by surface motion


## Surface Tracking

- Global topology

- Local structure



## Surface Tracking

Adverting polygons is difficult


- Large family of level-set and related implicit methods have been developed
- See paper or text by Osher and Fedkiw for detailed list...


## Semi-Lagrangian Contouring

- Define a composite-implicit function:
- Perform semi-Lagrangian backwards path tracing
- Evaluate the exact(-ish) distance to the polygon mesh at the previous timestep
- The zero-set of composite function defines new surface


## Semi-Lagrangian Advection



- Obtain new values by backward path tracing followed by interpolation
- Introduced to graphics by Stam in 1999


## Algorithm Overview

Start with polymesh, octree, and velocity field

- Build new octree
- Build new polymesh
- Redistance octree
- Repeat



## Surface Representation

- Polygon mesh
- Distance tree
- Accelerated lookup

- Approximate signed distance away from mesh


## Building New Surface

- Compute velocities
e.g. Fluid simulation



## Building New Surface

- Compute velocities
- e.g. Fluid simulation
- Build new octree
- S.D. values are verts.
- Trace back to old mesh
- Adaptively refine



## Building New Surface

- Compute velocities
e e.g. Fluid simulation
- Build new octree
- S.D. values are verts.
- Trace back to old mesh
- Adaptively refine
- Build new mesh
- M.C. on new octree


## Building NE

- Compute velocitis
- e.g. Fluid simulatior
- Build new octree
- S.D. values are vert
- Trace back to old mesh
- Adaptively refine
- Build new mesh
- M.C. on new octree
- Exact distances



## Building New Surface

- Compute velocities
e e.g. Fluid simulation
- Build new octree
- S.D. values are verts.
- Trace back to old mesh
- Adaptively refine
- Build new mesh
- M.C. on new octree
- Re-distance octree



## Why Exact Near Surface?



- Interpolation gets the wrong answer.


## Surface Merging / Separating



## Tracking Surface Properties

- Semi-Lagrangian advection provides a mapping between surfaces at different timesteps.
- We can use this mapping to track surface properties.

- Surface signals get resampled at every step.


## Results


"Enright Test"

## Results



Results


Results


Results


Results


## Results



## IMLS Surface Tracking?

- Zhu \& Bridson SIGGRAPH 2005
- Particles
- MLS Blending
- Cone point functions
- Read their paper too!





## Smoke on Hybrid Meshes



Feldman, O'Brien, Klingner, SIGGRAPH 2005


O'Brien, Hodgins, SIGGRAPH I 999

## Sponsors

- Apple Computer
- Sony Computer Entertainment America
- Pixar Animation Studios
- Intel
- N.S.F.
- U.C. MICRO
- Okawa Foundation
- Hellman Family Faculty Fund
- Alfred P. Sloan Foundation

