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Overview

• Building implicit surfaces from “polygon 
soup”

• Tracking surfaces using polygonal surfaces

• Some thoughts tying the two together
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Implicit Moving Least-Square

• Repairing defective polygon models

• Holes, gaps, T-junctions, self-intersections,         non-
manifold structures

• Testing interior/exterior points

• Preprocessing for rapid prototyping machines

• Generating simulation envelopes

Shen, O’Brien, Shewchuk, SIGGRAPH 2004
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Implicit Moving Least 
Squares Surfaces (ILMS)

• True normal constraints
• No undesirable oscillatory behavior or spurious 

surfaces 

• Integrated constraints over polygons
• Avoids dimples and bumps

• Adjustment procedure 
• Tight fit, completely enclosed 

• Hierarchical fast evaluation
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Background

• Implicit Partition-of-Unity
• Ohtake et al. 2003

• Moving Least Squares projection methods
• Alexa et al. 2001, 2003, Fleishman et al. 2003, 

Amenta et al. 2004

• Other implicit techniques

• Delaunay/Voronoi based methods

• Other model fixing/smoothing methods

• Please see paper for details and others...
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Example

Input polygons

Interpolating Implicit Surface
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Example

Approximating Implicit Surface
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MLS Interpolation / Approximation

• Standard Least Square
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MLS Interpolation / Approximation

• Moving Least Square
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MLS Interpolation / Approximation

Least Square Moving Least Square

Interpolating

Approximating
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Implicit MLS Surfaces ( Or curves in 2D )

Sample 

Points
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Implicit MLS Surfaces ( Or curves in 2D )

Inside

Sample 

Points

+

Outside-
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Implicit 

Function
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Sample 

Points

+

Outside-

Implicit MLS Surfaces ( Or curves in 2D )
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Implicit 

Function

Contour 

at Zero

Inside

Sample 

Points

+

Outside-

Implicit MLS Surfaces ( Or curves in 2D )

Ugly bumps
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Implicit 
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Implicit MLS Surfaces ( Or curves in 2D )
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Implicit MLS Surfaces ( Or curves in 2D )

Sample 

Points

Normal 

vectors
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Implicit MLS Surfaces ( Or curves in 2D )

Point functions
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Implicit MLS Surfaces ( Or curves in 2D )

Point functions
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Implicit MLS Surfaces ( Or curves in 2D )

Point functions
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Implicit MLS Surfaces ( Or curves in 2D )
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Implicit MLS Surfaces ( Or curves in 2D )
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Implicit MLS Surfaces ( Or curves in 2D )

Sample 

Points

Normal 

vectors

Proof of good behavior in 
Kolluri SODA 2005
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Integrated Constraints

Fine Super Fine

Scattered point constraints

Integrated polygon 
constraints (new method)
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Integrated Constraints

• Scattered point constraints

V 0

V 2V 1
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Integrated Constraints

• Constraints integrated over polygons

V 0

V 2V 1
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Integrated Constraints

• Sum integrals over mesh

V 0

V 2V 1
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Fast Evaluation
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Fast Evaluation
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Fast Evaluation
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Fast Evaluation

K-D tree averaging
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Fast Evaluation
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Fast Evaluation
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Approximation Adjustment

• Naive approximation

• With iterative value adjustment



35

Interpolating/Approximation
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Interpolating/Approximation
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Close Up
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Rapid Prototyping
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“Gratuitous Goop” from SIGGRAPH 2004 Electronic Theater
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“Gratuitous Goop” from SIGGRAPH 2004 Electronic Theater
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Barycentric Coordinates 

• Barycentric coordinates defined for 
simplices are incredibly useful

• Various generalizations

• Wachspress 1975, Loop & DeRose 1989, Meyer 
et al. 2002, Warren et al. 2004

• Floater 2003, Malsch & Dasgupta 2003, Horman 
2004

• ... and others.  (See Ju, Schaefer & Warren in 
SIGGRAPH 2005.)
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Mean Value Coordinates

• Ju, Schaefer & Warren SIGGRAPH 2005

• Equivalent to integrated MLS

• Constant basis and point functions

• Weight function

• Very nice properties... read their paper!

(a) (b)

(c) (d)

Figure 2: Interpolating hue values at polygon vertices using Wach-
spress coordinates (a, b) versus mean value coordinates (c, d) on a
convex and a concave polygon.

the construction to such a polygon yields an interpolant that has
poles (divisions by zero) on the interior of the polygon. The top
portion of Figure 2 shows Wachspress’s interpolant applied to two
closed polygons. Note the poles on the outside of the convex poly-
gon on the left as well as along the extensions of the two top edges
of the non-convex polygon on the right.
More recently, several papers, [Floater 1997; Floater 1998;

Floater 2003], [Malsch and Dasgupta 2003] and [Hormann 2004],
have focused on building interpolants for non-convex 2D polygons.
In particular, Floater proposed a new type of interpolant based on
the mean value theorem [Floater 2003] that generates smooth co-
ordinates for star-shaped polygons. Given a polygon with vertices
p j and associated values f j, Floater’s interpolant defines a set of
weight functions wj of the form

wj =
tan

[

α j−1

2

]

+ tan
[

α j

2

]

|p j− v|
. (2)

where α j is the angle formed by the vector p j − v and p j+1− v.
Normalizing each weight function wj by the sum of all weight func-
tions yields the mean value coordinates of v with respect to p j.
In his original paper, Floater primarily intended this interpolant

to be used for mesh parameterization and only explored the behav-
ior of the interpolant on points in the kernel of a star-shaped poly-
gon. In this region, mean value coordinates are always non-negative
and reproduce linear functions. Subsequently, Hormann [Hormann
2004] showed that, for any simple polygon (or nested set of sim-
ple polygons), the interpolant f̂ [v] generated by mean value coor-
dinates is well-defined everywhere in the plane. By maintaining a
consistent orientation for the polygon and treating the α j as signed
angles, Hormann also shows that mean value coordinates reproduce
linear functions everywhere. The bottom portion of Figure 2 shows
mean value coordinates applied to two closed polygons. Note that
the interpolant generated by these coordinates possesses no poles
anywhere even on non-convex polygons.
Contributions Horman’s observation suggests that Floater’s

mean value construction could be used to generate a similar in-
terpolant for a wider class of shapes. In this paper, we provide

such a generalization for arbitrary closed surfaces and show that
the resulting interpolants are well-behaved and have linear preci-
sion. Applied to closed polygons, our construction reproduces 2D
mean value coordinates. We then apply our method to closed tri-
angular meshes and construct 3D mean value coordinates. (In in-
dependent contemporaneous work, [Floater et al. 2005] have pro-
posed an extension of mean value coordinates from 2D polygons to
3D triangular meshes identical to section 3.2.) Next, we derive an
efficient, stable method for evaluating the resulting mean value in-
terpolant in terms of the positions and associated values of vertices
of the mesh. Finally, we consider several practical applications of
such coordinates including a simple method for generating classes
of deformations useful in character animation.

2 Mean value interpolation

Given a closed surface P in R3, let p[x] be a parameterization of
P. (Here, the parameter x is two-dimensional.) Given an auxiliary
function f [x] defined over P, our problem is to construct a function
f̂ [v] where v ∈ R3 that interpolates f [x] on P, i.e.; f̂ [p[x]] = f [x] for
all x. Our basic construction extends an idea of Floater developed
during the construction of 2D mean value coordinates.
To construct f̂ [v], we project a point p[x] of P onto the unit sphere

Sv centered at v. Next, we weight the point’s associated value f [x]
by 1

|p[x]−v| and integrate this weighted function over Sv. To ensure

affine invariance of the resulting interpolant, we divide the result

by the integral of the weight function 1
|p[x]−v| taken over Sv. Putting

the pieces together, the mean value interpolant has the form

f̂ [v] =

∫

xw[x,v] f [x]dSv
∫

xw[x,v]dSv
(3)

where the weight function w[x,v] is exactly 1
|p[x]−v| . Observe that

this formula is essentially an integral version of the discrete formula
of Equation 1. Likewise, the continuous weight function w[x,v] and
the discrete weights wj of Equation 2 differ only in their numera-

tors. As we shall see, the tan
[

α
2

]

terms in the numerators of the wj

are the result of taking the integrals in Equation 3 with respect to
dSv.
The resulting mean value interpolant satisfies three important

properties.

Interpolation: As v converges to the point p[x] on P, f̂ [v] con-
verges to f [x].

Smoothness: The function f̂ [v] is well-defined and smooth for all
v not on P.

Linear precision: If f [x] = p[x] for all x, the interpolant f̂ [v] is
identically v for all v.

Interpolation follows from the fact that the weight function
w[x,v] approaches infinity as p[x]→ v. Smoothness follows because
the projection of f [x] onto Sv is continuous in the position of v and
taking the integral of this continuous process yields a smooth func-
tion. The proof of linear precision relies on the fact that the integral
of the unit normal over a sphere is exactly zero (due to symmetry).
Specifically,

∫

x

p[x]− v

|p[x]− v|
dSv = 0

since
p[x]−v
|p[x]−v| is the unit normal to Sv at parameter value x. Rewrit-

ing this equation yields the theorem.

v=
∫

x

p[x]

|p[x]− v|
dSv

/

∫

x

1

|p[x]− v|
dSv

w =
cos(✓)

r3
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Surface Tracking

• Given a surface and velocity field

• Track surface as it moves over time

• Velocity field may be influenced by surface 
motion
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Surface Tracking

• Global topology

• Local structure
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Surface Tracking
• Adverting polygons is difficult

• Large family of level-set and related implicit 
methods have been developed

• See paper or text by Osher and Fedkiw for 
detailed list...
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Semi-Lagrangian Contouring

• Define a composite-implicit function: 

• Perform semi-Lagrangian backwards path 
tracing 

• Evaluate the exact(-ish) distance to the 
polygon mesh at the previous timestep 

• The zero-set of composite function 
defines new surface

Strain, JCP 2001 
Bargteil, Goktekin, O’Brien, Strain, TOG 2005
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Semi-Lagrangian Advection

• Obtain new values by backward path 
tracing followed by interpolation

• Introduced to graphics by Stam in 1999

x
x0

t-1

t

i-2 i-1 i i+1 i+2
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Algorithm Overview

• Start with polymesh, 
octree, and velocity 
field

• Build new octree

• Build new polymesh

• Redistance octree

• Repeat
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Surface Representation

• Polygon mesh

• Distance tree

• Accelerated lookup

• Approximate signed distance away from mesh
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Building New Surface

• Compute velocities

• e.g. Fluid simulation
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Building New Surface

• Compute velocities

• e.g. Fluid simulation

• Build new octree

• S.D. values are verts.

• Trace back to old mesh

• Adaptively refine
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Building New Surface

• Compute velocities

• e.g. Fluid simulation

• Build new octree

• S.D. values are verts.

• Trace back to old mesh

• Adaptively refine

• Build new mesh

• M.C. on new octree
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Building New Surface

• Compute velocities

• e.g. Fluid simulation

• Build new octree

• S.D. values are verts.

• Trace back to old mesh

• Adaptively refine

• Build new mesh

• M.C. on new octree

• Exact distances
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Building New Surface

• Compute velocities

• e.g. Fluid simulation

• Build new octree

• S.D. values are verts.

• Trace back to old mesh

• Adaptively refine

• Build new mesh

• M.C. on new octree

• Re-distance octree
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Why Exact Near Surface?

• Interpolation gets the wrong answer.

-1/4+1/4

3/4~1
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Surface Merging / Separating
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Tracking Surface Properties

• Semi-Lagrangian advection 
provides a mapping between 
surfaces at different timesteps.

• We can use this mapping to 
track surface properties.

• Surface signals get resampled at 
every step.
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Results

“Enright Test”
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Results
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Results
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Results
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Results
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Results
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Results
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IMLS Surface Tracking?

• Zhu & Bridson SIGGRAPH 2005

• Particles

• MLS Blending

• Cone point functions

• Read their paper too!

Figure 5: A column of regular liquid is released.

Figure 6: A column of granular material is released.
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Ground Truth  

(Monte Carlo) 

24 Hrs.

Arikan, Forsyth & O’Brien, SIGGRAPH 2005
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Our Method 

5 Minutes

Arikan, Forsyth & O’Brien, SIGGRAPH 2005
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Smoke on Hybrid Meshes 

Feldman, O’Brien, Klingner, SIGGRAPH 2005
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O’Brien, Hodgins, SIGGRAPH 1999
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