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ABSTRACT
We give constructions of probabilistically checkable proofs
(PCPs) of length n ·poly(log n) (to prove satisfiability of cir-
cuits of size n) that can verified by querying poly(log n) bits
of the proof. We also give constructions of locally testable
codes (LTCs) with similar parameters.
Previous constructions of short PCPs (from [5] to [9]) re-
lied extensively on properties of low degree multi-variate
polynomials. In contrast, our constructions rely on new
problems and techniques revolving around the properties
of codes based on high degree polynomials in one variable
(also known as Reed-Solomon codes). We show how to con-
vert the problem of verifying the satisfaction of a circuit
by a given assignment to the task of verifying that a given
function is close to being a Reed-Solomon codeword, i.e.,
a univariate polynomial of specified degree. This reduction
is simpler than the corresponding steps in previous reduc-
tions, and gives a new alternative to using the popular “sum-
check protocol”. We then give a new PCP for the special
task of proving that a function is close to being a Reed-
Solomon codeword. This step of the construction is by a
self-contained recursion, and the only ingredient needed in
the analysis is the bi-variate low-degree test of Polischuk and
Spielman [27].
Note that our constructions yield LTCs first, which are then
converted to PCPs. In contrast, most recent constructions
go in the opposite (and less natural) direction of getting
LTCs from PCPs.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of algorithms
and problem complexity
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1. INTRODUCTION
Probabilistically Checkable Proof (PCP) systems [15, 3, 2]
(a.k.a. Holographic Proofs [5]) are proof systems that allow
efficient probabilistic verification based on probing few bits
of a proof. Formally, a PCP system is given by a verifier,
called a PCP verifier, that probabilistically queries a few bits
of a purported proof of a claimed theorem and accepts valid
proofs of true theorems with probability one, while accepting
any claimed proof of false assertions with low probability,
say at most 1/2. The celebrated PCP Theorem [3, 2] asserts
that there exists a PCP verifier probing the proof in just
a constant number of bits, and it turns out that probing
three bits suffices (cf. [21], see also [19]). Furthermore the
proof needed by this verifier is only polynomially larger than
any classical proof. Such query efficient proofs translate to
strong non-approximability results for many combinatorial
optimization problems (cf. [8, 7, 21, 19, 29]).
Somewhat surprisingly, PCPs are rarely appreciated for their
positive effects: i.e., as methods of transforming proofs into
extremely efficiently verifiable formats. (Instead it is the
negative implications to combinatorial optimization that dom-
inate their study.) In principle, PCPs could form the seman-
tic analog of error-correcting codes: Error-correcting codes
are used to preserve data for long periods of time; PCPs
may be used to preserve data, with a promise of integrity
with respect to any fixed Boolean property, for long periods
of time. However such uses seemed to be ruled out by cur-
rent PCP constructions which are too long and too complex.
This forms the motivation of our work, which tries to find
shorter and simpler PCPs.
Optimizing the length of the new NP witness has already
been the focus of [5, 27, 20, 18, 11, 9]. In addition to the
inherent motivation mentioned above, the length of PCPs
also plays an important role in their use in cryptography
(e.g., CS-proofs [22, 26] and their applications [6, 12]) and is
closely related to constructions of locally testable codes [18,
11, 9]. Simplifying PCP constructions has long been a goal
within the study of PCPs, though little progress has been
achieved in this direction so far. Only recently, Dinur and



Reingold [14], took some first steps towards deriving a PCP
construction purely combinatorially. (Our efforts run in the
opposite direction, by invoking more algebra to construct
simple PCPs.)

PCPs. Our main result is a PCP construction that blows
up the NP-witness length by only a poly-logarithmic factor
and can be verified by querying a poly-logarithmic number
of bits of the proof. PCPs are traditionally measured by
their randomness and query complexity with PCP[r, q] being
the class of all languages L that have PCP verifiers tossing
r(n) coins, running in polynomial time in n and querying
q(n) bits to verify proofs of membership of theorems of the
form x ∈ L, where n = |x|. In this notation, our main
theorem is stated formally below. (Throughout this paper,
all logarithms are to the base two).

Theorem 1 (Efficient PCPs). SAT has a PCP ver-
ifier that on inputs of length n tosses log(n poly(log n)) coins,
makes poly(log n) queries to a proof oracle of length n poly(log n),
runs in time n poly(log n) and has perfect completeness and
soundness at most 1

2
. Formally,

SAT ∈ PCP1, 1

2

[log(n poly log n), poly log n]

In contrast, the recent results of Ben-Sasson et al. [9] give
proofs of length n ·exp(poly log log n) with a query complex-
ity of poly log log n. Thus, while the query complexity of our
PCPs is higher than that of most recent results, the proof
size is significantly smaller.

PCPs of Proximity.The results of [9] refer to a stronger
notion of PCPs, called PCPs of Proximity (denoted PCPPs).
Whereas a PCP for a Boolean circuit only guarantees the ex-
istence of a satisfying assignment, a PCPP guarantees that
an assignment (provided as a separate oracle from the proof)
is close to some assignment that satisfies the circuit. Theo-
rem 1 implies efficient PCPPs for any circuit as in [9], but
with shorter proofs. The formal statement and proof of the
following Theorem are omitted due to space constraints.

Theorem 2 (PCPPs for SAT (informal)). For ev-
ery constant δ ∈ (0, 1) there exists a verifier VSAT (i.e.
a randomized polynomial time oracle Turing machine) that
on input a circuit φ of size n, tosses log(n poly(log n)) coins,
makes poly(log n) queries to an assignment oracle α of length
n′ and proof oracle π of length n poly(log n). The verifier has
perfect completeness, i.e. accepts with probability one satis-
fying assignments (when accompanied by a suitable proof).
Regarding soundness, any assignment that is δ-far from sat-
isfying φ is rejected with probability ≥ 1/2, no matter what
proof is provided for it.

Locally Testable Codes:.PCPs typically go hand-in-hand
with a form of error-correcting codes, called Locally Testable
Codes (cf. [18] and references therein), whose noise rate can
be estimated in sub-linear time. Specifically these codes
have an associated verifier that makes few accesses to an or-
acle describing an input word, and accepts codewords with
probability one, while rejecting words that are δ-far from
the code with constant probability (say 1/2). Once again,
important parameters of these codes are their rate i.e., the

ratio of the length of the message to the length of the code-
words, the proximity parameter denoted δ above, and the
query complexity of the verifier, i.e., the number of queries
made by the verifier. In this work we also give LTCs with
parameters comparable to those of our PCPs. The proof of
the following Theorem follows from [9, Section 4.1], and will
appear in the full version.

Theorem 3 (Efficient LTCs). There exists a univer-
sal constant c′ such that for every field F of characteristic
two and every integer n that is a power of two, there exists an
explicitly constructible code over alphabet F, mapping mes-

sages of length n/2 to codewords of block-length n logc′ n.
The resulting code is locally testable with query complexity

logc′ n and proximity parameter log−c′ n. The rate of this

code is 1
2

log−c′ n.

Note it is straightforward to get a binary code from the
above by encoding elements of F by some binary code of
block length O(log |F|). The rate and relative distance of
the resulting binary code are within constant factors of the
F-ary code above; and the query complexity of the local test
increases by a log |F| factor.
We highlight the fact that we first get LTCs as above and
the PCPs are derived as a consequence. While the early
work of Babai et al. [5] also had this feature, constructions
of smaller LTCs (in particular those in [18, 11, 9]) reverse
this direction, getting PCPs first, and then deriving LTCs as
a consequence. Our work thus achieves one of the goals as-
sociated with LTCs, that direct constructions of LTCs may
offer some benefits/insights to PCP constructions.

Our techniques.Our construction, while being algebraic,
is significantly different from prior PCP constructions, so as
to make the techniques interesting in their own right. Most
previous constructions (with the exception of [14]) start with
a PCP based on the properties of multivariate polynomials
over some finite field. Some key ingredients in such con-
structions are (1) A low-degree test: A method to test if a
function given by an oracle is close to being a low-degree
multivariate polynomial. (2) A self-corrector: An efficient
procedure to compute the value of a multivariate polyno-
mial at a given point, given oracle access to a polynomial
that is close to this function. (3) A Zero-tester: An effi-
cient procedure to verify if a function (given by an oracle
to compute it) is close to a multivariate polynomial that is
zero on every point in a prespecified subset of its domain.
(4) A reduction from verifying satisfiability to zero-testing.
Typical solutions to the above problems yield a query com-
plexity that grows polynomially in the number of variables
and the degree of the multivariate polynomial. This query
complexity, if too large, is then reduced by a new layer of
techniques referred to as proof composition.
Our solution follows a similar outline (almost, as we do not
need a self-corrector), however, we work (for the most part)
only with univariate polynomials. This forms the essence of
our technical advantage, giving us shorter PCPs. The length
of PCPs is well-known to grow with the number of variables
used in them, and reducing this number was an obvious way
to try to reduce their lengths. However, the degree of the
associated polynomials reduces as the number of variables
increase and since solutions to steps (1)-(3) above had query
complexity polynomial in the degree of the associated poly-
nomial, previous solutions needed to use large number of



variables to achieve any non-trivial reduction in the number
of queries. In our case, we propose analogous questions for
univariate polynomials and give extremely efficient solutions
(in terms of the degree of the associated polynomial). We
describe our solutions to the steps in reverse order.

ReducingSAT to Univariate Zero Testing.We start with
the reduction from satisfiability to testing zeroes of polyno-
mials (step (4) above). The typical outcome of this part
is a transformation from a SAT formula φ to a constraint
C (on pairs of polynomials) and subsets H1 and H2 of the
multivariate domains such that φ is satisfiable if and only
if there exist polynomials P1, P2 that are zeroes on H1, H2

respectively and furthermore C(P1, P2) holds. (To enable
“easy verification”, C(P1, P2) needs to be of a special form,
but we won’t get into this now.) In general, these reductions
are naturally simple, and so is ours. In Section 4 we describe
how one can get some natural reductions from NP-complete
problems to problems about testing zeroes of polynomials.
The final result we use (Theorem 9) is somewhat more com-
plex only due to our goal of extreme length efficiency.

Univariate Zero Testing.Next we move to the zero-testing
problem (step (3) above). For this part we provide an ex-
tremely simple proof which reduces this question to two uni-
variate ”low-degree testing” questions, along with a natural
consistency test between the two polynomials. Our query
complexity is a constant independent of the degrees of the
polynomials we are working with! Furthermore, it directly
reduces zero-testing to “low-degree testing” while most pre-
vious solutions relied on some form or other of the “self-
correcting” question. Put together our two steps above give
an efficient reduction from verifying NP-hard statements to
testing the degree of a univariate function. Furthermore,
these reductions add only a constant number of queries to
the query complexity of the low-degree testing protocol! This
highlights the importance of the low-degree testing problem
for univariate polynomials, which we describe below. Our
techniques allow us to revisit the multi-variate zero testing
problem and offer a new alternative to the commonly used
“sum-check protocol” of [25] (Section 6).

Reed-Solomon codes and Proofs of Proximity:.The
central problem at the heart of our PCPs is the following:
Given a finite field F, a degree bound d and oracle access to
a function f : F → F, test if f is (close to) a polynomial of
degree at most d. Specifically, if f is a degree d polynomial
then our test must accept. On the other hand, if f is δ-far
from every degree d polynomial (i.e., the value of f needs to
be changed on at least δ fraction of the points in F to get
a degree d polynomial), then the test must reject with high
probability. And it should do all this while querying the
oracle for f as few times as possible. The class of functions
derived by evaluating polynomials of a specified degree over
a field is well-known as the Reed-Solomon code. Our goal is
thus to provide an efficient test for membership in this code.
It is easy to see that, as such, the problem above allows
no efficient solutions: A tester that accepts all polynomials
with probability one, must probe the value of f on at least
d + 2 places before it can reject any function, and this is
too many queries for our purpose. However, one can at-
tempt to use some auxiliary information π about f that
might allow for more efficient tests. Such auxiliary informa-

tion is what is referred to as “Probabilistically Checkable
Proof of Proximity” (PCPP) in the work of Ben-Sasson et
al. [9] and as “Assignment Testers” in the work of Dinur
and Reingold [14]. Both works define such a concept generi-
cally, for testing proximity to possessing any property, while
we need it only for the special case of testing proximity to
Reed-Solomon codewords. In terms of PCPPs, our new task
is thus to design a tester that makes few oracle queries to
a pair of oracles (f, π) (say both return elements of F as
answers), with the following properties: If f is a degree d
polynomial, there must exist a valid proof π so that (f, π) is
always accepted by the tester. If f is δ-far from every degree
d polynomial then for every π, (f, π) must be rejected with
high probability.
Moderately efficient solutions to this problem can be ob-
tained as a direct consequence of the final theorem of Ben-
Sasson et al. [9], who give length efficient proofs for any
property (relative to the time it takes to verify the property
deterministically). However, such a solution would neither
be simple, nor as short as we desire. (but it does clarify that
our goal of making o(d) queries is attainable!)
Our main technical result (Theorem 4) is a proof of proxim-
ity for the Reed-Solomon code (denoted the RS-code). This
proof has length O(n poly log n) for RS codes over a field
F of cardinality n and characteristic two. We also describe
some variations, such as PCPP for RS codes over certain
prime fields (Theorem 5), but these are not needed for our
final PCP results. The construction of these PCPPs is self-
contained and relies only on basic algebra. Our proof of
proximity consists of an encoding of an efficient FFT-like
evaluation of the low degree polynomial. The only complex
ingredient in our analysis is the (black-box) use of the anal-
ysis of Polishchuk and Spielman [27] of a natural low-degree
test for bivariate polynomials.
We stress that the construction of our PCPP for the RS code
is similar the PCPP proof composition of [14, 9]. The main
difference is that previous works used composition of PCPPs
for general circuits, whereas we use special purpose PCPPs
(only) for Reed-Solomon codes. As discussed earlier, ob-
taining PCPPs for this restricted case suffices for obtaining
PCPs for SAT (and proving Theorem 1).

Organization of this paper:.In Section 2 we define RS
codes and PCPs of Proximity formally, and give an overview
of our PCP of Proximity for RS codes over fields of charac-
teristic two. In Section 3 we present our efficient zero-tester,
whose query complexity is independent of the degrees of
polynomials being tested (modulo the complexity of PCPPs
for RS codes). In Section 4 we give the reduction from SAT
to algebraic problem. The resulting PCP is described in
Section 5, proving Theorem 1. In Section 6 we generalize
the univariate zero testing protocol to the multivariate case.

2. PROOFS OF PROXIMITY FOR REED-
SOLOMON CODES

We start with some basic notation used in the rest of the
paper. Unless stated otherwise, we measure distance be-
tween x, y ∈ Σn using the normalized Hamming distance,
i.e. ∆(x, y) , Pri∈[n][xi 6= yi]. Let C be a subset of Σn.
(Often, but not always, in this paper Σ will be a field and
C a linear error correcting code.) The distance of x from C
(denoted ∆(x,C)) is the minimal distance between x and a



member of C. If C is empty we define ∆(x, C) = 1 for every
x. We say x is δ-far from C if ∆(x,C) > δ, and otherwise x
is δ-close to C.

Proofs of Proximity:.Here we consider the task of giving
efficiently verifiable proofs of the statement “x ∈ C”, where
the verifier makes few queries into x and the proof. Such
a verification task is necessarily probabilistic, and can only
guarantee (upon acceptance) that x is δ-close to C. This
notion was introduced in [9] as “Probabilistically Checkable
Proofs of Proximity” (PCPP), and independently by [14]
as “Assignment Tester”. Our definition below is a slight
variant on [9, Definition 2.3].1

Definition 1 (PCPP). A set C ⊆ Σn is said to have
a Probabilistically Checkable Proof of Proximity (PCPP) over
alphabet Σ of length ℓ(n), with query complexity q(n), ran-

domness r(n), perfect completeness and soundness s(·, n), if
there exists a polynomial time randomized verifier V with or-
acle access to a pair (x, π) ∈ Σn+ℓ(n) such that V tosses r(n)
coins, makes q(n) queries into (α, π), and outputs accept or
reject with the following guarantees:

Completeness: If x ∈ C then ∃π ∈ Σℓ(n) such that verifier
accepts (x, π) with probability 1.

Soundness: If ∆(x,C) ≥ δ then ∀π ∈ Σℓ(n), verifier rejects
(x, π) with probability ≥ s(δ, n).

As such PCPPs can be defined for any property C ⊆ Σn,
but we care about it only for the case of the Reed-Solomon
codes, which we define next.

Definition 2. For P (z) a polynomial over a field F and

S ⊆ F define its evaluation table over S to be 〈P (z)〉z←S ,

〈P (s) : s ∈ S〉. 2 The Reed-Solomon code of degree d over
F, evaluated at S is defined as

RS(F, S, d) = {〈P (z)〉z←S : P (z) =

d−1
X

i=0

aiz
i, ai ∈ F}.

The fractional degree of such a code is d/|S|.

The main result of this section gives a PCPP for RS-Codes
over some nice fields and nice sets S. First we state the
result for RS-codes over fields of characteristic two. (Other
cases including certain prime fields are described below).
The proof generalizes to arbitrary constant characteristic
but we state and prove it for characteristic two, for the sake
of simplicity and since this suffices for our PCP applications.
Recall that a field F of cardinality 2ℓ can be viewed as a
vector space over GF (2) of dimension ℓ. We say that S ⊆ F

is “linear” if it is a linear subspace of this ℓ-dimensional
space. (Equivalently, S is linear if for every α, β ∈ S we
have α + β ∈ S.)

Theorem 4 (Binary RS PCPP). There exist univer-
sal constant c ≥ 1 such that for every field F of characteristic

1We require the soundness be a function of the proximity,
whereas [9] only needed the soundness to be large whenever
the distance is large.
2Strictly speaking S should be a sequence for this definition
to work. We’ll assume some canonical ordering of elements
of S and assume z ← S enumerates z according to this
ordering.

two, every linear S ⊆ F with |S| = n, and every d ≤ n, the
Reed-Solomon code RS(F, S, d) has a PCPP over alphabet F

with the following parameters:

• Proof length ℓ(n) ≤ n logc n.

• Randomness r(n) ≤ log n + c log log n.

• Query complexity q(n) = O(1).

• Soundness s(δ, n) ≥ δ/ logc n.

Furthermore, there exists a Turing machine that on input
(F, S, d) as above, outputs the (description of the) verifier
for RS(F, S, d) in time that is polynomial in |F|.

Before sketching the proof of Theorem 4, we state its analog
for fields that have a “nice” multiplicative sub-group. We
point out there are infinitely many prime fields of this form,
and given n, a suitable prime (of size polynomial in n) can be
found efficiently. This claim is a corollary of a fundamental
theorem in Number Theory by Linnik [24] (For more details,
see http://mathworld.wolfram.com/LinniksTheorem.html).
In turn, Theorem 5 could be used to obtain a different con-
struction of our efficient PCPs (Theorem 1).
Let F

⋆ denote the cyclic multiplicative group of F. Let the
order of an element ω ∈ F

⋆ be the smallest positive integer n
such that ωn = 1. We refer to an integer n as a power of two
if n = 2k for integer k. The multiplicative group generated
by ω is 〈ω〉 ,

˘

ω0, ω1, . . . , ωn−1
¯

.

Theorem 5 (Multiplicative RS PCPP). There ex-
ists a universal constant c ≥ 1 such that the following holds.
Let ω ∈ F

⋆ be an element of order n in the finite field F,
where n is a power of two, let S = 〈w〉 and let d < n be
an integer. The Reed-Solomon code RS(F, S, d) has a PCPP
over alphabet F with the following parameters:

• Proof length ℓ(n) ≤ n logc n.

• Randomness r(n) ≤ log n + c log log n.

• Query complexity q(n) = O(1).

• Soundness s(δ, n) ≥ δ/ logc n.

Furthermore, there exists a Turing machine that on input
(F, S, d) as above, outputs the (description of the) verifier
for RS(F, S, d) in time that is polynomial in |S|+ log |F|.

Examination of the proof of Theorem 5 shows it can be de-
rived for any 〈ω〉 of size n that is poly(log n)-smooth, i.e. all
prime factors of n are at most poly(log n). Alternatively, the
proof can be modified to obtain similar PCPPs for RS-codes
over fields of characteristic ≤ poly(log n) (in this setting, we
use the additive structure of the field as in the proof of The-
orem 4). For simplicity, we state the Theorem only for the
multiplicative case of a 2-smooth n.
The soundness in Theorems 4,5 can be boosted to an ar-
bitrary constant less than 1 (for any fixed δ > 0), using
any averaging (a.k.a. oblivious) sampler (cf. [17]). In the
statement of the following Corollary 6, we say RS(F, S, d)
has a PCPP with soundness half for proximity parameter δ,
if every word that is δ far from RS(F, S, d) is rejected with
probability at least half (the choice of half is arbitrary and
could be replaced by any constant smaller than one).



Corollary 6. There exists a universal constant c ≥ 1
such that for any δ ∈ (0, 1) the following holds. For F, S, d
be as in the statement of Theorem 4 or Theorem 5, the
Reed-Solomon code RS(F, S, d) has a PCPP over alphabet
F with proof length ℓ(n) ≤ n logc n, randomness r(n) ≤
log n + c log log n, query complexity q(n) = logc n/δ, and
soundness half for proximity parameter δ.
Furthermore, there exists a Turing machine that on input
(F, S, d) as above and δ ∈ (0, 1) represented in binary nota-
tion by k bits, outputs the (description of the) above men-
tioned verifier in time that is polynomial in |S|+ log |F|+ k.

A full proof of Theorems 4,5 will appear in the full version of
this paper. A proof of Theorem 5 (and the PCPs resulting
from it) appears in our preliminary report [10]. Here we only
sketch the proof of Theorem 4, due to space limitations.

Proof. (Sketch, of Theorem 4): The PCPP is essentially
built from first principles: At a high level, we attempt an
elementary reduction from the task of testing a univariate
polynomial to the task of testing a bivariate polynomial of
significantly smaller degree. We then invoke an analysis
of a “bivariate low-degree test” by Polishchuk and Spiel-
man [27], which reduces the task of testing bivariate poly-
nomials back to the task of testing univariate polynomials,
of much smaller degree than the original. Recursing on this
idea leads to the full test. We note that crucial to our obtain-
ing short PCPPs, is the evaluation of the bi-variate polyno-
mial on a carefully selected, algebraically structured, subset
of points. This set is very different from the sets typically
used in previous PCP constructions (e.g. [5, 2, 13]), which
are product sets (usually consisting of the whole field).
We start by considering the polynomial P (z) of degree < n/8
evaluated on the linear space L ⊂ GF (2ℓ) of cardinality n,
and address the task of “testing” it. Our main idea is that
for any polynomial q(z) of degree ≈ √n, we can define a bi-
variate polynomial Q(x, y) of degree ≈ √n in each variable,
that “captures” all the information of P . Specifically, we can
reconstruct P from Q using the identity P (z) = Q(z, q(z)).
The presentation of P of degree ≈ n as a bivariate polyno-
mial Q of individual degree ≈ √n is useful, because test-
ing of bivariate polynomials reduces to testing of univariate
polynomials of roughly the same degree using well-known
“low-degree tests” and their analysis (cf. [27]). This leads
us to the hope that Q might provide a good “proof” that
P is of low-degree. More to the point, to prove that a ta-
ble of evaluations of P corresponds to the evaluations of a
polynomial of low-degree, the prover can provide a table of
evaluations of a bivariate polynomial Q, prove that Q has
degree

√
n in each variable, and then prove that Q is con-

sistent with the table of evaluations of P .
To completely describe the above approach, all we need to
do is describe which set of points we will specify Q on, so as
to achieve both tasks: (i) verifying that Q has low-degree,
and (ii) that it is consistent with P . However this leads
to conflicting goals. In order to test that Q has low-degree,
using a bivariate verifier, we need to know its values on some
subset X ×Y where X, Y ⊆ GF (2ℓ). To make this efficient,
we need to make |X|, |Y | ≈ √n. On the other hand to test
its consistency with P , the natural approach is to ask for its
values on the set T = {(z, q(z))|z ∈ L}. Unfortunately the
set T , which depends on the selection of q(z), is far from
being of the form X × Y . (For starters, the projection of
T onto its first coordinate has cardinality n while we would

x

y

L1

… Ãβ7L̃0, Ãβ1 = L̃0 + β̃1,

T

Figure 1: Here F = GF (26) is the field with 64 el-

ements and q is a linearized polynomial of degree

8. We plot the set of points T ⊂ F × F defined by

T = {(z, q(z)) : z ∈ F}. Notice T can be partitioned

into eight product sets, each set being a product of

an affine shift of L̃0 and some β ∈ L1.

like this projection to be of cardinality O(
√

n).)
This discrepancy (between T and cross-product sets) seems
to kill this approach entirely, however it turns out it can be
salvaged. To do so, we choose q(z) to be a special linearized
polynomial (cf. [23, Chapter 3, Section 4]) that we now de-
scribe. A polynomial q over GF (2ℓ) is said to be linearized
if the mapping defined by it is GF (2)-linear (i.e. q(x + y) =

q(x) + q(y) for every x, y ∈ GF (2ℓ)). Let L̃0, L̃1 be arbi-
trary linear subspaces of L such that L is the direct sum of
L̃0, L̃1 and dim(L̃0) = ⌊dim(L)/2⌋, dim(L̃1) = ⌈dim(L)/2⌉
(so |L̃0|, |L̃1| ≈

p

|L|). We take q(z) to be the unique monic
polynomial of minimal degree whose roots are precisely the
elements of L̃0, i.e.

q(z) ,
Y

α̃∈L̃0

(z − α̃)

The polynomial q(z) is linearized and as such has nice prop-
erties that will be crucial in our analysis:

• q defines a linear map over L.

• The kernel of (the linear map defined by) q is L̃0.

• The image of L under (the linear map defined by) q is

a linear space denoted L1, and dim(L1) = dim(L̃1).

• The polynomial q can be computed and evaluated on
elements of the field in polynomial time in |F|.

With this information in hand we notice q(z) partitions T

into ≈ √n product sets as follows. For β̃ ∈ L̃1 let β = q(β̃),

and notice β ∈ L1. Let Ãβ̃ be the affine shift of L̃0 by β̃ (i.e.

Ãβ̃ = {α̃ + β̃ : α̃ ∈ L̃0}). Finally, let Tβ̃ = Ãβ̃ × {β}. Then,
q(z) partitions T into the disjoint union of the product sets

Tβ̃ for β̃ ∈ L̃1. (See Figure 1).
This suggests requesting the evaluation of Q on the set of
points (L̃0 ×L1)∪ T , the cardinality of which is ≤ 2n. (See
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…L0, Aβ2 = L0 + β̃2, Aβ3

T
S

Figure 2: The proof of proximity for P is the evalua-

tion of Q on the set of points S. Notice S has a large

product set L0 × L1, allowing for bi-variate low de-

gree testing. Additionally, S ∪ T can be partitioned

into eight row, each row being a linear space.

figure 2). With such an evaluation in hand we can use the

subset L̃0 × L1 to perform a bivariate low degree test, by
testing proximity to the RS-code (of degree ≈ √n) of a
random row/column of this product set. Then we can test
consistency of Q on T by reading Q(x, β) for all points x ∈
L̃0 ∪ Ãβ̃. A crucial observation is that all of our tests verify
proximity to Reed-Solomon codewords evaluated on linear
subspaces of GF (2ℓ). To see this notice L̃0 and L1 are linear

spaces (by definition), and so is the set L̃0 ∪ Ãβ̃ (it is the

space spanned by L̃0 and β̃). We have reduced our original
problem of size n to O(

√
n) identical problems of size O(

√
n).

Our description so far leads to a proof of proximity of size
O(n) that can be tested by making O(

√
n) queries. How-

ever, the robustness of our tests can be used to decrease
the query complexity further, at the price of increasing the
proof length. Informally, robustness means the following.
The distance of a function f : (L̃0 × L1) ∪ T → GF (2ℓ)
from a low degree bivariate polynomial is bounded by (a
constant times) the expected distance of an individual test
(of size ≈ √n) from the respective RS code. Thus, in or-
der to test proximity to the RS code of size n it suffices
to test proximity to RS codes of size ≈ √n (which can be

done by testing proximity to the RS code of size ≈ n1/4,
etc.). Applying this recursion a log log n number of times
reduces the degree to constant and gives us our proofs of
length n poly(log n).
The completes our sketch. The full proof (omitted due to

space limitations) will appear in the full version.

3. ZERO TESTING FOR UNIVARIATE POLY-
NOMIALS

Our previous section showed how to test proximity to the
RS-code. However, in our PCP constructions we will need
to verify that a function f : S → F is close to a low degree
polynomial p that vanishes on H ⊂ F. This problem can

also be cast as a PCPP problem for the vanishing RS-code:

RSH(F, S, d) , {〈P (z)〉z←S : deg(P ) ≤ d,∀h ∈ H, P (h) = 0}
Notice we do not require H to be a subset of S in the problem
definition.
We remark that this problem is a special case of an m-variate
zero testing problem often considered in the literature on
PCPs (see Section 6). In the m-variate version, one is given
evaluations of a polynomial on all points in F

m (thus S =
F

m) and would like to verify that it is zero on all of Hm.
Typical solutions to this problem make O(m · |H |) queries,
which would be too large for us.
For our case, if |H | > d the problem becomes trivial, because
the zero-polynomial is the only element of RSH(F, S, d). How-
ever, we are interested in the case where |H | < d. The natu-
ral solution (querying f on all/random h ∈ H) fails for two
reasons. First, the size of H is larger than our desired query
complexity, and furthermore all we gain from a proximity
test for the RS code is that f is close to p, but it may still
be the case that f(α) 6= p(α) for one or more α ∈ H .
The following Lemma reduces zero-testing to RS-proximity
testing. We remark that a similar result holds for multivari-
ate zero testing, and can be used to simplify previous PCP
constructions (as described in Section 6).

Lemma 7 (Univariate Zero Testing). Suppose that
RS(F, S, d) has a PCP of proximity of length ℓ, query com-
plexity q, randomness r, and soundness s(δ). Then for
any H ⊂ F, |H | < |S|, the vanishing RS-code RSH(F, S, d)
has a PCP of proximity with length ℓ + |S|, query complex-
ity q + 2, soundness ≥ min{s(δ/2), δ/2} and randomness
max{r, log |S|}.
Furthermore, the (description of the) verifier for RSH(F, S, d)
can be computed in polynomial time in |H |, log |F| and the
(description of the) verifier for RS(F, S, d).

As in the case of Theorems 4, 5 (and using the same tech-
niques), we can boost the soundness using randomness-efficient
samplers:

Corollary 8. There exists a universal constant c ≥ 1
such that for any δ ∈ (0, 1) the following holds. For F, S, d
be as in the statement of Theorem 4 or Theorem 5 and H ⊂
F, |H | < |S|, the vanishing Reed-Solomon code RSH(F, S, d)
has a PCPP over alphabet F with proof length ℓ(n) ≤ n logc n,
randomness r(n) ≤ log n+c log log n, query complexity q(n) =
logc n/δ, and soundness half for proximity parameter δ.
Furthermore, there exists a Turing machine that on input
(F, S, d, H) as above and δ ∈ (0, 1) represented in binary
notation by k bits, outputs the (description of the) above
mentioned verifier in time that is polynomial in |S|+log |F|+
k.

Proof. (of Lemma 7) Recall a polynomial P (z) is zero

on H iff the polynomial gH(z) ,
Q

h∈H(z − h) divides it,

i.e. P (z) = gH(z) · P̃ (z) for some polynomial P̃ , deg(P̃ ) ≤
d − |H |. The verifier for RSH(F, S, d) has oracle access to
the purported codeword p : S → F and its proof, which is
combined of two parts: (i) p̃ : S → F a supposed evaluation

of P̃ on S; (ii) A proof π̃ of proximity of p̃ to RS(F, S, d −
|H |). Proof length is as claimed. The verifier operates as
follows. First, it invokes the verifier for RS(F, S, d− |H |) on
input oracle p̃ and proof oracle π̃. Then, it picks a random
α ∈ S (using same random coins used by the RS-verifier),



reads p(α) and p̃(α), and accepts iff p(α) = gH(α) · p̃(α).
Notice gH(α) can be computed in polynomial time by the
verifier because H is given as an explicit input. Thus, the
running time is as claimed, and so are the randomness and
query complexity, by construction. Completeness follows by
taking p̃ to be the evaluation of P̃ , and taking π̃ to be its
proof of proximity to RS(F, S, d− |H |).
As to the soundness, if p̃ is δ/2-far from RS(F, S, d−|H |), the
rejection probability of our verifier is at least δ/poly log n,
by the soundness of the verifier for RS(F, S, d). Otherwise,
the function q : S → F defined by q(α) = p̃(α) · gH(α) is
δ/2-close to RSH(F, S, d). By assumption, p is δ/2-far from
q, hence the verifier rejects with probability at least δ/2.
(We assume n is sufficiently large, so poly log n ≥ 2). This

completes our proof.

4. REDUCING SAT TO ALGEBRAIC PROB-
LEMS

In order to obtain length-efficient PCPs we reduce 3-SAT
to an NP-complete algebraic constraint satisfaction problem
(ACSP), that we now describe. First we consider a very
natural reduction, that gives a polynomial length PCP. Then
we sketch the steps used to obtain nearly linear blowup in
our reduction.
A 3-CNF formula φ can be viewed as a characteristic func-
tion Clause : [n]3 × {0, 1}3 → {0, 1}, denoting which clauses
belong to φ. An assignment is a function A : [n] → {0, 1},
and it satisfies φ iff ∀x, y, z ∈ [n], b1, b2, b3 ∈ {0, 1} we have

Clause(x, y, z, b1, b2, b3) = 0

or A(x) = b1 or A(y) = b2 or A(z) = b3

Extending wlog the domain of Clause to [n]6 (by associating
{0, 1} with two elements of [n] and fixing the function to
zero on all new elements in the larger domain), the straight
forward algebraic version of φ is a six-variate polynomial

Ĉlause : F
6 → F, of degree ≤ n in each variable and a

set H ⊂ F, |H | = n ≪ |F| (We associate elements of H
arbitrarily with those of [n]). An assignment is a pair of

polynomials, a univariate bA : F → F of degree ≤ n and

a six variate bB : F
6 → F of degree ≤ n in each variable.

Such a pair satisfies Ĉlause iff bB vanishes on H6 and for all
x, y, z, b1, b2, b3 ∈ F:

bB(x, y, z, b1, b2, b3) = Ĉlause(x, y, z, b1, b2, b3) ·
( bA(x)− b1) · ( bA(y)− b2) · ( bA(z)− b3)

The essential ingredients in this arithmetization are (i) Each

of bA, bB is low degree (compared to |F|). (ii) The consistency

of bA, bB is verified by uniformly accessing each of them at

random points. (iii) Testing bA is good reduces to (multi-

variate) zero testing of bB. Indeed, this approach leads to
simple PCPs of size ≈ n6.

Below we give a similar reduction, except that bB is univari-
ate, which is essential for our nearly linear PCPs. (The price
we pay for this length efficiency is that the reduction is a
bit more complex to describe.) In contrast to a CNF, an as-
signment to our ACSP instance is a univariate polynomial
(intuitively, it is the Reed Solomon encoding of the classical
NP witness). The constraints of our problem are indexed
by field elements (one constraint per element). Similar to a
3-CNF formula, each constraint depends on a finite number

(nine) of assignment values (given by the assignment poly-
nomial). However, the assignment entries we read are not
arbitrary (as in a CNF), rather they are linear functions of
the constraint index. Finally, the constraint polynomial it-
self is of small degree in the constraint index and multi-linear
in the assignment values it reads.

Definition 3 (Univariate Algebraic CSP). The lan-
guage LUACSP has as its space of instances, tuples of the
form φAlg = (F, {Aff1, . . . , Affk}, H,C), where F is a
field, Affi = aix+bi is an affine map over F, H ⊂ F and C :
F

k+1 → F is a polynomial of degree at most |H | in its first
variable and is multi-linear of degree at most three in the re-
maining variables. An instance φAlg is in LUACSP iff there
exists a polynomial A : F→ F of degree at most |H | such that
for every x ∈ H, C(x, A(Aff1(x)), . . . , A(Affk(x))) = 0.

Theorem 9 (SAT ; Univariate Algebraic CSP).
There exists a reduction from SAT to LUACSP that given
a Boolean formula φ of size n and integer ℓ > log n +
log log n+14, reduces φ in deterministic time n poly(ℓ) to an
instance φAlg = (GF (2ℓ), {Aff1, . . . ,Aff9}, H,C), where
|H | ≤ 20n log n.

Very similar algebraic reductions are prevalent in many pre-
vious PCPs [5, 3, 2, 27, 30, 11, 9], starting with [5]. All pre-
vious reductions used multivariate polynomials in order to
perform degree reduction. Namely, an assignment of length
n is encoded by an m-variate polynomial of degree ≈ m·n1/m

(allowing proximity testing with n1/m queries). Our reduc-
tion does not reduce the degree at all, in fact it slightly in-
creases it. The PCPPs for the RS code allow us to tolerate
this and verify proximity to high-degree polynomials with
very small query complexity (logarithmic in the degree).

Proof. (Sketch) We reduce our CNF to the univariate
problem in two steps. Our first step is essentially identical
to Polischuk and Spielman [27]. In this step we embed the
CNF in a de Bruijn graph. Namely, we map variables and
clauses of the input CNF to distinct vertices of the de Bruijn
graph, and use the routing properties of this graph to con-
nect clauses to their variables via vertex disjoint paths. Our
intermediate problem asks for an assignment (to vertices of
the graph) that satisfies the embedded CNF.
In the second step, we embed the de Bruijn graph in a suffi-
ciently large field of characteristic two, and arithmetize the
problem. Namely, we use a graph homomorphism injecting
the de Bruijn graph into an “affine graph” (a generaliza-
tion of a Cayley graph). This homomorphism allows us to
form a new constraint satisfaction problem, where variables
and constraints are labeled by elements of the field, and
more importantly, the set of variables used in a constraint
can be computed by a finite number of affine shifts of the
constraint label. The resulting problem is our Univariate
Algebraic CSP of Definition 3. (A formal proof will appear

in the full version).

5. PROOF OF MAIN THEOREM 1
Assume we are given a Boolean formula φ of size n. The
verifier sets ℓ = ⌈log n + log log n⌉ + 20 and reduces φ to
an instance φAlg = (GF (2ℓ), {Aff1, . . . ,Aff9}, C, H) of

LUACSP using Theorem 9. Let F = GF (2ℓ) and notice
|H |/|F| < 1/100. Recall |H | ≤ 20n log n. Fix δ = 1/100.



The proof oracle.Verifier has oracle access to two pur-
ported Reed-Solomon codewords and their PCPPs.

• An assignment oracle pA : F → F and its proof of
proximity to RS(F, F, |H |), denoted πA, as defined in
Corollary 6 (using proximity parameter δ).

• A constraint oracle pB : F → F and its proof of prox-
imity to RSH(F, F, 4 · |H |), denoted πB , as defined in
Corollary 8.

Let us calculate the size of the proof oracle. Notice |pA|, |pB| =
|F| = O(n log n) by construction, and |πA|, |πB | = n poly(log n),
by Corollaries 6, 8. The total proof length is n · poly(log n)
even when measured in bits, because every element of F can
be written using O(log n) bits.

Verifier’s operation.Verifier tosses log n+O(log log n) coins
to obtain a random string R, and accepts iff following three
tests accept

• Invoke the verifier for the RS-code RS(F, F, |H |) de-
scribed in Corollary 6 on input oracle pA and proof
oracle πA, using proximity parameter δ and random
string R.

• Invoke the verifier for the vanishing RS-code RSH(F, F, 4·
|H |) described in Corollary 8 on the input oracle pB

and proof oracle πB, using proximity parameter δ and
random string R.

• Select random β ∈ F (using random string R), and
query pB(β) and pA(Aff1(β), . . . , pA(Aff9(β))). Ac-
cept iff

pB(β) = C(β, pA(Aff1(β)), . . . , pA(Aff9(β))).

The randomness, query complexity and running time of our
verifier is as claimed, by Corollaries 6, 8 and by construction.

Completeness.By Theorem 9, if φ is satisfiable, there ex-
ists an assignment polynomial PA, deg(PA) ≤ |H | such that

PB(x) , C(x,PA(Aff1(x)), . . . , PA(Aff9(x))) vanishes on
H . Recall C : F

10 → F has degree ≤ |H | in its first
variable and degree three in the remaining ones. Hence,
deg(PB) ≤ |H |+3·deg(PA) ≤ 4·|H |. Let pA, pB be the eval-
uation of PA, PB on F, respectively. Let πA, πB be the proofs
of proximity to RS(F,F, |H |), RSH(F, F, 4 · |H |) promised by
(the completeness part of) Corollaries 6, 8, respectively. By
these Corollaries and by construction, our verifier accepts
with probability one, as claimed.

Soundness.Suppose φ is unsatisfiable. There are three
cases to consider. (i) If pA is δ-far from RS(F, F, |H |), then
Corollary 6 implies the verifier rejects with probability 1/2,
and we are done. (ii) Similarly, if pB is δ-far from RSH(F, F, 4·
|H |), then Corollary 8 implies the verifier rejects with prob-
ability 1/2, and we are done.
(iii) Otherwise, let PA be the unique degree |H | polynomial
that is δ-close to pA and let PB be the unique polynomial
of degree 4|H | that is δ-close to pB and vanishes on H . Let

PC(x) = C(x,PA(Aff(x)), . . . , PA(Aff9(x))).

Since φ is unsatisfiable, Theorem 9 implies PB(x) 6= PC(x).
Since deg(PB), deg(PC) ≤ 4|H |, these two polynomials agree

on at most 4|H | values. Let

pC(x) , C(x, pA(Aff(x)), . . . , pA(Aff9(x))).

By a union bound, pC(x) is 10δ-close to the evaluation of
PC(x) on F. We conclude the fraction of inputs on which

pC and pB agree, is at most 10δ + 4|H|
|F|
≤ 1/2. Thus, the

third test of our verifier will reject with probability at least
half. The proof of Theorem 1 is complete.

6. AN ALTERNATIVE TO THE “SUM-CHECK”
PROTOCOL

6.1 Preliminaries - PCPPs for Reed-Muller Codes
It is possible to extend the PCPP for the RS-code into one
for the Reed-Muller code (based on multivariate polynomi-
als), given the extensive literature on testing multivariate
polynomials using axis parallel lines [4, 5, 15, 3, 27, 16].
Let RM(F, S, d, m) be the m-variate Reed-Muller code with
degree bound d, evaluated at Sm, i.e. RM(F, S, d, m) =
˘

〈Q(x1, . . . , xm)〉x1←S,...,xm←S : ∀i ∈ [m], degxi
(Q) ≤ d

¯

.
For a set S ⊆ F and m-variate function f : Sm → F, let
δd

m(f) be the fractional distance of f from RM(F, S, d, m).
Let δd

m,i(f) denote the fractional distance of f from a poly-
nomial of degree d in the ith variable, and unbounded degree
in all other variables. Finally, let E[δd

m,i(f)] be the expecta-

tion of δd
m,i over random i ∈ [m]. The following Lemma is a

rephrasing of [3, Lemma 5.2.1].

Lemma 10. [3] There exists a universal constant c such
that for every S ⊂ F such that |S| ≥ poly(m,d),

δd
m(f) ≤ c ·m · E[δd

m,i(f)]

Lemma 10 together with Theorem 4 imply efficient PCPPs
for Reed-Muller codes. A proof of the following Lemma will
appear in the full version.

Lemma 11 (RM PCPP). Let S ⊂ F and d, m be inte-
gers such that |S| ≥ poly(m,d) for the polynomial of Lemma
10. If RS(F, S, d) has a PCPP with length ℓ, query com-
plexity q, randomness r and soundness s(δ), then the Reed-
Muller Code RM(F, S, d, m) has a PCPP with length ≤ m ·
nm−1 · ℓ, query complexity q, randomness log(m · nm−1) + r
and soundness ≥ s(δ)/m.

Remark 12. A more query efficient test can be constructed
when S = F. Instead of axis parallel lines, we use an ǫ-biased
set of directions as in [11]. This results in proofs of similar
length and query complexity and slightly larger randomness,
but the soundness is as large as Ω(s(δ)) (and independent of
m).

6.2 Multivariate Zero Testing
The multi-variate version of the zero-testing problem is cru-
cial to all previous algebraic PCP constructions [5, 3, 2, 27,
20, 18, 11, 9], and was solved using the sum-check protocol of
[25]. In the multivariate problem we are given sets S, H ⊂ F

and oracle access to a multivariate function f : Sm → F. We
are asked to verify f is close to a polynomial of degree ≤ d
in each variable that evaluates to zero on Hm (once again,
we do not need to assume H ⊂ S). Let RMH(F, S, d, m)
be the sub-code of the Reed-Muller code consisting of all
(evaluations of) polynomials that vanish on Hm. We prove
the following generalization of Lemma 7



Lemma 13 (Multivariate Zero Testing). Suppose that
RM(F, S, d, m) has a PCPP of length ℓ, query complexity q,
randomness r and soundness s(δ). Then for any H ⊂ F,
RMH(F, S, d, m) has a PCPP with proof length m · |S|m +
(m + 1)ℓ, randomness max{r, m log |S|}, query complexity

(m + 1)(q + 1), and soundness ≥ min{s, 1 − ((m + 1)δ +
“

d
|S|

”m

)}.

Notice the query complexity of previous solutions to this
problem depended also on the size of H . Our solution has
query complexity that depends only on m and is based on a
straightforward characterization of RMH (similar to Alon’s
Combinatorial Nullstellensatz [1]).
The catch in immediately extending the univariate verifier
of Lemma 7 to even the bivariate case is that the “factor-
ing” concept does not extend immediately. Specifically, if
we are given that a bivariate polynomial Q(x, y) has a zero
at (α, β) this does not imply that Q(x, y) has some nice
factors. However, one can abstract a nice property about
Q from this zero. Specifically, we can say that there ex-
ist polynomials A(x, y),B(x, y) (of the right degree) such
that Q(x, y) = A(x, y) · (x − α) + B(x, y) · (x − β). Thus
to prove that Q(α,β) = 0, we may ask the prover to give
oracles for Q(x, y). A(x, y) and B(x, y). We can then test
that Q, A and B are of low-degree and that they satisfy
the identity above. Extending this idea to m-variate poly-
nomials that are zero on an entire generalized rectangle is
straightforward. The technical lemma giving the identity
is included below. (The lemma is also a key ingredient in
Alon’s “Combinatorial Nullstellensatz” [1].)

Lemma 14. Let Q(x1, . . . , xm) be a polynomial over FQ

of degree d in each of m variables. Let H ⊆ FQ and let

gH(z)
def
=
Q

β∈H(z − β). Then Q evaluates to zero on Hm iff
there exist m-variate polynomials A1, . . . , Am of individual
degree at most d such that Q(~x) =

Pm
i=1 Ai(~x) · gH(xi).

Remark 15. The lemma above is intentionally sloppy with
degree bounds. While tighter degree bounds on Ai’s can be
obtained, this won’t be needed for our PCPs.

Proof. One direction is immediate. If Q(~x) =
Pm

i=1 Ai(~x)·
gH(xi) then Q(~α) = 0 for every ~α ∈ Hm. The other di-
rection is proved in three steps. First, we show that for
any polynomial P (x1, . . . , xm) of degree dj in xj , and any
i ∈ {1, . . . , m}, there exist polynomials B(x1, . . . , xm) and
C(x1, . . . , xm) of degree at most dj in xj , with the degree of
C in xi being at most min{dj , |H | − 1}, such that P (~x) =
B(~x) ·gH(xi)+C(~x). Second, we show that there exist poly-
nomials A1, . . . , Am and R with the Ai’s having degree at
most d in each variable and R having degree at most |H |−1
in each variable such that Q(~x) =

Pm
i=1 Ai(~x)·gH(xi)+R(~x)

(where Q is the polynomial from the lemma statement). In
the final step, we show that R(~x) = 0, concluding the proof.
Step 1: Recall that any polynomial f(xi) can be written
as q(xi) · gH(xi) + r(xi) where r has degree less than |H |.
Applying this fact to the monomials xD

i (for non-negative
D) we find that there exist polynomials qD(xi) and rD(xi),
with degree of qD being at most D and degree of rD be-
ing less than |H |, such that xD

i = qD(xi) · gH(xi) + rD(xi).
Now consider any polynomial P (x1, . . . , xm) of degree di

in xi. Suppose P (~x) =
Pdi

D=0 Pi(~x
′) · xD, where ~x′ =

(x1, . . . , xi−1, xi+1, . . . , xm). Writing the monomials xD
i in

terms of the qD’s and rD’s, we get:

P (~x) =

 

di
X

D=0

Pi(~x
′)qD(xi)

!

·gH(xi)+

 

di
X

D=0

Pi(~x
′)rD(xi)

!

.

Letting B(~x) =
Pdi

D=0 Pi(~x
′)qD(xi) and C(~x) =

“

Pdi

D=0 Pi(~x
′)rD(xi)

”

yields the polynomials as claimed. (In particular the degrees
of B and C in any variable are no more than of P , and the
degree of C in xi is smaller than |H |.)
Step 2: We now claim that there exist polynomials A1, . . . , Am

and R0, . . . , Rm such that for every j ∈ {0, . . . , m}, Q(~x) =
Pj

i=0 Ai(~x) · gH(xi) + Rj(~x), with Ai’s being of degree at
most d in each variable and Rj being of degree less than
|H | in x1, . . . , xj and of degree at most d in the remain-
ing variables. The proof is straightforward by induction on
j, with the induction step using Step 1 on the polynomial
P () = Rj() and the variable xj+1. The final polynomials
A1, . . . , Am and R = Rm are the polynomials as required to
yield the sub-claim of this step.
Step 3: Finally we note that for every ~α ∈ Hm, we have
R(~α) = Q(~α)−Pm

i=1 Ai(~α) · gH(αi) = 0−Pm
i=1 0 = 0. But

R is a polynomial of degree less than |H | in each variable
and is zero on the entire box Hm. This can only happen if
R ≡ 0. Thus we get that Q(~x) =

Pm
i=1 Ai(~x) · gH(xi), with

Ai’s being of degree at most d in each variable, as required

in the completeness condition.

Lemma 14, combined with the multivariate polynomial ver-
ifier from Lemma 11 prove Lemma 13.

Proof. (of Multivariate Zero Testing Lemma 13): As a

proof of the proximity of q ∈ F
Sm

to the code RMH(F, S, d, m)
our verifier expects (i) the evaluations of A1, . . . , Am from
Lemma 14 on Sm (denoted a1, . . . , am) and (ii) for each of
q, a1, . . . , am, a proof of proximity of Ai to RM(F, S, d, m).
Proof length is as claimed. The verifier operates as fol-
lows. First, it tests proximity of each of q, a1, . . . , am to
RM(F, S, d, m). Then, a random 〈α1, . . . , αm〉 ∈ Sm is se-
lected and verifier accepts iff q(~α) =

Pm
i=1 gH(αi) · ai(~α).

The query complexity is as claimed. Completeness follows
from Lemma 14. As to the soundness, if any of q, a1, . . . , am

is δ-far from RM(F, S, d, m) Verifier rejects with probabil-
ity s(δ). Otherwise, q is δ-close to a polynomial Q that
doesn’t vanish on Hm. If A1, . . . , Am are the polynomi-
als closest to a1, . . . , am respectively, then by Lemma 14 we
get Q(~x) 6=

P

i Ai(~x) · gH(xi) and Q has degree at most
2d in each variable. Thus, the two polynomials agree on
≤ (2d)m points so the acceptance probability of Verifier is

≤ (m + 1)δ +
“

d
|S|

”m

as claimed.
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