Analysis of Multimedia Workloads with Implications for
Internet Streaming

Lei Guo', Songqging Chen?, Zhen Xiao® and Xiaodong Zhang!

!Department of Computer Science
College of William and Mary
Williamsburg, VA 23187, USA

{lguo, zhang}@cs.wm.edu

ABSTRACT

In this paper, we study the media workload collected from
a large number of commercial Web sites hosted by a ma-
jor ISP and that collected from a large group of home users
connected to the Internet via a well-known cable company.
Some of our key findings are: (1) Surprisingly, the major-
ity of media contents are still delivered via downloading
from Web servers. (2) A substantial percentage of media
downloading connections are aborted before completion due
to the long waiting time. (3) A hybrid approach, pseudo
streaming, is used by clients to imitate real streaming. (4)
The mismatch between the downloading rate and the client
playback speed in pseudo streaming is common, which either
causes frequent playback delays to the clients, or unneces-
sary traffic to the Internet. (5) Compared with streaming,
downloading and pseudo streaming are neither bandwidth
efficient nor performance effective. To address this problem,
we propose the design of AutoStream, an innovative system
that can provide additional previewing and streaming ser-
vices automatically for media objects hosted on standard
Web sites in server farms at the client’s will.

Categories and Subject Descriptors

C.2.5 [Computer Communication Networks]: Local
and Wide Area Networks—Internet; C.4 [Performance of
Systems]: Performance Attributes

General Terms

Measurement, Performance, Design

Keywords

Network measurements,
Streaming, System design

Traffic analysis, Multimedia,

1. INTRODUCTION

The past decade saw the evolution of Internet content
from mostly text and images to increasingly more multime-
dia objects such as audio and video [11, 14]. Three meth-
ods are commonly used to deliver multimedia content on

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2005, May 10-14, 2005, Chiba, Japan.

ACM 1-59593-046-9/05/0005.

2Department of Computer Science
George Mason University
Fairfax, VA 22030, USA

sqchen@cs.gmu.edu

519

3AT&T Labs-Research
180 Park Ave.
Florham Park, NJ 07932, USA

xiao@research.att.com

the Internet, namely, downloading, pseudo streaming, and
streaming. Initially, multimedia objects were distributed in
the same way as non-media objects: a client downloads an
audio or a video clip from the Web server. This approach is
easy to implement and requires no change to the Web server.
The drawback is that the client has to finish downloading
the entire object before it can start playing the media. This
can incur a long startup latency for large media objects or
for clients who have limited bandwidth to the Internet (e.g.,
dial-up clients). Moreover, if a client decides that the con-
tent of a large media object is not interesting after playing
for a few seconds, most of the traffic in downloading this
object is simply wasted.

Pseudo streaming is another delivery method for multi-
media objects. It has the same nature of downloading, but
provides an option on the client side to play the object while
it is being downloaded. Most media players, such as Win-
dows Media Player and Real Player, support the pseudo
streaming mechanism. A major limit of pseudo streaming
appears when the downloading connection is slow and can-
not catch up with the playback speed. In this case, a client
has to stop frequently to wait for new data.

To address the deficiency of downloading and pseudo
streaming, researchers have developed streaming as the most
efficient technique for delivering multimedia content. With
streaming, the playback of a media object can start shortly
after the client receives the initial portion of the object from
the streaming server. In addition, streaming provides clients
with a variety of controls during playback, such as pause,
rewind, jump, etc. This allows a client to start or stop the
media stream easily at any time. Compared with download-
ing and pseudo streaming, the amount of data transferred
in streaming is closest to what the client really needs. Be-
cause of its many advantages, streaming is used in various
Internet applications today.

There have been some previous studies on the character-
istics of multimedia workloads. They typically either ana-
lyze the media trace of a small number of streaming/Web
servers or study the behaviors of clients in educational [11,
6] or enterprise environments [10]. Few of them have fo-
cused on the overall distribution of multimedia traffic from
both the server side and the client side. For example, it is
not clear what percentage of Internet media traffic is deliv-
ered via downloading versus via streaming. As we discussed
above, different delivery methods can have profound impact

on playback quality and bandwidth efficiency. Similarly, it
would be useful to quantify the benefits of a streaming ser-
vice to a group of Web servers. Unfortunately, these kinds of
questions have not been answered by the existing literature.

In this paper, we study the media workload collected from
a large number of commercial Web sites hosted by a major
ISP (a Web server farm) and the media workload from a
large group of home users connected to the Internet via a
well-known cable company (cable clients). These two work-
loads are independent to each other, which represent the
workload of media requests from the whole Internet to our
server farm and the workload of media requests from our ca-
ble network to the servers of the whole Internet, respectively.
To the best of our knowledge, this is the first comprehensive
study on the three media delivery methods from both the
client side and the server side. In particular, we quantify the
potential traffic waste in downloading and pseudo stream-
ing by using the amount of data transferred in streaming
as a benchmark. We also study the quality of service issues
in pseudo streaming systematically. A detailed description
of our findings will appear later in the paper, but here are
some highlights:

e Surprisingly, the majority of media content is still de-
livered via downloading from Web servers.

e A substantial percentage of downloading connections
for media objects were aborted before completion due
to the long waiting time and low patience of clients,
resulting up to 20% pure bandwidth waste.

e Compared with downloading, clients using pseudo
streaming tend to abort more connections and abort
earlier due to the early feedback of the media content,
and result in less bandwidth waste.

e The mismatch between the downloading rate and the
client playback speed in pseudo streaming is common,
which either causes frequent playback delays to the
clients, or unnecessary traffic to the Internet.

e Compared with streaming, downloading and pseudo
streaming are neither bandwidth efficient nor perfor-
mance effective.

Our findings indicate that inadequate streaming support
has caused many clients to suffer from poor quality of ser-
vice and has resulted in a significant waste of network band-
width. To address this problem, we propose the design of
AutoStream, an innovative system that can provide stream-
ing service automatically for media objects hosted on stan-
dard Web servers. AutoStream also supports a preview func-
tion that allows a client to decide if an object is worth down-
loading after viewing its beginning portion. Trace driven
simulations demonstrate that AutoStream has the poten-
tial of substantially improving the quality of service to the
clients while reducing network bandwidth consumption sig-
nificantly.

The rest of the paper is organized as follows. Section 2
presents our methodology for trace collection and process-
ing. Sections 3 and 4 give first an overview and then a de-
tailed analysis of the workloads. We propose and evaluate
the design of the AutoStream system in section 5. Section 6
discusses related work and Section 7 concludes the paper.

520

2. TRACE COLLECTION AND PROCESS-
ING METHODOLOGY

We collected our server farm multimedia workload and
cable client multimedia workload using the Gigascope ap-
pliance [13]. In the following context, we simply refer to
these terms as the server workload/trace and the client
workload/trace. Each workload in this study covers a 24-
hour time period, from 2004-06-15 20:00:00 to 2004-06-16
20:00:00. Downloading and pseudo streaming workload are
HTTP based. The most commonly used streaming proto-
cols are RTP [22]/RTSP [23] and MMS (proprietary to Mi-
crosoft) ' running on TCP for media control messages and
UDP for data transmission (if UDP is disabled, TCP can be
used, and thus the data and control message transmission
can share a channel). In our trace collection, we collected
the first IP packets of all HT'TP requests and responses, and
the first IP packets of all RTSP and MMS control messages.
We also collected the amount of bytes transferred through
each TCP/UDP connection per second, in order to analyze
the traffic flows in second level. All HTTP based peer-to-
peer traffic was carefully filtered out. There are a total of
1,095,984 media requests in the server workload, and 579,693
media requests in the client workload. The total data size
is about 100.36 GB before the processing in compressed for-
mat (gzip). There are a total of 4,498 unique server IPs
and a total of 79,309 unique client IPs involved in the server
workload, while there are a total of 13,110 unique server 1Ps
and a total of 7,906 unique client IPs involved in the client
workload.

2.1 Session and Traffic Matching

In both workloads, we first carefully removed the retrans-
missions of the first IP packets according to the sequence
numbers in TCP headers. The processed workloads con-
tain interleaved HTTP, RTSP, and MMS messages. We
match messages for sessions as follows: for HT'TP sessions,
each session includes an HTTP request and response pair.
We match all HTTP requests and responses based on the
timestamp, source IP and port, and destination IP and port
of each IP packet. We also consider the order of different
messages to avoid mismatching. About 97.36% HTTP re-
quests and responses can be matched in our client trace.
For the server trace, about 56.72% HTTP requests and re-
sponses can be matched due to the different routing paths
of requests and corresponding responses [7]. For RTSP and
MMS sessions, we group RTSP/MMS messages according
to the corresponding TCP connections first, and distinguish
different sessions in the same TCP connection based on the
RTSP session ID and MMS client ID, respectively.

Then we matched the real transferred traffic for each me-
dia access session. Since there may be multiple HTTP ses-
sions in a single TCP connection, we matched the data traf-
fic in each connection for all HTTP objects according to the
timestamp and delivering order. For RTSP and MMS ses-
sions, we parsed/decoded messages to get the protocol and
port number for data transmission, and then matched the
corresponding TCP/UDP traffic. Finally, we removed all
unsuccessfully matched HTTP sessions, all non-downloading
HTTP sessions such as sessions with a HT'TP 304 response
(304 is a Web server response code indicating that the sta-

!There is also a HTTP based streaming protocol, but the
amount of traffic is too trivial so we ignore it in this study.

tus of the being requested object is “Not Modified”), and all
unsuccessfully matched RTSP/MMS sessions for our study.

2.2 Trace Processing

After traffic matching and exclusion, we divided each
workload into the following three categories according to
their accessing mechanisms.

2.2.1 Downloading Traffic

We identify media downloading sessions from all HTTP
sessions as follows: the User-Agent field in the HTTP re-
quest is a Web browser, and the Content-Type field in the
corresponding HTTP response is audio or video. Since
there are other content types, such as application and
multipart, which may actually represent a media object,
we further use the file name suffix (extension) in the URL
to identify whether it is a media access session. We have con-
sidered 34 most popular suffixes for different media file for-
mats. After identifying a HTTP media session, we decoded
the media information such as encoding rate and playback
time from the file headers attached in the HTTP responses.
We have decoded the most popular media formats, including
Windows Media, Real Media, and QuickTime Media.

2.2.2 Pseudo Streaming Traffic

There are subtle differences between pseudo streaming
and downloading, although they both use HTTP. Some
pseudo streaming requests also try the HI'TP based stream-
ing first, then resort to pseudo streaming after failure. We
have identified the pseudo streaming sessions as follows: the
User-Agent in the request of a pseudo streaming session
corresponds to a media player: QuickTime for QuickTime
media player; RMA and RealPlayer for Real media player;
NSPlayer and Windows-Media-Player for Windows media
player; Winamp for Winamp mp3 media player, etc.. We de-
coded the media information in the same way as we did for
downloaded media objects. Our experience through exten-
sive trace analysis indicates that this is a reliable way to
identify pseudo streaming traffic.

2.2.3 Streaming Traffic

Streaming sessions are based on RTSP/MMS protocol.
For a streaming request, a sequence of control messages
is exchanged between the client and the streaming server.
For a standard RTSP based streaming session, the messages
include DESCRIBE, SETUP, PLAY, and TEARDOWN in
a normal playback. If there are client interactions, such
as pause, fast forward and rewind, corresponding messages
need to be exchanged on the spot. For MMS based stream-
ing, the mechanism is similar, but the control messages
are encoded in binary format. We sorted the control mes-
sages by timestamp in each RT'SP/MMS session, and then
parsed/decoded the control messages in each session. We
extracted the URL, media encoding rate, and full playback
time for the objects in each session, and matched the corre-
sponding traffic in our trace.

3. TRAFFIC OVERVIEW

After initial trace processing, we have the requests for
audio and video objects. In this section, we overview the
prevalence of audio and video media formats, the media
player prevalence for pseudo streaming, and the transport
protocols used for real streaming.

521

Table 1: Audio Objects Overview in Two Workloads

Audio Request Requested Transferred

‘ ‘ Type ‘ Number (%) Traffic (%) Traffic (%)
MP3 9,696 (16.56) 24.00 (51.21) | 9.36 (65.14)

WAV | 44,133 (75.36) 4.95 (10.57) 2.27 (15.77)

Server RM 868 (1.48) 3.07 (6.56) 0.86 (6.01)
Workload WM 1,043 (1.78) 4.36 (9.31) 0.85 (5.96)
AU 1,118 (1.91) 8.71 (18.58) 0.07 (0.46)

Other 1,706 (2.91) 1.77 (3.77) 0.96 (6.66)

MP3 7,555 (24.28) 9.89 (17.15) 4.77 (43.04)

WAV | 1,662 (5.34) 0.71 (1.23) 0.21 (1.90)

Client RM 1,186 (3.81) 8.23 (14.28) 1.32 (11.93)
Workload WM 4,507 (14.48) 17.76 (30.81) | 3.28 (29.66)
AU 13,726 (44.11) | 19.82 (34.38) 0.39 (3.56)

Other | 2,484 (7.98) T.24 (2.15) T.70 (9.91)

3.1 Media Type Prevalence

We first summarize the properties and prevalence of dif-
ferent types of audio and video objects in our workloads.
In both workloads, we classify different types of audio and
video files based on the file and CODEC formats accord-
ing to Content-Type in the HTTP responses and the object
name suffix in the URLs.

Table 1 shows the prevalence of audio objects in terms
of Request Number, Requested Traffic, and Transferred
Traffic. Requested Traffic is computed according to the
Content-Length field in the HTTP response or media length
and encoding rate extracted from RTSP/MMS messages.
Transferred Traffic shows the amount of data that was ac-
tually transferred. In this table, MP3 represents the MPEG
Audio Stream Layer III format files (with a .mp3 suffix),
WAV represents the Waveform Audio format files (with a
.wav suffix). RM includes all audio files in the Real Media
formats (with a suffix of .ra, .rm), while WM includes all
audio files in the Window Media formats (with a suffix of
.wma, .wm, .asf). AU represents UNIX-generated sound
files (with a suffix .au). Note there are two numbers in each
cell in the table. The first number is the absolute request
number or the traffic amount in GB. The number in the
parentheses represents its corresponding percentage in the
workload.

As shown in Table 1, in terms of Transferred Traffic, MP3
audio is the most popular in both workloads. In the server
workload, WAV is the second popular audio while in the
client workload, WM is the second popular audio. It is no-
table that in the client workload, a substantial number of
small AU files exist, which only takes 3.56% of the Trans-
ferred Traffic. In both workloads, the number of WM re-
quests is more than that of RM, indicating client access
preferences.

Table 2 shows the video object properties in the two work-
loads. In this table, MPEG represents all MPEG-series
video files (with a suffix of .mpeg, .mpg, .mp, .mpeg2, .mp4).
WM indicates the video files of Windows Media formats
(with a suffix of .wmv, .wm, .asf, .svt). Q7T represents the
QuickTime format files (with a suffix of .qt, .mov), while
RM represents Real Media video format files (with a suffix
of .rm, .rmvb). AVI represents Audio Video Interleave File
format files (with a suffix .avi).

Unlike the audio files, generally the WM and MPEG
videos are the most popular in terms of transferred traf-
fic in both workloads. WM takes the leading position in the

Table 2: Video Objects Overview in Two Workloads

Table 4: Streaming protocols overview

Protocol Session Requested Transferred
‘ ‘ Video ‘ Request Requested Transferred ‘ Number (%) Traffic (%) Traffic (%)
Type | Number (%) | Traffic (%) | Traffic (%) Server | RTSP [1,136 (62.04) | 10.08 (58.74) | 1.16 (40.41) |
WM 5,620 (54.46) | 32.95 (58.69) | 8.78 (51.08) Workload [MMS | 695 (37.95) | 7.08 (41.25) | L.71 (59.58) |
S MEEG 2£806623(217(j7;) 20 (1211'2760) . (fg'gé) Client | RTSP | 4.858 (51.56) | 50.75 (60.64) | 7.55 (50.97) |
erver Q 063 (10.3) 32 (11.26) | 2.80 (16.29) Workload [MMS | 4,564 (48.43) | 32.94 39 35) | 7.26 49.02) |
Workload | RM 309 (2.99) 2.39 (4.26) 0.55 (3.18)
AVT 158 (4.44) 2.25 (4.01) 0.72 (4.17)
Other 7 (0.07) 0.05 (0.08) 0.01 (0.06)
WM | 20,316 (34.63) | 93.11 (48.63) | 27.36 (40.01)
. MgEG 33,229 256-6;)) 61.97 ((3237)) 27-78((40-63)) Table 5: Overview of Multimedia Delivery in Two
lient T 2,046 (3.49 12.31 (6.43 7.05 (10.31
Workload [RM 1,003 (3.28) | 17.42 (9.10) | 3.37 (4.94) Workloads
AVT 1,035 (1.76) 6.28 (3.28) 2.53 (3.70) 5 Workload
Other 11T (0.19) 0.36 (0.19) 0.28 (0.41) (a) Server Workloa
Delivery Request Requested Transferred
Method Number (%) Traffic (%) Traffic (%)
Downloading 60,415 (87.7) | 55.02 (53.4) | 19.89 (63.0)
. . Pseudo Streaming 6,637 (9.6) 30.81 (29.9) | 8.79 (27.9)
Table 3: Media player prevalence in pseudo stream- Streaming 1,831 (2.7) 17.17 (16.7) 2.88 (0.1)
ing workloads
(b) Client Workload
Media Request Requested Transferred Delivery Request Requested Transferred
Player Number (%) Traffic (%) Traffic (%) Method Number (%) Traffic (%) Traffic (%)
WM | 4,700 (70.81) | 17.83 (57.88) | 7.17 (81.57) Downloading 58,086 (64.7) | 93.37 (37.5) | 46.18 (58.1)
Server RM 1,765 (26.59) 12.18 (39.53) 1.19 (13.61) Pseudo Streaming | 22,272 (24.8) 72.02 (28.9) 18.44 (23.2)
Workload | QT 58 (0.87) 0.47 (1.55) 0.30 (3.43) Streaming 9,422 (10.5) | 83.69 (33.6) | 14.81 (18.6)
Other 114 (1.73) 0.31 (1.04) 0.12 (1.39)
WM | 20,179 (90.60) | 43.44 (60.32) | 14.11 (76.50)
Client RM 1,483 (6.65) | 25.65 (35.61) | 1.97 (10.70)
Workload | QT 198 (2.23) 276 (3.83) 224 (12.16) .
Other 112 (0.50) 0.16 (0.22) 0.11 (0.62) Transferred Traffic. We also study the UDP based streaming

server workload, while they are close in the client workload.
QT follows them. These three are more popular than the
others.

The above study sketches the prevalence of different audio
and video types available on the Internet.

3.2 Media Players Supporting Pseudo
Streaming

Pseudo streaming is supported by media players without
streaming servers. Table 3 indicates the different prevalence
of three major media players we identified through pseudo
streaming in the server and client workloads, respectively.
In the table, WM represents the Windows-Media-Player.
RM represents Real-Player. QT represents the QuickTime-
Player. Winamp and other players are in the Other category.

Table 3 shows that WM is the most popular media player
to support pseudo streaming, in both the server workload
and the client workload. The result is consistent with the
audio and video file format prevalence study in Table 1 and
Table 2, where a large portion of WM format media files are
found.

3.3 Transport Protocols for Streaming

On the Internet, most real streaming is based on MMS
or RTSP. The former is proprietary to Microsoft, while the
latter is available in the public domain. Besides MMS, Mi-
crosoft also has begun to support RTSP.

Table 4 shows that in the server workload, although in
terms of Session Number and Requested Traffic,c MMS has
a smaller share, the Transferred Traffic amount on MMS is
more than that of RTSP. In the client workload, RTSP and
MMS have similar shares in terms of Session Number and

522

traffic percentages. In the server workload, 10.4% and 23.5%
RTSP and MMS streaming traffic are based on UDP. While
in the client workload, 26.8% and 21.5% are based on UDP.

Having obtained observations about these two workloads
in media types, media players, and transport protocols, we
dissect them in more detail in the next section.

4. ANALYSIS OF WORKLOADS

In this section, we study the two workloads described in
the previous sections and discuss the implications of our
findings.

4.1 Most Multimedia Traffic is Delivered
via Downloading

Given the clear advantage of streaming over download-
ing, one might expect streaming service to become widely
available and that most multimedia traffic nowadays to be
delivered via streaming. Our analysis of the two workloads,
however, has revealed some surprising results.

Table 5 shows the breakdown of the three multimedia de-
livery methods after our initial trace processing. Requested
Traffic and Transferred Traffic are calculated as in the pre-
vious section. Surprisingly, the table indicates that the ma-
jority of multimedia traffic is delivered by downloading or
pseudo streaming. The amount of streaming traffic is only
a small percentage of the actual transferred traffic (9.1%
for the server workload and 18.6% for the client workload).
This implies that, many years after its initial introduction,
streaming service still has limited availability. This is proba-
bly due to its associated expenses and technology availability
for public usage.

As shown in this table, the average object size per request
for streaming, pseudo streaming, and downloading decreases
in this order. Figure 1 shows the distributions of sessions
requesting different sizes of media objects and their corre-

[N
o
=1
=
o
=1

~
a
~
a

o
o

sessions (%)
al
o
sessions (%)

N
3]
N
o

o

pseudo streaming
d

Cl<=1MB
B (1,5 MB |1

[Downloading
[Pseudo Streaming
Il Streaming

49%

36%
streaming
28%

downloading pseudo streaming streaming downloading
b
100 100
Cl<=1MB CJ<=1MB
75t :I(l 5]MB |{ = 75/ :I(l 5] MB
>5 MB >5 MB

traffic (%)
a
O
traffic (%)
o
O

N
a
N
a

ﬁﬂl 1l mﬂl

25%
17%

h

16%

Transferred Traffic / Requested Traffic (%)
w
o

ol ol

downloading pseudo streaming streaming

o
o

downloading

Figure 1: Media sessions and transferred traffic for different sizes of
objects in the server workload (a, b) and the client workload (c, d)

sponding transferred traffic for the three mechanisms. Al-
though there are many requests demanding small objects,
the amount of their contributed traffic is small for each of
the three mechanisms. In other words, media traffic is al-
ways dominated by large objects. Furthermore, as we shall
see later, the downloading time of some large objects exceeds
the client patience threshold, resulting in the early session
termination before the downloading is completed.

4.2 Non-Streaming Delivery is Inefficient

Streaming reduces user perceived latency because a client
can start playing a multimedia object shortly after it has
received the initial portion of this object. Besides improving
user experience, this kind of early feedback also allows the
client to make a timely decision based on its interest to
this object. If the object is not interesting, the client can
terminate the session without consuming additional network
bandwidth. In contrast, with downloading a client has to get
the entire object before it can start the playback.

In this subsection, we quantify the bandwidth efficiency of
the three multimedia delivery methods in Table 5 by com-
puting the percentage of requested traffic that was actually
transferred — the ratio of the last two columns in the table.
The results are shown in Figure 2.

As can be seen from this figure, the percentage of traf-
fic that was transferred is the highest for downloading and
the lowest for streaming. Using the server workload as an
example, downloading and pseudo streaming need to trans-
fer 2.25 times and 1.75 times as much data as streaming,
respectively. Given the large degree of control a client has
during a streaming session, we believe that the amount of
data transferred in streaming is a reasonable approximation
of what is actually needed for a client playback. This implies
that a large amount of traffic transferred via downloading
and pseudo streaming is potentially unnecessary. For media
objects smaller than 500 KB, the difference of bandwidth
efficiency among the three mechanisms is relatively smaller
due to the client side buffer for pseudo streaming and real
streaming. A media player may buffer 0 - 30 seconds of
media data to smooth the effect of end-to-end bandwidth
fluctuation between the server and the client. For exam-
ple, the default buffer size of Window Media Player is 5
seconds [2]. However, the amount of traffic affected by the
client side buffer is small. This is because sessions request-
ing small media objects only account for a small amount of
transfered traffic, even though the number of such sessions is

pseudo streaming

% of Early Terminated Connections

523

=)

streaming Server Workload Client Workload

Figure 2: Bandwidth efficiency
of 3 media delivery methods

W
S

Il Downloading
[Pseudo Streaming

18%

Il Downloading
[Pseudo Streaming

61%

]
a

80 .
20% 21%

N
=)

60| 58%

13%

40 33%

=
o

16%

% of Early Terminated Traffic
=
@

&

o

Server Workload Client Workload Server Workload Client Workload
Figure 3: The percentage of early terminated con-
nections (left) and the percentage of traffic con-

tributed by early terminated connections (right)

large, as shown in Figure 1. In the following subsections, we
only present media sessions requesting objects larger than 1
MB to minimize the effect of the client side buffer (the en-
coding rate of most streaming video is less than 250 Kbps.
250 Kbps x 30 sec = 937.5 KB ~ 1 MB).

Hence, our conclusion is: Streaming is the most efficient
approach for multimedia delivery, while downloading is the
least efficient one. Although pseudo streaming is an im-
provement over pure downloading, it can still generate a
large amount of unnecessary network traffic. We will revisit
pseudo streaming later in this section.

4.3 Early Terminated Connections

Given the large percentage of multimedia traffic via down-
loading and pseudo streaming, we take a closer look at their
characteristics in this subsection. In particular, we focus
on connections that are terminated before downloading is
completed. We call such connections early terminated con-
nections. In downloading, the termination of a connection
before the object is fully downloaded simply wastes network
bandwidth: the partially downloaded object is not useful to
the client. In contrast, in pseudo streaming, a client can
play the media object while it is being downloaded. Hence,
the traffic might not be totally wasted if the connection is
terminated early.

We first study how many connections in our workloads are
terminated early and the corresponding traffic contributed
by these early terminated connections. Figure 3 shows the
percentage of early terminated sessions and the percentage
of corresponding traffic for the downloading workload and
pseudo streaming workload.

=
1)
S

©
=]

801

70

60

50

40

30

Percentage of Aborted Connections (CDF)
n
o

i
o

= Server Farm
== Cable Clients
o 1 10°

o

=
=)

Downloading time (sec)

Figure 4: Downloading time in
aborted connections

+ Downloading Rate
*__Streaming Rate

[
S)

[

N
=)

Streaming Rate or Downloading Rate (bytes/s)
1
1S

o
ON

3000 4000

2000
Number of Connections

0 1000

Figure 5: Comparison of average
downloading and streaming rate
in the server workload

Streaming Rate or Downloading Rate (bytes/s)

+ o+
. -+

15000 20000

0 5000 0000 X
Number of Connections

Figure 6: Comparison of average
downloading and streaming rate
in the client workload

The left figure in Figure 3 shows that the early termina-
tion ratio for pseudo streaming is comparable between these
two workloads and is significantly higher than that of down-
loading, indicating that by previewing the initial part of an
object in pseudo streaming, a client can discard uninterest-
ing objects earlier. This is also confirmed by the traffic figure
on the right: the difference in traffic contributed by early
terminated connections between downloading and pseudo
streaming is much smaller than the difference in the per-
centage of such connections. Hence, if we amortize the traffic
over the set of connections, clients using pseudo streaming
clearly tend to abort more and cause less traffic.

Since aborted downloading connections waste up to 20%
of overall bandwidth, it would be useful to find out the client
abortion pattern so that a service provider can avoid provid-
ing inappropriately large files online for download. Figure 4
shows the downloading time of the aborted connections in
our workloads.

In the server workload, 81% of the early terminated con-
nections are terminated before 10 seconds, while only 8%
wait more than 50 seconds before termination. In the client
workload, 87% are terminated before 10 seconds, while 3%
are terminated after 50 seconds. This suggests that down-
loading is efficient for small objects, but not appropriate for
large objects, such as streaming media objects, as the client
patience threshold is as small as 10 seconds.

From the server and client side downloading workload
analysis, we have the following observations:

1. Most Internet clients are not patient. If a downloading
cannot finish in 10 seconds, the possibility for the client
to terminate the connection is very high.

2. In average, we observe that up to 20% downloading
traffic comes from aborted connections, which wastes
a significant amount of Internet bandwidth.

4.4 Delivery Quality of Pseudo Streaming
is Inconsistent

As a special type of downloading, pseudo streaming can
provide clients with limited streaming functionalities and
is more efficient than downloading in network bandwidth.
However, an inherent problem with pseudo streaming is how
to match the downloading rate with the streaming rate re-
quired by the client for playback. In this subsection, we look
into this issue in detail.

524

Figures 5 and 6 show a comparison of the average down-
loading rate with the streaming rate in the two workloads.
The downloading rate is calculated by averaging the trans-
ferred bytes over the data transmission time. We extracted
the object encoding rate for each media file and took it as
the corresponding streaming rate. We can see roughly half
of the sessions in the server workload do not have sufficient
downloading bandwidth to keep up with the streaming rate.
In contrast, more sessions in the client workload have suffi-
cient bandwidth to do so. This is probably because the client
workload consists of broadband users only, while the server
workload has a mixture of broadband and dial-up users.

The mismatch between the streaming rate and the down-
loading rate can cause quality issues at the client side or
unnecessary traffic on the Internet. When the download-
ing rate is smaller than the object streaming rate, the client
perceives frequent playback delays until downloading is com-
plete. When the object streaming rate is smaller than the
downloading rate, part of the downloading traffic could be
wasted if the client is not interested in the object and ter-
minates the connection earlier (i.e. the later portion of the
object may get transferred in vain). However, if a client
stops playback after the entire object is downloaded, we do
not know how much of the download traffic is actually used.
Thus, we focus our study of rate mismatch only on early
terminated connections.

Figure 7 shows the situation when the downloading rate
is smaller than the streaming rate. We use the accumulated
delay relative to the total downloading time as an indica-
tion of the playback quality. In the server workload, 71%
early terminated sessions have an extra delay of more than
50% of their downloading times. This number is 72% for the
client workload. Looking at the downloading time, we find
for these early terminated connections in the server work-
load, 6%, 12% and 17% of them take more than 50, 20, and
10 seconds for downloading. In the client workload, a rel-
ative smaller percentages, 1.1%, 1.5% and 4.4%, take more
than 50, 20, and 10 seconds for downloading, meaning cable
clients tend to abort earlier.

Figure 8 shows the situation when the downloading rate
is greater than the object streaming rate. To calculate the
amount of wasted traffic, we multiply the rate difference be-
tween downloading and streaming by the transmission time
of these early terminated sessions. This figure indicates that
a large portion (72%) have more than 50% transferred traffic

i
N WA O 2 N ® © 9
© © & ©o © o © o &
!
N
s,
.
~
~
~
.,
\|

Percentage of Early Terminated Connections (CDF)
=
<
[\
"

= — Server Farm
e - -+ Cable Clients

100

o

o

2 40 60 0
Delay Percentage of Downloading Time

Figure 7: When transferring rate
is smaller than streaming rate

301

201

Percentage of Early Terminated Connections (CDF)
=
)

= Server Farm
- -+ Cable Clients

100

o

o

2 40 60 80
Waste Percentage of Transferred Traffic

Figure 8: When transferring rate
is larger than streaming rate

= Server Farm
== Cable Clients

N

Streaming Rate (bits/s)
-
@

100 100
80F 80F
g g
< <
S 60t S 60t
c c
=] =
o o
2 40 2 40
o3 [0}
Q Q
Q Q
< <<
20¢ 20f
0 ‘ ‘ ‘ 0 ‘
0 500 1000 1500 0 2000

Streaming Sessions

Figure 9: Client access duration
in the server workload

wasted. Comparably, in the client workload, 66% of early
terminated sessions have more than half of their transferred
data wasted.

Hence, our conclusion is: The rate mismatch in pseudo
streaming is common, which either causes long delays to
the clients, or unnecessary traffic on the Internet. Pseudo
streaming 1s doomed to be a transient technique due to
its performance drawbacks and its incapability of providing
client interactive functions.

4.5 Streaming Traffic Analysis

Having studied the drawbacks and implications of down-
loading and pseudo streaming, now we analyze the stream-
ing traffic in the workloads.

From Table 5, we have learned that streaming is the most
efficient by transferring only the necessary data. This in-
dicates via streaming, there should be a lot of early termi-
nated connections. Figures 9 and 10 show the client access
duration relative to the full object playback time. In the
figures, the y-axis is the percentage of a multimedia object
accessed during its streaming session. The x-axis is the num-
ber of streaming sessions ranked by such percentages in an
increasing order.

As shown in the figures, in the server workload, 44% of
sessions are terminated before 10% of the object is played,
while only 11% of sessions play the entire objects. Similarly,
in the client workload, 35% of all sessions are terminated be-
fore 10% of the object is played, and only 20% of client ses-
sions complete the whole object playback. Compared with
downloading and pseudo streaming, clients using streaming
are much more likely to terminate their access to an object

4000
Streaming Sessions

Figure 10: Client access duration
in the client workload

525

162
Number of Sessions

6000 8000 10"

Figure 11: Client streaming rate
distribution

earlier. This demonstrates that streaming allows a client to
make a timely decision after viewing the initial portion of
an object.

The streaming service is resource consuming. The client
link bandwidth is always a bottleneck if it cannot catch up to
the object streaming rate. Thus it is useful to know whether
the current Internet service can provide a large enough band-
width for streaming services.

Figure 11 shows the streaming rate distribution for the
streaming objects in the server and the client workload (note
that the x-axis is in log scale). This figure shows that in
the server workload, the streaming rates range from 5 Kbps
to 1.33 Mbps and the average rate is about 98.8 Kbps; in
the client workload, the object streaming rate is relatively
higher, up to 2.57 Mbps, and the average rate is about 169.5
Kbps. Today, broadband users can afford this rate.

Studying the streaming session duration and the stream-
ing rate distribution, we have discovered the client access
pattern and the bandwidth requirements for streaming on
the current Internet. This information will be used in our
next section.

5. AUTOSTREAM

In previous sections, we have studied the characteristics
of media delivery via downloading, pseudo streaming, and
streaming. Our analysis indicates that streaming is the most
efficient approach, but has limited availability due to their
associated expenses. Streaming needs dedicated system sup-
port, such as a streaming server, and thus requires a high
cost. While big commercial media providers (e.g. Real-

I e -
| N $ |
I [Server 1 s !
3 : \ |5 :
- Server N !
| { X / |
! 2] !
ll +[Request Handler] 4 |
| o |
: 4y =l
i - - - T
| [Virtual Streaming Enigne] |
8 | Windows Real QuickTime % |
| Media Media Media = |
! Streaming || Streaming|| Streaming @ !
! Engine Engine Engine =1 !
I < I
! 71 |
i Streami an Media Converter T 6 i
i Prefix Cache Engine J 1

Figure 12: AutoStream for a server farm

Networks) may have the resources to provide such support
for the large number of streaming objects they host, many
medium scale content providers (such as those in our Web
server farm) may have only a few streaming objects. It is
not cost-effective and administratively easy for each of them
to set up a streaming server individually. However, since the
site population in a Web server farm is large, these sites can
share a special server, capable of streaming functions, to
amortize the cost for streaming service.

In this section, we present the design and evaluation of
a shared streaming server, AutoStream, that can transform
downloading and pseudo streaming delivery of media ob-
jects on the Web into streaming delivery automatically.
The system integrates existing techniques, including pre-
fix caching [24] and transcoding [4], to provide streaming
service in server farms or content delivery networks with a
very low cost. It also supports a preview function that al-
lows a client to decide if an object is worth downloading
after viewing its beginning portion. Recent studies [11, 10]
suggest that many clients tend to watch only the beginning
portions of media objects and then terminate. Hence, such
a previewing function can not only reduce the client per-
ceived start up latency, but also avoid traffic waste due to
potentially unnecessary downloads.

5.1 Architecture Design

Figure 12 shows the design of AutoStream and its interac-
tions with the Web servers in a server farm. By placing the
AutoStream before the server farm, a client request for a me-
dia object is received in step 1. AutoStream allows clients to
choose whether to continue the downloading/pseudo stream-
ing access or to preview the object first. If the client con-
tinues with its original request, the request is forwarded to
AutoStream in step 2 and is processed in step 3. If pre-
viewing is preferred, the Request Handler will take over the
process. The Request Handler notifies the streaming engine
and directs the communication between the server and the
cache engine for the object prefix via HT'TP when neces-
sary (steps 4-6). After the data arrives in the cache engine,
the streaming engine reads the data from cache (step 7) and
streams it to the client in step 8. For downloading, the Re-
quest Handler will send a range request for the rest of the
object for client to the server, allowing the client to save the

526

prefix data as well. For streaming, steps 4-8 are performed.
Note that the Prefix Cache Engine only cache the initial
portions of media objects, since for most objects only those
portions are viewed.

The Streaming Media Converter in the Prefix Cache En-
gine has two functions. First, it is responsible for convert-
ing non-streamable files (e.g. MPEG1) from Web servers to
files in a streaming file format (e.g. Real Media format).
This function is similar to Adobe Premiere [1] or Helix Pro-
ducer [3]. Second, it is also responsible for adapting the
encoding rate of a streaming media object to the connec-
tion speed of the corresponding client device. This function
is similar to an online transcoding producer [4]. The con-
verted prefixes of media objects are cached in the Prefix
Cache Engine to serve subsequent requests from similar de-
vices.

5.2 Evaluation

We conduct trace driven simulations using the media
workloads we collected to evaluate the potential benefits
of AutoStream. In these experiments, we assume that the
cache space is large enough to hold the initial segments
of all media objects, while no later segments are cached.
The cache in the AutoStream is cleaned hourly to reflect
the cache size limit in practical systems. We assume that
the transmission latency between hosts in the server farm
and AutoStream is negligible because they are typically lo-
cated close to each other. When AutoStream converts non-
streaming delivery of media objects into streaming delivery,
we assume that the client access duration for these objects
now follows the same pattern as the streaming media objects
in our workload.

Figure 13 shows the potential traffic reduction in the
server farm by AutoStream. The height of each bar rep-
resents the total downloading and pseudo streaming traffic
in our server traces in each hour. The lower two parts of each
bar represent the amount of streaming traffic converted from
downloading and pseudo streaming traffic by AutoStream,
respectively. The upper two parts of each bar thus repre-
sent the amount of reduced downloading and reduced pseudo
streaming traffic, respectively.

The figure indicates that AutoStream achieves significant
traffic reduction: on average, it reduces the downloading
traffic by 78% and the pseudo streaming traffic by 72%. The
hourly traffic reduction rate reaches the maximum (about
80%) in the traffic peak hour (20:00-21:00) for the server
farm. Note that these achievements have considered the
transcoding function in the Streaming Media Converter.
When the end-to-end bandwidth between a client and the
AutoStream is lower than the encoding rate of the media ob-
ject, AutoStream transcodes the media into an appropriate,
lower encoding rate. While this brings additional saving in
bandwidth, it also degrades the quality of the media. If we
do not consider transcoding, our evaluation shows that Au-
toStream still can reduce the downloading and the pseudo
streaming traffic by 56% and 43%, respectively.

We also compute the number of sessions suffering de-
layed startup with and without the AutoStream system in
the server farm, respectively, as shown on Figure 14. Au-
toStream cannot avoid a startup delay to the client when
it needs to convert the media objects in non-streaming for-
mats into streaming formats or transcode the objects en-
coded with high encoding rates into low encoding rates. On

Il Streaming Traffic for DL Workload
[Streaming Traffic for PS Workload H
[1 Reduced Downloading Traffic
[1 Reduced Pseudo Streaming Traffic

g
o
T

g
N

I
[N

o
©

Network Traffic (Bytes)
o
o =

I
IS

e
[N}

0
20:00

00:00

04:00 08:00 12:00 16:00
Time (one hour per slot)

20:00

Figure 13: AutoStream on traffic re-
duction

Figure 14, the height of each bar represents the total num-
ber of media sessions in our trace hourly, in which the lowest
part represents the number of media sessions with startup
delay with the AutoStream system, and the sum of the low-
est and the middle part represents the number of media
sessions with startup delays without the AutoStream sys-
tem in the current server farm. AutoStream can reduce the
startup delay for about 63.4% of the total sessions in the
server farm without AutoStream.

Although AutoStream is designed for server farms, a sim-
ilar idea can be applied to significantly reduce the traffic
in the client workload (e.g., a CDN edge server with Au-
toStream functions). Our simulation based evaluation shows
that the traffic reduction without considering the transcod-
ing can be up to 65% for downloading and 32% for pseudo
streaming in the client workload. We omitted the figures
due to page limit.

6. RELATED WORK

A number of studies have focused on characterizing Inter-
net media contents recently. Pre-stored video objects on the
Web servers were studied earlier to characterize the static
attributes of video files [5]. In [11] and [6], the streaming
media workloads from educational environments were col-
lected. The client session duration, object popularities and
sharing patterns were analyzed in [11], where the workload
is collected from the client side, while the workloads in [6]
were collected from the server side. In [10], streaming work-
loads from enterprise media server logs were studied for the
locality, dynamics and evolution of the accesses to media
objects along the time.

Besides the workload characterizations in different en-
vironments, a live streaming media workload was studied
in [27], while client interactions were characterized for fre-
quency of different types of client interactions and distribu-
tions of session on and off times for MANIC audio content
system [21], the low-bitrate classroom 2000 systems [16],
the educational eTech and BIBS media servers [6], and the
educational internal server of a large international corpora-
tion [17]. In [12], four audio and video workloads from ed-
ucational and entertainmental sites were studied for client
interactions. Further, our recent work [15] measures the de-
lays due to interactive operations in media streaming based

527

7000

T T T T T
Il delayed media sessions in AutoStream
[delayed session reductions by AutoStream
[non-delayed sessions in server farm

60001

w N 3]
(=3 [=] (=3
(=3 [} o
o (=] o

Number of Media Sessions
3
8

1000

020:00

00:00

04:00 08:00 12:00 16:00
Time (one hour per slot)

20:00

Figure 14: AutoStream on accumulated
delay time

on a large Internet workload, and proposes an effective in-
terleaved segment caching solution to support interactive
streaming. Authors in [26] analyzed a live streaming work-
load from a large content delivery network. The feasibility of
supporting streaming applications through application over-
lays was studied in [25].

Targeting major streaming media content providers, mea-
surement and analysis of RealNetwork audio [18] and Real-
Network video [28] and Windows media [20] workloads were
performed. Tools for multimedia traffic monitoring, such
as mmdump [19], which extends the functionalities of tcp-
dump, were also developed for media traffic study. A lot
of strategies have also been proposed to deal with the In-
ternet media objects. Streaming caching, such as prefix
caching [24], exponential segmentation [29], Hyper-Proxy
system [9, 8], have been proposed to cache the media ob-
jects in segments instead of their entirety in the proxy close
to the client.

Different from previous studies, the media contents in our
study contain a set of mixed workloads of various media
types in all available delivery mechanisms collected from
both the server side and the client side, which allowed us
to compare their characteristics. We also explored the sys-
tem implications by designing AutoStream system for server
farms instead of for a particular streaming server as in most
of the previous studies.

7. CONCLUSION

Media objects have played increasingly important roles in
Internet content deliveries, and are becoming indispensable
in many applications. However, our study shows that exist-
ing Internet infrastructure does not keep up with this high
demand. For example, we surprisingly find that the majority
of the Internet media contents are still delivered by down-
loading that causes substantial Internet bandwidth waste
and low quality of delivery service when pseudo streaming
is used. Motivated by our intensive workload measurements
and analysis, we propose a design of an innovative streaming
system for Web farms. This system can automatically and
transparently transform the media downloading and pseudo
streaming requests to high quality streaming with an amor-
tized low cost. We have shown its effectiveness through sim-
ulations based on the large amount of traces we collected

from a Web farm. We plan to further enhance this study
by implementing AutoStream for Web farms and other Web
services.

8.

ACKNOWLEDGMENTS

We would like to thank Oliver Spatscheck for many in-
sightful discussions on this topic and for helping us under-

stand Gigascope.

We are also grateful to Michael Rabi-

novich, Geoffrey M. Voelker, William L. Bynum, Leeann
Bent, and the anonymous reviewers for their constructive

comments and suggestions.

This work is partially sup-

ported by the National Science Foundation under grants
CNS-0098055, CCF-0129883, and CNS-0405909.

9.
(1]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Adobe Premiere. http://www.adobe.com/products/.
Buffer settings in windows media player.
http://support.microsoft.com/?scid=kb;en-
us;q257535.

Helix-producer project.
https://helix-producer.helixcommunity.org/.

IBM Research: Internet transcoding for universal
access. http://www.research.ibm.com/.

S. Acharya, B. Smith, and P. Parnes. Characterizing
user access to videos on the world wide web. In Proc.
of ACM/SPIE Multimedia Computing and Networking
(MMCN), January 1998.

J. M. Almeida, J. Krueger, D. L. Eager, and M. K.
Vernon. Analysis of educational media server
workloads. In Proc. of ACM Workshop on Network
and Operating System Support for Digital Audio and
Video (NOSSDAV), June 2001.

L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao.
Characterization of a large web site population with
implications for content delivery. In Proc. of the
International World Wide Web Conference, May 2004.
S. Chen. Building Internet Caching Systems for
Streaming Media Delivery. PhD thesis, College of
William and Mary, Williamsburg, VA, July 2004.

S. Chen, B. Shen, S. Wee, and X. Zhang. Designs of
high quality streaming proxy systems. In Proc. of
IEEE INFOCOM, March 2004.

L. Cherkasova and M. Gupta. Characterizing locality,
evolution, and life span of accesses in enterprise media
server workloads. In Proc. of ACM Workshop on
Network and Operating System Support for Digital
Audio and Video (NOSSDAV), May 2002.

M. Chesire, A. Wolman, G. Voelker, and H. Levy.
Measurement and analysis of a streaming media
workload. In Proc. of the 3rd USENIX Symposium on
Internet Technologies and Systems, March 2001.

C. Costa, I. Cunha, A. Borges, C. Ramos, M. Rocha,
J. Almeida, and B. Ribeiro-Neto. Analyzing client
interactivity in streaming media. In Proc. of the
International World Wide Web Conference, May 2004.
C. Cranor, T. Johnson, and O. Spatscheck. Gigascope:
a stream database for network applications. In Proc.
of ACM SIGMOD, June 2003.

K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, modeling,
and analysis of a peer-to-peer file-sharing workload. In

528

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Proc. of ACM Symposium on Operating Systems
Principles (SOSP), October 2003.

L. Guo, S. Chen, Z. Xiao, and X. Zhang. DISC:
Dynamic interleaved segment caching for interactive
streaming. In Proc. of IEEE International Conference
on Distributed Computing Systems, June 2005.

H. Harel, V. Vellanki, A. Chervenak, G. Abowd, and
U. Ramachandran. Workload of a media-enhanced
classroom server. In Proc. of 2nd Annual Workshop on
Workload Characterization, October 1999.

L. He, J. Grudin, and A. Gupta. Designing
presentations for on-demand viewing. In Proc. of
ACM Conference on Computer Supported Cooperative
Work, December 2000.

A. Mena and J. Heidemann. An empirical study of
real audio traffic. In Proc. of IEEE INFOCOM, March
2000.

J. V. D. Merwe, R. Caceres, Y. H. Chu, and

C. Sreenan. Mmdump - a tool for monitoring
multimedia usage on the internet. In Technical Report
00.2.1., AT&T Labs, February 2000.

J. Nichols, M. Claypool, R. Kinicki, and M. Li.
Measurements of the congestion responsiveness of
windows streaming media. In Proc. of ACM Workshop
on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), June 2004.

J. Padhye and J. Kurose. An empirical study of client
interactions with a continuous media courseware
server. In Proc. of ACM Workshop on Network and
Operating System Support for Digital Audio and Video
(NOSSDAV), July 1998.

H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 1889, January 1996.

H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). RFC 2326, April 1998.

S. Sen, J. Rexford, and D. Towsley. Proxy prefix
caching for multimedia streams. In Proc. of IEEE
INFOCOM, March 1999.

K. Sripanidkulchai, A. Ganjam, B. Maggs, and

H. Zhang. The feasibility of supporting large-scale live
streaming applications with dynamic application
end-points. In Proc. of ACM SIGCOMM, Aug. 2004.
K. Sripanidkulchai, B. Maggs, and H. Zhang. An
analysis of live streaming workloads on the Internet.
In Proc. of ACM Internet Measurement Conference,
Oct. 2004.

E. Veloso, V. Almeida, W. Meira, A. Bestravos, and
S. Jin. A hierarchical characterization of a live
streaming media workload. IEEE/ACM Transactions
on Networking, September 2004.

Y. Wang, M. Claypool, and Z. Zuo. An empirical
study of realvideo performance across the internet. In
Proc. of the ACM SIGCOMM Internet Measurement
Workshop (IMW), November 2001.

K. Wu, P. S. Yu, and J. Wolf. Segment-based proxy
caching of multimedia streams. In Proc. of the
International World Wide Web Conference, May 2001.

