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ABSTRACT
To exploit the similarity information hidden in the hyper-
link structure of the web, this paper introduces algorithms
scalable to graphs with billions of vertices on a distributed
architecture. The similarity of multi-step neighborhoods of
vertices are numerically evaluated by similarity functions in-
cluding SimRank [18], a recursive refinement of cocitation;
PSimRank, a novel variant with better theoretical charac-
teristics; and the Jaccard coefficient, extended to multi-step
neighborhoods. Our methods are presented in a general
framework of Monte Carlo similarity search algorithms that
precompute an index database of random fingerprints, and
at query time, similarities are estimated from the finger-
prints. The performance and quality of the methods were
tested on the Stanford Webbase [17] graph of 80M pages by
comparing our scores to similarities extracted from the ODP
directory [24]. Our experimental results suggest that the hy-
perlink structure of vertices within four to five steps provide
more adequate information for similarity search than single-
step neighborhoods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; G.2.2 [Discrete Mathematics]:
Graph Theory—Graph algorithms; G.3 [Mathematics of
Computing]: Probability and Statistics—Probabilistic al-
gorithms

General Terms
Algorithms, Theory, Experimentation

Keywords
similarity search, link-analysis, scalability, fingerprint

1. INTRODUCTION
The development of similarity search algorithms between

web pages is motivated by the “related pages” queries of web
search engines and web document classification. Both appli-
cations require efficient evaluation of an underlying similar-
ity function, which extracts similarities from either the tex-
tual content of pages or the hyperlink structure. This paper
focuses on computing similarities solely from the hyperlink
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structure modeled by the web graph, with vertices corre-
sponding to web pages and directed arcs to the hyperlinks
between pages. In contrast to textual content, link structure
is a more homogeneous and language independent source of
information that is in general more resistant against spam-
ming. The authors believe that complex link-based similar-
ity functions with scalable implementations can play such an
important role in similarity search as PageRank [25] does for
query result ranking.

Several link-based similarity functions have been suggested
over the web graph. To exploit the information in multi-
step neighborhoods, SimRank [18] and the Companion [10]
algorithms were introduced by adapting link-based ranking
schemes [25, 19]. Further methods arise from graph theory
such as similarity search based on network flows [21]. We
refer to [20], which contains an exhaustive list of link-based
similarity search methods.

Unfortunately, no scalable algorithm has so far been pub-
lished that allows the computation of the above similarity
scores in case of a graph with billions of vertices. First,
all the above algorithms require random access to the web
graph, which does not fit into main memory with standard
graph representations. In addition, SimRank iterations up-
date and store a quadratic number of variables: [18] reports
experiments on graphs with less than 300K vertices. Finally,
related page queries require off-line precomputation, since a
document cannot be compared to all the others one-by-one
at query time. It is not clear what we could precompute for
an algorithm like the one in [21] with no information about
the queried page.

In this paper we give scalable algorithms that can be used
to evaluate multi-step link-based similarity functions over
billions of pages on a distributed architecture. With a single
machine, we conducted experiments on a test graph of 80M
pages. Our primary focus is SimRank, which recursively re-
fines the cocitation measure analogously to how PageRank
refines in-degree ranking [25]. We give an improved Sim-
Rank variant; in addition, we also handle a similarity func-
tion that naturally extends the Jaccard coefficient from one-
step to multi-step neighborhoods. Notice that scalability
here is non-trivial, since the the Jaccard coefficient may in-
volve extremely large sets: the multi-step neighborhood of
a vertex usually contains a large portion of the pages [4].

All our methods are Monte Carlo: we precompute inde-
pendent sets of fingerprints for the vertices, such that the
similarities can be approximated from the fingerprints at
query time. We only approximate the exact values; for-
tunately, the precision of approximation can be easily in-
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creased on a distributed architecture by precomputing inde-
pendent sets of fingerprints and querying them in parallel.

We started to investigate the scalability of SimRank in [11],
and we gave a Monte Carlo algorithm with the naive rep-
resentation as outlined in the beginning of Section 2. The
main contributions of this paper are summarized as follows:

• In Section 2.1 we present a scalable algorithm to compute
approximate SimRank scores by using a database of fin-
gerprint trees, a compact and efficient representation of
precomputed random walks.

• In Section 2.2 we introduce and analyze PSimRank, a
novel variant of SimRank with better theoretical proper-
ties and a scalable algorithm.

• In Section 2.3 Jaccard coefficient is naturally extended to
multi-step neighborhoods with a scalable algorithm.

• In Section 3 we show that all the proposed Monte Carlo
similarity search algorithms are especially suitable for dis-
tributed computing.

• In Section 4 we prove that our Monte Carlo similarity
search algorithms approximate the similarity scores with
a precision that tends to one exponentially with the num-
ber of fingerprints.

• In Section 5 we report experiments about the quality and
performance of the proposed methods evaluated on the
Stanford WebBase graph of 80M vertices [17].

In the remainder of the introduction we discuss related
results, define “scalability,” and recall some basic facts about
SimRank.

1.1 Related Results
Unfortunately the algorithmic details of “related pages”

queries in commercial web search engines are not publicly
available. We believe that an accurate similarity search al-
gorithm should exploit both the hyperlink structure and
the textual content. For example, the pure link-based algo-
rithms like SimRank can be integrated with classical text-
based information retrieval tools [1] by simply combining the
similarity scores. Alternatively, the similarities can be ex-
tracted from the anchor texts referring to pages as proposed
by [7, 14].

Recent years have witnessed a growing interest in the scal-
ability issue of link-analysis algorithms. Palmer et al. [26]
formulated essentially the same scalability requirements that
we will present in Section 1.2; they give a scalable algorithm
to estimate the neighborhood functions of vertices. Analo-
gous goals were achieved by the development of PageRank:
Brin and Page [25] introduced PageRank algorithm using
main memory of size proportional to the number of vertices.
Then external memory extensions were published in [8, 13].
A large amount of research was done to attain scalability
for personalized PageRank [15, 12]. The scalability of Sim-
Rank was also addressed by pruning [18], but this technique
could only scale up to a graph with 300K vertices in the ex-
periments of [18]. In addition, no theoretical argument was
published about the error of approximating SimRank scores
by pruning. In contrast, the algorithms of Section 2 were
used to compute SimRank scores on a test graph of 80M
vertices, and the theorems of Section 4 give bounds on the
error of the approximation.

The key idea of achieving scalability by Monte Carlo al-
gorithms was inspired by the seminal papers of Broder [5]

and Cohen [9] estimating the resemblance of text documents
and size of transitive closure of graphs, respectively. Both
papers utilize min-hashing, the fingerprinting technique for
the Jaccard coefficient that was also applied in [14] to scale
similarity search based on anchor text. The main contribu-
tion of Section 2.3 is that we are able to generate finger-
prints for multi-step neighborhoods with external memory
algorithms. Monte Carlo algorithms with simulated ran-
dom walks also play an important role in a different aspect
of web algorithms, when a crawler attempts to download a
uniform sample of web pages and compute various statistics
[16, 27, 2] or page decay [3]. We refer to the book of Mot-
wani and Raghavan [23] for more theoretical results about
Monte Carlo algorithms solving combinatorial problems.

1.2 Scalability Requirements
In our framework similarity search algorithms serve two

types of queries: the output of a sim(u, v) similarity query
is the similarity score of the given pages u and v; the output
of a relatedα(u) related query is the set of pages for which
the similarity score with the queried page u is larger than
the threshold α. To serve queries efficiently we allow off-line
precomputation, so the scalability requirements are formu-
lated in the indexing-query model : we precompute an index
database for a given web graph off-line, and later respond to
queries on-line by accessing the database.

We say that a similarity search algorithm is scalable if the
following properties hold:

• Time: The index database is precomputed within the
time of a sorting operation, up to a constant factor. To
serve a query the index database can only be accessed a
constant number of times.

• Memory: The algorithms run in external memory [22]:
the available main memory is constant, so it can be arbi-
trarily smaller than the size of the web graph.

• Parallelization: Both precomputation and queries can
be implemented to utilize the computing power and stor-
age capacity of tens to thousands of servers intercon-
nected with a fast local network.

Observe that the time constraint implies that the index
database cannot be too large. In fact our databases will be
linear in the number V of vertices (pages).

The memory requirements do not allow random access to
the web graph. We will first sort the edges by their ending
vertices using external memory sorting. Later we will read
the entire set of edges sequentially as a stream, and repeat
this process a constant number of times.

1.3 Preliminaries about SimRank
SimRank was introduced by Jeh and Widom [18] to for-

malize the intuition that “two pages are similar if they are
referenced by similar pages.” The recursive SimRank itera-
tion propagates similarity scores with a constant decay fac-
tor c ∈ (0, 1) for vertices u 6= v:

sim`+1(u, v) =
c

|I(u)| |I(v)|

X

u′∈I(u)

X

v′∈I(v)

sim`(u
′
, v

′) ,

where I(x) denotes the set of vertices linking to x; if I(u)
or I(v) is empty, then sim`+1(u, v) = 0 by definition. For
a vertex pair with u = v we simply let sim`+1(u, v) = 1.
The SimRank iteration starts with sim0(u, v) = 1 for u = v
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and sim0(u, v) = 0 otherwise. The SimRank score is defined
as the limit lim`→∞ sim`(u, v); see [18] for the proof of con-
vergence. Throughout this paper we refer to sim`(u, v) as a
SimRank score, and regard ` as a parameter of SimRank.

The SimRank algorithm of [18] calculates the scores by
iterating over all pairs of web pages, thus each iteration re-
quires Θ(V 2) time and memory, where V denotes the num-
ber of pages. Thus the algorithm does not meet the scalabil-
ity requirements by its quadratic running time and random
access to the web graph.

We recall two generalizations of SimRank from [18], as
we will exploit these results frequently. SimRank framework
refers to the natural generalization that replaces the aver-
age function in SimRank iteration by an arbitrary function
of the similarity scores of pairs of in-neighbors. Obviously,
the convergence does not hold for all the algorithms in the
framework, but still sim` is a well-defined similarity ranking.
Several variants are introduced in [18] for different purposes.

For the second generalization of SimRank, suppose that a
random walk starts from each vertex and follows the links
backwards. Let τu,v denote the random variable equal to
the first meeting time of the walks starting from u and v;
τu,v = ∞, if they never meet; and τu,v = 0, if u = v.
In addition, let f be an arbitrary function that maps the
meeting times 0, 1, . . . ,∞ to similarity scores.

Definition 1. The expected f-meeting distance for vertices
u and v is defined as

�
(f(τu,v)).

The above definition is adapted from [18] apart from the
generalization that we do not assume uniform, independent
walks of infinite length. In our case the walks may be pair-
wise independent, correlated, finite or infinite. For example,
we will introduce PSimRank as an expected f -meeting dis-
tance of pairwise coupled random walks in Section 2.2.

The following theorem justifies the expected f -meeting
distance as a generalization of SimRank. It claims that Sim-
Rank is equal to the expected f -meeting distance with uni-
form independent walks and f(t) = ct, where c denotes the
decay factor of SimRank with 0 < c < 1.

Theorem 1. For uniform, pairwise independent set of
reversed random walks of length `, the equality

�
(cτu,v ) =

sim`(u, v) holds, whether ` is finite or not.

The proof is published in [18] for the infinite case, and it
can be easily extended to the finite case.

2. MONTE CARLO SIMILARITY SEARCH
ALGORITHMS

In this section we give the first scalable algorithm to ap-
proximate SimRank scores. In addition, we introduce new
similarity functions accompanied by scalable algorithms: PSim-
Rank and the extended Jaccard coefficient.

All the algorithms fit into the framework of Monte Carlo
similarity search algorithms that will be introduced through
the example of SimRank. Recall that Theorem 1 expressed
SimRank as the expected value sim`(u, v) =

�
(cτu,v ) for ver-

tices u, v. Our algorithms generate reversed random walks,
calculate the first meeting time τu,v and estimate sim`(u, v)
by cτu,v . To improve the precision of approximation, the
sampling process is repeated N times and the independent
samples are averaged. The computation is shared between
indexing and querying as shown in Algorithm 1, a naive

Algorithm 1 Indexing (naive method) and similarity query

N=number of fingerprints, `=path length, c=decay factor.
Indexing: Uses random access to the graph.

1: for i := 1 to N do
2: for every vertex j of the web graph do
3: Fingerprint[i][j][]:=random reversed path of

length ` starting from j.

Query sim(u,v):

1: sim:=0
2: for i := 1 to N do
3: Let k be the smallest offset with

Fingerprint[i][u][k]=Fingerprint[i][v][k]
4: if such k exists then
5: sim:=sim+ck

6: return sim/N

implementation. During the precomputation phase we gen-
erate and store N independent reversed random walks of
length ` for each vertex, and the first meeting time τu,v is
calculated at query time by reading the random walks from
the precomputed index database.

The main concept of Monte Carlo similarity search al-
ready arises in this example. In general fingerprint refers
to a random object (a random walk in the example of Sim-
Rank) associated with a node in such a way, that the ex-
pected similarity of a pair of fingerprints is the similarity
of their nodes. The Monte Carlo method precomputes and
stores fingerprints in an index database and estimates simi-
larity scores at query time by averaging. The main difficul-
ties of this framework are as follows:

• During indexing (generating the fingerprints) we have to
meet the scalability requirements of Section 1.2. For
example, generating the random walks with the naive
indexing algorithm requires random access to the web
graph, thus we need to store all the links in main mem-
ory. To avoid this, we will first introduce algorithms
utilizing Θ(V ) main memory and then algorithms using
memory of constant size, where V denotes the number of
vertices. These computational requirements are referred
to as semi-external memory and external memory mod-
els [22], respectively. The parallelization techniques will
be discussed in Section 3.

• To achieve a reasonably sized index database, we need a
compact representation of the fingerprints. In the case of
the previous example, the index database (including an
inverted index for related queries) is of size 2 ·V ·N · `. In
practical examples we have V ≈ 109 vertices and N = 100
fingerprints of length ` = 10, thus the database is in total
8000 gigabytes. We will show a compact representation
that allows us to encode the fingerprints in 2 ·V ·N cells,
resulting in an index database with a size of 800 giga-
bytes.

• We need efficient algorithms for evaluating queries. For
queries the main idea is that the similarity matrix is
sparse, for a page u there are relatively few other pages
that have non-negligible similarity to u. We will give al-
gorithms that enumerate these pages in time proportional
to their number.
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Figure 1: Representing the first meeting times of
coalescing reversed walks of u1, u2, u3, u4 and u5

(above) with a fingerprint graph (below). For ex-
ample, the fingerprints of u2 and u5 first meet at
time τu2,u5 = max{3, 4} = 4.

2.1 SimRank
The main idea of this section is that we do not generate

totally independent sets of reversed random walks as in Al-
gorithm 1. Instead, we generate a set of coalescing walks:
each pair of walks will follow the same path after their first
meeting time. (This coupling is commonly used in the the-
ory of random walks.) More precisely, we start a reversed
walk from each vertex. In each time step, the walks at dif-
ferent vertices step independently to an in-neighbor chosen
uniformly. If two walks are at the same vertex, they follow
the same edge.

Notice that we can still estimate sim`(u, v) =
�

(cτu,v )
from the first meeting time τu,v of coalescing walks, since
any pair of walks are independent until they first meet. We
will show that the meeting times of coalescing walks can
be represented in a surprisingly compact way by storing
only one integer for each vertex instead of storing walks
of length `. In addition, coalescing walks can be generated
more efficiently by the algorithm discussed in Section 2.1.3
than totally independent walks.

2.1.1 Fingerprint trees
A set of coalescing reversed random walks can be repre-

sented in a compact and efficient way. The main idea is that
we do not need to reconstruct the actual paths as long as we
can reconstruct the first meeting times for each pair of them.
To encode this, we define the fingerprint graph (FPG) for a
given set of coalescing random walks as follows.

The vertices of FPG correspond to the vertices of the web
graph indexed by 1, 2, . . . , V . For each vertex u, we add a
directed edge (u, v) to the FPG for at most one vertex v

with

(1) v < u and the fingerprints of u and v first meet at time
τu,v < ∞;

(2) among vertices satisfying (1) vertex v has earliest meet-
ing time τu,v;

(3) and given (1-2), the index of v is minimal.

Furthermore we label the edge (u, v) with τu,v. An example
for a fingerprint graph is shown as Fig. 1.

The most important property of the compact FPG repre-
sentation that it still allows us to reconstruct τu,v values with
the following algorithm. For a pair of nodes u and v consider

t
′
2

w
t1

t2
v
′

u
′

v

u t
′
1

Figure 2: Notation of specific vertices and edge
labels of a fingerprint graph. In the example
|P (u, w)| = 3 and |P (v, w)| = 4.

the unique paths in the FPG starting from u and v. If these
paths have no vertex in common, then τu,v = ∞. Other-
wise take the parts until the first intersection; let t1 and t2
denote the labels of the last edges in the parts we selected;
and let t1 = 0 (or t2 = 0), if u (or v) is the first intersection
point. Then τu,v = max{t1, t2}, see the example of Fig. 1.
The correctness of this algorithm with further properties of
the FPG is summarized by the following lemma.

Lemma 2. Consider the fingerprint graph for a set of coa-
lescing random walks. This graph is a directed acyclic graph,
each node has out-degree at most 1, thus it is a forest of
rooted trees with edges directed towards the roots.

Consider the unique path in the fingerprint graph starting
from vertex u. The indices of nodes it visits are strictly
decreasing, and the labels on the edges are strictly increasing.

With the algorithm detailed above all τu,v values can be
determined.

Proof. The first two statements naturally follow from
the definition of fingerprint graphs. Now, we prove that
for any two vertices u, v the first meeting time τu,v can be
calculated by the algorithm detailed above the lemma.

First we prove that τu,v < ∞ iff P (u) and P (v) intersect
each other, where P (x) denotes the unique path in the FPG
starting from x. If a directed edge connects two vertices in
the FPG, then they have a finite meeting time. Notice that
the relation { (u, v) : τu,v < ∞} is transitive, due to the
coalescing property of the walks. Thus any two vertices u

and v in the same (undirected) connected component of the
fingerprint graph have finite meeting time. On the other
hand, each connected component of an FPG is a rooted tree
with edges directed towards the root. If τu,v < ∞ would
hold for u and v in two different trees (components), then
the same relation would hold for the roots of these trees
by transitivity, and there would exist an FPG edge starting
from the root with larger index, which is a contradiction.
So far, we have seen that τu,v < ∞ iff the vertices u and
v fall into the same component of the FPG. The latter is
equivalent with saying P (u) and P (v) intersect each other,
since the components are reversed rooted trees.

Now, we will show that τu,v = max{t1, t2} holds for any
vertices u, v with τu,v < ∞ as calculated by the algorithm
of the lemma. Let us denote by |P (x, w)| the number of
edges in P (x) from x to w, and x′ the first edge of P (x),
if |P (x,w)| > 0 for x = u, v. Furthermore we will refer to
the labels of u′ and v′ as t′1 and t′2; the first intersection
point of P (u) and P (v) will be denoted by w. Recall that t1
and t2 denote the labels of the edges of P (u) and P (v) with
ending vertex w; and t1 = 0 (or t2 = 0) if |P (u, w)| = 0 (or
|P (v, w)| = 0). We refer to Fig. 2 summarizing the notation.

We will proceed induction on k = |P (u, w)|+ |P (v, w)| to
prove that τu,v = max{t1, t2} holds for any vertices u, v with
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τu,v < ∞. The case of k = 1 is trivial, as it implies that the
vertices u and v are connected by an edge in the FPG and
the label of this edge equals τu,v. Furthermore one of t1 and
t2 equals this label, and the other is zero.

The following property of coalescing walks will be referred
to as generalized transitivity. For any vertices u, v, z

τu,v < ∞ and τv,z ≤ τu,v =⇒ τu,v = τu,z.

The statement is trivial, since the first meeting time τu,v of
the walks of u and v can be expressed as the meeting time
τu,z, if the walks of v and z coalesce not later than τu,v.

To proceed the induction from k to k + 1 suppose that
u = w or v = w. Without loss of generality, we assume that
u = w and v 6= w. Since the indices of the vertices visited
by P (v) decreases, w = u < v holds. By the definition of
the FPG, among the vertices with smaller index than v the
meeting time τv,v′ is minimal, thus τv,v′ ≤ τu,v holds. Then
by applying generalized transitivity we get τu,v = τu,v′ ,
which is equal to max{t1, t2} = t2 by induction.

In case of u 6= w and v 6= w we suppose that t′2 ≤ t′1
without loss of generality. If u < v, then τv,v′ ≤ τu,v by the
definition of the FPG. Analogously, if u > v, then τu,u′ ≤
τu,v, and by applying this inequality we get τv,v′ = t′2 ≤ t′1 =
τu,u′ ≤ τu,v. In both cases the inequality τv,v′ ≤ τu,v holds,
so we get τu,v = τu,v′ by the generalized transitivity. By
induction τu,v = τu,v′ = max{t1, t2}, if v′ 6= w; otherwise
τu,v = τu,v′ = max{t1, 0} = max{t1, t2}, where the last
equality follows from t1 ≥ t′1 ≥ t′2 = t2. This completes the
proof.

By the lemma, the fingerprint graph is a collection of
rooted trees referred to as fingerprint trees. The main obser-
vation for storage and query is that the partition of nodes
into trees preserves the locality of the similarity function.

2.1.2 Fingerprint database and query
The first advantage of the fingerprint graph is that it rep-

resents all first meeting times for a set of coalescing walks
of length ` in compact manner. It is compact, since every
vertex has at most one out-edge in an FPG, so the size of
one graph is V , and N · V bounds the total size.1 This is
a significant improvement of the naive representation of the
walks with a size of N · V · `.

The second important property of the fingerprint graph is
that two vertices have non-zero estimated similarity iff they
fall into the same fingerprint tree. Thus, when serving a
related(u) query it is enough to read and traverse from each
of the N fingerprint graphs the unique subtree containing u.
Therefore in a fingerprint database, we store the fingerprint
graphs ordered as a collection of fingerprint trees, and for
each vertex u we also store the identifiers of the N trees
containing u. By adding the identifiers the total size of the
database is no more than 2 · N · V .

A related(u) query requires N + 1 accesses to the finger-
print database: one for the tree identifiers and then N more
for the fingerprint trees of u. A sim(u, v) query accesses
the fingerprint database at most N + 2 times, by loading
two lists of identifiers and then the trees containing both u

and v. For both type of queries the trees can be traversed
in time linear compared to the size of the tree.

1
To be more precise we need V (dlog(V )e + dlog(`)e) bits for an FPG

to store the labelled edges. Notice that the weights require no more
than dlog(`)e = 4 bits for each vertex for typical value of ` = 10.

Algorithm 2 Indexing (using 2 · V main memory)

N=number of fingerprints, `=length of paths. Uses sub-
routine GenRndInEdges that generates a random in-edge for
each vertex in the graph and stores its source in an ar-
ray.

1: for i := 1 to N do
2: for every vertex j of the web graph do
3: PathEnd[j] := j /*start a path from j*/
4: for k:=1 to ` do
5: NextIn[] := GenRndInEdges();
6: for every vertex j with PathEnd[j]6=“stopped” do
7: PathEnd[j]:=NextIn[PathEnd[j]]

/*extend the path*/
8: SaveNewFPGEdges(PathEnd)
9: Collect edges into trees and save as FPGi.

Notice that the query algorithms do not meet all the scal-
ability requirements: although the number of database ac-
cesses is constant (at most N+2), the memory requirement
for storing and traversing one fingerprint tree may be as
large as the number of pages V . Thus, theoretically the
algorithm may use as much as V memory.

Fortunately, in case of web data the algorithm performs as
an external memory algorithm. As verified by our numerical
experiments on 80M pages in Section 5.3 the average sizes of
fingerprint trees are approximately 100–200 for reasonable
path lengths. Even the largest trees in our database had at
most 10K–20K vertices, thus 50Kbytes of data needs to be
read for each database access in worst case.

2.1.3 Building the fingerprint database
It remains to show a scalable algorithm to generate coa-

lescing sets of walks and compute the fingerprint graphs.
As opposed to the naive algorithm generating the fin-

gerprints one-by-one, we generate all fingerprints together.
With one iteration we extend all partially generated finger-
prints by one edge. To achieve this, we generate one uniform
in-edge ej for each vertex j independently. Then extend
with edge ej each of those fingerprints that have the same
last node j. This method generates a coalescing set of walks,
since a pair of walks will be extended with the same edge
after they first meet, but they were independent before.

The pseudo-code is displayed as Algorithm 2, where Next-

In[j] stores the starting vertex of the randomly chosen edge
ej , and PathEnd[j] is the ending vertex of the partial finger-
print that started from j. To be more precise, if a group
of walks already met, then PathEnd[j]=“stopped” for every
member j of the group except for the smallest j. The Save-

NewFPGEdges subroutine detects if a group of walks meets
in the current iteration, saves the fingerprint tree edges cor-
responding to the meetings and sets PathEnd[j]=“stopped”
for all non-minimal members j of the group. SaveNewFPG-

Edges detects new meetings by a linear time counting sort
of the non-stopped elements of PathEnd array.

The subroutine GenRndInEdges may generate a set of ran-
dom in-edges with a simple external memory algorithm if
the edges are sorted by the ending vertices. Notice that a
significant improvement can be achieved by generating and
saving all the required random edge-sets together during a
single scan over the edges of the web graph. Thus, all the
N ·` edge-scans can be replaced by one edge-scan and saving
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u v

Figure 3: When SimRank fails: pages u and v have
k witnesses for similarity, yet their SimRank score
is smaller than 1

k
.

the sets of in-edges. Then GenRndInEdges sequentially reads
the N · ` arrays of size V from disk.

The algorithm outlined above fits into the semi-external
memory model, since it utilizes 2 · V main memory to store
the PathEnd and NextIn arrays. (The counter sort operation
of SaveNewFPGEdges may reuse NextIn array, so it does not
require additional storage capacity.) The algorithm can be
easily converted into the external memory model by keep-
ing PathEnd and NextIn arrays on the disk and by replacing
Lines 6-8 of Algorithm 2 with external sorting and merg-
ing processes. Furthermore, at the end of the indexing the
individual fingerprint trees can be collected with ` sorting
and merging operations, as the longest possible path in each
fingerprint tree is ` (due to Lemma 2 the labels are strictly
increasing but cannot grow over `).

In a distributed system, where up to hundreds of modest
capacity machines are available with fast network connec-
tions between them, we can eliminate all the disk I/O for
the precomputation phase.

We split the web graph so that each participating com-
puter gets a part of the vertices so, that it can hold the
(in-)edge set associated with those vertices in its main mem-
ory, along with an array of tokens sized roughly the number
of vertices it is responsible for. Each token represents a
partial fingerprint that has its current vertex from the set
associated with the current host. Each host generates a set
of random in-edges for those vertices it is responsible for,
and advances the tokens in its property with the respective
edges. Then the tokens are transferred on the network to
their new owner. Now the walks that have just met are in
the main memory of the machine which is responsible for the
meeting point vertex, thus are easily found and the required
edge in the fingerprint graph can be outputted.

2.2 PSimRank
In this section we give a new SimRank variant with prop-

erties extending those of Minimax SimRank [18], a non-
scalable algorithm that cannot be formulated in our frame-
work. The new similarity function will be expressed as an
expected f -meeting distance by modifying the distribution
of the set of random walks and by keeping f(t) = ct.

A deficiency of SimRank can be best viewed by an exam-
ple. Consider two very popular web portals. Many users link
to both pages on their personal websites, but these pages
are not reported to be similar by SimRank. An extreme
case is depicted on Fig. 3 with portals u and v having the
same in-neighborhood of size k. Though the k pages are
totally dissimilar in the link-based sense, we would still in-
tuitively regard u and v as similar. Unfortunately SimRank
is counter-intuitive in this case, as sim`(u, v) = c · 1

k
con-

verges to zero with the number k of common in-neighbors.

2.2.1 Coupled random walks
We define PSimRank as the expected f -meeting distance

of a set of random walks, which are not independent, as in
case of SimRank, but are coupled so that a pair of them can
find each other more easily.

We solve the deficiency of SimRank by allowing the ran-
dom walks to meet with higher probability when they are
close to each other: a pair of random walks at vertices u′, v′

will advance to the same vertex (i.e., meet in one step) with

probability of the Jaccard coefficient |I(u′)∩I(v′)|
|I(u′)∪I(v′)|

of their in-

neighborhoods I(u′) and I(v′).

Definition 2. PSimRank is the expected f -meeting dis-
tance with f(t) = ct (for some 0 < c < 1) of the following
set of random walks. For each vertex u, the random walk
Xu makes ` uniform independent steps on the transposed
web graph starting from point u. For each pair of vertices
u, v and time t, assume the random walks are at position
Xu(t) = u′ and Xv(t) = v′. Then

• with probability |I(u′)∩I(v′)|
|I(u′)∪I(v′)|

they both step to the same

uniformly chosen vertex of I(u′) ∩ I(v′);

• with probability |I(u′)\I(v′)|
|I(u′)∪I(v′)|

the walk Xu steps to a uni-

form vertex in I(u′) \ I(v′) and the walk Xv steps to an
independently chosen uniform vertex in I(v′);

• with probability |I(v′)\I(u′)|
|I(u′)∪I(v′)|

the walk Xv steps to a uni-

form vertex in I(v′) \ I(u′) and the walk Xu steps to an
independently chosen uniform vertex in I(u′).

We give a set of random walks satisfying the coupling of
the definition. For each time t ≥ 0 we choose an independent
random permutation σt on the vertices of the web graph. At
time t if the random walk from vertex u is at Xu(t) = u′,
it will step to the in-neighbor with smallest index given by
the permutation σt, i.e.,

Xu(t + 1) = argmin
u′′∈I(u′)

σt(u
′′)

It is easy to see that the random walk Xu takes uniform
independent steps, since we have a new permutation for each
step. The above coupling is also satisfied, since for any
pair u′, v′ the vertex argminw∈I(u′)∪I(v′) σt(w) falls into the

sets I(u′) ∩ I(v′), I(u′) \ I(v′), I(v′) \ I(u′) with respective
probabilities

|I(u′) ∩ I(v′)|

|I(u′) ∪ I(v′)|
,
|I(u′) \ I(v′)|

|I(u′) ∪ I(v′)|
and

|I(v′) \ I(u′)|

|I(u′) ∪ I(v′)|
.

2.2.2 PSimRank in SimRank framework
Now we prove that PSimRank is in the SimRank frame-

work, i.e., the scores can be formulated by iterations that
propagate similarities over the pairs of in-neighbors analo-
gously to SimRank. The PSimRank-iterations provide an
exact quadratic algorithm to compute PSimRank scores.
Furthermore, the iterative formulation indicates that PSim-
Rank scores are determined by Definition 2 and the values
do not depend on the actual choice of the coupling.

Let τu,v denote the first meeting time of the walks of
Xu, Xv starting from vertices u, v; and τu,v = ∞ if the walks
never meet. Then PSimRank scores for path length ` can be
expressed by definition as psim`(u, v) =

�
(cτu,v ). It is trivial

that psim0(u, v) = 1, if u = v; and otherwise psim0(u, v) = 0.
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By applying the law of total expectation on the first step of
the walks Xu and Xv, and time shift we get the following
PSimRank iterations:

psim`+1(u, v) = 1, if u = v;
psim`+1(u, v) = 0, if I(u) = ∅ or I(v) = ∅;

psim`+1(u, v) = c ·

»
|I(u)∩I(v)|
|I(u)∪I(v)|

· 1+

+ |I(u)\I(v)|
|I(u)∪I(v)|

· 1
|I(u)\I(v)||I(v)|

P
u′∈I(u)\I(v)

v′∈I(v)

psim`(u
′, v′)+

+ |I(v)\I(u)|
|I(u)∪I(v)|

· 1
|I(v)\I(u)||I(u)|

P
v′∈I(v)\I(u)

u′∈I(u)

psim`(u
′, v′)

–
.

2.2.3 Computing PSimRank
To achieve a scalable algorithm for PSimRank we mod-

ify the SimRank indexing and query algorithms introduced
in Section 2.1. The following result allows us to use the
compact representation of fingerprint graphs.

Lemma 3. Any set of random walks satisfying the PSim-
Rank requirements are coalescing, i.e., any pair follows the
same path after their first meeting time.

Proof. Let u and v be arbitrary nodes. By the first
coupling requirement, if at time t the random walks Xu and
Xv are at the same nodes u′ = v′, then I(u′) = I(v′), thus

with probability |I(u′)∩I(v′)|
|I(u′)∪I(v′)

= 1 they proceed to the same

vertex.

To apply the indexing algorithm of SimRank, we only
need to ensure the pairwise coupling. This can be accom-
plished by simply replacing the GenRndInEdges procedure.
Recall, that for SimRank this procedure generated one inde-
pendent, uniform in-edge for each vertex v in the graph. In
case of PSimRank, GenRndInEdges chooses a permutation σ

at random; and then for each vertex v the in-neighbor with
smallest index under the permutation σ is selected, i.e., ver-
tex argminv′∈I(v) σ(v′) is chosen.

As in the case of the GenRndInEdges for SimRank, all the
required sets of random in-edges can be generated within a
single scan over the edges of the web graph, if the edges are
sorted by the ending vertices. The random permutations can
be stored in small space by random linear transformations
as in [6]. With this method the external memory implemen-
tation of SimRank can be extended to PSimRank.

2.3 Extended Jaccard coefficient
In this section we formally define the extended Jaccard

coefficient, and give efficient (Monte Carlo) approximation
algorithms in the indexing-query model by applying min-
hashing [5], the well-known fingerprinting technique for esti-
mating Jaccard coefficient between arbitrary sets. The main
contribution of this section is that we give semi-external
memory, external memory and distributed algorithms sim-
ilar to PageRank iterations [25, 8] that compute the min-
hash fingerprints for the multi-step neighborhoods of ver-
tices. The proposed methods can be further parallelized
using the methods described in Section 3.

The extended Jaccard coefficient is defined as the expo-
nentially weighted sum of the Jaccard coefficients of larger
neighborhoods.

Definition 3. Let Ik(v) be the k-in-neighborhood of v, i.e.,
the set of vertices from where vertex v can be reached using
at most k directed edges. The extended Jaccard coefficient,
XJaccard for length ` of vertices u and v is defined as

xjac`(u, v) =
X̀

k=1

|Ik(u) ∩ Ik(v)|

|Ik(u) ∪ Ik(v)|
· ck(1 − c)

We will use the following min-hash fingerprinting tech-
nique for Jaccard coefficients [5]: take a random permuta-
tion σ of the vertices and represent each set Ik(v) with the
minimum value of this permutation over the set Ik(v) as a
fingerprint. Then for each distance k and vertices u, v the
probability of these fingerprints to match equals the Jaccard

coefficient |Ik(u)∩Ik(v)|
|Ik(u)∪Ik(v)|

. We can use this for each k = 1, . . . , `

to get an ` sized fingerprint of each vertex, from which the
extended Jaccard coefficients can be approximated for any
pair of vertices.

More precisely, we calculate the following fingerprint for
each vertex v and each k = 1, . . . , `:

fpk(v) = min
v′∈Ik(v)

σ(v′)

Then by taking these as random variables the following
statement holds (note that we use the same random permu-
tation σ for each step).

Lemma 4.

xjac`(u, v) =
�

„ X̀

k=1

c
k(1 − c) � {fpk(u) = fpk(v)}

«

Proof. Using the linearity of expectation and the well-
known fingerprinting technique for Jaccard coefficient the
statement follows.

Using this probabilistic formulation we can take N inde-
pendent sample to generate N sets of fingerprints. Upon
a query xjac`(u, v) we load all the fingerprints for u and
v, and average the results of them to get an unbiased esti-
mate of xjac`(u, v). For serving related queries we load the
fingerprints of the queried page and use standard inverted
indexing techniques to find all the pages that have matching
parts in their fingerprints.

Serving XJaccard queries requires a database of size 2 ·V ·
N · `, a similarity query uses two database accesses, and a
related query uses up to 1 + N · ` database accesses. As we
will show in Section 5, the preferred length of fingerprints
is approximately ` = 4 on the web graph, thus these fig-
ures are still reasonable. Furthermore, the factor N can be
eliminated by using N -way parallelization, as discussed in
Section 3.

2.3.1 Precomputation of extended Jaccard coefficient
We give a semi-external memory algorithm first. The key

observation is that we use the same permutation for gener-
ating all steps of the fingerprint, which allows the following
recursion:

fpk(u) = min
u′∈I(u)∪{u}

fpk−1(u
′)

Using this formula we can extend the fingerprints by one step
using one edge-scan and the fingerprints of the previous step
(see Algorithm 3).
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Algorithm 3 Precomputing extended Jaccard coefficients

N=number of fingerprints, `=length of fingerprints.

1: for i := 1 to N do
2: generate a random permutation σ.
3: for every vertex j of the web graph do
4: NFP[j]:=σ(j) /*start the fingerprint*/
5: for k:=1 to ` do
6: FP[]:=NFP[]
7: for every edge (u, v) of the web graph do
8: NFP[v]:=min(NFP[v],FP[u])
9: save array NFP[] as FPk[]

10: Merge arrays FPk, and create inverted index.

2.3.2 External memory and distributed indexing
Algorithm 3 for semi-external memory indexing of ex-

tended Jaccard coefficients is very similar to the classic Page-
Rank computing method using power-iteration: each itera-
tion scans the entire edge-set and updates a vector (indexed
by the vertices) using the vector computed by the previous
iteration. This allows us to adapt the external memory al-
gorithms designed for PageRank [8, 13], and the distributed
indexing technique by the authors [12]. Due to space con-
straints we will not quote these algorithms here.

In total with N = 100 and ` = 4 the precomputation
costs for extended Jaccard coefficients are thus similar to
the precomputation cost for 400 PageRank iterations, with
one remarkable difference: while PageRank can only be com-
puted sequentially, the precomputation of extended Jaccard
coefficients can be parallelized up to N -way.

3. MONTE CARLO PARALLELIZATION
In this section we discuss the parallelization possibilities

of our methods. We show that all of them exhibit features
(such as fault tolerance, load balancing and dynamic adap-
tation to workload) which makes them extremely applicable
in large-scale web search engines.

All similarity methods we have given in this paper are
organized around the same concepts:

• we compute a similarity measure by averaging N inde-
pendent samples from a certain random variable;

• the independent samples are stored in N instances of an
index database, each capable of producing a sample of
the random variable for any pair of vertices.

The above framework allows a straightforward paralleliza-
tion of both the indexing and the query: the computation of
independent index databases can be performed on up to N

different machines. Then the databases are transferred to
the backend computers that serve the query requests. When
a request arrives to the frontend server, it asks all (up to N)
backend servers, averages their answers and returns the re-
sults to the user.

The Monte Carlo parallelization scheme has many ad-
vantages that make it perfectly suitable to large-scale web
search engines:

The parallelization of queries and indexing can be per-
formed differently. For example, if indexing requires large
capacity computers, then one can use a few of them to com-
pute all the index databases. As the scarce resource for
query is typically database access (disk seeks), and only lit-

tle memory and computation is required, these databases
can then be distributed to N different backend servers.

Fault tolerance. If one or more backend servers cannot re-
spond to the query in time, then the frontend can aggregate
the results of the remaining ones and calculate the estimate
from the available answers. This will not influence service
availability, but results only in a slight loss of precision.

Load balancing. In case of very high query loads, more
than N backend servers (database servers) can be employed.
A simple solution is to replicate the individual index data-
bases. Better results are achieved if one calculates an inde-
pendent index database for all the backend servers. In this
case it suffices to ask any N backend servers for a proper
precision answer. This allows seamless load balancing, i.e.,
you can add more backend servers one-by-one as the demand
increases.

Furthermore, this parallelization allows dynamic adapta-
tion to workload. During times of excessive load the number
of backend servers asked for each query (N) can be auto-
matically reduced to maintain fast response times and thus
service integrity. Meanwhile, during idle periods, this value
can be increased to get higher precision for free (along with
better utilization of resources). We believe that this feature
is extremely important in the applicability of our results.

4. ERROR OF APPROXIMATION
As we have seen in earlier sections, a crucial parameter

of our methods is the number N of fingerprints. The index
database size, indexing time, query time and database ac-
cesses are all linear in N . In this section we formally analyze
the number of fingerprints needed for a proper precision ap-
proximation. Our theorems show that even a modest num-
ber of fingerprints (e.g., N = 100) suffices for the purposes
of a web search engine.

To state our results we need a general model of Monte
Carlo similarity functions that can accommodate our meth-
ods for SimRank, PSimRank and XJaccard. We will gener-
alize similarity search over a set V of items. Let M denote
a random variable with a range being an arbitrary set S.
Consider a pair (M, { gu,v : u, v ∈ V }), where for each pair
u, v of items the function gu,v : S 7→ [0, 1] transforms the
value of M into an estimate of the similarity of u and v.

Definition 4. A Monte Carlo similarity function dsım(·, ·)
over a set V of items is calculated by taking N independent
instances M1, . . . , MN of the random variable M , and av-
eraging the results of their transformations as dsım(u, v) =
1
N

PN
i=1 gu,v(Mi) for each pair u, v ∈ V. Furthermore, we

refer to sim(u, v) =
�

( gu,v(M) ) as the underlying similarity
function2.

Example 1. In case of our SimRank approximation method,
the value of the random variable M is the set of fingerprint
paths (for all vertex u). The transformation gu,v selects the
paths for u and v, calculates their first meeting time τu,v,
and returns cτu,v , where c is the decay parameter of Sim-
Rank.

Example 2. In the general case, the set S is the set of all
possible index databases, gu,v is the similarity query, i.e.,
the algorithm that takes an index database and calculates

2
Naturally, the Monte Carlo similarity function csım(u, v) is an unbi-

ased estimation of the underlying similarity function sim(u, v).
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the estimated similarity of u and v using only that index
database. The dsım averaging is the role of the frontend,
that distributes the queried node pair to all the participating
backend servers (each of them owning an independent index
database, i.e., an independent realization Mi of the random
variable M), collects their estimates and averages them.

Notice that the above definition of Monte Carlo similarity
functions allows arbitrary correlation/dependence of differ-
ent similarity scores within the same index database. This
is essential, as our actual computable methods exhibit such
dependence e.g., by coalescing random walks. Still we have
strong results concerning the convergence of the estimates.

Theorem 5. For any Monte Carlo similarity function
dsım the absolute error converges to zero exponentially in the
number of fingerprints N and uniformly over the pair of
items u, v. More precisely, for any u, v ∈ V and any δ > 0
we have

Pr{| dsım(u, v) − sim(u, v)| > δ} < 2e
− 6

7
Nδ2

Proof. We shall use Bernstein’s inequality in the fol-
lowing form: for any independent, identically distributed
random variables Zi : i = 1, 2, . . . , N that have a bounded
range [a, b], for any δ > 0:

Pr{|
1

N

NX

i=1

Zi −
�

Z| > δ} ≤ 2e
−N δ2

2 Var Z+2δ(b−a)/3

Applying this for Zi = gu,v(Mi) and using the bounds
Zi ∈ [0, 1], Var Zi ≤

1
4
, and δ < 1 the statement follows.

Notice that the bound uniformly applies to all graphs and
all similarity functions, such as SimRank, PSimRank and
XJaccard. However, this bound concerns the convergence of
the similarity score for one pair of vertices only. In the web
search scenario, we typically use related queries, thus are
interested in the relative order of pages according to their
similarity to a given query page u.

Theorem 6. For any Monte Carlo similarity function
dsım and any fixed item u, the probability of interchanging two
items in the similarity ranking of item u converges to zero
exponentially in the number of fingerprints N . More pre-
cisely, for each page v and w, such that sim(u, v) > sim(u, w)
we have

Pr{dsım(u, v) < dsım(u, w)} < e
−0.3Nδ2

where δ = sim(u, v) − sim(u, w).

Though a similar statement follows easily from the previ-
ous theorem, we give an independent (but similar) proof to
achieve better constants.

Proof. We shall use Bernstein’s inequality one-sided: for
any independent, identically distributed random variables
Zi : i = 1, 2, . . . , N that have a bounded range [a, b], for any
δ > 0:

Pr{
1

N

NX

i=1

Zi −
�

Z < −δ} ≤ e
−N δ2

2 Var Z+2δ(b−a)/3

We set Zi = gu,v(Mi) − gu,w(Mi). Then 1
N

PN
i=1 Zi =

dsım(u, v)−dsım(u, w), its expected value is sim(u, v)−sim(u, w).

We can bound the values: Zi ∈ [−1, 1] and thus the vari-
ance: VarZi ≤ 1. We set δ = sim(u, v) − sim(u, w), thus we
get

Pr{dsım(u, v) − dsım(u, w) < 0} ≤ e
−N δ2

2+4/3

These theorems mean that the Monte Carlo approxima-
tion can efficiently capture the big differences among the
similarity scores. But when it comes to small differences,
then the error of approximation obscures the actual similar-
ity ranking, and an almost arbitrary reordering is possible.
We believe, that for a web search inspired similarity ranking
it is sufficient to distinguish between very similar, modestly
similar, and dissimilar pages. We can formulate this require-
ment in terms of a slightly weakened version of classical in-
formation retrieval measures precision and recall [1].

Consider a related query for page u with similarity thresh-
old α, i.e., the problem is to return the set of pages S = {v ∈
V : sim(u, v) > α}. Our methods approximate this set with
bS = {v ∈ V : dsım(u, v) > α}. We weaken the notion of
precision and recall to exclude a small, δ sized interval of
similarity scores around the threshold α: let S+δ = {v ∈ V :
sim(u, v) > α + δ}, S−δ = {v ∈ V : sim(u, v) > α− δ}. Then
the expected δ-recall of a Monte Carlo similarity function is

�
(|bS∩S+δ|)

|S+δ|
while the expected δ-precision is

�
(|bS∩S

−δ|)
�

(|bS|)
. Fur-

thermore, we introduce the notation Sc
−δ = V \ S−δ.

Theorem 7. For any Monte Carlo similarity function
dsım, any page u, similarity threshold α and δ > 0 the ex-
pected δ-recall is at least

1 − e
− 6

7
Nδ2

and the expected δ-precision is at least

1 −
|Sc

−δ |

|S+δ|

1

e
6
7

Nδ2
− 1

.

Proof. First we bound the expected δ-recall.

�
“
|bS ∩ S+δ|

”
=

�
“ X

v∈S+δ

� {v ∈ bS}
”

=
X

v∈S+δ

Pr{v ∈ bS}

≥
X

v∈S+δ

“
1 − e

− 6
7

Nδ2
”

= |S+δ| ·
“
1 − e

− 6
7

Nδ2
”

,

where the second equation follows from the linearity of ex-
pectation; and the inequality follows from the one-sided ab-

solute error bound Pr{dsım(u, v)−sim(u, v) < −δ} < e−
6
7

Nδ2

that can be proved analogously to Theorem 5.
Now we turn to expected δ-precision:

1 −

�
(|bS ∩ S−δ|)

�
(|bS|)

=

�
(|bS ∩ Sc

−δ|)
�

(|bS|)

≤
|Sc

−δ |e
−6/7·Nδ2

|S+δ|(1 − e−6/7·Nδ2 )

=
|Sc

−δ|

|S+δ|

1

e6/7·Nδ2 − 1
,
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where the inequality follows from
�

( bS) ≥
�

(|bS ∩S+δ|) with
the lower bound derived for the proof of expected δ-recall;

and from the bound
�

(|bS ∩ Sc
−δ|) ≤ |Sc

−δ| · e−6/7·Nδ2

that
can be proved with essentially the same steps as the lower

bound on
�

(|bS ∩ S+δ|).

This theorem shows, that the expected δ-recall converges
to 1 exponentially and uniformly over all possible similarity
functions, graphs and queried vertices of the graphs, while
the expected δ-precision converges to 1 exponentially for any
fixed similarity function, graph and queried node. The |Sc

−δ |
factor in the precision is not surprising, as there can be
many items with just less than α − δ similarity, and these
can get into the result set. To prove stronger bounds we
have to make assumptions (for example power law) about
the distribution of similarity scores.

5. EXPERIMENTS
This section presents our experiments on the repository

of 80M pages crawled by the Stanford WebBase project in
2001. The following problems are addressed by our experi-
ments:

• How do the parameters `, N and c effect the quality of the
similarity search algorithms? The dependence on path
length ` show that multi-step neighborhoods of pages con-
tain more valuable similarity information than single-step
neighborhoods for up to ` ≈ 5.

• How do the qualities of SimRank, PSimRank and XJac-
card relate to each other? We conclude that PSimRank
outperforms all the other methods.

• What are the average and maximal sizes of fingerprint
trees for SimRank and PSimRank? Recall that the run-
ning time and memory requirement of query algorithms
are proportional to these sizes. We measured sizes as
small as 100− 200 on average implying fast running time
with low memory requirement.

5.1 Measuring the Quality of Similarity Scores
We briefly recall the method of Haveliwala et al. [14] to

measure the quality of similarity search algorithms.
The similarity search algorithms will be compared to a

ground truth similarity ordering extracted from the Open
Directory Project (ODP, [24]) data, a hierarchical collec-
tion of webpages managed by thousands of volunteer editors.
The ODP category tree implicitly encodes the similarity in-
formation, which can be decoded as follows. The ODP tree
is collapsed into a fixed depth, such that the leaves contain
the classes of documents (urls). Given a page u the rest of
the documents fall into the same class as u, a sibling class,
a cousin class, etc. This induces a partial ordering of the
documents, which will be referred to as the familial ordering
with respect to u. The key assumption is that the true sim-
ilarity to a page u decreases monotonically with the familial
ordering.

Intuitively we want to express the expected quality of a
similarity ordering to a query page u in comparison with
the familial ordering of u, where u is chosen uniformly at
random. The two orderings are compared by the Kruskal-
Goodman Γ measure that gives score +1 to a pair v, w

if the two orderings agree on the similarity ordering of the
pair, and it gives −1 if they order the pair reversely. As both

orderings are partial, the Γ value is defined as the average of
scores over all pairs that are comparable by both orderings.
To obtain a more precise measure focusing on the top region
of the familial ordering, sibling Γ measure [14] restricts the
averaging to vertices that either fall into the same or a sibling
class of u.

Finally, we enumerate the subtle differences between the
sibling Γ measure defined above and the original sibling Γ
introduced in [14]. The goal of the modifications was to
make sibling Γ more suitable for measuring the qualities of
related queries.

• For each page u we computed sibling Γ on a truncated list
of 100 pages with highest similarity to u. This truncation
is reasonable, since for example the Γ quality of a long
list of 10,000 pages is almost independent of the quality
of the first 100 resulting pages, which is the main interest
of typical users of related queries.

• Recall that Kruskal-Goodman Γ measures the quality of
a similarity ranking to a given query page u. In our ex-
periments we extended Γ to an overall measure by micro-
averaging : we computed Γ for each page u, and then av-
eraged these Γ scores. In contrast, the method of [14]
applies macro-averaging by averaging over all vertices
u, v, w the +1 and −1 credits given for ordering the pair
(sim(u, v), sim(u, w)) correctly or not. With probabilis-
tic terminology micro-averaging describes the quality of
a related(u) query with uniformly chosen u, while macro-
averaging describes the expected quality of ordering the
pair (sim(u, v), sim(u, w)) for uniformly chosen pairs. We
decided on micro-averaging, since our primary focus was
related query, and we experienced that essentially the
same tendencies can be measured by macro-averaging
with slightly higher Γ values than our micro-averaging
method combined with list truncation.

• We discarded the page u itself, when we evaluated the
quality of the similarity ranking of u. This modifica-
tion significantly decreased Γ values by approximately
0.1, since our algorithms estimated sim(u, u) = 1 per-
fectly. Even larger differences occurred for the parameter
settings path length ` = 1, 2, 3 and number of fingerprints
N = 10, 20, 30. It is not surprising, since reducing ` and
N values decreases the number of pairs with non-zero es-
timated similarity scores. This modification caused the
main difference between the Γ values of this paper and
those presented in [11] about SimRank.

5.2 Comparing the Qualities of the Methods
with Various Parameter Settings

All the experiments were performed on a web graph of
78,636,371 pages crawled and parsed by the Stanford Web-
Base project in 2001. In our copy of the ODP tree 218,720
urls were found falling into 544 classes after collapsing the
tree. The indexing process took 4 hours for SimRank, 14
hours for PSimRank and 27 hours for extended Jaccard
coefficient with path length ` = 10 and N = 100 finger-
prints. We ran a semi-external memory implementation on
a single machine with 2.8GHz Intel Pentium 4 processor,
2Gbytes main memory and Linux OS. The total size of the
the computed database was 68Gbytes for (P)SimRank and
640Gbytes for XJaccard. Since sibling Γ is based on similar-
ity scores between vertices of the ODP pages, we only saved
the fingerprints of the 218,720 ODP pages. A nice property
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Figure 4: Varying algorithm parameters indepen-
dently with default settings ` = 10 for SimRank and
PSimRank ` = 4 for XJaccard, c = 0.1, and N = 100.

of our methods is that this truncation (resulting in sizes of
200Mbytes and 1.8Gbytes respectively) does not affect the
returned scores for the ODP pages.

The results of the experiments are depicted on Fig. 4. Re-
call that sibling Γ expresses the average quality of similarity
search algorithms with Γ values falling into the range [−1, 1].
The extreme Γ = 1 result would show that similarity scores
completely agree with the ground truth similarities, while
Γ = −1 would show the opposite. Our Γ = 0.3 − 0.4 val-
ues imply that our algorithms agree with the ODP familial
ordering in 65 − 70% of the pairs.

The radically increasing Γ values for path length ` =
1, 2, 3, 4 on the top diagram supports our basic assumption
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Figure 5: Fingerprint tree sizes for 80M pages with
N = 100 samples.

that the multi-step neighborhoods of pages contain valu-
able similarity information. The quality slightly increases
for larger values of ` in case of PSimRank and SimRank,
while sibling Γ has maximum value for ` = 4 in case of
XJaccard. Notice the difference between the scale of the
top diagram and the scales of the other two diagrams.

The middle diagram shows the tendency that the quality
of similarity search can be increased by smaller decay fac-
tor. This phenomenon suggests that we should give higher
priority to the similarity information collected in smaller
distances and rely on long-distance similarities only if nec-
essary. The bottom diagram depicts the changes of Γ as
a function of the number N of fingerprints. The diagram
shows slight quality increase as the estimated similarity scores
become more precise with larger values of N .

Finally, we conclude from all the three diagrams that
PSimRank scores introduced in Section 2.2 outperform all
the other similarity search algorithms.

5.3 Time and memory requirement of finger-
print tree queries

Recall from Section 2.1.2 that for SimRank and PSim-
Rank queries N fingerprint trees are loaded and traversed.
N can be easily increased with Monte Carlo parallelization,
but the sizes of fingerprint trees may be as large as the
number V of vertices. This would require both memory and
running time in the order of V , and thus violate the re-
quirements of Section 1.2. The experiments verify that this
problem does not occur in case of real web data.

Fig. 5 shows the growing sizes of fingerprint trees as a
function of path length ` in databases containing fingerprints
for all vertices of the Stanford WebBase graph. Recall that
the trees are growing when random walks meet and the cor-
responding trees join into one tree. It is not surprising that
the tree sizes of PSimRank exceed that of SimRank, since
the correlated random walks meet each other with higher
probabilities than the independent walks of SimRank.

We conclude from the lower curves of Fig. 5 that the the
average tree sizes read for a query vertex is approximately
100–200, thus the algorithm performs like an external-memory
algorithm on average in case of our web graph. Even the
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largest fingerprint trees have no more than 10–20K vertices,
which is still very small compared to the 80M pages.

6. CONCLUSION
We introduced the framework of link-based Monte Carlo
similarity search to achieve scalable algorithms for similar-
ity functions evaluated from the multi-step neighborhoods
of web pages. Within this framework, we presented the first
algorithm to approximate SimRank scores with a near linear
external memory method and parallelization techniques suf-
ficient for large scale computation. In addition, we defined
new similarity functions PSimRank and the extended Jac-
card coefficient with scalable algorithms. Our experiments
conducted on the Stanford WebBase graph of 80M pages
demonstrate scalability and suggest that PSimRank outper-
forms SimRank and extended Jaccard coefficient in terms of
quality.
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