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Conformal parameterization of mesh models has numerous applications in geometry processing.
Conformality is desirable for remeshing, surface reconstruction, and many other mesh processing
applications. Subject to the conformality requirement, these applications typically bene�t from
parameterizations with smaller stretch. The Angle Based Flattening (ABF) method, presented a
few years ago, generates provably valid conformal parameterizations with low stretch. However,
it is quite time consuming and becomes error prone for large meshes due to numerical error
accumulation. This work presents ABF++, a highly e�cient extension of the ABF method
that overcomes these drawbacks, while maintaining all the advantages of ABF. ABF++ robustly
parameterizes meshes of hundreds of thousands and millions of triangles within minutes. It is based
on two main components: (1) a new numerical solution technique that dramatically reduces the
dimension of the linear systems solved at each iteration, speeding up the solution; (2) an e�cient
hierarchical solution technique. The speedup with (1) does not come at the expense of greater
distortion. The hierarchical technique (2) enables parameterization of models with millions of
faces in seconds, at the expense of a minor increase in parametric distortion. The parameterization
computed by ABF++ are provably valid, i.e. they contain no �ipped triangles. As a result of these
extensions, the ABF++ method is extremely suitable for robustly and e�ciently parameterizing
models for geometry processing applications.
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1. INTRODUCTION

With recent advances in computer graphics hardware and digital geometry processing, pa-
rameterized surface meshes have become a widely used geometry representation. The pa-
rameterization defines a correspondence between the surface mesh in 3D and a 2D domain,
referred to as theparameter space. In the general case, the paramerizations are expected
to be bijective, i.e. one-to-one. However for most practical applications a weaker require-
ment of local bijectivity, is sufficient. Local bijectivity is achieved when the planar mesh
has no flipped (inverted) triangles. In the context of this paper the term validity implies
local bijectivity. The principal uses of parameterization are texture mapping and geometry
editing:
� Texture mappingis the oldest application of parameterization. The parameter space is

covered with an image, which is then mapped onto the model through the parameter-
ization. With the introduction of programmable GPUs, more general attributes can be
mapped onto the model in real time (e.g., BRDFs, bump maps, displacement maps,. . . ).
It is even possible to completely represent the geometry of the model in parameter space,
leading to thegeometry imagesapproach [Gu et al. 2002].
� Geometry Editingis the second, increasingly popular application domain. Using param-

eterization, it is possible to replace complex 3D algorithms operating on the surface with
much simpler 2D computations performed in parameter space. Applications that benefit
from parameterized representation include multiresolution editing [Lee et al. 1998], sur-
face fitting [Hormann and Greiner 2000], mesh morphing [Praun et al. 2001], remeshing
[Alliez et al. 2003] and extrapolation [Levy 2003], to name just a few.
For all of these applications, the quality of the result depends heavily on the amount of

deformation caused by the parameterization. In the ideal case, areas and angles are pre-
served through the mapping, i.e. the parameterization isisometric. To reach this goal,
the approach described in [Maillot et al. 1993] minimizes a matrix norm of the defor-
mation tensor. Unfortunately, only a small class of surfaces, i.e.developablesurfaces,
can be isometrically parameterized. Therefore, depending on the application, existing pa-
rameterization methods attempt to minimize different distortion components, such as angle
deformation (conformal/harmonic parameterizations), length deformation (stretch), or area
deformation.

Previous work

Floater and Hormann [Floater and Hormann 2004] provide an extensive survey of the state
of the art in parameterization research. Below we briefly review the major techniques
proposed for planar parameterization. We refer the reader to [Floater and Hormann 2004]
for a more detailed discussion of the numerous techniques available.

For many geometry processing applications, such as remeshing and surface reconstruc-
tion, the preservation of shape (angles) during mapping is of major concern. Angle preser-
vation is typically addressed either from the harmonic point of view (Dirichlet energy) or
from the conformal point of view (Cauchy-Riemann equation). In the context of computer
graphics, the first discrete version of harmonic maps was proposed in [Eck et al. 1995].
[Desbrun et al. 2002] used a discretization of the Dirichlet energy suggested in [Pinkall
and Polthier 1993] to construct free-boundary harmonic maps. [Gu and Yau 2002] used
the same discretization formula to approximate the Laplace Beltrami operator. The main
drawback of all of these methods is that triangle flips can happen in the presence of obtuse

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 3

angles, breaking the local bijectivity requirement on the mapping. The harmonic map-
ping method described in [Floater 1997] is based on Tutte’s barycentric mapping theorem
[Tutte 1960] and does not suffer from this limitation. A bijective mapping is guaranteed,
provided that the mesh boundary is fixed to a convex polygon. A simpler approximation of
harmonicity is proposed in [Floater 2003]. The alternative, conformal perspective is used
by [Lévy et al. 2002]. The authors use a discretization of the Cauchy-Riemann equation
for constructing free-boundary maps. The discrete formulation of conformal energy they
propose is equivalent to [Desbrun et al. 2002] and hence suffers from the same triangle flip
problem [Lévy et al. 2003]. Note that in general harmonic and conformal maps are not
identical [Floater and Hormann 2004].

Fixed (convex) boundary approaches such as [Eck et al. 1995; Floater 1997; 2003] typi-
cally generate significantly more distortion than free-boundary techniques. However, only
a few free-boundary conformal parameterization methods are guaranteed to avoid trian-
gle flips. The MIPS method [Hormann and Greiner 2000; Hormann 2001] minimizes a
non-linear function of the first fundamental form of the mapping. The method is time
consuming and the results demonstrated in the paper are limited to parameterizations of
simple surfaces with near-convex boundaries. [Degener et al. 2003] use another function
of the first fundamental form to measure conformality. Using a state of the art iterative
hierarchical solver, they report times of 5 minutes for parameterizing meshes with 60K
faces.

The Angle Based Flattening (ABF) method [Sheffer and de Sturler 2001] uses a very
different approach from most other techniques. It defines an angle preservation metric di-
rectly in terms of angles. It first computes the parameterization in angle space and only
then converts it into 2D coordinates. In addition to avoiding flips, its important advantage
is that in addition to closely preserving the angles it typically produces parameterizations
with low area (and stretch) deformation (see Figure 1). This is particularly noticeable
when comparing the results of ABF to linear, free-boundary techniques [Desbrun et al.
2002; Lévy et al. 2002]. In Section 5.2 we discuss the causes for this different behaviour.
In addition to the advantages mentioned above, [Sheffer and de Sturler 2001] describe
a simple post-processing procedure which can be used to eliminate overlaps in the pa-
rameterization. However, since the optimization procedure used by ABF is numerically
expensive, and due to numerical errors occurring when reconstructing the 2D coordinates
from the angles, ABF becomes impractical for meshes with more than 30K faces. [Liesen
et al. 2001] discuss methods to speed-up ABF but do not provide an implementation of
these. [Zayer et al. 2004] recently proposed a different strategy for solving the non-linear
optimization problem defined by ABF. Their method requires a couple of minutes to pa-
rameterize medium sized models (10K faces). We will study ABF in depth in Section 2,
and propose new techniques to overcome the approach’s limitations.

Several authors proposed parameterization techniques for area/stretch preservation dur-
ing mapping. In [Desbrun et al. 2002] a local measure of area preservation was introduced.
Aiming at optimally mapping a signal onto the surface, [Sander et al. 2001] and [Sander
et al. 2002] minimize a non-linear stretch metric. The method is particularly well suited
for texture mapping. Similarly to [Hormann and Greiner 2000; Degener et al. 2003] the
authors use a hierarchical solver to speed up the non-linear optimization.

Several recent papers address the trade-off between angle and stretch/area deformations
[Desbrun et al. 2002; Degener et al. 2003; Yoshizawa et al. 2004]. This is typically
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Fig. 1: Parameterization comparison: (a) [Levy et al. 2002]/[Desbrun et al. 2002] - the linear formulation
provides an angle preserving parameterization, but introduces significant stretch (Error metrics E(α) = 0.00075,
Lstretch

2 = 99.3, and Lshear
2 = 0.013- the metrics are explained in Section 6); (b) Stretch minimization [Sander et

al. 2001] ( E(α) = 0.0017, Lstretch
2 = 1.032, and Lshear

2 = 0.156); (c) ABF ( E(α) = 0.0006, Lstretch
2 = 1.096, and

Lshear
2 = 0.072). The ABF result combines good angle preservation with low stretch. The runtimes are given in

Table I (Cow has 6K faces).

achieved by introducing energy functionals such as those described above for each de-
formation component and minimizing their combined functional (sum or product).

To speedup the parameterization process for large models, many authors propose hier-
archical parameterization techniques [Sander et al. 2001; Ray and Lévy 2003; Hormann
2001; Degener et al. 2003; Aksoylu et al. ] which use mesh multiresolution structures. Our
work combines sophisticated numerical tools with a multiresolution approach to achieve
maximal speedup and generate angle preserving low stretch parameterizations of huge
meshes.

1.1 Overview

This paper introduces ABF++ - an extension of the angle preserving ABF method for pa-
rameterizing large meshes. It consists of two complimentary techniques,direct ABF++
suitable for parameterizing medium to large meshes andhierarchical ABF++, for param-
eterizing huge meshes with millions of triangles.

The direct ABF++ method generates provably valid (no flipped triangles), conformal,
low stretch parameterizations of meshes with several hundred thousand faces in a couple
of minutes by using two new tools:
� A new solution mechanism based on algebraic transforms reduces the dimension of the

Hessian used in ABF by a factor of five. This reduction results in an improvement of up
to 10× in speed. Since speedup is achieved through solely numerical manipulations, it
does not come at the cost of increased parametric distortion.
The second component of ABF++, the hierarchical ABF++ parameterization scheme, is

used to further speedup the parameterization procedure and parameterize models of mil-
lions of triangles. The scheme uses direct ABF++ to parameterize a simplified mesh. Then
it proceeds to compute the parameterization for the full model, using a local relaxation
scheme utilizing a multiresolution hierarchy. The scheme is carefully tailored to parame-
terize huge meshes in second.

Both techniques have significant advantages compared to existing methods. The direct
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ABF++ is significantly more efficient and robust than previous non-linear conformal pa-
rameterization techniques. While the direct ABF++ is slower than linear free-boundary
conformal methods, it introduces significantly less stretch. The hierarchical ABF++ is an
order of magnitude faster than the direct version. As demonstrated by the examples (Sec-
tion 5), it is 4 to 5 times faster than the fastest free-boundary technique with which we are
familiar [Ray and Lévy 2003]. At the same time it computes valid parameterizations with
only slightly higher parametric distortion than direct ABF++.

The rest of the paper is organized as follows. Section 2 reviews the standard ABF tech-
nique. Section 3 describes the novel solution mechanism that uses sequential linearly con-
strained programming and algebraic transformations to speedup the parameterization com-
putation. Section 4 describes our hierarchical solution technique. Section 5 demonstrates
the results of direct and hierarchical ABF++ parameterization. It provides a comparison of
the two methods to other popular techniques in terms of both distortion and speed (Section
5.1) and discusses (Section 5.2) the reasons for the differences in the distortion. Finally,
Section 6 summarizes the presented research.

2. THE ABF METHOD - BRIEF REVIEW

The Angle Based Flattening (ABF) method [Sheffer and de Sturler 2001] is based on the
observation that the set of angles of a 2D triangulation uniquely defines the triangulation
up to global scaling and rigid transformations. Building on this observation, ABF first
computes the parameterization in angle space and then converts it to 2D coordinates. The
angle space formulation makes this technique particularly suitable for reducing the angular
distortion of the mapping.

2.1 Formulation

In angle space the minimized function is simply

E(α) = ∑
t∈T

3

∑
k=1

1
wt

k
(α t

k−β
t
k)

2. (1)

whereα t
k are the unknown planar angles andβ t

k are the optimal angles. The indext goes
over the setT of triangles in the mesh and the indexk goes over the angles in each triangle.
The weightswt

k are set to 1
β t

k
2 to reflectrelative rather thanabsoluteangular distortion.

To prevent degenerate configurations of the angles they are sometimes scaled during the
solution (details can be found in [Sheffer and de Sturler 2001]).

To provide a set of values that defines a planar parameterization, a number of constraints
are incorporated into the solution:
� Triangle validity (for each triangle):

∀t ∈ T, CTri(t) = α
t
1 +α

t
2 +α

t
3−π = 0; (2)

� Planarity (for each interior vertex):

∀v∈Vint , CPlan(v) = ∑
(t,k)∈v∗

α
t
k−2π = 0, (3)

whereVint is the set of interior vertices andv∗ is the set of angles incident on vertexv.
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Fig. 2: A (sub)mesh generated without enforcing the reconstruction constraint.

� Reconstruction (for each interior vertex) - this constraint ensures that edges shared by
pairs of triangles have the same length (Figure 2):

∀v∈Vint , CLen(v) = ∏
(t,k)∈v∗

sinα
t
k⊕1− ∏

(t,k)∈v∗
sinα

t
k	1 = 0. (4)

The indicesk⊕1 andk	1, respectively, indicate the next and previous angles in the
triangle.

2.2 ABF Solution Mechanism

The resulting constrained minimization problem is formulated using Lagrange multipliers
(λTri ,λPlan,λLen). The augmented objective functionF is:

F(x) = F(α,λTri ,λPlan,λLen) = E +∑
t

λ
t
TriCTri(t)+∑

v
λ

v
PlanCPlan(v)+∑

v
λ

v
LenCLen(v).

Sheffer and de Sturler [Sheffer and de Sturler 2001] minimize the (non-linear) aug-
mented objective functionF using Newton’s method, as follows:

while ‖∇F(x)‖> ε

solve ∇2F(x)δ =−∇F(x)
x← x+δ

end

(5)

The size of the Hessian matrix∇2F(x) is 4nf +2nint wherenf = |T| is the number of mesh
triangles andnint = |Vint | is the number of interior vertices. There are 3nf variables, and
nf +2nint Lagrange multipliers. The linear system∇2F(x)δ = −∇F(x) is solved using a
sparse direct linear solver (SuperLU [Demmel et al. 1999]).

[Zayer et al. 2004] proposed simplifying the solution process by applying the log func-
tion to the reconstruction constraint (Equation 4), replacing the product by a sum. This
results in a much simpler matrix structure of∇2F(x). The downside of this conversion is
that the matrix becomes ill-conditioned and hence the system cannot be stably solved by
direct solvers. Using an iterative solver instead, the authors quote times of 237 seconds for
a model of 25K faces. Given such times, the iterative procedure is actually slower than our
implementation of the original solution technique using SuperLU, which takes half of this
time to parameterize models twice the size (Table I).
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3. SPEEDING-UP ABF

This section introduces a solution technique that dramatically improves the performance
of the angle based parameterization. To speedup the solution process we will first simplify
the system solved by each Newton iteration, and then find a much smaller system to solve.

3.1 Sequential Linearly Constrained Programming

The ABF formulation is based on constrained minimization of a quadratic form. The
quadratic form is very simple, since its optimum is already known (the optimal angles
β ), while the constraints (Equation 4 in particular) are rather complex. To overcome this
complexity we propose to use sequential linearly constrained programming [Nocedal and
Wright 2000]. This technique for solving constrained minimization problems considers
the constraints as linear at each iteration. In other words, it neglects the terms coming from
the second order derivatives of the constraints in the Hessian matrix∇2F(x) (see [Nocedal
and Wright 2000]). This simplifies the system solved at each iteration of the non-linear
solver (5) at the expense of a slightly increased number of iterations.

The linear system∇2F(x)δ =−∇F(x) solved at each step thus becomes:[
Λ Jt

J 0

][
δα

δλ

]
=

[
b1

b2

]
where: (6)

Λ = diag

(
2

wt
k

)
, J =

[
∂ 2F

∂λi∂α t
k

]
, b1 =−∇αF, b2 =−∇λ F.

Since the constraints are considered linear, the upper-left bloc (Λ) is now a simplediagonal
matrix. The lower-right block is null. Based on this particular matrix structure it is now
possible to dramatically reduce the dimensions of the matrix inverted at each iteration.

3.2 First Matrix Split

System 6 can be rewritten as follows:

Λδα +Jt
δλ = b1 (7)

Jδα = b2. (8)

It is now feasible to separately compute the step vectorδλ for the Lagrange multipliers,
and express the step vectorδα for the variables as a function ofδλ :

JΛ−1Jt
δλ = b∗ where b∗ = JΛ−1b1−b2 (9)

δα = Λ−1(b1−Jt
δλ ) (10)

The first line (9) is obtained by multiplying (7) byJΛ−1 and substitutingJδα using (8).
The second line (10) is obtained by multiplying (7) byΛ−1. Note that sinceΛ is diagonal
computingΛ−1 is trivial. Using these expressions, the algorithm (5) can be rewritten as
follows:

while ‖∇F(x)‖> ε

computeb,J,Λ
solve Equation 9→ δλ

δα ← Λ−1(b1−Jtδλ ) (Equation 10)
λ ← λ +δλ ; α ← α +δα /∗x = (α,λ )∗/

end
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The initial linear system of dimension 4nf +2nint has been replaced by a smaller linear
system of dimensionnf +2nint , where the matrixJΛ−1J depends only on the Jacobian of
the constraintsJ and the diagonalΛ (see Equation 9). Solving the system gives the step
vectorδλ for the Lagrange multipliers, and it is easy to compute the step vectorδα for
the variables fromδλ (see Equation 10). Since the size of the linear system solved at each
iteration is much smaller than in the initial algorithm, this algorithm is much faster. We
now show that it is possible to reduce the size of the system even further, by analyzing the
structure of the matrixJΛ−1Jt and applying a similar kind of substitution.

3.3 Second Matrix Split

To analyze the particular structure ofJΛ−1Jt , we can split the Jacobian of the constraints
J into two sub-matricesJ1 andJ2:

J =
[

J1

J2
,

]
(11)

whereJ1(nf ×3nf ) is the Jacobian ofCTri constraints andJ2(2nint ×3nf ) is the Jacobian
of theCPlan andCLen constraints. Note thatJ1 has a very simple structure:

J1 =


1 1 1 0 0 0

1 1 1
...

0 0 0 1 1 1

 .

Moreover, its rows are orthogonal and linearly independent. We now decomposeJΛ−1Jt

as follows:

JΛ−1Jt =

 Λ∗ J∗t

J∗ J∗∗

 where


Λ∗ (nf ×nf ) = J1Λ−1Jt

1

J∗ (2nint ×nf ) = J2Λ−1Jt
1

J∗∗ (2nint ×2nint) = J2Λ−1Jt
2

(12)

Using the bloc decomposition of the matrixJΛ−1Jt , Equation 9 becomes

 Λ∗ J∗t

J∗ J∗∗

 δλ1

δλ2

 =

 b∗1

b∗2

 . (13)

In other words,

Λ∗δλ1
+J∗tδλ2

= b∗1 (14)

J∗δλ1
+J∗∗δλ2

= b∗2. (15)

SinceJ1 is orthogonal andΛ−1 is diagonal, the matrixΛ∗ = J1Λ−1Jt
1 is diagonal. We

can now expressδλ2
independently as the solution of a linear system:(

J∗Λ∗−1J∗t −J∗∗
)

δλ2
= J∗Λ∗−1b∗1−b∗2. (16)
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Equation 16 was obtained by multiplying (14) byJ∗Λ∗−1, then substitutingJ∗δλ1
using

(15). Consequently, the vectorδλ1
can be computed as a function ofδλ2

:

δλ1
= Λ∗−1(

b∗1−J∗tδλ2

)
(17)

by multiplying (14) byΛ∗−1.
Note that computingδλ2

requires solving a linear system of dimension 2nint , whereas
the dimension of the initial problem is 4nf +2nint . Based on the Euler formulanf ≈ 2nint ,
therefore 4nf +2nint ≈ 10nint . Hence, the proposed matrix manipulations result in a factor
of five reduction in the size of the linear system solved at each iteration of the non-linear
solver.

3.4 ABF++ Solution Mechanism

Using these matrix splitting expressions, the solution procedure can be rewritten as follows:

while ‖∇F(x)‖> ε

computeb,J,Λ
solve Equation 16→ δλ2

computeδλ1
(Equation 17)

computeδα(Equation 10)
λ1← λ1 +δλ1

; λ2← λ2 +δλ2
; α ← α +δα /∗x = (α,λ )∗/

end

(18)

Compared to the original Newton formulation (5), the new method requires several ad-
ditional iterations to converge (typically 8 to 10 instead of 5). However, at each iteration
a five times smaller matrix is inverted. We found that using the SuperLU direct solver for
solving Equation 16 gives the best results in terms of performance. This is consistent with
other recent research [Sorkine et al. 2003; Sumner and Popovic 2004], which consistently
indicates that direct solvers out-perform the more popular iterative techniques. The algo-
rithm is often more than ten times faster than the original. As a result, models on the order
of 100K triangles can now be parameterized in a minute or two. An additional advantage is
a reduction in the memory size required to store the matrices. The results section (Section
5) compares the efficiency of the parameterization with and without the proposed speedup.

4. HIERARCHICAL PARAMETERIZATION

The direct ABF++ performs well for meshes with up to 300K faces. For larger meshes
solving the linear system becomes quite time consuming. More importantly, with the in-
crease in the size of the stored matrices, memory becomes the bottleneck of the process.
Hence to efficiently parameterize huge meshes with hundreds of thousands and millions of
triangles we propose a hierarchical parameterization procedure.

The basic idea of a hierarchical (or multi-resolution) approach is to reduce the problem
size, then solve the smaller problem, and finally derive the solution to the original problem,
using the multi-resolution hierarchy. In this work we follow this approach to solve the
parameterization problem for huge meshes. Our method is divided into three successive
stages:

� 3D mesh simplification and mesh hierarchy construction (Section 4.1).
� Parameterization of the simplified, coarse mesh using direct ABF++ (Section 3).
� Coarse to fine parameterization (Section 4.2).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3: Stages of the hierarchical ABF++ algorithm.

The stages are visualized in Figure 3.

4.1 Mesh Simplification

The mesh simplification is performed through a sequence of edge collapse operations. We
preferred the edge collapse simplifier due to the control it provides on the triangle shape in
the coarse mesh and the compact simplification history produced during the simplification
steps. Similarly to [Ray and Lévy 2003] we use the volume-based geometric error [Lind-
strom and Turk 1998] to select the edge to collapse at each iteration. We introduce two
modifications to the typical edge selection procedure aimed at reducing the parameteriza-
tion distortion and speeding up the parameterization process.

The first modification is aimed at avoiding extremely acute and extremely obtuse an-
gles during simplification. Such angles may cause numerical problems during the coarse
mesh parameterization as well as during the reconstruction process, slowing down the
procedure. Therefore, during simplification we disallow collapses that introduce extreme
angles. Based on experiments we set the limit to 2.5◦. Thus, after each edge collapse, all
the angles in adjoining triangles have to be in the range of[2.5◦,177.5◦]

The second restriction applies to boundary edge collapses. The reconstruction procedure
below introduces less distortion if the boundary of the 2D mesh does not change drastically.
To facilitate this we forbid edge collapse operation, collapsing a boundary vertex towards
the interior.

During the edge collapse process the simplification history is stored in the form of a list
of edge collapse records, sufficient for performing the reverse, vertex split operation.

4.2 Coarse to Fine Parameterization

Following simplification, the resulting coarse mesh is parameterized using the direct ABF++
procedure. The final stage of the algorithm uses this parameterization to compute a param-
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eterization of the original mesh using a coarse to fine procedure. This procedure uses the
list of edge collapse records stored by the simplification process to add vertices to the
parameterized mesh, one at a time. It begins with the simplified 3D mesh and its corre-
sponding coarse parameterization. The original 3D connectivity and the corresponding fine
parameterization are constructed by carrying out a sequence of vertex split operations, re-
versing the simplification process. The splits are performed using the list of edge collapse
records, reversing one collapse operation at a time.

(a) (b)

Fig. 4: Notations used in vertex reconstruction: (a) interior vertex, (b) boundary vertex.

For each vertex split, the mesh connectivity and the 3D coordinates of the reconstructed
vertex are restored based on the edge collapse record. The algorithm then computes a valid
parameterization for the current mesh, by computing the 2D position of the reconstructed
vertex and adjusting the positions of the adjacent vertices, in this way:

(1) It first sets the 2D coordinatesP of the newly reconstructed vertexv using a variation
of the DCP method [Desbrun et al. 2002]. The coordinates of an interior vertex are set
to

P =
1

∑wtk
∑

(t,k)∈v∗
wtkP

t
k⊕1,

where the sum runs over all the triangles adjacent tov, Pt
k⊕1 are the 2D coordinates

of the next vertex in the trianglet, andwtk are standard harmonic weights [Eck et al.
1995] (Figure 4). Since the reconstruction is performed one vertex at a time, the 2D
coordinates of the adjacent vertices are well defined. The weightswtk are computed
on the current 3D mesh. Ifv is a boundary vertex, the following formula [Desbrun
et al. 2002] is used instead

[
Px

Py

]
=

∑
(t,k)∈v∗

(
cot(α t

k⊕1) 1 cot(α t
k	1) −1

−1 cot(α t
k⊕1) 1 cot(α t

k	1)

)
∑

(t,k)∈v∗
cot(α t

k⊕1)+cot(α t
k	1)


Pt

k⊕1
x

Pt
k⊕1

y

Pt
k	1

x

Pt
k	1

y

 , (19)

see (Figure 4).
(2) The algorithm checks that the computed vertex placement does not introduce flipped

triangles into the surrounding parameterized mesh. If the check fails, the method sets
the vertex’s 2D coordinates to the center of the kernel of the planar polygon formed by
the adjacent vertices. Kernel coordinates do not preserve any parameterization qual-
ity, but provide a valid solution with no flipped triangles. For the models we tested,
about 0.02% of the vertices (20 out of 100K) were introduced using kernel insertion.
Note that we use vertex split for reconstruction. Hence, if the mesh before the split
is valid, the triangles adjacent to the vertex being split form a star polygon with non-
empty kernel. The split vertex is located in the kernel of this polygon. Hence the
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Fig. 5: Textured and parameterized models. The 2D parameterizations are colored using the 3D normal map.

sub-polygon into which the reconstructed vertex is introduced, is also a star polygon.
Therefore it has a non-empty kernel. Since direct ABF++ generates valid parameteri-
zations, by induction we obtain that a kernel allways exists. And therefore the result-
ing parameterizations are allways valid. The subsequent local smoothing reduces the
parameterization distortion caused by the kernel placement.

(3) Finally, the method performs one iteration of local smoothing. It updates the planar
coordinates of the adjacent vertices and then recalculates the coordinates of the current
vertex. The new coordinates are computed using the same formulas as in step 1 above.
The relaxation is constrained; namely if moving the vertex will cause a triangle flip,
the vertex is left in place.

The choice of a simple linear technique for vertex placement and the small number of ver-
tices relocated at each stage make the reconstruction process extremely fast and memory-
efficient. Since the vertices of the fine mesh are introduced using only local relaxation,
the optimization is less accurate than direct ABF++. However, despite its simplicity, the
hierarchical technique provides excellent results, introducing only a minor increase in the
parameterization distortion compared to direct ABF++ (Table II).

5. RESULTS AND DISCUSSION

5.1 Examples and Statistics

We tested both the direct and hierarchical methods on a large set of meshes varying from
1K to several million faces (Figures 3, 5, 8, and 6). Closed models were cut into a single
topological disc using [Sheffer and Hart 2002]. The direct ABF++ method does not require
anyparameter tuning by the user. The hierarchical ABF++ requires the user to specify a
simplification rate. We used a rate of 95% for all but one model (for the 4.M∆ pelvis the rate
was 98%). We did not employ the overlap eliminating post-processing prcedure proposed
in [Sheffer and de Sturler 2001], hence some overlaps are visible in the resulting models.
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Given the details in [Sheffer and de Sturler 2001] implementing this post-processing in the
ABF++ framefwork is straightforward.

The results of our runs are summarized in Tables I-III. Table I compares runtimes (when
available) for our two methods and other existing parameterization techniques for models
with up to 50K faces. For the two ABF++ methods, ABF, and HLSCM [Ray and Lévy
2003], we use our implementation of the methods [Graphite 2003]. The HLSCM method
is a hierarchical extension of the free-boundary linear LSCM [Lévy et al. 2002] technique.
It is to the best of our knowledge the fastest free-boundary technique available to date.
Runtimes for the stretch minimizing method [Sander et al. 2001] were provided by the
authors. For the other techniques the times were taken from the respective papers (note
that earlier publications, likely used slightly slower machines). Table II compares timing
and parametric distortion for parameterization of medium to large models (50K to 230K
faces). The original ABF method runs out of physical memory (on 1G RAM machine)
for models of above 100K faces. Table III compares the hierarchical ABF++ method and
HLSCM for very large meshes. Direct ABF++ fails on meshes this size, due to memory
limitations.

We use several metrics to measure the parametric distortion. Similarly to [Sander et al.
2001], we considered the first fundamental form of the mapping (computed per triangle):

S(u,v) : R2→ R3; G(S)≡

[
∂S
∂u

2 ∂S
∂u

∂S
∂v

∂S
∂u

∂S
∂v

∂S
∂v

2

]
. (20)

To measureL2 stretch we used the same formula as [Sander et al. 2001]. To measure
conformality as derived fromSwe measureL2 shear:

Lshear
2 =

√√√√√∑
t∈T

 ∂S
∂u

∂S
∂v∥∥∥ ∂S

∂u

∥∥∥∥∥∥ ∂S
∂v

∥∥∥
2

area3D(t)
∑

t∈T
area3D(t)

. (21)

The second component of conformality, the equal stretch property∂S
∂u

2 ≡ ∂S
∂v

2
, was mea-

sured as described in [Mogilnitsky 2004]. For all the compared techniques the error was
negligible (less than 0.003). Hence we did not include it in the tables. Similarly to [Sheffer
and de Sturler 2001] we also measured the angular distortionE(α)

3nf
(Equation 1) for the

different parameterizations.
The timing for all but one model are computed on a 1.7GHz Pentium M (1G RAM) ma-

chine. For the largest model, the pelvis (4.2M faces) a slightly stronger PIV 2.4GHz ma-
chine was used.

The runtime comparison demonstrates that direct ABF++ is up to an order of magnitude
faster than the standard version. Moreover, for all the examples with above 50K faces
the standard ABF fails to accurately reconstruct the coordinates from the angles due to
numerical problems. The shear introduced by both direct ABF++ and HLSCM is very
low, with one method performing better on some models, and the second on others. While
direct ABF++ is slower than HLSCM, it introduces significantly less stretch, an important
advantage for many applications.

For all the examples, hierarchical ABF++ is significantly faster than HLSCM. Com-
pared to the direct ABF++ implementation it slightly increases the distortion (in terms of
both stretch and shear). However, it still introduces an order of magnitude less stretch than
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1K∆ 6K∆ 10K ∆ 50K∆

hierarchical ABF++ 0.14 0.9 1.5 3.5
direct ABF++ 0.3 1.5 3 16
ABF 1.3 10 27 125
HLSCM 0.03 0.2 0.5 16.5
[Ray and Lévy 2003]
Zayer et. al 1 30 110 NA
[Zayer et al. 2004]
MIPS 20 NA NA NA
[Hormann and Greiner 2000]
Degener et. al NA 33 50 300
[Degener et al. 2003]
Stretch NA 8.5 19.3 52
[Sander et al. 2001]

Table I:Timing comparison (in seconds), when available, for direct/hierarchical ABF++ and other free-boundary
techniques for small to medium models.

Model Number Method Runtime Shear Stretch Angular
of Faces (sec) Distortion

camel 78,144 HABF++ 6 0.0463 1.6019 0.000129
DABF++ 46 0.0235 1.4864 6.43e-5

ABF 690
HLSCM 34 0.0282 13.7945 0.00017
Stretch 127 0.22683 1.0534 0.0518

rocker 80,354 HABF++ 5 0.0238 1.0897 3.86e-5
arm DABF++ 46 0.0153 1.0905 2.3e-5

ABF 976
HLSCM 36 0.0160 3.9198 2.71e-5

horse 96,966 HABF++ 7 0.0398 1.3851 4.81e-5
DABF++ 84 0.0401 1.3981 3.22e-5

ABF FAIL
HLSCM 44 0.0299 31.6283 6.32e-5

santa 151,558 HABF++ 10 0.0178 1.1623 2.2e-5
DABF++ 71 0.0137 1.1378 1.59e-5

ABF FAIL
HLSCM 71 0.0166 140.7869 2.02e-5

teeth 233,204 HABF++ 18 0.0227 1.4166 2.08e-5
DABF++ 538 0.020 1.4771 1.62e-5

ABF FAIL
HLSCM 111 0.0466 165. 0.0339

Table II: Parameterization comparison of standard ABF, hierarchical LSCM (HLSCM), direct (DABF++) and
hierarchical (HABF++) ABF++ for medium to large models. For the camel model we also added the statistics
for the method of Sander et. al, to highlight the difference between stretch preserving and conformal techniques.
The shear (conformality) error is roughly identical for all four conformal methods. The angle based methods,
however, generate significantly less stretch. Note that the optimal value for stretch is 1. While direct ABF++
is slower than HLSCM, its hierarchical version is actually significantly faster. We do not provide error metrics
for ABF since, for all the above examples the reconstruction procedure used by ABF failed (due to numerical
problems). ABF ran out of memory for the horse and larger models.

HLSCM, as demonstrated by the texture in Figure 6. The distortion increases with larger
simplification rates (Figure 7). For inputs of 200K+ faces a 95% simplification rate means
that the coarse level mesh contains 10K+ triangles. Parameterizing the coarse mesh using
the standard ABF would take about 30sec (Table I). In contrast, using direct ABF++ the
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Model Number Algorithm Runtime Shear Stretch Angular
of Faces (sec) Distortion

bust 605,846 HABF++ 107 0.0298 241.05 2.51e-5
HLSCM 305 0.042 1280 0.0042

David 698,572 HABF++ 50 0.0386 1.8954 3.12e-5
HLSCM 351 0.065 42.4 0.0060

pelvis 4,241,328 HABF++ 819 0.0077 1.2001 3.4e-6
HLSCM FAIL

Table III: Parameterization statistics for large models: hierarchical ABF++ and HLSCM. The direct ABF++
runs out of memory for this size of models.

Fig. 6: Texture mapping the David model (700K∆). (left) The seams used for cutting the model; (center) texturing
using HLSCM; (left) texturing using HABF++. Notice the extreme difference in stretch.

parameterization of the coarse 10K mesh takes 3 seconds and the hierarchical parameter-
ization of the full 200K face mesh (including reconstruction) takes only 18sec (Table II).
Therefore, even within the hierarchical framework, it is impractical to use the standard
ABF instead of direct ABF++.

Both the direct and hierarchical ABF++ methods remain stable even on meshes with
very high stretch (which cause huge scale variations in the parameterized mesh), as demon-
strated by Figure 8.

The last example, Figure 9, demonstrates the application of our method to generation of
a normal-mapped simplified model of the pelvis. The original model has 4.2M triangles.
Our hierarchical method generates a conformal single-chart parameterization of this model
in about 14min (Figure 9 (a)). The simplified normal-mapped model has only 8K triangles,
but using the normal map the visualization preserves all the details of the original model
(Figure 9 (c)). To generate a more compact texture space, the parameterized (2D) mesh
was cut manually and packed into a square domain using [Lévy et al. 2002].
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(a) (b)

Fig. 7: Impact of simplification rate of hierarchical ABF++ on parametric distortion: (a) shear, (b) stretch. For
the 95% rate that we use, we get an increase of 0.004 in shear and 0.025 in stretch compared to the direct method.

Fig. 8: Hierarchical ABF++ for huge model (605K) with very high area to perimeter ratio. For angle preserving
mappings such as ABF++ this results in extreme stretch (241.1). The stability of the method is not affected. The
two images show the iso-lines on the surface at different frequency, to highlight the orthogonality preservation at
all the points on the surface. By comparison the stretch introduced by HLSCM was about five times larger (1280).

Fig. 9: Our method applied to generate normal-mapped simplified model of a pelvis (4.2M∆).
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5.2 Discussion

The numerical and visual comparisons throughout the paper consistently indicate that
ABF and its extensions create angle preserving parameterizations with significantly lower
stretch than linear angle preserving methods (LSCM/DCP). In this section we conjecture
as to the reasons for this difference. In this discussion we will consider the LSCM formu-
lation [Lévy et al. 2002], however we expect the same argument to apply to DCP [Desbrun
et al. 2002], due to the equivalence between the methods [Lévy et al. 2003]. The main ob-
servation to remenber is that in contrast to the continuous case, for most 3D meshes there
exists no truly conformal (angle preserving) mapping to 2D (the sum of angles around a
vertex in 2D must be 2π, while the sum can be arbitrary in 3D). Hence, the minimum of a
functional measuring the conformality of a mapping will not be zero for most meshes. As a
result the choice of different functional formulations can lead to very different minimizers.

LSCM is based on the observation that if a function is conformal, so is its inverse. Hence,
LSCM minimizes a metric of the conformal energy of the inverse (3D to 2D) parameteriza-
tion. The metric is quadratic and therefore easy to minimize. The energy functional defined
by LSCM per triangle is proportional to the area of the triangle in(u,v) space. Therefore,
the energy can be reduced by reducing area. LSCM avoids degenerate configurations by
pinning two vertices, making the energy functional postive-definite. The solution depends
on the vertices pinned. It appears that to reduce the energy functional, LSCM reduces
the 2D area of triangles in regions of high distortion. This causes the extreme stretch we
observed.

This concurs with the observation made by Hormann and Greiner [Hormann and Greiner
2000] explaining why using Dirichlet energy to minimize/measure parametric distortion
is sub-optimal. Instead they measure Dirichlet energy per parameter-space area. This
scaling prevents triangle shrinkage (but makes the energy non-linear and hence difficult to
minimize).

The ABF formulation is based on pure angular quantities, and is independent of tringle
size in the 3D or 2D space. Hence, similarly to MIPS it does not suffer from triangle
shrinkage and hence introduces significantly less stretch than LSCM/DCP.

6. SUMMARY

We have presented a new robust and scalable conformal parameterization technique. The
first component of this technique, the direct ABF++ method, is applicable to meshes of up
to 300K faces. It is faster than existing non-linear free-boundary techniques, parameter-
izing meshes of 100K+ faces in 1 to 2 minutes. The hierarchical version of the method,
scales to meshes of millions of triangles. Both methods compute provably valid, confor-
mal parameterizations with very low stretch. The hierarchical ABF++ is faster than any
existing free-boundary technique we are familiar with.
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