
Dynamic Loop Pipelining in Data-Driven Architectures

João M. P. Cardoso1,2
1 Faculty of Sciences and Technology, University of Algarve

Campus de Gambelas, 8000 – 117 Faro, Portugal
2 INESC-ID, Lisbon, Portugal

jmpc@acm.org

ABSTRACT
Data-driven array architectures seem to be important alternatives
for coarse-grained reconfigurable computing platforms. Their use
has provided performance improvements over microprocessors
and shorter programming cycles than FPGA-based platforms. As
with other architectures, in data-driven architectures loop
pipelining plays an important role to improve performance.
Usually this kind of pipelining can be achieved using the dataflow
software pipelining technique or other software pipelining
approaches. Although performance improvements are achieved,
those techniques heavily depend on the insertion of pipelining
stages and thus require complex balancing efforts. Furthermore,
those techniques statically define the pipelining and do not take
fully advantage of the dynamic scheduling attainable by the data-
driven concept. This paper presents a novel scheme to pipeline
loops in data-driven architectures, orchestrated by a handshaking
protocol. Using the new approach, self loop pipelining is naturally
achieved. The scheme is based on duplicating cyclic hardware
structures, in order they are autonomously executed, with
synchronization being achieved by the data flow. It can be applied
to nested loops, requires less aggressive pipeline balancing efforts
than usual software pipelining techniques, and innermost loops
with conditional structures can be pipelined without conservative
pipelining implementations.

We show results of using the proposed technique when mapping
algorithms in imperative programming languages to the PACT
eXtreme Processing Platform (XPP). The results confirm
improvements over the use of conventional loop pipelining
techniques. Better performance and fewer resources are achieved
in a number of cases.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming—
Program Synthesis; D.3.4 [Processors]: Optimization; C.1.3

[Processors Architecture] — Other Architecture Styles — Data-
flow architectures;

General Terms
Algorithms, Performance, Design.

Keywords
Software Pipelining, Data-Driven Architectures, Dataflow,
Reconfigurable Computing, Compilation.

1. INTRODUCTION
Coarse-grained reconfigurable arrays are becoming suitable
choices for extending traditional computing engines (e.g., Von
Neumann-style microprocessors) [16]. They efficiently realize
spatial computing [11][4], which might be important to meet the
energy consumption and computing demands of the future
computing systems (e.g., embedded systems).
A number of coarse-grained architectures with dataflow semantics
(e.g., KressArray [17], XPP [2], and WaveScalar [28]) have been
focus of recent academic and commercial efforts, with
encouraging results. They resemble many of the concepts of
processor arrays, introduced in the 80’s [31][12], namely
wavefront [23] and data-driven arrays [22]. Those architectures
devised a scalable and effective fashion to directly support the
dataflow computational model and spatial computing. In data-
driven architectures, the availability of operands triggers the
execution of the operation to be performed on them [31].
Therefore, data-streams can be processed through the processing
elements (PEs) of the array without requiring centralized memory
elements such as RAMs. Their suitability for reconfigurable
computing platforms also comes from the fact that data-driven
arrays naturally support computing in space.
Also for the future ASIC scenario, some researchers advocate the
use of hardware structures behaving in a static dataflow fashion
[5][4]. One of the reasons is the avoidance of centralized control
units, which is an envisaged goal since the evidence that
interconnection delays are becoming predominant. Even
asynchronous dataflow fine-grained arrays, based on FPGAs
(Field Programmable Gate Arrays), may become a valid
alternative to synchronous FPGAs [29].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-019-1/05/0005...$5.00.

Since dataflow schemes are becoming increasingly important,
efficient schemes to map computational structures to data-driven
architectures are focus of recent research work. The increasing

106

number of available hardware resources requires a different view
when mapping algorithms to reconfigurable computing
architectures. Rather than the traditional resource constrained
problem, this is now more a question of how to take advantage of
the large number of available hardware resources [4]. When
mapping loops, one of the most efficient optimization is loop
pipelining. Loop pipelining usually leads to significant
performance improvements. Since in most reconfigurable
architectures the memory elements to implement the pipeline
stages are already on chip, it is worth to be applied. As far as
dataflow computing is concerned, efficient loop execution has
been achieved through dataflow software pipelining [14][15],
which strongly depends on efficient balancing techniques to
achieve maximum throughput. In data-driven architectures one
can take advantage of their intrinsic features to schedule
operations based on the control and data flow. This paper presents
self loop pipelining (SLP), a technique to map computational
structures in order that loop pipelining is dynamically achieved.
SLP requires less balancing efforts (i.e., reduced number of
registers or reduced size FIFOs) than previous dataflow software
pipelining techniques. The technique has been briefly introduced
in [7], but a heuristic to apply SLP and results with complex
examples have not been presented. This paper discusses the
technique and shows substantial results when targeting the XPP
architecture [2]. The major contributions of this paper are:
(1) A loop pipelining scheme, SLP, that fully takes advantage of

the dynamic scheduling naturally achieved by the handshake
support is presented;

(2) The use of SLP to pipeline nested loops is also shown;
(3) Limitations and SLP suitability are presented and discussed;

(4) Compiler techniques to include SLP in the optimizations
repertory are presented;

(5) Examples of applying SLP are illustrated and experimental
evidence of the importance of the technique is shown for a
number of benchmarks.

This paper is organized as follows. Next section briefly introduces
data-driven issues. Section 3 explains self loop pipelining and
shows how it can be applied to loops. Section 4 discusses
compilation strategies to include SLP. Section 5 shows
experimental results using the technique with a set of benchmarks.
Section 6 describes the related work. Finally, section 7 gives
some concluding remarks and delineates ongoing and future
work.

2. DATA-DRIVEN ARRAY
ARCHITECTURES
In the data-driven computational model, with static dataflow
semantics [31], self-timed is achieved by a handshaking protocol
and there is no need to statically schedule operations. Operations
are executed as soon as data are available on their inputs and their
output data have been consumed. The interconnection of
functional units (FUs) naturally creates a pipelined dataflow
structure and data streams may continuously flow through the
structure without additional control or centralized schedulers.

A data-driven array mainly consists of a matrix of N×M PEs
(processing elements) and interconnection resources (see in
Figure 1 a simplistic scheme of the XPP architecture [2], as an
example). Dataflow operations, which are implemented by PEs,
include usual arithmetic and logic operations, and especial
operations to deal with conditional branches (e.g., SWITCH and

A M

A M

Configuration
Manager

(CM)

Configuration
Cache CC)

fetch configure

…

CMPort0
CMPort1

A

A

…

FREG ALU BREG

FREG MEM BREG

I/O

PAE

PAE

Figure 1. Simple diagram of the PACT XPP architecture. PAEs may include an ALU or a memory. The PAEs with memories
are located in the left and rightmost columns of the array. Each PAE also includes two more elements: FREG and BREG.

These elements can perform special operations, can be used as pipeline stages, or for vertical routing.

107

MERGE operations [31]). The execution of an operation (also
known as the firing of a node) involves the removal of the data
items in the input ports, and the production of data items in output
ports. Some architectures use an enabling rule to fire the
execution of the operation, i.e., the execution besides the data-
driven concept has forms of control. Such rules can be dependent
on runtime decisions and permit to implement control flow (e.g.,
loops, if-then-else structures, etc.). As aforementioned, a
centralized control unit is not needed, and it is the data flow that
dynamically imposes the execution of a particular operation
(notice, however, that it is possible to statically define an order
among operations using control tokens). Both data and control
tokens may flow concurrently through the array structures, and
fine-grain parallelism and multiple flows of control are naturally
exposed.
SWITCH operations are used to route data items to one of the two
outputs based on a control event (usually named control token).
Standard MERGE operations do not have an enabling rule and
just output the first data item present in one of the two inputs.
There are, however, different implementations of MERGE. One
MERGE uses a control signal to select between the two input data
tokens and discards the data token (i.e., the token is consumed but
not copied to the output) not selected. According to the enable
rule, there are also different MERGE implementations. One only
triggers the execution when the control token and the two data
tokens are ready, the other one triggers the execution as soon as
the control token and the selected data token are ready (this type
of evaluation is called lenient in [5]). Other special operators are
specifically used to discard tokens, e.g., the T- and F-Gates used
in some dataflow machines, which only copy input data to output
when the control token has value “true” or when has value
“false”, respectively [12].
Enhanced data-driven arrays support the semantics of imperative
programming languages to manipulate array variables (e.g.,
load/store operations). When memories are located in special PEs,
array structures are used to access them, and MERGE operations
without discard are needed to multiplex data tokens. For instance,
in the XPP the implementation of load/store operations is realized
with array structures connected to the target memory (internal or
external). Other architectures directly support load/store as PE
operations (e.g., WaveScalar [28]).
The array interconnections are responsible to flow data and
control tokens. Their bit-width is a property dependent on the
granularity of the PE. Some arrays include explicit lines for
control events (e.g., XPP). Other architectures merge control
events in data lines. The interconnection topologies between PEs
vary widely with the architecture. Some of the arrays use special
horizontal and vertical connection resources (e.g., XPP). Others
explicitly use PEs for routing and provide interconnections
between PEs in a mesh (e.g., KressArray [17]) or in a hexagonal
topology (e.g., [22]).
Each configuration defines the operations in the PEs and the
interconnections among them. Additional units are needed to
control reconfiguration. For efficient support of the
reconfiguration flow (i.e., sequences of configurations),
architectures may include an on-chip configuration manager (CM)
and a configuration cache (CC) as is the case in the XPP (see
Figure 1). Such amenities enable efficient and effective
implementations of large programs by using temporal partitioning

(i.e., programs are split in sequences of sections being each
section implemented by the array resources), especially when the
number of resources to map a given algorithm exceeds the
available array resources [8].
This kind of architectures can be programmed with a structural
language, a functional or dataflow language, or an imperative
language.

3. SELF LOOP PIPELINING (SLP)
Software pipelining (see, e.g., [1] for a survey) is a scheduling
technique to pipeline loops (i.e., overlap computations of
subsequent loop iterations) and usually leads to significant
performance improvements. Usual software pipelining techniques
statically define epilogue, kernel, and prologue sections.
Pipelining loops in data-driven architectures does not need a
scheduler of operations. It can be simply achieved by creating a
structure connecting the operations of the loop body and the
hardware structures responsible for the loop iterations (see Figure
2a and 2b). With this scheme, similar to dataflow software
pipelining [14], efficient loop execution can be achieved (see
Figure 2b). In Figure 2b, the CNT module represents a counter
which starts at a given number and keeps incrementing it by a
pre-defined value until a certain limit is not exceeded. Using a
data-driven model with handshaking, the counter only furnishes a
new count value if the previous one has already been consumed.
To enable optimum software pipelining, full balancing of paths is
required (see Figure 2b), i.e., the counter indexing consecutive
elements of the arrays A, B and C, requires that the two paths
arriving to the destination memory where array C is located have
the same number of pipeline stages. The two paths are related to
the operations computing the data items to be stored in the array
C, and to the address generation structure. Hence, to accomplish
loop pipelining and maximum throughput, balancing is performed
through the addition of pipeline stages (sequences of registers or
FIFOs behaving in a data-driven manner) in certain paths of the
dataflow structure1.
This is partially needed because loop iterations are controlled by a
centralized unit (as an image of the source imperative
programming model). Since operations are triggered by the
presence of data during runtime, the computational structures,
needing explicit control from the hardware structures ensuring the
loop iterations, do not require a centralized unit. Specifically,
multiple hardware structures generating loop iterations can be
used (see Figure 2c). This is the main idea of self loop pipelining.
The original centralized counter, responsible for the control
iterations of the FOR loop, is duplicated and two decentralized
counters are responsible to control the loop behavior2. The
counters are decoupled and synchronize indirectly due to the data
flow. As is depicted, there are now two independent paths
furnishing the index value (i) to access array elements (see Figure
2c).

1 Traditional loop pipelining implementations strongly depend on

pipeline balancing techniques. This is also true in the context of
dataflow software pipelining.

2 Note that another valid SLP implementation would use three
counters (one for each memory).

108

…
for(i=0;i<N;i++){
 C[i]=A[i]*B[i];
}
…

A[i] B[i]

C[i]

i

0
+1
<N

CNT

A[i1] B[i1]

C[i2]

(a)

(b)

(c)

i1

0
+1
<N

CNT

i2

0
+1
<N

CNT

Figure 2. Loop pipelining on data-driven machines: (a) simple

example - each array is mapped to a distinct memory; (b)
traditional loop pipelining; (c) the proposed self loop

pipelining technique. Rectangles in gray represent pipeline
stages using the handshake protocol (they can be implemented

as registers, FIFOs or queues).

Figure 3 shows a more complex example. In this case, the eight
references to array variable x are implemented with a counter
producing 8 indexes (ix) for each i produced by the counter

related to the FOR loop. In Figure 3, COPY represents a generator
of N-copies of the value of the input data token to the output. The
operators SE-PAR and PAR-SE are the operators presented in [7].
In this case they represent a self controlled 1:8 DEMUX (after
demuxing 8 data items in the input, it re-starts with the next 8
items that may arrive) and a similar 8:1 MUX. As can be seen, the
decoupled loop control structures are responsible to stream the
data according to the consumption rate and maybe ahead of each
other in the loop iteration space.
Albeit the possible presence of conditional paths taking different
latencies on different loop iterations, most approaches on
pipelining loops enforce, using balancing, a fixed and statically
known loop body latency. This is the case of the dataflow
software pipelining technique initially presented. Considering
different latencies on the loop body requires much more complex
implementations and might lead to difficulties to control the
pipeline. This is especially true when operations are statically
scheduled. One of the approaches considering, at some extension,
different latencies is the one presented in [24]. However, that
scheme requires complex centralized control units. In our
approach there is no problem with different latencies on the loop
body, since the pipelining rather than statically is dynamically
achieved by the data-driven mechanism. The throughput of the
loop is achieved by hardware structures, decoupled, decentralized
and replicated (as has been illustrated in Figure 2 and Figure 3)
and thus the technique does not require balancing of all the paths
implementing conditional constructs (e.g., if-then or if-then-else).
Obviously, some paths connecting functional units still need
balancing to achieve maximum throughput.
As has been shown, SLP is relatively simple to apply to innermost

 …
for(i=0;i<N;i++) {
 x0=x[0+i*8];
 x7=x[7+i*8];
 f0 = x0+x7;
 g0 = MSCALE(twoc1d16*(x0-x7));

 x1=x[1+i*8];
 x6=x[6+i*8];

 f1 = x1+x6;
 g1 = MSCALE(twoc3d16*(x1-x6));

 x2=x[2+i*8];
 x5=x[5+i*8];

 f3 = x2+x5;
 g3 = MSCALE(twoc5d16*(x2-x5));

 x3=x[3+i*8];
 x4=x[4+i*8];

 // main calculation code
 // previous variables are used and
 // the 8 variables y0-7 are computed
 …

 y[i*8+0] = y0; y[i*8+1] = y1;
 y[i*8+2] = y2; y[i*8+3] = y3;
 y[i*8+4] = y4; y[i*8+5] = y5;
 y[i*8+6] = y6; y[i*8+7] = y7;
}
…

(a) (b)

8

8

COPY

x[ix+i*8]

i

0
+1

<N

CNT

ix

0
+1
<8

CNT

GO

S
E-
P
A
R

x0
x1
x2
x3
x4
x5
x6
x7

P
A
R-
S
E

y0
y1
y2
y3
y4
y5
y6
y7

y[ix+i*8]

8

COPY 8

STEP

i

0
+1

<N

CNT

ix

0
+1
<8

CNT

GO

STEP

...

...

U U

Figure 3. Example of applying self loop pipelining: (a) sample code of the LeeDCT example [18]; (b) possible SLP implementation.

When a counter CNT reaches the limit generates an event on output U. An event arriving at input GO in counters starts a new
counting after the previous one has finished.

109

loops, but is it applicable to nested loops? An example with two
nested loops is shown in Figure 4. Figure 5 presents the dataflow
graph (DFG) of a possible data-driven implementation of the
example (notice that pipeline levels are omitted). Values in circles
and rectangles represent a value generated once and as much as
needed by an input, respectively. Figure 6 depicts the use of SLP
to the innermost loop (Loop 2 in Figure 4). The duplicated
structures are related to the computation of the indexes for
loading values from the sd array (see line 4 in Figure 4) and to
assignments to the scalar variable sum (line 4 in Figure 4). Figure
6 shows the DFG of the new structure. To apply the technique to
the outer loop (Loop 1 in Figure 4), other duplications are
employed in a similar manner. A structure can be used to assign
zero to the scalar variable sum (line 2 in Figure 4), in each
iteration of Loop 1. Two other structures can be used to control
each of the structures referred above. Finally, a structure can be
used to furnish the index i to the array ac (line 6 in Figure 4).
Figure 7 depicts the DFG after applying the technique to the
outermost loop, as well. The latter uses 6 hardware structures to
control the loop iterations instead of the 2 original ones (see
Figure 5). In this case, the duplication of various modules to
control the iterations of each loop permits to start a new iteration
of the outer loop before the end of its previous iteration, as is
shown in the temporal diagrams of Figure 8.

 …
1. for (i = 0; i < M; i++){ // Loop 1
2. sum = 0;
3. for(k = 0; k < N; k++) { // Loop 2
4. sum += sd[k+i*N];
5. }
6. ac[i] = (sum >> SHIFT);
7. }
…

Figure 4. Median example: source code.

N

COPY

sd[k+i*N]

i

0
+1

<M

CNT

k

0
+1
<N

CNT

GO

SWITCH

ac[i]

SHIFT

>>

U

MERGE
0

STEP

1

N

Figure 5. Median example: DFG representation of the nested
loops in the example without using the SLP technique.

N

COPY N

sd[k+i*N]

i

0
+1

<M

CNT

k

0
+1
<N

CNT

GO

SWITCH

ac[i]

SHIFT
>>

U

MERGE
0

STEP

1

k

0
+1
<N

CNT

GO

U

Figure 6. Median example: DFG after applying SLP to the
innermost loop.

N

COPY N

sd[k+i*N]

SWITCH

ac[i]

SHIFT
>>

MERGE
0

1

i

0
+1

<M

CNT

i

0

+1

<M

CNT

k

0
+1
<N

CNT

U

STEP

i

0

+1

<M

CNT

k

0
+1
<N

CNT

U

STEP

i

0

+1
CNT

GO

GO

Figure 7. Median example: possible DFG representation after
applying SLP to both inner and outermost loops.

110

...

(a)

(b)

13 14 15

0 1

0 1 2 ...

0

D0

... 13 14 15

0 1

0 1 2 ...

0

D0

Write ac[]

Outer Loop i

Inner Loop k

Write ac[]

Outer Loop i

Inner Loop k

Figure 8. Temporal behavior for the median example (see
Figure 4): (a) SLP applied to the innermost loop (see Figure

6); (b) SLP applied to the two nested loops (see Figure 7). The
dashed arrow indicates that the outer loop starts a new

iteration before the end of the previous one.

4. COMPILING TO DATA-DRIVEN
ARCHITECTURES
Besides work on using dataflow languages [21] to program
dataflow machines, some successful efforts translate imperative
programming languages to dataflow models (e.g., [20][3][8]).
Imperative programming languages can be transformed to the
Program Dependence Web (PDW) [20], a representation that
extends the Static Single Assignment (SSA) form [10] and the
Program Dependence Graph (PDG) [13]. The PDW contains all
the needed information for control-, data-, and demand-driven
interpretation, and thus it can be used to generate the DFG akin to
the required dataflow structure.
Mapping computational structures to data-driven machines is
almost direct when straight-line code is input and each operation
in the code can be directly implemented by a PE of the
architecture. The handshaking mechanism permits to abstract the
mapping from the timing details associated when the
computational structures are implemented using a data-path and a
centralized control unit (timing-driven model).

Selection points are explicitly represented in the SSA-form by Φ-
functions. Those points can be directly implemented with
MERGE operations with discard. The PDW uses the Gated Single
Assignment (GSA) to generate the control conditions. Instead of
using only the SSA Φ-functions, the PDW uses three types of
functions (µ, γ, and η). µ-functions are used to represent selection
points between loop carried values and loop initializations
(MERGE operation). γ-functions are used to control forward data
flow (MERGE operation). Finally, η-functions are used to control
passage of values out of loop bodies (i.e., they are used to forward
final data values after loop completion). Those η-functions can be
translated to SWITCH nodes.
To enable the firing of some operations, control tokens are used,
either directly (i.e., as a form of predicate execution controlled by
guards) or as control mechanisms to cease the data flow.
Architectures with PEs with firing rules enabled by special
control inputs can implement almost directly predicated execution
(e.g., XPP). When these types of firing rules are not directly
supported, special operators can be added to enable/disable the
data flow to destinations (to forward a copy or to discard the input

data item). Nevertheless, when speculative execution is used
firing rules to enable/disable certain operations are not needed as
long as data items generated in paths not taken are discarded. As
opposite to non dataflow, where operations using a certain
assignment are scheduled to time steps where data are already
available, here we have to ensure that only data that must be used
arrive to destination.
To achieve an optimized implementation several compiler
optimizations are still required (see, for instance, [5]), such as
array dependence analysis and elimination of redundant memory
accesses (e.g., inter-iteration register promotion [9]). In data-
driven arrays, pipeline balancing is usually performed during the
place and route phases (as is the case in the XPP-VC compiler
[8]).
As aforementioned, self loop pipelining is achieved by replicating
N times the cyclic hardware structure responsible to control a
certain loop. From each loop header the variable that controls the
loop iterations is identified and the related DFG nodes are marked
as being part of the loop control structure. The identification of
those DFG structures starts by the µ node associated to the loop
control variable and collects all the nodes constituting a path from
the output of the µ node to one of the inputs. Then, a simple
template matching scheme is used to expose counters. Although
this scheme works well for well-behaved loops (WHILE, DO-
WHILE, or FOR loops with loop control based on a comparison,
between two scalar variables or a scalar variable and a literal, and
increment or decrement operations, executed on every iteration),
and most loops in DSP (digital signal processing) applications are
of this kind, it does not resolve other types of loop control. Study
to surpass this restriction is the subject of ongoing work.
After identification of each loop control structure, a DFG of the
loop body is used to apply SLP. A simple heuristic depicted in
Figure 9 is currently being used. To decide about the cloning of
loop control structures, this heuristic uses an unconstrained ALAP
(as late as possible) scheduling scheme. Duplication of structures
is based on the costs to pipeline a path from the source (hardware
structure responsible for the loop iterations) to a sink and the cost
of the loop control structures to be cloned (see line 8 in Figure
9)3. This scheme is used to make a trade-off between forwarding
data computed by loop control structures and re-computing them
by duplicating those structures.

5. EXPERIMENTAL RESULTS
We have performed several experiments using the XPP [2] as the
target architecture. The architecture uses a global synchronization
clock. It performs each PE operation and communicates each data
item between elements (i.e., PEs or interconnection registers) in a
single clock cycle. We have used 32-bits as the XPP bit-width.
The XPP can be programmed with a structural language named
NML [2]. A tool to place and route designs in NML and to
generate the binary code for each configuration and the code to
program the configuration manager is provided. This tool tries to
fully balance paths previously specified with NML directives. A
higher abstraction level is provided by a compiler that translates
programs in a C-subset to one or more NML designs [8]. The

3 When targeting the XPP, the control structures of well-behaved

FOR type loops are implemented with counters, being each
counter implemented by a single PAE of the architecture.

111

compiler is based on the pipeline vectorization technique [32] to
pipeline well-behaved innermost loops.

Input: DFG with loop regions identified
Output: transformed DFG

1. foreach innermost loop Lk with Ctrk as
 loop control structure do
2. Sinks=Find Sinks(Lk, Ctrk); // list of DFG nodes
 of Lk directly connected to Ctrk
3. Determine ALAP Latencies (loop body Lk);
4. Ordering Sinks according to ascendant
 ALAP Latencies(Sinks);
5. for i in 1 to NumSinks-1 do
6. Sinki = Sinks(i);
7. Sinki+1 = Sinks(i+1);
8. if (PipelineCost(ALAP(Sinki+1)-ALAP(Sinki))
 ≥ Cost(Ctrk)) then
9. Ctrt=CloneAndConnect(Ctrk, Sinki+1);
10. for j in i+2 to NumSinks-1 do
11. Connect(Ctrt, Sinkj);
12. end for;
13. end if;
14. end for;
15. end for;

Figure 9. Heuristic to apply SLP to innermost loops.

A number of benchmarks (see Table 1 for main characteristics) is
used to test self loop pipelining and to compare it with a
traditional loop pipelining scheme assisted with pipeline
balancing, particularly the pipeline vectorization technique
included in the XPP-VC compiler [8]. The benchmarks include
DSP kernels and other more complex DSP tasks. They include
benchmarks from Texas Instruments [30] (identified in Table 1 by
TI), from the MediaBench repository (identified in Table 1 by
MB) [19], and the LeeDCT benchmark (see [18]).
For experiments with adpcm and LeeDCT we use an XPP array
with 16 × 16 ALU-PAE cells and two columns with 16 MEM-
PAE cells each. For all the other experiments, an array with 8 × 8
ALU-PAEs and 2 × 8 MEM-PAEs is used.
With respect to the XPP-VC compiler, all the selected
benchmarks have innermost loops that are pipelined, and we have
done the experiments using all the efforts to execute fully-
balanced implementations. Note that sometimes this is impossible
to achieve due to the unavailability of the required amount of
resources to insert the needed number of register stages.
Table 2 shows results using the pipeline vectorization included in
XPP-VC and using the SLP scheme. The numbers representing
clock cycles (#ccs) in Table 2 are related to the execution of each
configuration in the array and do not include the reconfiguration
time needed. The reconfiguration time depends on the structures
of a certain configuration and is not of special interest for the
comparison. The number of resources (#elements) represents the
sum of the used elements of the array (FREG, BREG, ALU, or
MEM). The numbers in the last two columns illustrate the
percentage of resources and percentage of execution cycles
between pipeline vectorization and SLP. Negative and positive

percentages mean lower or higher number of resources or clock
cycles used by SLP, respectively.
The results show that our approach leads to performance
improvements and to reductions in the number of the used
resources over pipeline vectorization. For all but one case, the use
of SLP achieves better performance (from 1.2% to 68.4% fewer
execution cycles). With respect to used resources, most of the
examples use fewer PAEs when SLP is used. For the Median
example, we exploit the use of the technique on nested loops. The
use of 4 (last but one result in last row of Table 2) or 7 hardware
cyclic structures (last result in last row of Table 2) lead,
respectively, to reductions on execution cycles of 25.5% and
46.2% than using pipeline vectorization. Obviously, since we
have used examples with the innermost loops fully pipelined by
the XPP-VC compiler, better improvements can be achieved with
examples having innermost loops not pipelined by the XPP-VC.
The adpcm is one example with conditional structures in the loop
body which are pipelined by SLP without enforcing the longest
path latency of the loop body for each loop iteration. For the
weighted vector sum benchmark, SLP has permitted reductions on
the number of clock cycles of 54.4% (without using pipeline
balancing) and 68.4% (using pipeline balancing).
As is recognized, traditional loop pipelining techniques depends
heavily on pipeline balancing to achieve good performance. As
an example, for the median example the results presented in Table
2, using pipeline vectorization and pipeline balancing, represent
86.4% fewer clock cycles using 18.2% more resources than the
same example without pipeline balancing. With respect to SLP,
no pipeline balancing has been needed.
Although a first reaction about innermost loops would spot that
the duplication of the hardware structures, to control loop
iterations, does not lead to performance improvements and/or
resource savings, this is not the case since almost all of our
experimental results indicate the opposite. Note, however, that the
savings in the number of resources heavily depends on the type of
operations directly supported by the target architecture. The
improvements achieved with SLP have origins in the more
relaxed pipeline balancing requirements and in the unneeded
matching of branches on conditional constructs. We call the
reader’s attention to the fact that in the XPP it is not possible to
implement pipeline stages greater than one with a single PAE
unit. Thus, sequences of pipeline stages are implemented using
various PAE units. This is one of the reasons for resource savings
when using SLP.
There is strong evidence that using SLP, pipeline balancing may
not be needed or may be required less aggressively, which also
results in fast compilation. Furthermore, since we are duplicating
and decoupling hardware structures, the number of memory
stages needed for balancing is lower.

6. RELATED WORK
Software pipelining has been focus of intense research efforts [1].
It has been considered for both microprocessor and application
specific architectures. Due to the need of a statically-defined
scheduler, algorithms to schedule loop operations are used. One
of the schemes is Modulo Scheduling, which can be efficiently
performed by Rau’s Iterative Modulo Scheduling (IMS) algorithm
[26]. When targeting specific architectures, authors have
considered two approaches: the existence of specific epilogue,

112

Benchmark Source Data size and
parameters

add_array - Arrays with 1
Sad - Arrays with 2
adpcm decoder MB 1,024 data va
LeeDCT PVRG 8 × 8 elemen
Max TI 256 elements
auto correlation TI N=256, M=1
weighted vector
sum

TI 256 elements

block move TI 256 elements
Gouraud TI 128 elements
Median TI N=16, M=25

Benchmark wit

add_array
Sad
adpcm decoder
LeeDCT (1st loop)
LeeDCT (2nd loop)
Max
auto correlation
weighted vector sum

block move
Gouraud
Median

kernel, and prologue hardware structures;
schemes to avoid the explicit epilogue and
Software pipelining has been applied to r
platforms by several researchers, espe
innermost loops to FPGAs (see, for inst
approaches restrict loop pipelining to w
some cases the freedom to use specif
provided loop pipelining techniques in the
memory writes [24], for instance. H
implement the restoring step that might be
branch is not taken can be used. Research
hardware architectures has also consider
One of the approaches uses Rau’s algorith
loops in the Garp architecture [6].
Pipeline vectorization [32] has been
innermost loops when compiling C progra
technique is applied to innermost loops
regular loop-carried dependences (i.e.,
Table 1. Main characteristics of the benchmarks

 other Description

024 elements See Figure 2. Add two arrays.
56 elements Sum of absolute differences (used in MPEG and JPEG)
lues Decoder audio algorithm.
ts Compute the Discrete Cosine Transform (DCT). It uses two sequential loops.
 Calculate the maximum value in a vector.
6 Perform M autocorrelations each of length N
 Perform an N-element vector sum of two vectors with one vector weighted by

a constant.
 Move the elements of one array to the other.
 Gouraud shading of a scanline of pixels.
6 See Figure 4. Compute the median for each window of samples.

Table 2. Results with loop pipelining.

h Pipeline Vectorization
(#elements/#ccs)

with Self Loop Pipelining
(#elements/#ccs)

%
resources

% clock
cycles (ccs)

23/1069 21/1045 -8.7 -2.2
38/787 35/531 -7.9 -32.5

103/15,408 91/11,304 -11.7 -26,6
237/41 144/33 -39.2 -19.5
261/63 228/55 -12.6 -12.7

36/1,041 23/1,029 -36.1 -1.2
47/17,033 47/16,658 0 -2.2

33/1,166 26/532
31/368

-21.2
-6.1

-54.4
-68.4

17/1,094 14/625 -17.6 -42.9
70/668 65/531 -7.1 -20.5

33/1,107 31/1,062 -6.1 -4.1

40/825
47/596

+21.2
+42.4

-25.5
-46.2

or the use of predicated
 prologue structures.
econfigurable hardware
cially when mapping
ance, [32], [27]). Most

ell-behaved loops. In
ic hardware structures
 presence of conditional
ardware structures to
 needed when a certain
 on new reconfigurable
ed software pipelining.
m to pipeline innermost

adapted for pipelining
ms to the XPP [8]. The

 without true and with
 those with constant

dependence distances). Pipelining of loops with conditional
structures including array references is not considered.
The previous approaches use centralized control units obtained by
static scheduling of the loop operations and therefore, when
mapping to data-driven array architectures with handshake, may
achieve the best performance.
More related to our work is dataflow software pipelining [14][15],
a software pipelining scheme specially developed to pipeline
innermost loops in dataflow machines. Compared to traditional
software pipelining techniques, such approach naturally exploits
the dynamic scheduling obtained by the data flow. A similar
scheme to dataflow software pipelining has been included by
Budiu et al. in a C compiler to asynchronous circuits [4][5].
All the previous approaches rely heavily on pipeline balancing to
achieve maximum throughput by using FIFOs (e.g., [5]) or
connections of register stages (e.g., [8]). They clamp the latency
of the loop body to the longest path latency even if conditional
branches are present. The technique proposed in this paper solves

113

these problems in a number of cases, and thus it can be an
efficient optimization option when compiling to data-driven
arrays (e.g., [8]) or application specific circuits using handshake
(e.g., [4]). The use of our approach in the presence of loop-carried
array dependences requires further studies. Although at a first
glance this constraint seems to be quite restrictive, it has not
disabled the mapping of representative DSP kernels as shown by
the experimental results. In [5], token generators are used to
control the amount of slip between two operations that may be
ahead of the each other on loop iterations. It is a scheme to
enforce that memory dependences are satisfied when loop
iterations are dynamically scheduled, by explicitly representing
the dependence distance. This scheme can also be efficiently used
in conjunction with SLP to deal with loop-carried array
dependences and is the subject of our ongoing work.
The use of explicit epilogue and prologue structures by usual
software pipelining approaches might lead to resource problems,
especially in array architectures without PEs with load/store
operations. In that case, more references to an array imply
additional PEs for the hardware structures responsible to
interfacing with the memory where the array is stored. Moreover,
explicit epilogue and prologue schemes also require, besides the
PEs to implement the kernel, PEs to implement the computational
structures of the epilogue and prologue. The SLP technique does
not require epilogue and prologue structures, which may also be
an important property when targeting data-driven arrays.
In the context of coarse-grained reconfigurable architectures, a
software pipelining approach without explicit epilogue and
prologue has also been recently used [25]. Although the approach
integrates placement, scheduling, and routing, and is able to
generate more than one configuration when hardware
virtualization is needed, it was not proposed for data-driven array
architectures and thus, compared to the approach presented in this
paper, does not take advantage of dynamic scheduling.

7. CONCLUSIONS
This paper introduces a novel form of loop pipelining, named self
loop pipelining (SLP), suitable to pipeline a large set of loops
when targeting data-driven reconfigurable arrays. It involves
replication of the hardware structures responsible for the control
of loop iterations. Loops are naturally executed in a pipelining
fashion, with synchronization being achieved by the data flow. By
dynamically scheduling operations, SLP can outperform statically
scheduled software pipelining techniques. Therefore, the
technique, an enhancement scheme for dataflow software
pipelining, can be thought as an optimization to extend the
repertory of loop optimizations that may be included in an
advanced compiler targeting data-driven arrays.
The technique can be applied to DO-WHILE, WHILE, and FOR
loops, including nested loops. Innermost loops with conditional
constructs can also be pipelined without conservative pipelining
implementations (which usually enforces the critical path length
of the loop body). The technique requires less sophisticated
balancing efforts than previous software pipelining techniques.
The technique has been applied when mapping a number of
benchmarks to the XPP. The results, by achieving performance
improvements and in some cases even fewer required resources,
strongly prove its importance.

Ongoing work aims techniques to overcome loop-carried array
dependences and further experiments with other data-driven
architectures.

8. ACKNOWLEDGMENTS
This work has been partially supported by the Portuguese
Foundation for Science and Technology (FCT) - FEDER and
POSI programs - under the CHIADO project
(POSI/CHS/48018/2002). The author gratefully acknowledges the
licenses and the development tools for the XPP donated by PACT
XPP Technologies, Inc. The author would like to thank Pedro
Diniz for his suggestions and comments. Also important have
been email exchanges with Mihai Budiu, regarding some issues
related to the content of this paper.

9. REFERENCES
[1] V. Allan, R. Jones, R. Lee, and S. Allan. Software

Pipelining. in ACM Computing Surveys, Vol. 27, Issue 3,
pages 367-432, September 1995.

[2] V. Baumgarte, et al. PACT-XPP – A Self-reconfigurable
Data Processing Architecture. In Journal of Supercomputing,
Kluwer Academic Publishers, vol. 26, issue. 2, pages 167-
184, September 2003.

[3] M. Beck, R. Johnson, and K. Pingali. From Control Flow to
Dataflow. in Journal of Parallel and Distributed Computing,
Volume 12, Issue 2, pages 118–129, June 1991.

[4] M. Budiu, G. Venkataramani, T. Chelcea, and S. C.
Goldstein. Spatial Computation. in Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS’04), Boston, MA, USA, ACM Press, pages 14-26,
October 2004.

[5] M. Budiu. Spatial Computation. Ph.D. Thesis, CMU CS
Technical Report CMU-CS-03-217, December 2003.

[6] T. Callahan and J. Wawrzynek. Adapting Software
Pipelining for Reconfigurable Computing. In Proceedings of
the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’00), San Jose,
CA, USA, ACM Press, pages 57-64, November 17-19, 2000.

[7] J. Cardoso. Self Loop Pipelining and Reconfigurable
Dataflow Arrays. in Proceedings of the International
Workshop on Systems, Architectures, MOdeling, and
Simulation (SAMOS IV), Andy Pimentel and Stamatis
Vassiliadis (eds.), Springer-Verlag, LNCS 3133, pages 234-
243, 2004.

[8] J. Cardoso and M. Weinhardt. XPP-VC: A C Compiler with
Temporal Partitioning for the PACT-XPP Architecture. in
Proceedings of the 12th International Conference on Field
Programmable Logic and Applications (FPL'02), Springer-
Verlag, LNCS 2438, pages 864-874, 2002.

[9] S. Carr, D. Callahan, and K. Kennedy. Improving register
allocation for subscripted variables. In Proceedings of the
ACM Conference on Programming Language Design and
Implementation (PLDI’90), ACM Press, pages 53-65, June
1990.

[10] R. Cytron, et al. Efficiently Computing static single
assignment form and the control dependence graph, In ACM

114

Transactions on Programming Languages and Systems, vol.
13, no. 4, pages 451-490, October 1991.

[11] A. DeHon. Very Large Scale Spatial Computing. In
Proceedings of the Third International Conference on
Unconventional Models of Computation (CUMC’02), C.
Calude, M. Dinneen, F. Peper (Eds.), Springer-Verlag,.
LNCS 2509, pages 27-37, October 15-19, 2002.

[12] J. Dennis and D. Misunas. A computer architecture for
highly parallel signal processing. in Proceedings of the ACM
National Conference, ACM, New York, pages 402-409,
November 1974.

[13] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. in ACM
Transactions on Programming Languages and Systems, vol.
9, no. 3, pages 319-349, July 1987.

[14] G. Gao. A Code Mapping Scheme for dataflow Software
Pipelining. Kluwer Academic Publishers, 1991.

[15] G. Gao and Z. Paraskevas. Compiling for Dataflow Software
Pipelining. in Languages and Compilers for Parallel
Computing, D. Gelernter, A. Nicolau and D. Padua (eds.),
Cambridge, Massachusetts, MIT Press, pages 275-306, 1991.

[16] R. Hartenstein. A Decade of Reconfigurable Computing: a
Visionary Retrospective. In Proceedings of the International
Conference on Design, Automation and Test in Europe
(DATE’01), Munich, Germany, pages 642-649, March 12-15,
2001.

[17] R. Hartenstein, R. Kress, and H. Reinig. A Dynamically
Reconfigurable Wavefront Array Architecture. in
Proceedings of the International Conference on Application
Specific Array Processors (ASAP’94), pages 404-414,
August 22-24, 1994.

[18] A. Hung. Source C code for Lee DCT. Stanford University
Portable Video Research Group (PVRG), 1993,
http:// .ifi.uio.no/in383/src/jpeg/PVRG-JPEG-
1.2.1/leedct.c

www

[19] MediaBench Home, http://cares.icsl.ucla.edu/MediaBench/
[20] K. J. Ottenstein, R. A. Ballance, and A. B. Maccabe. The

program dependence web: a representation supporting
control-, data-, and demand-driven interpretation of
imperative languages. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation (PLDI’90), ACM Press, pages 257–271,
1990.

[21] W. Johnston, J. Hanna, and R. Millar. Advances in dataflow
programming languages. in ACM Computing Surveys, vol.
36, issue 1, ACM Press, pages 1-34, 2004.

[22] I. Koren, et al. A Data-Driven VLSI Array for Arbitrary
Algorithms. in IEEE Computer, pages 30-43, October 1988.

[23] S. Kung, et al. Wavefront Array Processors - Concept to
Implementation. in IEEE Computer, vol. 20, no. 7, pages 18-
33, July 1987.

[24] T. Maruyama and T. Hoshino. A C to HDL compiler for
pipeline processing on FPGAs. In Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM’00), pages 101-110, IEEE CS Press, 2000.

[25] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R.
Lauwereins. Exploiting Loop-Level Parallelism on Coarse-
Grained Reconfigurable Architectures Using Modulo
Scheduling. in Design, Automation and Test in Europe
Conference and Exhibition (DATE'03), Munich, Germany,
pages 10296-10301, March 3-7, 2003.

[26] B. Rau. Iterative Module Scheduling: An Algorithm for
Software Pipelining Loops. In Proceedings of the ACM 27th
Annual International Symposium on Microarchitecture
(MICRO-27), ACM Press, New York, pages 63-74, 1994.

[27] G. Snider. Performance-constrained pipelining of software
loops onto reconfigurable hardware. In Proceedings of the
ACM 10th International Symposium on Field-Programmable
Gate Arrays (FPGA’02), ACM Press, New York, pages 177-
186, 2002.

[28] S. Swanson, et al. WaveScalar. In Proceedings of the 36th
Annual International Symposium on Microarchitecture
(MICRO-36), San Diego, CA, USA, IEEE Computer Society
Press, pages 291, December 3-5, 2003.

[29] J. Teifel and R. Manohar. An Asynchronous Dataflow FPGA
Architecture. in IEEE Transactions on Computers, Volume
53, Issue 11, pages 1376 – 1392, November, 2004.

[30] Texas Instruments, Inc. TMS320C6000™ Highest
Performance DSP Platform. 1995-2003,
http:// .ti.com/sc/docs/products/dsp/c6000/benchmarks/6
2x.htm#search

www

[31] A. Veen. Dataflow machine architecture. in ACM Computing
Surveys, Vol. 18, Issue 4, pages 365-396, December, 1986.

[32] M. Weinhardt and W. Luk. Pipeline Vectorization. In IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, no. 2, pages 234-233,
February, 2001.

115

http://www.ifi.uio.no/in383/src/jpeg/PVRG-JPEG-1.2.1/leedct.c
http://www.ifi.uio.no/in383/src/jpeg/PVRG-JPEG-1.2.1/leedct.c

	INTRODUCTION
	DATA-DRIVEN ARRAY ARCHITECTURES
	SELF LOOP PIPELINING (SLP)
	COMPILING TO DATA-DRIVEN ARCHITECTURES
	EXPERIMENTAL RESULTS
	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

