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ABSTRACT
Scenarios are an effective means for eliciting, validating and
documenting requirements. At the requirements level, scenarios
describe sequences of interactions between the software-to-be and
agents in the environment. Interactions correspond to the
occurrence of an event that is controlled by one agent and
monitored by another.

This paper presents a technique to analyse requirements-level
scenarios for unforeseen, potentially harmful, consequences. Our
aim is to perform analysis early in system development, where it
is highly cost-effective. The approach recognises the importance
of monitoring and control issues and extends existing work on
implied scenarios accordingly. These so-called input-output
implied scenarios expose problematic behaviours in scenario
descriptions that cannot be detected using standard implied
scenarios. Validation of these implied scenarios supports
requirements elaboration. We demonstrate the relevance of input-
output implied scenarios using a number of examples.

Categories and Subject Descriptors
D.2. 1 [Software Engineering]: Requirements/Specifications

General Terms
Verification, Design, Languages, Documentation.

Keywords
Implied scenarios, message sequence charts, scenario-based
requirements elaboration.

1. INTRODUCTION
Scenario-based specification languages such as Message
Sequence Charts (MSCs) are popular among software engineers
for eliciting, documenting and validating software requirements.
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Scenarios describe typical examples of system executions. They
can be used to infer concurrent state machine models of a system
[15, 22] and declarative specifications of system goals [12]. They
can also be used to identify possible exceptions that may occur at
each step of the scenarios and requirements to deal with such
exceptions [19]. Because scenarios are used at a very early stage
of system development, it is certainly worthwhile to perform
analysis before inferring other models. This has motivated the
development of a variety of analysis techniques including
detecting race conditions and timing conflicts [1], non-local
choices [4], implied scenarios [3, 21], and performing pattern
matching [16], and model-checking [2].

A scenario corresponds to a single temporal sequence of
interactions between components of a system. The nature of the
interactions and components involved in a scenario depends on
the kind of system being modelled and the chosen level of
abstraction. When modelling concurrent software architectures,
scenarios describe sequences of message exchanges between
concurrent software processes; when modelling an object-oriented
software system, scenarios describe sequences of method calls
between implementation-level objects.

At the requirements level, scenarios describe sequences of
interactions between agents of a system composed of software
agents, human agents, and hardware devices such as sensors and
actuators [7, 13]. Each interaction in such scenario corresponds to
the occurrence of an event that is synchronously controlled by an
agent and monitored by another agent [18, 11, 14].

Our objective is to provide a technique for the early analysis of
such requirements-level scenarios. The technique consists in
detecting a novel kind of implied scenario, called an input-output
implied scenario, that arises because of the monitoring and control
characteristic of agents. Input-output implied scenarios are
unspecified scenarios that are exhibited in every concurrent state
machine model structurally and behaviourally consistent with the
specified scenarios. Exposing input-output implied scenarios to
stakeholders provides early feedback about inevitable and
possibly unforeseen consequences of their specified scenarios.

The notion of an implied scenario was first introduced in [3]. Its
definition is intimately connected to the underlying model of
concurrent state machines that produces the system behaviours.
Algorithms and complexity results for detecting implied scenarios
have been studied for various models of concurrency including
synchronous and asynchronous communication models [3]. Tool
support for detecting implied scenarios in the synchronous
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communication model for elaborating scenarios and behaviour
models is described in [21].

However, the standard notion of implied scenarios is not suitable
for analysing requirements-level scenarios because it is based on
models of concurrent state machines that do not distinguish
between the monitored and controlled events of agents. In such
models, an agent can prevent the occurrences of events it
monitors. As a result, checking for standard implied scenarios
may fail to detect some critical problems in requirements-level
scenarios.

The contributions of this paper are as follows. Firstly, we define a
novel kind of implied scenario called input-output implied
scenario that ensures that an agent cannot inhibit the occurrence
of events it monitors. Secondly, we show how to detect input-
output implied scenarios and provide tool support to do so.
Thirdly, we demonstrate the relevance of flaws that input-output
implied scenarios can reveal through a number of examples taken
from the literature. More generally, this work demonstrates that
monitoring and control are important issues when analysing
requirement-level scenarios.

Note that there is no need to extend scenario-based specification
languages to be more expressive; an input-output scenario is the
result of analysing a scenario-based model for unspecified
behaviours, much like a counter-example generated by a model
checker is the result of verifying whether a state-machine model
satisfies a system property.

The paper is organized as follows. Section 2 reviews background
work on MSC and implied scenarios. Section 3 presents input-
output implied scenarios and how to detect them. Section 4
presents the analysis of several published scenario-based models.
Lessons leamed from these case studies are discussed in Section
5.

2. BACKGROUND
2.1 Specifying Scenarios with MSC
In the MSC framework, a scenario corresponds to a single
temporal sequence of interactions between components of a
system. The MSC notation provides a convenient visual notation
to express multiple scenarios by allowing specifiers to structure
scenarios by episodes (called basic MSCs) and to combine
episodes into a directed graph (called a high-level MSC) that
defines the possible continuations and loops between episodes.
A basic Message Sequence Chart (bMSC) is composed of vertical
lines representing components time lines and horizontal arrows
representing interactions between components. Each bMSC
denotes a partial ordering of components interactions. For
requirements-level scenarios, each interaction in a bMSC
corresponds to the occurrence of an event that is synchronously
controlled by the source agent and monitored by the target agent.

A high-level Message Sequence Chart (hMSC) is a directed graph
with nodes as bMSCs and edges denoting possible continuations
between bMSCs. The semantics of a MSC model sc is a set of
sequence of events, noted Bh(sc), that follows some maximal path
in the hMSC.

Figure 1 shows an MSC model of a boiler control system [21]. It
defines scenarios showing how a Control unit operates Sensor and
Actuator components to control the pressure of a steam boiler. A

Database is used as a repository to buffer pressure data while the
Control unit performs calculations and commands the Actuator.

CLommanaActuator
Sensor Dotbb. Confa Achttr

I f8MS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TumSensorOff

Sensor Detdb.. Cont/ Aduaor

SensorSendsData
Sensor Dettb.m Contl Actuaor

F5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

Figure 1 - The Boiler Control system.

2.2 Modelling System Behaviour with LTS
The formalism we use in this paper for modelling and reasoning
about concurrent systems is that of Labelled Transitions Systems
(LTS) [Mag99]. It allows a system to be described as a set of
concurrent state machines where each component is characterized
by a set of states and by the possible transitions between these
states where each transition is labelled by an event. Figure 3
shows an example LTS for the Control component of the boiler
control system.

Complex system behaviour can be modelled by parallel
composition of the component LTS models. Parallel composition
models components that execute asynchronously but synchronize
on shared events. In the sequel, the set of sequence of events that
can be generated by an LTS model M will be noted Bh(M).

2.3 Implied Scenarios
A concurrent state machine model inferred from a set of scenarios
should be composed of LTSs modelling each of the components
appearing in the scenarios. In addition, each component LTS
should exhibit as sequences of events at least all scenarios
projected to the time line of that component. This consistency
constraint between an MSC model and an inferred LTS model is
defined formally as follows.

Definition (MSC-LTS consistency). Let Sc be a scenario-based
model with components 1, ..., n. A concurrent state machine
model M = (Ml 11 ... 11 Mn) is consistent with Sc if, and only if, for
each component i, Bh(Sc)I.v.ft,(i) E Bh(Mi) where events(i) is the set
of events involving components in the scenarios.

Since scenario-based models describe only examples of system
behaviours, it is natural that a composite LTS model consistent
with those scenarios exhibits more behaviours than those
explicitly captured in the scenarios. However, some of these
additional behaviours may be present in every concurrent state
machine model that is consistent with the specified scenarios.
Such scenarios are called implied scenarios.

Definition (implied scenarios). A trace tr is an implied scenario
of a MSC model sc if, and only if, (1) tr i Bh(sc) and (2) tr E
Bh(M) for all concurrent state machine model M that are
consistent with sc.

The occurrence of implied scenarios is due to the fact that the
scenario-based model describes allowed system behaviours from
a global, system-wide perspective, whereas in the concurrent state
machine model each agent acts locally based on local information.
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For example, Figure 2 shows an implied scenario for the MSC
description of Figure 1.

Sensor Database Control Actuator

on

-pressureH
off

o on
K query-

Figure 2 - Implied scenario of MSC in Figure 1

This scenario does not correspond to a behaviour that is specified
in the MSC model of Figure 4 because after the second on event
that initializes the Sensor, there must be a pressure event in which
the sensor inputs data in the database before any query event can
occur.

This scenario will however be present in every concurrent state
machine model consistent with the MSC model, because as far as
each component is concerned, the scenario proceeds as specified
in the MSC model. For example the Control component that
generates the unexpected query event believes that the scenario
follows the acceptable path StartSensor, SensorSendsData,
StopSensor, StartSensor, SensorSendsData, CommandActuator.
The Database component on the other hand believes the scenario
follows another acceptable path StartSensor, SensorSendsData,
CommandActuator. In this implied scenario, when the query event
occurs, the Control component is not aware that the Sensor has
not yet sent data in the Database after it was last turned on, and
the Database component is not aware that the Sensor has been
turned off and on again.

2.4 Detecting Implied Scenarios
Checking a MSC model for implied scenario does not require the
construction of every concurrent state machine model that is
consistent with the scenarios. If the MSC model describes a
regular language the presence of implied scenario can be verified
by constructing a fmite concurrent state machine model Mm,, that
is minimal in the sense that every other concurrent state machine
model M' consistent with the scenarios has at least as much
behaviour as Mmin, i.e. Bh(Mmin) E Bh(M').

The technique for detecting implied scenarios therefore consists
in:

* constructing for each agent a deterministic LTS model Mi min
that covers exactly the given scenario traces projected on the
agent time line, i.e. Bh(Mi mi.) = Bh(Sc)Ieventa(i);

* defining the minimal concurrent state machine model Mmin as
the composition of each of these agent model, i.e. Mmin = (Mi
min || .. I1 M. min);

* constructing a monolithic LTS model T that captures exactly
the set of global behaviours described by the scenarios, i.e.
Bh(T) = Bh(Sc); and

* using the model checking feature of the LTSA toolset to
check whether Bh(M,mh) E Bh(T).

If the inclusion does not hold, the model checker will generate a
trace tr of Mmn up to the point where it first deviates from T. By
construction, Mmin is consistent with the scenario-based model and
it can be shown that this behaviour model is minimal [21]. It

results that every counter-example tr generated by model checking
the above inclusion is an implied scenario.

As an example, Fig. 3 shows the LTS model for the Control
components that is synthesized from the MSC model of Figure 3.

on query da

command

Figure 3 - LTS of Control component

The minimal concurrent state machine model for the scenarios in
Figure I is obtained as the composition of the minimal LTS
model for the Sensor, Database, Control and Actuator
components. Model checking trace inclusion against the LTS
model T for the Boiler control system generates the implied
scenario ofFigure 2.

2.5 Model Elaboration with Implied
Scenarios
An implied scenario may or may not correspond to acceptable
system behaviour. In [21], we proposed a model elaboration
process in which stakeholders use the feedback provided by
implied scenarios to elaborate the scenario-based model with
additional positive and negative scenarios.

When an implied scenario is detected, stakeholders are requested
to decide whether the sequence of events described by the implied
scenario is allowed to happen or not. If they decide it is allowed to
happen, they have to specify how the scenario should continue
and add this scenario as a positive scenario in the hMSC graph. If
they decide the sequence of events is not allowed to happen (or is
impossible to occur in the application domain), they can specify
the unwanted behaviour as a negative scenario.

For example, if the occurrence of the query event in Figure 2 is
considered to be acceptable system behaviour, a new positive
scenario that describes how the database should react to this query
will be added to the set of positive scenarios. If on the other hand,
the occurrence of the query event in Fig 4 represents an
unacceptable behaviour, the scenario will be declared as a
negative scenario.

The technique for detecting implied scenarios has been adapted so
as to be able to detect implied scenarios in the presence of
negative scenarios. The process of identifyig implied scenarios
and enriching the scenario-based model with positive and
negative scenarios is iterative and may continue until no more
implied scenarios are detected.

Note that documenting unacceptable system behaviours as
negative scenarios does not actually solve the problem exposed by
implied scenarios; any concurrent state machine consistent with
the initial set of positive scenarios will still produce the rejected
implied scenarios. The only way to remove the unwanted
behaviours will be to eventually modify the behaviours described
in the initial set ofpositive scenarios.

In the steam boiler example, one way to avoid the implied
scenario of Fig 2 consists in changing the behaviours described in
the MSC model of Fig 1 so that the Database component is
informed by the Control component every time the Sensor is
turned on and off.
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Avoiding unacceptable implied scenarios requires making design
decisions in which the system behaviours described in the initial
scenarios are modified, possibly by removing some scenarios, by
changing the sequential order of some events, by introducing new
events or even by introducing new agents into the system. Such
design decisions however require that the implied scenarios have
first been validated as positive or negative scenarios.

3. INPUT-OUTPUT IMPLIED SCENARIOS
3.1 Motivation
The ability to declare which events are monitored and controlled
by each agent is an essential feature of requirements modelling
languages [18, 11, 14]. The events controlled by an agent are
those that can be performed or initiated by that agent; the events
monitored by an agent are those whose occurrences are observed
by the agent. In MSC models, the monitoring and control
capabilities of agents are naturally given by the directions of the
arrows; an event is controlled by the source agent and monitored
by the target agent.

The monitoring and control capabilities of an agent constrain
what behaviours can be required of that agent. The description of
the behaviours of an agent must satisfy the following three
conditions [23]: (i) it must be defined entirely in terms of the
agenfs monitored and controlled events, (ii) it cannot constrain
the occurrences of the agenfs monitored events, and (iii) it cannot
refer to the future occurrences ofmonitored events. (See [14] for a
formal, characterization of such conditions.)

Any LTS model inferred from scenarios should satisfy these three
conditions. The definition of consistency between MSC and LTS
models in Section 2.3 takes into consideration condition (i) by
requiring the LTS of a component to be defined only in terms of
the events in which this component is involved in the scenarios.
Condition (iii) is always satisfied in a formalism based on state
transitions such as LTS. However, condition (ii) is not taken into
consideration. The standard definition of implied scenarios is
based on a model of concurrent state machines in which no
distinction is made between the events that are monitored and
controlled by an agent. The direction of the arrows in the MSC
model is simply ignored in the LTS model. This may result in
LTS models in which an agent prevents the occurrence of one of
its monitored events, thereby violating condition (ii). Important
flaws in the scenarios may therefore remain undetected.

Client rDpt

Scenario A Scenario B
Figure 4 - Scenarios for an order delivery system

Consider for example the two very simple scenarios for a small
order delivery system shown in Figure 4. Scenario A describes a
client requesting product A to a seller agent, who then sends a
delivery order to the delivery department that then delivers the
requested product to the client. Scenario B is similar except that
product B is requested and delivered.

A problem in these scenarios is that the delivery department
receives the same deliveryOrder event regardless of whether the
requested product is A or B so that it doesn't know which product

needs to be delivered. This model however has no implied
scenarios.

Figure 5 shows the LTS of the minimal concurrent state machine
model inferred from these scenarios. The LTS for the
DeliveryDprt shows that after a deliveryOrder, this agent is free to
perform either a deliveryA or a deliveryB. However, the System
LTS model, obtained as the parallel composition of the Client,
Seller and DelDprt LTSs, shows that after each requestA or
requestB, the correct product will be delivered. The reason is that
in the Client LTS after a requestA the LTS only accepts deliveryA
and after a requestB it only accepts deliveryB. In the LTS model, it
is therefore the client who ensures that the correct product is
delivered by controlling the occurrences of deliveryA and
deliveryB events. The synthesized LTS model is in contradiction
with the scenario-based model in which the occurrences of these
events are controlled by the delivery department, not the Client.

A fundamental rule -corresponding to condition (ii) above- that
should be satisfied when synthesizing concurrent state machine
models from scenarios is that an agent should not constrain the
occurrences ofits monitored events.

In the context of LTS models, what is meant for an agent to
constrain an event is defined as follows.

Definition (control ofevents in LTS models). An event is said to
be constrained in a LTS if and only if there is some state in the
LTS from which there is no outgoing transition labeled with that
event.

requestA
Client requestB

deliveryA

DelDprt deliveryOrder

{deliveryA, deliveryB}

requestA
Seller requestB

deliveryOrder
deliveryOrder

requestA

SYSTEM

defiveryA
Figure 5 - LTS models for the Delivery system

385

I

Authorized licensed use limited to: University College London. Downloaded on December 15, 2008 at 09:37 from IEEE Xplore.  Restrictions apply.



For example, the Client LTS model in Figure 5 constrains the
occurrences of all its events, including its monitored events
deliveryA and deliveryB. The modified Client LTS model in Figure
7 constrains only the occurrences of its controlled events
requestA, requestB.

The basic idea of input-output implied scenario is to consider the
presence of implied scenario by taking into consideration the
additional constraint that the LTS model of each component can
only constrain its controlled events and can therefore not
constrain its monitored events.

3.2 Definition
The concept of input-output implied scenario is therefore based
on the following stronger notion of consistency between scenarios
and concurrent state machines.

Definition (IO consistency between MSC and LTS models). Let
sc be a scenario-based model with components 1, ..., n. A
concurrent state machine model M = (Ml 11 ... 11 Mn) is 10-
consistent with sc if, and only if, for each component i,
Bh(sc)I.V.,,(I) E Bh(Mi) and M; does not constrain the occurrences
of events in Monitored_events(i) where Monitored_events (i) is the
set of events received by in the MSC model.

This definition is similar to the definition of consistency
introduced in Section 2.3 except that it adds the constraint that the
state machine model of a component cannot control its monitored
events. Every system behaviour model that is IO-consistent with a
scenario-based model is consistent with this scenario-based
model, but not reciprocally.

Input-output implied scenarios are then defined as follows.

Definition (Input-Output Implied Scenarios). A trace tr is an
input-output implied scenario of a scenario-based model sc if, and
only if, (1) tr EBh(sc) and (2) tr E Bh(M) for all concurrent state
machine model M that is IO-consistent with sc.

This definition is similar to the definition of standard implied
scenario except that the concept of consistency between scenarios
and LTS models has been replaced by the concept of IO-
consistency. Since 10-consistency is stronger the consistency,
every standard implied scenario is also an 10-implied scenario.
Conversely, there might be IO-implied scenarios that are not
standard implied scenarios.

For example, the scenario in Figure 6 is an input-output implied
scenario of the two scenarios in Figure 4, but it not an implied
scenario.

Client Seller Delivery Dpt

requestA * deliveryOrdero

deliverys

Figure 6 -10-implied scenario for MSC of Figure 4

This input-output implied scenario shows that a consequence of
the two scenario of Figure 4 is that it is possible that a request for
product A is followed by a delivery ofproduct B.

This input-output implied scenario represents undesirable system
behaviour. It can be avoided by changing the scenarios in Fig. 4

so that the deliveryOrder event in scenarios A and B is changed to
deliveryOrderA and deliveryOrderB, respectively. Other examples
of input-output implied scenarios in real scenario-based models
will be seen in Section 4.

Note that the notion of input-output implied scenarios is not
equivalent to that of implied scenarios in an asynchronous setting.
Asynchrony would introduce implied scenarios that are not input-
output implied scenarios. In fact, synchrony/asynchrony and
monitoring/control are orthogonal concepts: An agent could be
modelled to observe an event at a later logical time than when the
event was performed by the controlling agent. Such an
assumption would require modelling the interaction as
asynchronous and guaranteeing that the monitoring agent never
constramins the occurrence ofthe event.

3.3 Detecting IO Implied Scenarios
The technique for detecting input-output implied scenarios is
similar to the technique for detecting standard implied scenarios
described previously. It is based on constructing a minimal
concurrent state machine model Mio.MIf given as the parallel
composition of the minimal state machine models of all
components.

In this case, however, the components LTS may not constrain the
occurrences of their monitored events. For detecting input-output
implied scenarios, the minimal LTS model of each component is
constructed by augmenting the minimal LTS model as built for
detecting standard implied scenario with (i) an additional "sink"
state with no outgoing transition but with self-transitions for every
events monitored by the agent, and (ii) for each monitored event
and every state in which there is no transition labeled with that
event, an additional transition from this state to the sink state
labeled with the monitored event. Figure 7 shows the minimal
LTS model thereby generated for the Client from the scenarios in
Figure 4. This LTS model augments the Client LTS model in
Figure 5 with an additional sink state (state 1) and additional
transitions to the sink state so that the monitored events deliveryA
and deliveryB are not constrained by the LTS.

rquestA

ehveryB _.trquestB
tElivayA *_

ClivdeliryyA

deiey------day elivelva
devehyA

Figure 7 - Input-output LTS for Client

The parallel composition of component LTS as described above
can be shown to be minimal with respect to trace inclusion
compared with any other concurrent state machine that is 10-
consistent with the MSC model.

The presence of implied scenarios is then analysed by model
checking whether Bh(M 10-Mln) E Bh(T) where T is the LTS model
that captures the set of behaviours described by the scenario-
based model. This LTS is the same as the one used for detecting
standard implied scenarios. Space complexity of the analysis is
exponential with respect to the number of components (See [21]
for a full discussion).
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4. EXAMPLES
The purpose of this section is to show through examples of
scenario-based models taken from the literature that input-output
implied scenarios appear in real scenario-based models and that
their detection provides relevant feedback for further elaboration
ofrequirements models.

We present the analysis of 4 scenario-based models: two different
ATMs [4, 22], a web interface application [6], and a toaster [15].
Other models that have been analyzed but not reported here due to
space restrictions are the steam boiler [21], a GSM mobility
management protocol [Leue98], scenarios for an automated
transport system [21], for a safety injection system of a nuclear
power plant [9], and for a web-based payment system. All these
models can be downloaded with the tool at
http://www.doc.ic.ac.uk/ltsa.

Except for the steam boiler and the transportation systems, none
of these models has standard implied scenarios. Input-output
implied scenarios on the other hand were detected in all models,
except for the web-based payment system. Lessons learned from
the case studies are discussed in Section 5.

4.1 A First ATM model
A scenario-based model describing user interaction with an ATM
machine is presented in [4]. This model is composed of 13
bMSCs representing small episodes of ATM behaviours (such as
GetPinCode, ProcessPinCode, RefusePinCode, Withdraw, etc.)
and a complex hMSC that aims at providing a complete
description of the ATM behaviours. A prefix of a typical scenario
that can be obtained from this model is shown in Figure 8.

The model has no standard implied scenarios but does have input-
output implies scenarios. Checking the model for input-output
implied scenario generates the scenario in Figure 9.

User ATM

card -
*-reqPin-

eterPin_
-processing-
*-option-
-wthdraw--*

reqAmount-

Bank

-vetfy-N
* valid-

Validation with stakeholders is needed to determine whether the
input-output implied scenario is an acceptable behavior or not. If
the behaviour is not acceptable (for example because it is
expected that a user will always see a processing message after
entering the PIN) one way to avoid it would be to change the
initial MSC model so that the ATM generates the processing
event before the verify event instead of after. The input-output
implied scenario may also be considered to be impossible in the
application domain if it is assumed that the ATM never fails and
is always faster than the Bank. (This assumption corresponds to
the synchrony hypothesis [5] adopted by many state machine
specification languages [17]). In this case, detecting the input-
output implied scenario has helped to identify this assumption and
to make it explicit for validation.

Alternatively, if the behaviour is acceptable (for example because
it is expected that if validation from the Bank is faster than the
ATM reaction time users do not need to see a processing
message) then a new positive scenario could be added to the MSC
model.

User ATM

card

4-reqPin
enterPin -p

Bank

-verify-

--valid

Figure 9 - -implied scenario of the ATM 141

User ATM
displayMainScreen

_---nsertCard

4-requestPswd-
enterPswd -

-cancel -

.4-canceledMsa -

40-ejectCard
akeCard-

4 displayMainScreen

Consortium Bank

-verifyAccount -*

Figure 8 - Prefix of an ATM scenario 141
This scenario is an input-output implied scenario because as
shown in Fig. 8 after the verify event, the MSC model expects a
processing event to occur before the valid event. The processing
event means that the ATM display a screen indicating that it is
processing the user's pin code.

This input-output implied scenario shows that a consequence of
the specified MSC model is that the ATM may fail to inform the
user that its PIN code is being processed before receiving the
validation event from the bank. This input-output implied
scenario occurs because the ATM does not control the
occurrences of valid events and can therefore not prevent the Bank
from performing this event before it has performed the processing
event.

Figure 10 - Scenario for an ATM [221

4.2 Another ATM model
Another set of scenarios for an ATM machine is presented in [22].
This paper contains only four scenarios for the ATM. Figure 10
shows one of these scenarios, one in which a user inserts its card,
enters a password then cancels the transaction.
The model has no standard implied scenarios. However, checking
for input-output implied scenario generates the scenario in Figure
11.
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User ATM
dispay inScreen

nsertCard -.

4-requestPswd-
enterPswd -

-cancel -

Consortium Bank

Figure 11 - 10-implied scenario of the ATM 1221
This scenario is not among the specified scenarios because, as
shown in FigurelO, after the occurrence of an enterPswd event,
the model expects the occurrence of a verify event before the
cancel event.

The input-output implied scenario shows a situation in which the
User performs a cancel event before the ATM has time to perform
the venfyAccount event. In principle, this can occur because the
ATM cannot constrain the User from canceling the operation. If
we assume that the ATM agent never fails and is infinitely fast
compared to the user (synchrony assumption), the implied
scenario cannot happen and will be specified as a negative
scenario. Detecting the input-output implied scenario has
therefore helped in making this assumption explicit.

However, if we want to take into consideration the possibility of
ATM failure to perform the verify event sufficiently fast, we need
to view the implied scenario as the prefix of a positive scenario
that must be completed by specifying how the system should
continue when the cancel events occurs before the verify event is
performed by the ATM.

The full model in [22] contains other input-output implied
scenarios, all of which are related to the occurrences of cancel
events at various stages in the ATM scenarios that were not
specified in the initial set of scenarios. These implied scenarios
raised questions as to how the ATM should react to cancel events
at various points of a transaction. These are crucial aspects to
consider in the design of interactions between the user and the
ATM. On the downside, handling these implied scenarios by
specifying additional positive scenarios quickly became
unmanageable, as it requires specifying positive scenarios for all
interleaved combinations of cancel events with other events in the
scenarios. We comment on this limitation in the next section.

User Servlet BizLogic ERP

html

authenficate

werfied
4-.-

query

data
4-

"Successful login"

User Serviet BizLogic ERP

html

authenticate

failed

query

"Failed login"

Figure 12 - Scenarios for an ERP system [61
The hMSC model, not shown here due to space limitation,
specifies that after a successful login, the user can use the web
interface to perform a search on the ERP database, and after a
failed login, the user can only retry to login by entering a new
password.

The model contains no standard implied scenarios. However,
checking for input-output implied scenarios generates the implied
scenario of Figure 13 in which the user can perform a search after
a failed log in attempt.

This input-output implied scenario occurs because in the
Succesful Login and Failed Login bMSCs, the same html event is
used both to signal a failed login and a successful login to the
user. In order to avoid this undesirable behaviour, the html event
in the Succesfull Login and Failed Login bMSC can be changed
into the events displaySucessfulLoginPage and display
FailedLogInPage, respectively. The resulting scenario-based
model contains no more input-output implied scenarios.

User Servlet BizLogic ERP
enterPwd

html

search

querv

.data4--

4.3 A Web Interface Application
The next example comes from an industrial case study conceming
the development of a web interface application allowing access to
an existing Enterprise Resource Planning (ERP) system of a
commercial company. Scenarios for this application were written
by a research assistant involved in collaboration with the clients
ofthe system [6].

The scenario-based model consists of 7 basic MSCs describing
how a user of the system can log in the system and use the
interface to access the ERP. Two basic MSCs for successful and
failed login issued from this model are shown in Figure 12.

Figure 13 -10-implied scenario for the ERP sytem

4.4 A Toaster
A scenario-based model of a toaster is presented in [15]. This
model is composed of five small scenario episodes connected
though a hMSC graph intended to provide a complete description
ofthe toaster behaviours.

Two typical scenarios that can be extracted from the hMSC model
are shown in Figure 14. The first scenario shows the normal
interactions between a user, a control component and a heating
component that result in successful toasting. The second scenario
shows what happens when there is no bread in the toaster.
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The model has no standard implied scenarios.
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Figure 15 -10-implied scenario for the Toaster model

This implied scenario may correspond to an undesirable system
behaviour; the event toast_ack signals to the user that the toasting
process is being carried out normally, yet the heater is signaling
that there is no bread in the toaster through the noBreadError
event.

Since scenarios show sequences of events only and omit the state
information, there might be different ways to interpret this
implied scenario. For example, we might, as above, assume that
there is no bread in the toaster when the heatCmd event occurs.
Altematively, there might actually be bread in the toaster at the
moment of the toast_ack event, and the noBreadError could be a
malfunction of the Heating component that incorrectly signals an
error, or the noBreadError might be caused by the removal of the
bread from the toaster by the user. Each interpretation equally
makes sense and may lead to different decisions as to whether the
implied scenario is a positive or negative scenario.

If this implied scenario is considered to represent undesirable
system behaviour, it could be avoided by extending the interface
between the Heater and Control component with an explicit
confinnation from the Heater that everything is ready for a
successful toasting scenario. This can be done through a noError
event in the "Sucessful Toasting" scenario sent by the heater after
receiving the heatCmd event, to explicitly signal the Control that
there is no error.

The issues exposed by input-output implied scenarios could not
have been identified by checking for standard implied scenarios.

Our experience on the case studies has also led us to identify
some difficulties with the current elaboration process using input-
output implied scenarios.

* The simple process of validating implied scenario by adding
positive and negative scenario tends to result in large,
unstructured models that become difficult to master. These
need some form of refactoring.

* Correcting problems exposed by implied scenarios requires
design decisions that may result in different scenarios in
which, for example, the order of the events is changed and
new events or new components are introduced. There is
currently no support for such an elaboration process.

* The classification of an implied scenario as positive or
negative often proved to be difficult. This was partly due to
lack of domain knowledge. However, there were also other
reasons:

- Implied scenarios show sequences of events only; they don't
show what state the system is in when an event occurs. This
makes it difficult to interpret the scenarios and there may be
more than one interpretation depending on the assumption
made about the state of the system (see Toaster example).

- Stakeholders may have conflicting views about the required
system properties, so that an implied scenario might be
classified as positive from one point of view and negative
from the other. The rationale for rejecting or accepting
implied scenario is currently not explicitly recorded. For
example in the first ATM model, the implied scenario will be
classified as positive or negative depending on whether or not
stakeholders consider that a user should always get a
'processing' screen after having entered the pin code.

These difficulties suggest developing a richer elaboration process
in which the rationale for accepting or rejecting implied scenarios
would be explicitly recorded as a declarative goal specification.
These goals would then provide the basis for the application of
goal-oriented requirements elaboration techniques such as
techniques for refining goals, handling goal conflicts and
exploring altemative system designs [13] that ultimately would
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lead to the specification of a concurrent state machine model with
improved scenarios.

Although we recognize the limitations of scenarios [12, 8] when
used in isolation, our aim is to exploit a notation widely adopted
by practitioners and to support the process of requirements
elaboration. Hence, we do not extend scenario-based
specification languages to be more expressive nor aim to use a
scenario-based formalism as the main model for requirements
specification. Scenarios are rather viewed as typical examples of
system behaviours from which to eventually infer a concurrent
state machine model of the system [15, 22] and declarative
specifications of system goals [12]. We believe that checking for
input-output implied scenarios is an effective mean to detect and
correct gaps and potential errors in requirements-level scenarios
preferably before these scenarios are used to infer state-machine
and goal models.

6. CONCLUSION
Software engineers frequently use scenarios to elicit, document
and validate system requirements. Because they are often the very
first models produced, early analysis is highly cost-effective.

This paper builds upon previous work on implied scenarios for
detecting scenarios that are not part of the scenario-based model
but that are present in every concurrent state machine model
consistent with the scenarios. We have shown that the standard
concept of implied scenario is not suitable for analysing
requirements-level scenarios because it is based on a model of
concurrent state machines that ignores the distinction between
monitored and controlled events. We have proposed the concept
of input-output implied scenarios that takes such a distinction into
consideration. We have also developed a technique and tool
support for detecting input-output implied scenarios.

In practice, input-output implied scenarios detect important
problems in scenario-based models that cannot be detected by
standard implied scenarios. Several examples of input-output
implied scenarios from published scenario-based models were
used to illustrate the kind ofproblems detected and their relevance
for requirements elaboration.

The detection of input-output implied scenarios is only one
among other techniques to be used for elaborating requirements
from scenarios. In particular, the detection of input-output implied
scenarios could be used in combinations with techniques for
inferring state machine models [Som95, 15, Kru99, 22],
declarative specification of system goals [12] and requirements
dealing with exceptions [19] from scenarios.

Unlike model-checking, the detection of implied scenarios does
not rely on the preliminary identification and formalization of
system properties. As mentioned in Section 5, implied scenarios
can however be used to identify some of the relevant system
properties. Once identified, such properties could be used to
model-check future evolution of the scenario-based model (by
model checking the concurrent state machine inferred from the
scenarios), or more constructively to guide further elaboration of
the requirements. We are currently working in that direction by
trying to define a formal framework integrating scenario-based
and goal-oriented requirements elaboration techniques within the
LTSA toolset.
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