
Extracting Context To Improve Accuracy For HTML
Content Extraction

Suhit Gupta

Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7184

suhit@cs.columbia.edu

Gail Kaiser

Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7081

kaiser@cs.columbia.edu

Salvatore Stolfo
Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7080

sal@cs.columbia.edu

ABSTRACT

Web pages contain clutter (such as ads, unnecessary
images and extraneous links) around the body of an article, which
distracts a user from actual content. Extraction of “useful and
relevant” content from web pages has many applications,
including cell phone and PDA browsing, speech rendering for the
visually impaired, reducing noise for information retrieval
systems and to generally improve the web browsing experience.
In our previous work [16], we developed a framework that
employed an easily extensible set of techniques that incorporated
results from our earlier work on content extraction [16]. Our
insight was to work with DOM trees, rather than raw HTML
markup. We present here filters that reduce human involvement in
applying heuristic settings for websites and instead automate the
job by detecting and utilizing the physical layout and content
genre of a given website. We also present work we have done
towards improving the usability and performance of our content
extraction proxy as well as the quality and accuracy of the
heuristics that act as filters for inferring the context of a webpage.

Categories and Subject Descriptors

I.7.4 [Document and Text Processing]: Electronic
Publishing; H.3.5 [Information Storage and Retrieval]: Online
Information Services – Web-based Services

General Terms

Human Factors, Algorithms, Standardization.

Keywords

DOM trees, content extraction, reformatting, HTML,
context, accessibility, speech rendering.

1. INTRODUCTION

Users are spending more and more time on the Internet
in today’s world of online shopping and banking; meanwhile,
webpages are getting more complex in design and content. Web

pages are cluttered with guides and menus attempting to improve
the user’s efficiency, but they often end up distracting from the
actual content of interest. These “features” may include script-
and flash-driven animation, menus, pop-up ads, obtrusive banner
advertisements, unnecessary images, or links scattered around the
screen. The automatic extraction of useful and relevant content
from web pages has many applications, including enabling end
users to access the web more easily over constrained devices like
PDAs and cellular phones, providing better access to the web for
the visually impaired, providing less noisy data for information
retrieval and summarization algorithms, and generally improving
the web surfing experience.

Content extraction is particularly useful for the visually
impaired and the blind. A common practice for improving
webpage accessibility for the visually impaired is to increase font
size and decrease screen resolution; however, this also increases
the size of clutter, reducing efficiency. Screen readers for the
blind, like Hal Screen Reader, Microsoft’s Narrator or IBM
Homepage Reader generally don’t remove such clutter either and
often read out raw HTML. Natural Language Processing (NLP)
and information retrieval (IR) algorithms can also benefit from
content extraction, as they rely on the relevance of content and the
reduction of “standard word error rate” to produce accurate results
[13]. Content extraction allows such algorithms to process only
the extracted content, instead of either using cluttered data from
the web, or writing specialized extractors for each web domain
[14][15].

Other traditional approaches to removing clutter or
making content more readable include removing images, disabling
JavaScript, etc., all of which eliminate the webpage’s original
look-and-feel. Examples include WPAR [18], Webwiper [19] and
JunkBusters [20]. All of these products involve hardcoded
techniques for certain common web page designs as well as fixed
“blacklists” of advertisers. This can produce inaccurate results if
the software encounters a layout that it hasn’t been programmed
to handle. There have also been multiple approaches suggested for
formatting web pages to fit on the small screens of cellular phones
and PDAs (including the Opera browser [16] and its use of the
handheld CSS media type, and Bitstream ThunderHawk [17]);
however, such techniques reorganize and reformat the content of
the webpage to fit on a constrained device and require a user to
scroll and hunt for content. __

Copyright is held by Suhit Gupta, Gail Kaiser, Salvatore Stolfo
WWW 2005, May 10--14, 2005, Chiba, Japan.

Our solution employs a series of techniques that
addresses the aforementioned problems and creates a simple
solution usable and customizable by an end-user. In order to

mailto:suhit@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:sal@cs.columbia.edu

analyze a web page for content extraction, we pass web pages
through an HTML parser, which corrects the markup and creates a
Document Object Model tree. The Document Object Model
(www.w3.org/DOM) is a standard for creating and manipulating
in-memory representations of HTML (and XML) content. By
parsing a webpage's HTML into a DOM tree, we can not only
extract information from large logical units similar to
Buyukkokten’s “Semantic Textual Units” (STUs, see [3][4]), but
can also manipulate smaller units such as specific links within the
structure of the DOM tree.

We found DOM trees to be highly editable and easily
renderable as a complete webpage. Increasing support for the
Document Object Model also makes our solution widely portable.
This technique was used to create our initial proof of concept
version, Crunch, which is an open ended framework for
integrating content extraction heuristics developed by ourselves
and others. Crunch is created as a web proxy usable with arbitrary
browsers and assistive technologies. It is customizable by an
administrator or user to toggle individual heuristics in order to
produce the best results. Our initial work [16] showed that we
were able to achieve good results but that we also had several
limitations. We have since made our proxy more robust in terms
of performance, created a multi-pass filtering mechanism,
improved the user interface and further added support for various
scripted pages as well as for cascading style-sheets (CSS).

One problem with content extraction in general is that it
is impossible to determine the intention of the author and the
desires of the reader. Therefore our goal is to approach the
problem heuristically and work towards making our heuristics as
accurate as possible. Crunch extracts the “content”, with filters
customizable by an administrator and/or by a savvy user. No “one
size fits all” algorithm could achieve this goal. In particular, we
did not attempt to model either author or user tasks, nor their
corresponding context or intentions, but any non-intrusive
approach to doing so would also likely be heuristic and thus also
imprecise. Therefore, one of the limitations of our framework was
that Crunch could potentially remove items from the web page
that the user may be interested in, and may present content that
the user is not particularly interested in.

We have addressed this by employing a multi-pass
filtering system where the resulting DOM tree produced after each
stage of filtering is compared to the original copy. If too much or
too little has been removed, given the settings, we assume that the
settings were set incorrectly and fix them during the next pass
over the DOM. We also try to determine the classification of a
given website, both in its physical layout as well as the context of
its content. We have found that, given a manually-created
frequently updated database of preset heuristic settings for
different genres of websites, we can use this contextual
information to dynamically utilize matching settings from our
database and produce better results of extracted webpage content.

In this paper, we explain the improvements we have
made to Crunch, and explain how we can dynamically categorize
sites by determining layout structure and the content context of
websites. As we will describe, our solution enables dynamic
filtering for a wider range of websites. The following sections
briefly describe the background, our approach to the problem,
related work and implementation details, and we end with future
work directions and a conclusion.

2. BACKGROUND

Crunch 1.0 [16] demonstrated the design of the system
as a viable framework, but certain problems needed to be
addressed for the system to be widely usable. After releasing
Crunch 1.0 in September 2002, we received several suggestions
from early users for additions and improvements. These ranged
from changes in the aggressiveness of content removal by the
filters, to the way our proxy reassembled a webpage from its
constituent parts. We conducted an informal user study of
blindfolded students in May 2003, followed by a formal user
study with blind and visually impaired users, conducted in
December 2003 [17]. The NLP group at Columbia University
evaluated Crunch as an input mechanism to their Newsblaster
[8][9] project, which is a system that automatically tracks, clusters
and summarizes each day’s news programmatically. They found
results to be encouraging, especially since it required little prior
training, and by utilizing Crunch they ran their natural language
processing algorithms on content extracted by Crunch rather than
noisy data streams coming straight from the web.

Crunch 2.0 [17] was similar to its predecessor in that it
utilized the DOM model and was also a filter plug-in based
framework. We improved its performance, user interface, and
heuristic filters. With the original version, we had problems
filtering pages with frames or too many links, where the filters
would either remove too much, resulting in a blank page, or too
little, resulting in a mostly untouched page. Therefore, we
implemented a multi-pass filtering system for the heuristics that
re-evaluates the modified DOM tree after each pass. After each
phase, the produced DOM tree is compared to the previous
version, and that phase’s results are discarded if the change
between the two is either insignificant or too drastic (given the
settings). This prevents link-heavy pages like www.msn.com from
returning blank pages as output. We improved the performance of
the content extractor filter while maintaining its functionality.
Additional filters were also added that allow the user to control
the font size and word wrapping of the output.

Crunch 3.0, presented in this paper, automates the
application of filter settings for a varied range of websites by
detecting content genres and the physical layout. We explain these
improvements in greater detail in the following sections.

3. CONTEXT EXTRACTION

We find that with the DOM-based content extraction of
the earlier version of Crunch (see section 5 for implementation
details), we are able to achieve high levels of content extraction
accuracy for a wide domain of websites. Example output
screenshots shown in our original paper [16] and the subsequent
journal paper [17] demonstrated that while the results that our
proxy produced (with optimal settings) were quite accurate, the
settings for the various filters often had to be tweaked by hand by
the administrator or the end user for websites that differed in
context and layout. For example, if a user were to browse a typical
news-based site, e.g., CNN, then their settings would remove
heavy links, images with links (menus), advertisements, and
forms, since they would typically be looking for only the articles
contained in each page. The results produced, as shown in Figure
1, would be expected. However, if the user chose to switch
workflow contexts and browse Amazon.com instead – a link-
heavy page with lots of advertisements, images and forms – those
important links would be lost due to the news-optimized settings,

resulting in an undesirable result as shown in Figure 2. This
would easily be fixed by adjusting the settings in the Content
Extraction filter of our proxy; however it would require the user to
switch application focus and do so manually. The user would have
throttled the link/text ratio higher, perhaps even toggled off the
advertise remover and the scripts remover (Figure 2) for a better
shopping experience.

Figure 1 - CNN (original, through Crunch 2.0 with shopping

settings and through Crunch 3.0 with auto-settings)

Figure 2 - Amazon (original, through Crunch 2.0 with news

settings and through Crunch 3.0 with auto-settings)

As explained before, this workflow results in poor user
productivity. Since creating a set of filter settings for producing
good results for known webpages is straightforward, we focused

on classifying websites. Ideally, a website’s classification would
be matched against known classes and an appropriate
configuration would be selected. For example, if the user
browsing CNN were to then browse Amazon.com, for which a
classification didn’t already exist, Crunch would detect that
Amazon.com is a shopping site, similar to others already
categorized, and those settings would be adopted automatically.
This eliminates the need for human intervention every time there
is a context switch on the part of the user.

We have chosen two types of classification to categorize
websites – physical layout and content genre. Our approach to
classifying websites based on genre involves a one-time initial
processing stage where we pre-classify 200 of the top sites visited
by our group on a daily basis. We combine the textual content of
the site itself with the contents of search results returned by
searching for the site’s domain name on three of the top Internet
search engines (Google, Yahoo and Dogpile). Adding text from
search engine results enables us to leverage the small blurb
describing the site in the engine’s results, which assists in
classifying the site. Combining results per domain also improves
the frequency of the occurrence of words that describe the
function and content of the site. We then remove all stop words
and count the frequency of the words in the remaining text. Since
the resulting 200 sets of frequency graphs contain both words that
repeat across graphs and words that occur too infrequently to
affect content information, we pick all unique words that occur in
at least one of the graphs more than five times, creating a master
set of Key Words. A re-graph against this new set of Key Words
produces an accurate content genre identifier for each of these
websites (examples of results for Amazon and eBay are shown in
Figures 3 and 4 respectively).

Amaz on

0

5

10

15

20

25

W o r d K e y

Ser i es1

Figure 3 - Frequency chart for Amazon

Ebay

0

5

10

15

20

25

30

Word Key

Fr
eq

ue
nc

y

Series1

Figure 4 - Frequency Chart for eBay

Figure 5 - eBay (original, through Crunch 2.0 with news

settings and through Crunch 3.0 with auto-settings)

We can now use our classifications in conjunction with
a database containing filter settings for each of the 200 sites.
When we encounter a website that we haven’t seen before, we
again extract the text from the site and corresponding search
engine blurb, and perform a frequency match against the
frequently-occurring Key Words. We then use the Manhattan
histogram distance measure algorithm to measure the distance
between the website in question and our original classifications.
The formula is defined as

∑ −

=
−=

1

0 21211 |][][|),(
n

i
ihihhhD

The histogram (,) is represented as a vector,
where is the number of bins in the histogram (i.e., the number

of words in our Key Word Set). and must first be
normalized in order to satisfy the above distance function
requirements. In Crunch, the sum of the histogram’s bins is
normalized to 1 before computing the distance. We use the
settings associated with the website whose distance is closest to
the one being accessed.

1h 2h
n

1h 2h

In our previous example with CNN, Amazon and eBay,
the user might have already defined preferences for CNN and
Amazon. If the user navigates to eBay, the histogram matching
algorithm finds it to be most similar to Amazon from our pool of
categorized sites and picks the equivalent settings. We find that
the resulting page (Crunch 3 result - Figure 5) is quite acceptable.

We also tried other approaches and compared their
accuracy and speed to the Manhattan distance. For example,
Euclidean distance measuring gave us equivalent results with
slightly greater computational overhead.

∑ −

=
−=

1

0
2

212])[2][1(),(
n

i
ihihhhD

 We have also tried using a simplified version of the
Mahalanobis histogram distance formula

)()(),(12 yxCyxyxd T −−= −

where x and y are two feature vectors, and each element of the
vector is a variable. x is the feature vector of the new
observation, is the averaged feature vector computed from the

training examples, and is the inverse covariance matrix,
where

y
1−C

jyiyjyiyCovijC ,).,(=

are the ith and jth elements of the training vector. The advantage of
Mahalanobis distance is that it takes into account not only the
average value but also its variance and the covariance of the
variables measured. We expected the Mahalanobis formula to be
most accurate; however, this was not the case, probably due to the
lack of a large amount of variance in our training data. If we had
results from more then three different search engines, we could
potentially improve the variance in our data and the Mahalanobis
histogram distance might give us more reliable results. The
current system uses the simple and efficient Manhattan histogram
distance measure.

 In Figures 6 and 7, we show the frequency chart for
CNN and Spacer.com (an astronomy news related site)
respectively. Crunch determines that both these sites are similar
enough to warrant the same set of settings. The results viewed in
the browser can be seen in the Crunch 3.0 results of Figure 8.

CNN

0

5

10

15

20

25

30

35

40

45

Word Key

Fr
eq

ue
nc

y

Series1

Figure 6 - Frequency chart for CNN

Spacer

0

5

10

15

20

25

30

35

40

Word Key

Fr
eq

ue
nc

y

Series1

Figure 7 - Frequency chart for Spacer

Figure 8 - Spacer.com (original, through Crunch 2.0 with

shopping settings and through Crunch 3.0 with auto-settings)

As shown in Figures 4-8, we do not classify websites
exclusively into predefined genres. Based on the word frequency
histogram we either find an already-defined genre with a similar
histogram or create a new genre centered on the new website.
Currently websites are assumed to be identical within the domain,
which works well for homogeneous sites created with a content
management system [39], but less well for heterogeneous sites
such as geocities.com assumed to be of a single genre for the
entire domain.

In order to classify websites based on their physical
characteristics, we manually created a database of physical
layouts of the same 200 top visited sites, and classified them into
several basic categories. Categorizations include the number of
columns, link density, type of site (news, shopping, banking,
Weblog, etc.) and the percentage amount of “content” data
contained in the various columns. Future work includes
automating this process. Our approach will be to analyze the
constituent parts of the HTML in the DOM tree using tree pattern
inference. [38]

The user has the option of overriding our automatic
settings through Crunch’s user interface. Ultimately, we hope to
use the data produced using physical classification to add to the
information gained through content and genre classification to
produce even more accurate results.

4. RELATED WORK

4.1 Content Extraction

There is a large body of related work in content
identification and information retrieval that attempts to solve
similar problems using various other techniques. However, we
have found that most of these solutions are too time consuming to
be effective for web browsing. Rahman et al. [2] propose
techniques that use structural analysis, contextual analysis, and
summarization. The structure of an HTML document is first
analyzed and then decomposed into smaller subsections. The

content of the individual sections is then extracted and
summarized. While the paper describes prerequisites for content
extraction, it doesn’t propose methods to do so. The solution is
meant for constrained devices like cell phones, but the user has
little control over the output that s/he views. Their technique is not
adjustable; therefore the user has low flexibility retrieving
removed content.

Finn et al. [1] discuss methods for content extraction
from “single-article” sources, where content is presumed to be in
a single body. The algorithm tokenizes a page into either words or
tags; the page is then sectioned into 3 contiguous regions, placing
boundaries to partition the document such that most tags are
placed into outside regions and word tokens into the center region.
This approach works well for single-body documents, but
destroys the structure of the HTML and doesn’t produce good
results for multi-body documents, i.e., where content is segmented
into multiple smaller pieces, common on Web logs (“blogs”) like
Slashdot (http://slashdot.org). In order for content of multi-body
documents to be successfully extracted, the running time of the
algorithm would become exponential with a degree equal to the
number of separate bodies, i.e., extraction of a document
containing 8 different bodies would run in O(N8), N being the
number of tokens in the document.

McKeown et al. [8][15], in the NLP group at Columbia
University, detects the largest body of text on a webpage (by
counting the number of words) and classifies that as content. This
method works well with simple pages. However, this algorithm
produces noisy or inaccurate results when handling multi-body
documents, especially with random advertisement and image
placement.

Multiple approaches have been suggested for formatting
web pages to fit on the small screens of cellular phones and PDAs
(including the Opera browser [16] and its use of the handheld CSS
media type, and Bitstream ThunderHawk [17]); however, the
reformatting approaches generally do not distinguish significant
from subsidiary content (that is, clutter), nor remove the latter.

Buyukkokten et al. [3][10] define “accordion
summarization” as a strategy where a page can be shrunk or
expanded much like the instrument. They also discuss a method to
transform a web page into a hierarchy of individual content units
called Semantic Textual Units, or STUs. First, STUs are built by
analyzing syntactic features of an HTML document, such as text
contained within paragraph (<P>), table cell (<TD>), and frame
component (<FRAME>) tags. These features are then arranged
into a hierarchy based on the HTML formatting of each STU.
STUs that contain HTML header tags (<H1>, <H2>, and <H3>)
or bold text () are given a higher level in the hierarchy than
plain text. This hierarchical structure is finally displayed on PDAs
and cellular phones. While Buyukkokten’s hierarchy is similar to
our DOM tree-based model, DOM trees remain highly editable
and can easily be reconstructed back into a complete webpage.
DOM trees are also a widely-adopted W3C standard, easing
support and integration of our technology. The main problem with
the STU approach is that once the STU has been identified,
Buyukkokten, et al. [3][4] perform summarization on the STUs to
produce the content that is then displayed on PDAs and cell
phones. This requires very time consuming processing on the
original content.

Kaasinen et al. [5] discuss methods to divide a web page
into individual units likened to cards in a deck. Like STUs, a web
page is divided into a series of hierarchical “cards” that are placed

http://slashdot.org/

into a “deck”. This deck of cards is presented to the user one card
at a time for easy browsing. The paper also suggests a simple
conversion of HTML content to WML (Wireless Markup
Language), resulting in the removal of simple information such as
images and bitmaps from the web page so that scrolling is
minimized for small displays. While this reduction has
advantages, the method proposed in that paper shares problems
with STUs. The problem with the deck-of-cards model is that it
relies on splitting a page into tiny sections that can then be
browsed as windows. But this means that it is up to the user to
determine on which cards the actual contents are located.

4.2 Genre Classification

There is some related work that tries to classify
webpages by genre which we found to be helpful. Karlgren et al.
[33][34] showed that the texts that were judged relevant to a set of
queries differ substantially from the texts that were not relevant.
Stamatatos et al. [29] show that the frequency of word occurrence
is very useful in automatic text genre classification. This approach
is similar to ours, and produces results that are domain
independent and require minimal computation.

There are approaches that detect genre based on surface
cues where comparisons are made between the performances of
function words and the Parts Of Speech trigrams. Kessler et al.
[30] and Argamon et al. have shown good results with this
technique; however, their approach is dependent on substantial
bodies of text, the domain of their classification is fairly limited,
and cannot be applied dynamically to all web-sites.

Roussinov et al. [32] define genre as a group of
documents with similar form, topic or purpose, “a distinctive type
of communicative action, characterized by a socially recognized
communicative purpose and common aspects of form”. They
show the advantages of browsing the web by genre but their
application is only designed to help categorize documents so users
can see similar pages. There is no work in terms of content
extraction.

Rauber et al. [36] use the age of a document and
frequency of lookups as important distinguishing features and
present a method of automatic analysis based on various surface
level features of the text.

While all these approaches are valid, we find them all to
be lacking for our problem domain. Most are either too
computationally expensive or are too domain specific. We also
find that most approaches try to extract a word or phrase to
describe the context of a given page. We instead compute the
genre from a large set of words with individual weights, as it
allows for greater accuracy when comparing between an
extremely varied ranges of websites.

5. IMPLEMENTATION DETAILS

In the new version of Crunch, we have improved
flexibility for most filters by improving the plug-in API as well as
by adding new features to each. Users now have the ability of
controlling, at a finer granularity, the filtering of complex web
pages where certain HTML structures are embedded within
others, e.g., controlling not only the content on the entire page but
also controlling the parameters that address table cells.

Figures 10 and 11 show some of these changes.
Additional example screenshots, including a high contrast scheme

for vision-impaired users, are contained in the Appendix at the
end of the paper.

Figure 9 - Crunch 3.0 Plug-ins Window

Figure 10 - Crunch 3.0 Settings Windows

Like with the previous versions of Crunch, the average
runtime complexity of the newer version remains at O(N+P),
where N is the number of nodes in the DOM tree after the HTML
page is parsed and P is the big-O complexity of the least-efficient
plug-in. However, the worst case running time increases to
O(N*P) due to our addition of the multi-pass system: in case of a
bad result, a filtered webpage may have to revert to a previous
state and re-run through the proxy with a different set of options,
and this may happen for any number of nodes in the DOM tree.
[17]

We have also added support for CSS files and script-
generated webpages. Previously, Crunch did not understand CSS,
and it stripped away all such non-HTML content from a webpage.
This often led to pages that had lost their original look and feel.
We now preserve CSS alongside HTML, producing a page that
largely retains the appearance of the original site. The user still
has the ability to apply their own CSS directives should their web
browser support it, since that is a client-side operation, and
Crunch simply acts as a proxy. Additionally, we do not strip out
Javascript or other embedded script tags out of the HTML content
in our first pass. Both these features have allowed us to support a
much wider variety of websites.

As pointed out before, we have spent a fair amount of
time on improving Crunch’s usability. Other implementation
changes include:

1) The original version of Crunch used OpenXML [25] as its
HTML parser. As we noted in our previous work, OpenXML has
efficiency problems that are unlikely to be fixed since OpenXML
is apparently no longer an active project. Instead, we switched to
NekoHTML [35] – an HTML scanner, tag balancer and parser for
the Apache open-source project, Xerces [35]. We chose this new
parser as it has many benefits – most notably, increased parsing
speed and robust correction of buggy HTML/XML. One of the
key longer-term benefits is that we are now using a parser that is
under active development. NekoHTML currently has some
problems parsing some pages; in particular, the output is not
always rendered the same as input, e.g., certain complex nested
tables and some CSS-enabled pages. [17] However, most of these
errors are minor cosmetic ones that Crunch usually manages to fix
in its new multi-pass scheme. Additionally, the developers of
NekoHTML are working on its deficiencies. NekoHTML assists
in our handling of multiple versions of HTML. Much like our
work with the previous parser, Crunch downloads the appropriate
HTML stream and sends it to NekoHTML and gets back a DOM
tree upon which it applies filters. It then uses an HTML serializer
to send data to the client. With this architecture, Crunch can
handle any version of HTML NekoHTML supports, including all
current versions of HTML and xHTML. [17]

2) Since users often get frustrated with the latency in loading of
webpages, we spent a substantial amount of time tuning the
performance of the proxy to produce more near-real time results.
Some speed improvement was achieved through switching to
NekoHTML. The other major contributor to increased speed was
the optimization of Crunch’s networking code, originally written
using Java’s blocking I/O API. By collapsing multiple writes and
reads, dealing with timeouts more efficiently, and removing
unnecessary or redundant calls in the transfer loops, server
performance and bandwidth utilization now seems adequate.

In order to try and deal with large workgroup loads, we
have migrated Crunch to a staged event architecture using Java’s
non-blocking I/O API. We now use asynchronous callbacks to
avoid threading scalability issues. The concept of a staged event
architecture was introduced formally by Welsh [37] for
performance gains in highly concurrent server applications, so
that they are able to “support massive concurrency demands” [37].
The concept of thread pools helps large-scale systems like Apache
webserver deal with the load spikes efficiently. We took the same
concept and extended it in our framework so that Crunch can meet
the demands of several parallel requests in a groupware setup. We
have not yet conducted a performance study with large loads, but
we hope to soon.

3) One of the biggest changes made in recent versions of Crunch
was to change the basis of the user interface from Java Swing to
IBM’s SWT (Standard Widget Toolkit [16]). The original UI
made our proxy sluggish and user unfriendly. SWT has an
extremely clean interface, allows the creation of attractive UIs,
and is highly responsive, partially due to its use of JNI and native
routine calls that can take advantage of the operating system's
built-in optimizations. It also uses native GUI widgets to provide
a look and feel consistent with the operating system, while
remaining operating system independent. As an added benefit,
SWT allows the program to be compiled into a binary executable,
resulting in a faster startup time, a smaller distribution, less
memory utilization, and an easier installation for novice users.
The latest version of Crunch can be downloaded in executable
form from our website at http://www.psl.cs.columbia.edu/crunch.

 Screenshots of the new proxy GUI are shown above as
well as in the Appendix, where we see the basic settings and the
available plug-ins as well as the advanced functions.

4) Accessibility was another focus. Switching to SWT
helped us maximize accessibility, as described below. One of
Crunch’s main goals is to assist disabled persons in browsing the
web, yet the previous version of Crunch’s UI was highly
inaccessible. Visually impaired users were then dependent on an
administrator to adjust their settings. There are millions of blind
or visually impaired people in the US alone and only a small
fraction of them are currently able to surf the web [17]. Worse,
visually impaired users will often spend several minutes in finding
the content they are seeking on a given website. We conducted a
small user study with Dr. Michael Chiang, M.D., Instructor in
Clinical Ophthalmology and a Research Master's Candidate in the
Department of Medical Informatics here at Columbia University.
The goal was to find the common causes of visually impaired
users’ browsing latency to help us address them directly. Our goal
was to use Crunch to reduce this time to something more in line
with regular users.

There are three basic categories of accessibility support:
mobility enablement, visual enhancement, and screen readers
[17]. Crunch provides mobility enablement as all settings can be
easily accessed using a keyboard in lieu of a mouse. SWT
provides keyboard accelerators in the API and supports intelligent
tabbing through GUI components. SWT leverages the operating
system’s accessibility support [17]; therefore Windows’ ability to
use large fonts and high-contrast themes works with Crunch. SWT
also supports Microsoft Active Accessibility Support (MAAS)
and its associated widgets, so Crunch automatically supports
screen readers that read content from the window with focus. An
example screenshot of such changes is in the Appendix.

http://www.psl.cs.columbia.edu/crunch

6. FUTURE WORK

Detecting bad output, and especially quantifying what
makes bad output bad, is a hard problem. Training our multi-pass
filter to learn to detect bad output is one of our major goals for the
future.

We have found that sites that require large amount of
form-based input, like most shopping and/or banking sites, often
need to be rendered in a specific format in order for them to be
usable by the user. Currently, we only have a binary option of
removing forms or leaving them in. We plan to work on detecting
related form items and showing those that are most relevant to the
task at hand.

While NekoHTML works well, we would also like to
test a commercial HTML parser like the ones that are bundled
with Mozilla or Internet Explorer and compare their efficiency.

We will also continue to work on improving the latency
and scalability of Crunch, especially since tabbed browsing is
becoming increasingly popular and users often open up several
tens of pages at a time.

We would also like to create physical layout heuristics
by inferring tree patterns [38], i.e., finding patterns within the
DOM trees of multiple pages from the same domain and use
dissimilarity information to extract content from webpages.

We will continue to work on clustering websites into
useful clusters of genres and find algorithms for interpolating
settings for websites that do not clearly fall into one cluster

Finally, we would like to use machine learning and
natural language processing to learn user’s browsing habits and
workflow from work done in other applications and applying that
knowledge gained towards content extraction.

7. CONCLUSION

Many web pages contain excessive clutter around the
body of an article. Although much research has been done on
content extraction, it is still a relatively new field. We have
presented the changes made to our proxy through user interface
and performance improvements. We have found that while the
results that our original proxy produced were quite accurate, they
had to be tweaked by hand for various websites that differ
drastically in content and form. We have started to address that
problem by dynamically detecting the context of the website, both
in terms of physical layout as well as content genre. Using this
information and comparing this to previously known results that
work well for certain genres of sites, we are able to select settings
for our heuristics and achieve the same results automatically that
previously required a human administrator. We have also further
improved our previously published results by supporting a wider
variety of webpages through the support of CSS as well as
Javascript-enabled websites. The Crunch framework provides the
basis for additional research in context extraction and
accessibility.

8. ACKNOWLEDGMENTS

The Programming Systems Laboratory is funded in part by
National Science Foundation grants CNS-0426623, CCR-0203876
and EIA-0202063. Part of the work reported in this paper

emanated from research from the Columbia IDS lab, which has
been supported by grants form NSF and HS ARPA.
In addition, we would like to extend a special thanks to Peter
Grimm, David Neistadt, Ke Wang, Janak Parekh and Phil Gross
for their help towards this project.

9. REFERENCES

[1] Aidan Finn, Nicholas Kushmerick and Barry Smyth. “Fact

or fiction: Content classification for digital libraries”. In
Joint DELOS-NSF Workshop on Personalisation and
Recommender Systems in Digital Libraries (Dublin),
2001.

[2] A. F. R. Rahman, H. Alam and R. Hartono. “Content
Extraction from HTML Documents”. In 1st Int. Workshop
on Web Document Analysis (WDA2001), 2001.

[3] O. Buyukkokten, H. Garcia-Molina and A. Paepcke.
“Accordion Summarization for End-Game Browsing on
PDAs and Cellular Phones”. In Proc. of Conf. on Human
Factors in Computing Systems (CHI'01), 2001.

[4] O. Buyukkokten, H, Garcia-Molina and A. Paepcke.
“Seeing the Whole in Parts: Text Summarization for Web
Browsing on Handheld Devices”. In Proc. of 10th Int.
World-Wide Web Conf., 2001.

[5] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski and T.
Laakko. “Two Approaches to Bringing Internet Services
to WAP devices”. In Proc. of 9th Int. World-Wide Web
Conf., 2000.

[6] Stuart Hanzlik “Gorilla Design Studios Presents: The
Hosts File”. Gorilla Design Studios. August 31, 2002.
http://accs-net.com/hosts/.

[7] Marc H. Brown and Robert A. Shillner. “A New Paradigm
for Browsing the Web”. In Human Factors in Computing
Systems (CHI'95 Conference Companion), 1995.

[8] K.R. McKeown, R. Barzilay, D. Evans, V.
Hatzivassiloglou, M.Y. Kan, B. Schiffman and S. Teufel.
“Columbia Multi-document Summarization: Approach
and Evaluation”, In Document Understanding Conf.,
2001.

[9] N. Wacholder, D. Evans and J. Klavans. “Automatic
Identification and Organization of Index Terms for
Interactive Browsing”. In Joint Conf. on Digital Libraries
’01, 2001.

[10] O. Buyukkokten, H. Garcia-Molina and A. Paepcke. “Text
Summarization for Web Browsing on Handheld Devices”,
In Proc. of 10th Int. World-Wide Web Conf., 2001.

[11] Manuela Kunze and Dietmar Rosner. “An XML-based
Approach for the Presentation and Exploitation of
Extracted Information”. In 19th International Conference
on Computational Linguistics, (Coling) 2002.

[12] A. F. R. Rahman, H. Alam and R. Hartono.
“Understanding the Flow of Content in Summarizing
HTML Documents”. In Int. Workshop on Document
Layout Interpretation and its Applications, DLIA01, Sep.,
2001.

http://accs-net.com/hosts/

[13] Wolfgang Reichl, Bob Carpenter, Jennifer Chu-Carroll
and Wu Chou. “Language Modeling for Content
Extraction in Human-Computer Dialogues”. In
International Conference on Spoken Language Processing
(ICSLP) 1998.

[14] Ion Muslea, Steve Minton and Craig Knoblock. “A
Hierarchal Approach to Wrapper Induction”. In Proc. of
3rd Int. Conf. on Autonomous Agents (Agents'99), 1999.

[15] Min-Yen Kan, Judith L. Klavans and Kathleen R.
McKeown. “Linear Segmentation and Segment
Relevance”. In Proc. of 6th Int. Workshop of Very Large
Corpora (WVLC-6), 1998.

[16] Suhit Gupta, Gail Kaiser, David Neistadt, Peter Grimm,
"DOM-based Content Extraction of HTML Documents",
12th International World Wide Web Conference, May
2003.

[17] Suhit Gupta; Gail E Kaiser, Peter Grimm, Michael F
Chiang, Justin Starren, "Automating Content Extraction of
HTML Documents" Submitted to the World Wide Web
Journal, January 2004

[18] Suhit Gupta, Gail Kaiser, "CRUNCH - Web-based
Collaboration for Persons with Disabilities", W3C Web
Accessibility Initiative, Teleconference on Making
Collaboration Technologies Accessible for Persons with
Disabilities, Apr 2003.

[19] http://www.opera.com

[20] http://www.bitstream.com/wireless

[21] http://sourceforge.net/projects/wpar

[22] http://www.webwiper.com

[23] http://www.junkbusters.com

[24] http://www.opera.com

[25] http://www.openxml.org

[26] Private communication, Min-Yen Kan, Columbia NLP
group, 2002.

[27] Bauer, T. and Leake D., WordSieve: A Method for Real-
Time Context Extraction. Modeling and Using Context:
Proceedings of the Third International and

Interdisciplinary Conference, Context 2001, Springer-
Verlag, 2001.

[28] Gerard Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley Series in Computer Science.
Addison-Wesley Publishing Company, Inc., 1989.

[29] E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Text
genre detection using common word frequencies.
International Conference on computational Linguistics,
2000.

[30] Brett Kessler, Geoffrey Nunberg, and Hinrich Schutze.
Automatic detection of text genre. ACL/EACL, 1997.

[31] Shlomo Argamon, Moshe Koppel, and Galit Avneri.
Routing documents according to style. International
Workshop on Innovative Information Systems, 1998.

[32] Dmitri Roussinov, Kevin Crosswell, Mike Nilan, Barbara
Kwasnik, Jin Cai, and Xiaoyong Liu. Genre based
navigation of the web. International Conference on System
Sciences, 2001.

[33] J. Karlgren. Stylistic experiments in information retrieval.
Natural Language Information Retrieval. Kluwer, 1999.

[34] J. Karlgren, Ivan Bretan, Johan Dewe, Anders Hallberg,
and Niklas Wolkert. Iterative information retrieval using
fast clustering and usage-specific genres. DELOS
workshop on User Interfaces in Digital Libraries, pages
85–92, Stockholm, Sweden, 1998.

[35] http://www.apache.org/~andyc/neko/doc

[36] A. Rauber and A. Muller-Kogler. Integrating automatic
genre analysis into digital libraries. Joint Conf on Digital
Libraries, 2001.

[37] Welsh, M. “The Staged Event-Driven Architecture for
Highly-Concurrent Server Applications” Ph.D. Qualifying
Examination Proposal, UC Berkeley, December 2000.
http://www.cs.berkeley.edu/˜mdw/papers/quals-seda.pdf.

[38] Andrew Hogue, “Tree Pattern Inference and Matching for
Wrapper Induction on the World Wide Web”, Master’s
Thesis, Massachusetts Institute of Technology

[39] James Robertson, “So, what is a content management
system?” KM Column, June 2003

http://www.opera.com/
http://www.bitstream.com/wireless
http://sourceforge.net/projects/wpar
http://www.webwiper.com/
http://www.junkbusters.com/
http://www.opera.com/
http://www.openxml.org/
http://www.apache.org/~andyc/neko/doc

10. APPENDIX

Figure 11 - Crunch 3.0 Status Window

Figure 12 - Crunch 3.0 Settings Window

Figure 13 - Crunch 3.0 in contrast

Figure 14 - Crunch 3.0 settings in contrast

Figure 15 - Crunch 3.0 settings

	INTRODUCTION
	BACKGROUND
	CONTEXT EXTRACTION
	RELATED WORK
	IMPLEMENTATION DETAILS
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX

