Automatic Measurement of Memory Hierarchy Parameters®

Kamen Yotov, Keshav Pingali, Paul Stodghill
{kyotov,pingali, stodghil}@cs.cornell.edu
Department of Computer Science,

Cornell University,

Ithaca, NY 14853.

ABSTRACT

On modern computers, the running time of many applica-
tions is dominated by the cost of memory operations. To
optimize such applications for a given platform, it is neces-
sary to have a detailed knowledge of the memory hierarchy
parameters of that platform. In practice, this information
is usually poorly documented if at all. Moreover, there is
growing interest in self-tuning, autonomic software systems
that can optimize themselves for different platforms, and
these systems must determine memory hierarchy parame-
ters automatically without human intervention.

One solution is to use micro-benchmarks to determine
the parameters of the memory hierarchy. In this paper, we
argue that existing micro-benchmarks are inadequate, and
present novel micro-benchmarks for determining the para-
meters of all levels of the memory hierarchy, including reg-
isters, all caches levels and the translation look-aside buffer.
We have implemented these micro-benchmarks into an in-
tegrated tool that can be ported with little effort to new
platforms. We present experimental results that show that
this tool successfully determines memory hierarchy parame-
ters on many current platforms, and compare its accuracy
with that of existing tools.

1. INTRODUCTION

This paper makes the following contributions.

e We describe novel algorithms for measuring memory
hierarchy parameters, including cache parameters such
as the capacity, associativity, block size and latency of
caches at various levels of a memory hierarchy. Un-
like existing micro-benchmarks that consider all levels
of the memory hierarchy simultaneously, our micro-
benchmarks consider one level of cache at a time, which
permits us to measure cache parameters more accu-
rately than existing approaches can. We also describe
algorithms for measuring the parameters of the trans-
lation look-aside buffer (TLB), and the number of reg-
isters.

e We have implemented these algorithms in a tool called
X-Ray [15], which is easily ported to new platforms.

* This work was supported by NSF grants ACI-9870687, EIA-S5R
ACI-0085969, ACI-0090217, ACI-0103723, and ACI-012140.

We describe experimental results obtained by running
X-Ray on a number of high-performance platforms.
These results show that X-Ray can measure more mem-
ory hierarchy parameters than existing tools can, and
that the results it reports are usually more accurate.

On modern computers, the cost of memory accesses dom-
inates the running time of most applications. To reduce the
running time of a program, its memory access patterns can
be optimized by transformations such as loop tiling and data
reorganization [1]. The implementation of these transforma-
tions requires a detailed knowledge of the memory hierarchy
of the platform on which the program will run. For example,
algorithms for loop tiling use the capacity of the cache to
select the tile size. Some of these algorithms use the cache
block size and associativity as well to make a more accu-
rate determination of tile size [14]. Similarly, efficient data
reorganization requires knowing cache capacity and block
size.

Traditionally, these kinds of optimizations were imple-
mented either manually or in a compiler. In either case, the
programmer or the compiler writer was assumed to have de-
tailed specifications of the platform. In practice, parameters
of the cache hierarchy are poorly documented, if at all, on
most systems. On some machines, it may be possible to de-
termine some of this information by reading special registers
or records in the processor or operating system [3]. How-
ever, most processors and operating systems do not support
such mechanisms or provide very limited support. Regis-
ters pose a different problem. The number of architected
registers is specified in the instruction set, but what is rele-
vant to program optimization is the number of registers that
can be used for program variables, which may be different.
For example, the SPARC instruction set has 32 architected
floating-point registers, but register 0 is hardwired to 0, so
the number of registers available to the register allocator is
only 31. Therefore, it is useful to have micro-benchmarks to
automatically determine memory hierarchy parameter val-
ues relevant to program optimization.

The need for such benchmarks is becoming all the more
urgent given the trend towards self-optimizing software sys-
tems that can optimize their own performance without hu-
man intervention. Successful systems of this sort include
ATLAS [13], which is a portable system that produces highly
tuned linear algebra libraries, and FFTW [4] and Spiral [10],
which are similar systems for generating digital signal process-
ing libraries. When installed a new machine, these systems
execute a set of micro-benchmarks to determine the hard-
ware parameters of the machine, and then use these values
to determine optimal values for various software parame-
ters. Some of these systems, such as ATLAS, use global

search to determine optimal values for software parameters,
so they use the hardware parameter values only to guide the
search process. Other systems use the hardware parameter
values to directly estimate optimal values for the software
parameters [14]. Once optimal values are determined for the
software parameters, these systems generate C code, which
is compiled using the native C compiler. This approach can
provide portability without compromising performance. We
note that accurate micro-benchmarks are key to the success
of self-optimizing software as well.

In this paper, we present micro-benchmarks for measuring
the parameters of the memory hierarchy of a platform, in-
cluding all levels of cache, registers, and the TLB. Existing
tools such as Imbench [7], Calibrator [6] and MOB [2] mea-
sure some of these memory hierarchy parameters, but our
experiments show that none of them offer the same cover-
age of parameters or the accuracy of our micro-benchmarks.
These tools implement variations of the micro-benchmark
developed by Saavedra [11], which is reproduced in Hen-
nessy and Patterson’s architecture book [5] and is discussed
in Section 2 of this paper. This benchmark, which is a C
program, measures the time required to access a series of
array elements with different strides. The timing results are
fairly complex because the micro-benchmark considers all
levels of the memory hierarchy simultaneously. Therefore,
these results are usually interpreted manually to obtain the
memory hierarchy parameters. Although tools like MOB,
Calibrator and Imbench can determine some cache parame-
ters automatically from these timing results, none of them
is able to measure cache associativity for example. More-
over, optimizations performed by modern compilers when
compiling the C code can confuse the timing measurements.
Yet another problem is that hardware pre-fetching for fixed-
stride accessed to memory on machines like the IBM Power
architecture can compromise the timing measurements fur-
ther.

The micro-benchmarks we present in this paper deter-
mine cache parameters for one level of cache at a time,
rather than consider all levels simultaneously. In particu-
lar, when measuring the parameters of a cache level i, the
micro-benchmarks ensure that higher cache levels L1, L2, . ..
are “transparent” to the measurements in the sense that the
memory accesses are guaranteed to miss in those caches. Of
course this is not a problem for the L1 cache, so our micro-
benchmarks use fixed stride accesses there, as we discuss in
Section 4. However, our algorithms are novel, and we take
care to ensure that compiler optimizations and hardware
pre-fetching do not compromise the timing measurements.
In Section 5, we show that by using more complex mem-
ory access patterns (in particular, a sequence of sequences),
we can measure the parameters of lower cache levels with-
out interference from higher cache levels. In Sections 6 and
7, we show how some TLB parameters and the number of
registers can be measured automatically. We present ex-
perimental results in Section 8 that show that we provide
better accuracy and coverage of memory hierarchy parame-
ter measurement than existing tools. Finally, in Section 9,
we discuss future work.

2. PREVIOUS APPROACHES

The general approach to measuring memory hierarchy pa-
rameters is to repeatedly access the elements of a large array
in memory using different strides, and measure the aver-

age time per access. The results are then interpreted to
deduce different memory hierarchy parameters. The most
widely known micro-benchmark for such measurements is
the benchmark of Saavedra [11], a stylized version of which
is presented in Figure 1. We make the following observa-
tions.

1. The benchmark performs series of experiments for pairs
of the form (csize, stride), where the array size (csize)
varies between CACHE_MIN and CACHE_MAX and the stride
(stride) varies between 1 and csize. Both are re-
stricted to powers of 2.

2. For each pair (csize, stride), the benchmark traverses

the array x with the specified stride enough times (SAMPLE X

steps) to ensure that the total time spend is at least
time = 1 second.

3. The measurement for the same pair (csize, stride) is
repeated using the exact same looping code structure,
and the same number of times, but this time accessing
a single scalar variable (temp) instead of elements of
the array x.

The benchmark has problems at both the algorithmic and
implementation level, as summarized below.

1. Algorithmic Level

(a) The benchmark considers all levels of the mem-
ory hierarchy simultaneously, so each timing re-
sult is possibly influenced by several parameters
from different cache levels. Therefore, the inter-
pretation of the timing results is complex.

(b) The benchmark does not interpret the timing re-
sults to produce actual memory hierarchy para-
meters itself, but rather produces a set of mea-
surements that need to be interpreted manually.

(¢) The benchmark uses only array sizes restricted
to powers of 2, which prevents it from measuring
cache capacities that are not a power of 2. How-
ever, an increasing number of caches on modern
architectures, such as the Level 3 cache on the
Itanium 2, have capacities that are not a power
of 2.

2. Implementation Level

(a) The source code uses a very complex looping struc-
ture, which is the source of substantial loop over-
head. An attempt is made to account for that
overhead by measuring and subtracting the time
of execution of a cloned version the same looping
structure which does not perform any memory
accesses. Unfortunately, there is no control over
the back-end compiler, so different code may be
produced for the two replicas, thus yielding inac-
curate results.

(b) All memory accesses are independent, which al-
lows an aggressively optimizing compiler to sched-
ule them in a way so that some overlap. This is
mainly a problem for measuring access latency,
but also cause inaccuracies in measuring other pa-
rameters.

#define SAMPLE (5)
#define CACHE_MIN (1024)
#define CACHE_MAX (16%1024%1024)

int x[CACHE_MAX];

int main Q)

int temp;

for (int csize = CACHE_MIN; csize <= CACHE_MAX; csize *= 2)
for (int stride = 1; stride <= csize / 2; stride *= 2)

double time = 0.0;

int steps = 0;

int tsteps = 0;

int limit = csize - stride + 1;
o

double time0 = get_time();

for (int i = SAMPLE * stride; i !'= 0; --i)
for (int index = 0; index < limit; index += stride)

x [index] ++;
Steps++;

time += get_time() - timeO;
} while (time < 1.0);
o

double time0 = get_time();

for (int i = SAMPLE * stride; i != 0; --i)
for (int index = 0; index < limit; index += stride)

temp += index;
tsteps++;
time -= get_time() - timeO;
} while (tsteps < steps);

printf("size: %d, stride: %d, time:

%d"

csize * sizeof(int), stride * sizeof(int),
(int) (time * 1E9 / (steps * SAMPLE * stride * ((limit - 1) / (stride + 1)));

Figure 1: Standard memory hierarchy benchmark

(c) Both memory read and write are performed on
the current array element, which introduces in-
terference with write buffers and further prohibit
the measurement of these operations in isolation.

(d) The addressing mode used to access array ele-
ments involves base address and offset and on
many RISC architectures this operation requires
an extra address computation instruction before
performing the actual memory access instruction.

(e) The source code does not use the values of ac-
cessed array elements and more importantly the
value of the temp variable for anything meaning-
ful, so a smart optimizing compiler can prune por-
tions of the code during dead code elimination.

(f) There is a constant stride between accesses of ar-
ray elements and some modern architectures pro-
vide speculative hardware which is able to prefetch
constant stride accesses to memory into the higher
levels of the memory hierarhcy.

(g) It is implicitly assumed and very important for
the benchmark that the array x is stored in a
contiguous chunk of memory. In reality, it is only
guaranteed to be contiguous in virtual memory
and can be fragmented in physical memory. In
many cases lower cache levels are physically ad-
dressed, which invalidates this important assump-
tion.

The existing systems we examined all use this micro-bench-
mark in one form or another, although some of them at-
tempt to address some of these problems in various ways.
Our approach is very different at the algorithmic level, and
it eliminates the implementation problems discussed above.

3. COMPACTNESS OF SEQUENCES

The micro-benchmarks discussed in this paper measure
the associativity (A), block size (B), capacity (C), and hit
latency (1) of caches. The first three parameters are some-
times referred to as the (A, B, C') of caches.

t=20 i=7 b=5—»

tag index offset

Figure 2: Memory address decomposition on P6

Figure 2 shows the typical structure of a memory address.
We use the Intel P6 (Pentium Pro/II/III) architecture in
the following explanations. On these machines, the L1 data
cache is organized as (A, B,C) = (4,32,16KB). Therefore
the cache contains C' =~ B = 16384 + 32 = 512 individual
blocks, divided into 512+ A = 512+4 = 128 sets of 4 blocks
each. The highest ¢ = 20 bits constitute the block tag, : =7
bits are needed to index one of the 128 sets, and b = 5 bits
are needed to store the offset of a particular byte within the
32-byte block.

DEFINITION 1. For a cache with associativity A and ca-
pacity C, we define the stride T' of that cache as T = %.

Note that T = 2¢7° and thus ¢ = A x 2°*®. Lemma 1
gives another characterization of T'.

LEMMA 1. Consider a cache with stride T', and addresses
mo and m aligned on a cache block boundary. The address
m maps to the same cache set as mo iff m = mo—+k xT for
some integer k.

PRrROOF. Follows directly from the definition. [

Unlike cache stride, associativity and capacity do not have
to be a power of 2. For example, some versions of Intel Ita-
nium 2 have a 24-way set associative L3 cache with capacity
6MB.

If W is a set of addresses, we define project, (W) to be
the subset of W containing only the addresses that map to
cache set 4, and indices (W) to be the set of cache indices of
the elements of W.

DEFINITION 2. For a set of addresses W, and a indez i,
project; (W) = {m € W : index (m) = i}

DEFINITION 3. For a set of addresses W,

indices (W) = {i : project, (W) # 0}

We assume that set-associative caches implement the least-
recently-used (LRU) replacement policy. This assumption is
reasonable because most modern processors implement vari-
ants of this policy. Moreover, our experimental results show
that our micro-benchmarks can be accurate even when the
policy is not LRU.

3.1 Sequences

Some of our micro-benchmarks access sequences of N ad-
dresses, where successive addresses are separated by a stride
S = 27 as shown in Figure 3(a). Such sequences are com-
pletely characterized by their starting address mo, stride S
and number of elements N and therefore we use the nota-
tion (mo, S, N) to represent them. To measure parameters
of multilevel memory hierarchies our micro-benchmarks use
sequences of sequences, as shown in Figure 3(b). To repre-
sent them we use the notation W = ((mo, s,n), S, N).

(b) ({mo,s,n),S,N)

Figure 3: Sequences of sequences

DEFINITION 4.
(a) {mo,S,N) =[mo,mo+S,...,mo+ (N —1)5]

(b) ({mo,s,n),S,N) = Uscjo,n—1] (Mo +1@ x S,s,n)

In Definition 4(b), we call each subsequence (mo + i X S, s,n)

of ({(mo, s,n),S, N) an inner subsequence.

Notice that the sequence of addresses in Figure 3(b) can
also be expressed as ({(mo, S, N),s,n). This property is ex-
pressed in Lemma 2.

LeEMMA 2. ((mo,s,n),S,N) = ((mo,S,N),s,n)

3.2 Compactness

We determine cache parameters by measuring the aver-
age time per memory access when accessing the elements of
certain sets of memory addresses.

When all addresses of an address sequence W can coex-
ist together in a cache we say that W is compact with re-
spect to that cache and the average access time is the cache
hit latency ln;:. When the sequence is not compact and
we repeatedly access its elements the cache will suffer some
misses. If every single access is a cache miss, we say that W
is non-compact and the average access time is the cache miss
latency lmiss, which is typically much greater than lp;:. Fi-
nally, when some accesses are cache hits and some are cache
misses, the average access time is between ;¢ and lm,iss and
we say that W is semi-compact. Definition 5 presents this
concepts formally.

DEFINITION 5. For a cache with associativity A,

compact(W) = Vi€ indices(W) : |project; (W)| < A
non-compact(W) = Vi € indices(W) : |project, (W)| > A
semi-compact (W) = —compact (W) A ~non-compact (W)

The definition says that, for any cache index from the set
of indices for W, a compact sequence will have at most A
elements with this index, while a non-compact sequence will
have at least A + 1 elements with this index. A sequence is
semi-compact if there is an index with at most A elements,
as well as an index with at least A + 1 elements.

LEMMA 3. Compact sequences have the following proper-
ties.

(a) For a cache with capacity C' and block size B, and an
address mo, aligned on a cache block boundary, the
half-open interval [mo, mo + C) is a compact.

(b) A subset of a compact sequence is compact.

(c) If indices (W) N indices (W2) = 0, and W1 and W2 are
compact then W1 U Wa is compact.

(d) If indices (W1) Nindices (W2) = 0, and W1 UWs is non-
compact, then W1 and Wa are non-compact.

(e) If W1 and Wa are non-compact then W1 U W2 is non-
compact.

PROOF. (a) The interval [mo, mo + C) is equivalent to the
sequence W = (mo, 1,C) = ((mo, 1, B), B, $). Because my
is aligned on B, the cache lines used by W are the same
as the cache lines used by W = (mo, B, %), in which only
one address is mapped to a single cache line. Furthermore
W can be expressed as <<mo7 B, %) T, %) From Lemma 1,
all inner subsequences w; = <m0 +ixT,B, %) map exactly

one element to each cache set. Therefore W maps exactly
A= % elements to each cache set, and by Definition 5 it is
compact. Because W uses the exact same cache lines, it is
also compact.

Results (b)-(e) follow directly from Definition 5. [J

4. L1 DATA CACHE

To measure the parameters of the L1 data cache our micro-
benchmarks measure the average time per element to ac-
cess the elements of certain compact and non-compact fixed
stride sequences.

latency

N xS

S 28 Cc C+T

Figure 4: Example of (semi-/non-)compact

Figure 4 gives some intuition about the compactness prop-
erties of a sequence W = (mo, S, N) where S < T. When
N x § < C the sequence is compact as it maps at most
A addresses to each cache set. When N x S > C + T the
sequence is non compact, as it maps at least A+ 1 addresses
to each cache set. When C < N x S < C + T, the sequence
maps A addresses to some of the cache sets and A + 1 ad-
dress to the rest of the cache sets. For S > T there are no
semi-compact sequences, and for S < T, W is semi-compact
for % —1 different values of N. For example, for S = % there
is only one N = €£=2 for which the W is semi-compact.

Theorem 1 describes the necessary and sufficient condi-
tions for compactness and non-compactness of a sequence of
this type for a given cache. Informally, this theorem says
that as the stride S gets bigger, the maximum length of a
compact sequence with that stride decreases until it bot-
toms out at A, while the minimum length of a non-compact
sequence with that stride decreases until it bottoms out at
A+1.

THEOREM 1. Consider a cache with parameters (A, B, C)
and a sequence W = (mo, S, N).

(a) compact(W) < N < N. = A[ZL]

(b) non-compact(W) < N > Np. = (A+1) [£]

PROOF. There are two cases to consider.

e S >T. In this case N. = A and Np. = A+ 1.

Since both S and T are powers of 2, S must be an
integer multiple of 7. From Lemma 1 it follows that
all V addresses in the sequence map to the same cache
set.

Therefore the sequence is compact iff for N < A = N,
and non-compact iff N > A+ 1 = Npe.

e S < T. Since S and T are both powers of 2, % is an
integer, and N, = A x % and Npe = (A+1) x %

(size)
T- . <T/S*>

|
Mo |
1
'
]

<=r> <T5> <> <T/S1>! <r>
(number of addresses)

Figure 5: Decomposition of W = (mg, S, N)

LetN:pX%+r,where0§r<p. We can di-

. . . . T
vide W into p + 1 parts, in which the first p have 3

elements, and the last one has r elements. Further-
more, we represent W as the union of two sequences

of sequences: one with p + 1 subsequences of length r

and one with p subsequences of length % —r. This is
presented pictorially in Figure 5.

w = <<m07S7T>7T7p+1>

U<<mo+r><S,S,%—r>,T,p>

= <<mO7T7p+1>7S7T>

U<<mO+TX57T7p>7S7__T>

0|~

From Lemma 1, the elements of each inner subsequence
map to the same cache set, whereas elements from dif-
ferent subsequences map to different cache sets. There-
fore r cache sets will have p + 1 different addresses
mapped to each of them and % — r cache sets will
have p addresses mapped to each of them.

— N < N¢. In this case p < A, ie. p+1 < A.
Therefore % cache sets have at most A different
addresses mapped to each of them, so W is com-

pact.

— N = N¢.. In this case p = A and r = 0. Therefore
% cache sets have exactly A different addresses
mapped to each of them, so W is compact.

— Noe < N< Npe. Inthiscase p=Aand 0 <r <
%. Therefore r cache sets have exactly A+ 1 dif-
ferent addresses mapped to each of them and % —r
different cache sets have exactly A different ad-
dresses mapped to each of them, so W is neither
compact nor non-compact (it is semi-compact).

— N > Nyc. In this case p > A + 1. Therefore %
cache sets have at least A + 1 different addresses
mapped to each of them, so W is non-compact.

The required result follows directly from this.
o
4.1 Algorithms for Measuring Parameters

In this section we use the function is_.compact (W) to de-
termine empirically if W is compact. Our implementation of
this function repeatedly accesses each address in W, com-
putes the average time per access [, and declares the se-
quence to be compact if [is close to the hit latency of the
cache lp;t, which is measured as described in Section 4.1.1.

Although this procedure seems simple in principle, the
timing measurements require some special care to avoid the
problems discussed in Section 2 and we discuss how we ad-
dress these in Section 4.2.

41.1 CacheLatency

We determine lp;; by measuring the average time to per
access of the sequence (mo,1, 1), which is compact since it
contains a single element.

4.1.2 Capacity and Associativity

Theorem 1 suggests a method for determining the capacity
C and the associativity A of the cache. First, we find A by
determining the asymptotic limit of the length of a compact
sequence as the stride is increased. The smallest value of
the stride for which this limit is reached is T', the stride of
the cache; once we know A and T, we can find C.

S —1;

N —1;

while (is_.compact ({mo, S, N))
N —2XxN

Nog — N

N «— 0;

while (N # Nold)
S—2x5;
Nog — N;
N «— min Nppin € [1, Noig] : mis—compact ((mo, S, Npmin)) s

A— N—1;

C — % X A;

Figure 6: Measuring C' and A of L1 Data Cache

Pseudo-code for measuring C' and A of the L1 data cache
is shown in Figure 6. The algorithm can be described as
follows. Start with the sequence (mo,S,N) = (mo,1,1),
which is compact, and keep doubling N until the sequence is
not compact. Let Nyiq is the first N for which this happens.
Now start doubling the stride S, and for each S compute the
smallest N, for which (mo, S, N) is not compact. This value
of N can be found by using binary search in the interval
[1, Noig]- If N # Ny, Let Noig = N and recompute N for
the next S. Repeat this step until N = N,4. At this point,
declare A = N — 1 and the C = % x A.

The largest stride S used in this algorithm is 27". We will
exploit this fact when we consider multi-level cache hierar-
chies.

Note that the number of addresses accessed by the algo-
rithm in this micro-benchmark is on the order of the associa-
tivity of the cache, which is superior to previous approaches
because non-compactness produces a very pronounced per-
formance drop, which is much easier to detect automatically.

413 Block Sze

For given cache parameters C, A and T, (mo,T,2A) is
non-compact since all 24 addresses map to the same cache

set. This sequence can also be expressed as ((mo, T, A) , C, 2).

If we offset the second half of the sequence by a constant ¢, as
shown in Figure 7, we get the sequence ((mo, T, A),C + §,2).

Figure 7: Modified address sequence for measuring
B

The addresses in each of the inner subsequences (mo, T, A)
and (mo+ C + 6,T, A) map to a single cache set. When
0 < § < B this cache set is the same for both subse-
quences. When ¢ > B they map to two different cache sets.
Therefore the smallest value of ¢ for which the full sequence
({mo, T, A),C +4,2) is compact is § = B. Figure 8 shows
pseudo-code for the algorithm.

1

while (lis_compact ({{mo,T,A),C +4,2)))
§—2x0;

return 9J;

Figure 8: Algorithm for measuring B

4.2 Implementation ofis_compact

The algorithms in Section 4.1 call the function is_compact (W)

to determine whether sequence W is compact. We now de-
scribe how this function is implemented to avoid the prob-
lems discussed in Section 2.

The array of elements is declared of type pointer (void
*) instead of integer (int) as in the Saavedra benchmark.
The array is initialized in such a way that each element
contains the address of the element which should be accessed
immediately after it. A local variable p is initialized with the
address of the element which should be accessed first. This
initialization is performed off-line, before the actual timing.

A simplified version of the timing routine is presented in
Figure 9. The variable R is chosen so that the loop executes
for at least a predetermined amount of time ¢. Larger values
of R are likely to produce more accurate timing results at the
expense of additional running time. In our implementation,
we use t = 1 second.

In addition, in the actual implementation, the while loop
is unrolled several times to avoid loop overhead.

startTime «— get_time();
while (--R)
D — *(void **)p;
timePerAccess <« (get_time() — startTime) + R;
printf("", p);

Figure 9: Improved timing of memory accesses

It is easy to see that the only operation performed in
the loop body is p < *(void **)p, which reads the memory
address stored at address p and updates p with it, effectively
following the pointer chain preprogrammed inside the array.

The following points address the implementation prob-
lems of the Saavedra benchmark discussed in Section 2.

(a) The code in Figure 9 uses the simplest possible looping
structure, and loop overhead can be reduced as much
as needed, by sufficient unrolling. In our implementa-
tion we unroll 256 times.

(b) Each of the memory accesses depends on the previous
one to produce the actual address to access, so aggres-
sive compilers cannot take advantage of instruction-
level parallelism and overlap them.

(c) Each memory access constitutes precisely one mem-
ory read instruction, so the actual timing corresponds
exactly to the average latency per access.

(d) All modern architectures today support indirect ad-
dressing mode, so each operation should be translated
to a single machine instruction (e.g. “lea eax, [eax]”
on x86 ISA).

(e) The final value of the variable p is used by the printf
statement, so the compiler is not able to optimize the
memory accesses away by dead code elimination.

(f) For a correct implementation of is_compact (W), it is
important that we repeatedly access all elements of
the sequence, but the actual order in which we ac-
cess them is irrelevant. To prevent hardware constant
stride prefetchers, like those on the IBM Power archi-
tecture, from interfering with our timings, we initialize
the array elements by chaining the pointers so that we
visit the elements in a pseudo-random order.

Suppose the address sequence is mg, mi, ..., Mnp—1. One
way to reorder this sequence is to choose a number p,
such that p and n are mutually prime. Then, after
element m;, visit element m ;4 p) modulo » instead of el-
ement G(i+1) modulo n- As p and n are mutually prime,
the recurrence ¢ < (i + p) modulo n is guaranteed to
generate all the integers between 0 and n — 1 before
repeating itself.

(g) All modern processors have virtually indexed L1 data
caches and therefore physical continuity is not an is-
sue. Lower levels of the memory hierarchy are usually
physically indexed, so physical continuity is important
for lower levels of the memory hierarchy, as we discuss
in Section 5.4.

5. LOWERLEVELS OF THE MEMORY HI-
ERARCHY

We denote the cache at level i as C;, its (A, B, C) parame-
ters as (A, Bi, C;), its stride as T; and its hit latency as I,.
We extend the notation from the previous section, so that
compact, (W) denotes that compact (W) with respect to C;.
We extend non-compact and semi-compact in the same way.

Measuring parameters of lower levels of the memory hi-
erarchy is considerably more difficult than measuring the
parameters of the L1 data cache. One reason why the algo-
rithms described in Section 4 cannot be used directly is that
C; is accessed only if C;—1 suffers a miss. Therefore com-
pactness with respect to C; of a sequence of addresses can
be accurately determined empirically only if this sequence
is non-compact with respect to C1,Ca,...Ci—1.

Our solution to this problem is to transform any sequence
W into a new sequence W*, with the following properties.

1. compact, (W™) < compact,; (W)
2. non-compact,; (W*), for all j € [1,i — 1]

Intuitively, W is of the form presented in Figure 3(a). We
want to transform it to W*, which is a sequence of sequences
of the form presented in Figure 3(b), so that the extra mem-
ory accesses exhaust the associativity at cache levels above
Ci;. Such a transformation may be necessary because on
some architectures, lower level caches are less associative
than higher level caches. For example some versions of the
IBM Power 3 have 8MB, 8-way set associative C2 and 64KB,
128-way set associative Ci. Therefore the final iteration of
the algorithm in Figure 6 should be examining the sequence
W = (mo,2MB,9) and declaring it non-compact. Without
transforming W this will not happen, because although the
sequence is non-compact with respect to Cs, it is compact
with respect to C1. As we discuss later, the corresponding
W* we use for such W is W* = ((mo,512,15),2MB, 9),
which is non-compact with respect to Ci. Another way to
view this sequence is W* = ((mo,2MB, 9),512,15), i.e. 15
copies of the original sequence W shifted by a factor of 512.
Each of these copies behaves identically to the original W
with respect to Cz, but together they force non-compactness
with respect to C;.

To generalize Theorem 1 to sequences of sequences we first
prove Lemma 4.

LEMMA 4. Consider a cache with parameters (A, B,C)
and stride T. If W1 = (mo, S, N) and Wa = (mgo + 6, S, N),

where mo and mo + § is aligned on a cache block boundary,
and 0 < 6 < min (S,T), then indices(W1) and indices (W2)
are disjoint.

Proor. We will consider two cases.

First, let S > T. From Lemma 1 all elements of W; map
to the same cache set i1; similarly all elements of W2 map
to the same cache set i2. Because 6 < T, mog and mg + 9
map to different cache sets, so i1 # is.

Second, let S <T. Let N =p x %+7‘,Where0§r< %
Then:

T —~

w, = (mo,S,N>C<mo,S,(p—|—1)><§>:{/V1
T —~
Ws = <m0+57S7N>C<m0+(5757(p+1)><§>:W2

Now we split W7 and Wa, which both have (p+ 1) X
elements, into two sequences of p + 1 subsequences with

elements each.
—~ T
<'LU1 - <7’TLO,S, §> 7T7p+ 1>

V/[72 = <ﬂ/\2:<m0+57s7%>7T7p+1>

0wl

T

From Lemma 1, indices (VI/Z) = indices (w1) and indices (V/@) =
indices (w3). The addresses of the last elements of w7 and w3
are mo+ 71 — S and mo+ 0 +T — S respectively. Therefore ,
all addresses in w7 and w3 are contained in the half-open in-
terval [mo7 mo + T'). Any two addresses m; € w; and ma €
ws are aligned on a cache block boundary and therefore
from Lemma 1 they map to different cache sets. Therefore

indices (1) and indices (@3) are disjoint, so indices (V’V]) and

indices (V/V\g) are disjoint, which implies that indices (W;)
and indices (W2) are disjoint. [

THEOREM 2. Consider a cache with parameters (A, B, C)
and stride T, and a sequence of sequences W* = ((mo, s,n),S, N),
where (n —1) X s < min (7, 5) and B < s.

(a) compact(W*) < N < N. = A[%]

(b) non-compact(W*) < N > Npe = (A+1) []
PrOOF. From Lemma 2 and Definition 4,
W* = ({mo,S,N),s,n) = Uic[o,n—1] (Mo +1% x 5,5, N) .

From Theorem 1 each of the sequences w; = (mo +1i x 5,5, N)
for ¢ € [0,n — 1] is compact for N < N., non-compact for
N > Npc, and semi-compact otherwise.

From Lemma 4, indices (w;) are pairwise disjoint sets for
all i € [0,n—1]. The required result follows from Lemma 3. []

Note that Theorem 1 is a special case of Theorem 2 for
n = 1. In this case the constraint (n — 1) x s < T is trivially
true and the sequence (mo, s,n) has a single element (my).

5.1 Two Cache Levels

Consider two cache levels, C1 = (A1, B1,C1) and C2 =
<Az7 Bz7 Cz>

To apply the algorithms in Section 4.1 to measure parame-
ters for Ca, we replace each sequence W in those algorithms

with a sequence of sequences W*, such that compact, (W*) <
compact, (W) and non-compact, (W*).

Ideally we would have a general construction that could
construct such a W* from any W = (mg, S, N). Since we
do not have such a general construction, we will present an
approach, which works for the particular sequences used by
the algorithms in Section 4.1. In particular we will restrict
ourselves to sequences for which S < 2T (because 27T is
the largest stride used by these algorithms). Furthermore,
it is invariably the case that Ca > 2Ci, so if (N —1) x
S < 2C1 the sequence W can be assumed compact without
performing an empirical measurement. Therefore we can
restrict ourselves to sequences for which (N — 1) x S > 2C1.

With these restrictions, we choose

W= <m0787N> = <<m0757n>787N>7
where:
s = T1
n = Al +1
= v .

LEMMA 5. If S < 275 and (N — 1) x S > 2C1 then

(a) compact, (W™) < compact, (W) and
(b) non-compact, (W™).

PRrROOF.

(a) First we show that Inequality (1) holds.

([Alj\;ﬂ—l) le<§ (1)

The opposite is impossible, because then:

S A 1 A1+ N
5 < (’V 1]\—/,’_ -‘—1>><T1§< 1]—\’[_ —1>><T1
Ay S S s S

< A<« 2 xAxTi=222<2
< NX 1<2cl>< 1 X 11 2:>2<2

From (1) and S < 27% we conclude that ({%] —1)x

T1 < min (S,T2). Therefore we can apply Theorem 2

to W*, and so compact, (W*) < N < N, where

N. = Az X [%] On the other hand, from Theorem 1,

compact, (W) < N < N.. Therefore compact, (W*) &
compact, (W).

(b) From (N — 1) x S > 2C} we obtain:

2001+ 8 A xTh+Ty T

> = —

N g 2 5 (A1 +1) x g
T T

> (A1+1)X’7§1-‘:>N>(A1+1)>< ?1

From Theorem 2, it follows that non-compact, (W™)

O
5.2 Multiple Cache Levels

To generalize the approach from Section 5.1 to multi-
ple cache levels C1,Ca,...,Cr we replace W with W* =
<<m07 S,TL) ’ S7 N>7 where

s = minT;
i<k
A +1 ><Ti
n = max —
i<k N s

LEMMA 6. If S < 2Ty and (N —1) x S > 2C; for all
i €1,k —1] then

(a) compact, (W*) < compact,, (W) and
(b) non-compact; (W*) for alli € [1,k —1].
PROOF.

(a) By analogy with Inequality (1), Inequality (2) holds.

A +1 S
RN (G RURCES BIC
Therefore:
Ai+1 T;
-1 = 2
(n—1)xs (r&ag’r N -‘XS)Xs
. A;+1
- 1:{1313{" N -‘XTZ 5
S
—
2
min (S, Tk) .

From Theorem 2, applied to W*, it follows that if N, =

Az % [%-I, then compact, (W*) & N < N.. From

Theorem 1, compact, (W) & N < N, for the same
N.. Therefore compact, (W*) < compact, (W).

(b) (N —=1)x S >2C; for all i € [1,k — 1] and by analogy
with the proof of Theorem 2(b), non-compact; (W*)
holds for all ¢ € [1,k — 1].

5.3 Algorithms for Measuring Parameters

We use the function is_.compact; (W) to determine empir-
ically if compact, (W) holds. Our implementation of this
function repeatedly accesses each address in W, computes
the average time per access [, and declares the sequence to
be compact if [is close to I; (the hit latency of C;).

Given the transformation from W to W* as discussed in
Section 5.2, we can use the algorithms in Section 4.1 to mea-
sure latency, capacity and associativity at any cache level.

5.4 Implementation ofis_compact

There is one important complication when measuring pa-
rameters of lower cache levels. On modern platforms C;
is typically virtually indexed, but lower levels are always
physically indexed. This is a problem because continuity in
virtual memory is not a sufficient condition for continuity
in physical memory, and thus a fixed stride sequence of ad-
dresses in the virtual address space may not map to a fixed
stride sequence in physical address space.

To measure parameters of lower cache levels it is therefore
necessary to allocate physically contiguous memory. There
are two ways to acquire such memory in a modern operating
system: (i) request physically contiguous pages from the
kernel, or (ii) request virtual memory backed by a super-
page.

The first approach is generally possible only in kernel
mode, and there are strict limits on the amount of allo-
catable memory. It is mainly used for direct memory access
(DMA) devices. Another, somewhat smaller problem is that

such memory regions typically consist of many pages and
TLB misses might introduce inter-level interference noise in
our cache measurements.

The second approach is more promising, but currently
there is no portable way to request super-pages from all op-
erating systems. To address this problem, in our implemen-
tation we provide OS-specific memory allocation and deal-
location routines, which are then used by the cache micro-
benchmarks to allocate memory supported by super-pages.
We have implemented this approach for Linux, and we will
implement it for other operating systems in the near future.

There has been some work on transparently supporting
variable size pages in the OS [9]. When such support be-
comes generally available, our OS-specific solution will not
be required.

6. MEASURING TLB PARAMATERS

The general structure of a virtual memory address is shown
in Figure 10 (the field widths are Intel P6 specific). The low-
order bits contain the page offset, while the hi-order bits are
used for indexing page tables during the translation to a
physical address. Because the translation from virtual to
physical address is too expensive to perform on every mem-
ory access, a TLB is used to cache and reuse the results.

20 12
indices to page tables
TLB tag TLB index page offset
16 ! 4—|

Figure 10: Memory address decomposition on P6

A TLB has a certain number of entries E each of which
can cache the address translation for a single virtual memory
page of size P. Even though TLB does not store the actual
data but only its physical address and a few flags, it uses the
upper portion of the virtual address in a way a normal cache
does (for encoding index and tag), and so we can consider it
a normal cache Crg = (A, B,C) = (Arrp, P, E x P). Ide-
ally we would like to use our cache parameter measurement
algorithms discussed in Section 4.1, but some complications
arise as outlined below.

1. Variable page size: measuring parameters for caches
with variable block size is not possible with our cur-
rent algorithms. On current operating systems, the
default is to use only a single page size, and therefore
there is no immediate danger of measurement failure.
Furthermore, [9] suggests that when transparent sup-
port for multiple page sizes becomes available, TLB
misses will be automatically minimized and will have
negligible impact on performance. At that point mea-
suring the TLB parameters would not be necessary.

2. Replacement policy: typically a TLB has high associa-
tivity and LRU is impractical to implement because of
speed issues. In practice processors use much simpler
replacement policies like round-robin or random. Some
even perform a software interrupt on a TLB miss and
leave to the operating system to do the replacement.
Surprisingly these inconsistencies do not prevent us
from producing accurate measurement results.

3. Ensuring TLB access: As in the case of lower cache
levels, we need to make sure that the TLB is accessed
when memory references are issued by the processor.

In modern platforms this is ensured by the fact that
L1 data caches are usually physically tagged, but even
more importantly by the fact that TLB caches memory
protection information which is needed to complete the
particular memory operation.

4. Physical Continuity: As with lower cache levels, we
need physically contiguous memory to perform TLB
measurements. Unfortunately, using super-pages is
not an alternative for obvious reasons, and so a kernel
module is required.

For a sequences W = (mg, S, N), let N = p x {%] + 7,
where 0 < r < {%] To measure TLB parameters using the
algorithms described in Section 4.1, we transform W into (71
and Bj are the stride and the block size of C; respectively):

v = {fms[E]))

<m0—|—(p—1) X (T1+Bl),S,7'>

We assume that the C; has at least twice as many blocks
as there are entries in the TLB, i.e. % > 2%7 which is
true for all modern platforms today. Under this assumption,
it is easy to see that compact, (W*).

Because we do not have a portable solution to (4) above,
our experience with measuring TLB parameters is limited.
None of the other tools produced any correct results on any
of the tested platforms. Therefore, we describe our limited
experimental results in this section.

Using the algorithms in Section 4.1 with the modified se-
quences W*, we were able to accurately measure the TLB
parameters of a Pentium III as 64 page entries, 4-way set
associative, and page size of 4KB. We also measured the
TLB parameters of a Pentium 4 as 65 page entries, fully-
associative, with a page size of 4KB. On the Pentium 4 our
measurement is close to the correct one (measured associa-
tivity 65 vs. actual associativity of 64)1. In the final paper,
we will present TLB results for other platforms.

7. MEASURING AVAILABLE REGISTERS

Registers are often considered a level-0 cache Co, as they
are at the top of the memory hierarchy. If a machine has
N registers of type T', we can characterize Co = (A, B,C) =
(N, sizeof (T") , N x sizeof (T')). Co can exhibit spacial local-
ity only in the case of vector registers (MMX, SSE, etc.).
Furthermore, it is fully associative and the replacement pol-
icy is software controlled.

The only way to directly exercise this control is to pro-
gram in assembly language. Portable software, on the other
hand, is usually written in a high-level language like C and
the native compiler is responsible for register allocation, reg-
ister spills and fills. Nevertheless, when the ultimate goal is
high-performance, programmers need to make assumptions
about the number of registers available for register alloca-
tion and apply optimizing transformations like array scalar-
ization and loop unrolling appropriately (e.g. ATLAS [13]).

Our approach to measuring the number of registers of
particular type T is to generate special code sequences that
access n different variables, measure the time per operation
for several n, and infer the number of registers from the
results.

!This problem may be similar to the one we discuss about
the L1 data cache of Power 3 in Section 8.1

ro < add (ro,7n);
r1 < add (r1,70);
ro < add (r2,71);

rp < add (7"7L7 Tnfl);

Figure 11: Sequence with n variables

The particular kind of sequences we are using is presented
in Figure 11. Note that if the compiler is able to allocate all
n variables into registers, each add operation will be trans-
lated to a single ALU instruction. On the other hand, if at
least one variable is not allocated to a register, additional
memory access instructions will be emitted in addition to
the ALU instruction to fetch the data from the memory hi-
erarchy. Since each operation in the sequence depends on
the previous one, the incurred additional latency cannot be
hidden and the average time per operation is much higher.

Measuring the number of available registers reduces to
finding the longest code sequence whose average access time
is the same as that of the sequence of length 1. In our
implementation we start with n = 1 and keep doubling it
until an increase in access time is observed, say for n =
Nmaz. Lhen we use binary search to find the the n we need
in the interval [”"‘%, nmaz).

Note that this method measures the effective number of
available registers, which is the value that is relevant for
program optimization. This value can often be smaller than
the number of actual registers on the given architecture for
the following reasons.

e Some registers may be reserved for the Stack Pointer,
Frame Pointer, Return Address, etc.

e Some registers may be hardwired with specific values,
most often the floating point values 0.0 and 1.0.

e Compilers may use some registers in a special way,
and they might not be available to the general register
allocator, e.g. accumulators, register windows, etc.

e Compilers might not use all available registers for dif-
ferent reasons, e.g. targeting an older version of the
ISA.

By appropriately defining the operation add, this method
is able to measure all types of registers, including integer,
floating point, and vector registers (e.g. MMX, SSE, 3DNow!,
Altivec) through compiler intrinsics.

None of lmbench, Calibrator, and MOB try to measure
the number of available registers. The ATLAS framework
attempts to provide a rough estimate for the number of float-
ing point registers, but they can afford to be conservative,
as opposed to precise, because they only use the estimate to
bound their search space. Table 1 summarizes our measure-
ment results.

As expected the number of available integer registers is al-
ways less than the actual number of registers because some
registers are reserved for use either by the hardware or by
the compiler. The measured number of floating point reg-
isters is equal to the actual number in all cases except on
the UltraSPARC IIIi machine, where one of the registers is
hardwired to 0.0. The measured number of vector registers
is always equal to the actual number. We do not provide
results for 3DNow! and SSE2 registers, because they are
equivalent to MMX and SSE register respectively.

available / actual

Architecture int | double [MMX]| SSE
Pentium 4 5/8 8/8 8/8|8/8
Itanium 2 123 / 128|128 / 128| n/a n/a
Athlon MP 5/8 | 8/8 |8/8]8/8
Opteron 240 14/16 |16 /16 | 8/8 |16/ 16
UltraSPARC I1Ii|| 24 /32 | 31 /32 | n/a n/a
R12000 22 /32| 32/32 | n/a n/a
Power 3 28 /32| 32/32 | n/a n/a

Table 1: Experimental results for registers

8. EXPERIMENTAL RESULTS

The implementation of the memory micro-benchmarks de-
scribed in this paper is part of an open micro-benchmark
tool called X-Ray [15]. To report cache latency in CPU
cycles we use a micro-benchmark for measuring CPU fre-
quency, which is part of X-Ray. In this section we compare
the results of running the memory-hierarchy portion of X-
Ray on 7 platforms with the results of running the following
three tools.

e Calibrator v0.9e [6] is a memory system benchmark
aimed at measuring capacity, block size, and latency
at each level of the memory hierarchy and TLB pa-
rameters, such as number of entries, page size, and
latency.

e Imbench v3.0a3 [8, 12, 7] is a suite of benchmarks
for measuring operating systems parameters such as
thread-creation time and context-switch time. Version
3, contains micro-benchmarks for measuring latency
and parallelism of different operations, capacity, block
size, and latency of each level of the memory hierarchy,
and the number of TLB entries.

e MOB v0.1.1 [2] is an ambitious project to create a
benchmark suite capable of measuring a large num-
ber of properties of the memory hierarchy, including
capacity, block size, associativity, sharedness, replace-
ment policy, write mode, and latency of each level, as
well as the corresponding TLB parameters.

Because all the tools, including X-Ray, measure hardware
parameters empirically, the results sometimes vary from one
execution to the next. These variations are negligibly small
with X-Ray, but sometimes quite noticeable with the other
tools. The results we present for the other tools are the best
ones we obtained in several trial runs.

Table 2 shows the memory hierarchy parameters, along
with the results from measuring them with the different
tools. Whenever a parameter was not successfully com-
puted, we use the following special entries to specify the
reason:

e n/a — the tool does not claim to be able to measure
this hardware parameter;

e empty — the benchmark completed but did not pro-
duce a value for this parameter;

e abort — an abnormal termination of some kind oc-
curred prevented the benchmark from completion;

e build - the benchmark did not build successfully;

e 0s — OS-specific support is required for X-Ray to com-
plete this measurement and we have not implemented
such support yet.

8.1 L1 Data Cache

As Table 2 shows, X-Ray successfully found the correct
values for all L1 cache parameters on all the platforms other
than the Power 3, where it decided that the cache was
129-way set associative although it is actually 128-way set-
associative. For reasons we do not understand, there was
no performance loss in the micro-benchmark when moving
from 128 to 129 steps, but there was a performance loss in
moving from 129 to 130. This anomaly also affected the de-
termination of the cache capacity slightly. The performance
of the other tools varies, and the details are presented in
Table 2.

8.2 Lower Level Caches

Lower level caches are physically addressed on all mod-
ern machines so we found it necessary to use super-pages to
obtain consistent measurements of lower level cache para-
meters, as discussed in Section 5.4. Support for super-pages
is very OS-specific, so we targeted the Linux system as a
proof of concept. Table 2 shows that X-Ray was able to
measure lower level cache parameters correctly on all the
Linux machines in our study (Pentium 4, Itanium 2, Athlon
MP, and Opteron 240). We are currently working on the
implementation for Solaris, IRIX and AIX, which will allow
us to test X-Ray on the rest of the machines as well. These
results will be reported in the final paper.

The numbers for the AMD machines (Athlon and Opteron)
are interesting because they expose the fact that the L1
and L2 caches on these machines implement cache exclu-
sion. Most platforms support cache inclusion, which means
that information cached at a particular level of the memory
hierarchy should also be cached in all lower levels. This is
necessary to support cache-coherency protocols in SMP sys-
tems. AMD machines on the other hand use exclusion, so
data never resides in both the L1 and L2 caches simultane-
ously. While this requires the L1 cache to snoop on the bus
to resolve coherency issues, it effectively increases the useful
capacity of L2 by the capacity of the L1.

X-Ray classified the 512KB, 16-way associative L2 cache
of the AthlonMP as an 18-way set-associative cache with
a capacity of 576KB (exactly C1 4+ C2). Similarly on the
Opteron 240, the 1IMB L2 was classified as a 17-way set
associative cache with an effective capacity 1088KB (exactly
C1 + C2). If the actual capacity of the Lo cache is needed,
it can be obtained by subtracting the capacity of the L,
cache, although the combined capacity is what is actually
relevant for an autonomic code that wants to perform an
optimization like cache tiling.

The performance of the other tools varied. Calibrator
produced somewhat pessimistic results for cache capacity
on some of the Linux machines; we believe this effect too
arises from non-contiguous physical memory since this re-
duces the effective cache capacity. lmbench terminates ab-
normally on some platforms, but produces accurate results
when it terminates cleanly. MOB produced accurate results
only for the capacity of the L2 cache of Itanium 2. In all
other cases, it either aborted, produced a wrong result or
did not produce a result at all.

(=
2l s

3 3 A & a

b -

Architecture < X O g p=

Pentium 4 8 8 8 8 8

Ttanium 2 16] 16| 16] abort 4

L1 Athlon MP 64| 64] 64[empty| abort
C Opteron 240 64 64] 64 abort|[empty
(KB) UltraSPARC IIIi|| 64| 64| 64 64| abort
R12000 32| 32| 32 32[build

Power 3 64| 64.5| 64 64 |empty

Pentium 4 64| 64| 32 64| abort

Ttanium 2 64 64] 64] abort 104

L1 Athlon MP 64| 64] 64[empty| abort
B Opteron 240 64 64] 32 abort[empty
(bytes) |[UltraSPARC IILi|| 32| 32| 32 32| abort
R12000 16 16| 64 32[build

Power 3 128 128] 128 128 [empty

Pentium 4 4 4] n/a] n/aJempty

Ttanium 2 4 4] n/al n/alempty

L1 Athlon MP 2 2] n/al n/alempty
A Opteron 240 2 2] n/al n/alempty
(count) |[UltraSPARC IIIi 4 4] n/a] n/alempty
R12000 2 2| n/a n/alempty

Power 3 128] 129| n/a| n/alempty

Pentium 4 2 2 2 2| abort

Ttanium 2 2 2 2| abort 5

L1 Athlon MP 3 3 3|empty| abort
l Opteron 240 3 3 3| abort[empty
(cycles) |[UltraSPARC IIIi 2 2 2 2| abort
R12000 2 2 2 2| build

Power 3 2 2 2 2|empty

Pentium 4 512| 512| 384 512| abort

Itanium 2 256| 256 256] abort 256

L2 Athlon MP 512] 576 384] 512 abort
C Opteron 240 1024[1088| 768| abort|empty
(KB) UltraSPARC IIIi[| 512 os[1024| 1024] abort
R12000 512 0s[2048 2048 build

Power 3 512 os|6144| 6144 0

Pentium 4 128 128| 128 128| abort

Ttanium 2 128 128] 128 128 [empty

L2 Athlon MP 64 64] 64 64| abort
B Opteron 240 64] 64] 64 64 [empty
(bytes) |[UltraSPARCIIL|| 64| os| 64 64| abort
R12000 128] os| 128 128] build

Power 3 128 os| 128 128 [empty

Pentium 4 8 8| n/a|l n/alempty

Itanium 2 8 8| n/a n/alempty

L2 Athlon MP 16] 18| n/a] n/afempty
A Opteron 240 16] 17| n/a] n/alempty
(count) |[UltraSPARC IIIi 7] os| n/a] n/alempty
R12000 7] os| n/a] n/alempty

Power 3 7] os| n/a n/alempty

Pentium 4 70 21| 18 20| abort

Ttanium 2 7 6 4] abort 6

L2 Athlon MP 71 36| 18 3| abort
l Opteron 240 71 23] 13] abort[empty
(cycles) |[UltraSPARC IITi 7] 131 12 15| abort
R12000 7] 14 12 14] build

Power 3 71 18 9 17 1

Pentium 4 7| 381| 372 368| abort

Ttanium 2 7] 298] 281] abort|empty

Memory || Athlon MP 7] 471] 401 198 abort
l Opteron 240 7] 136] 127] abort[empty
(cycles) |[UltraSPARC IIIi 7] os| 164] 173] abort
R12000 71 os| 111 122] build

Power 3 7] os| 136 161 [empty

Table 2: Summary of experimental results

| [[Actual[X-Ray|Calibrator|[Imbench[MOB)|

C (KB) 6144 6144 6144 abort| 4096
B (bytes) 128 128 128 abort | empty
A (count) 24 24 n/a n/al n/a
1 (cycles) ? 19 14 abort 6

Table 3: Summary of Itanium 2 C3 parameters

The cache access latency figures produced by all the tools
for lower level caches should be taken with a grain of salt
since the actual access time can fluctuate substantially de-
pending on what other memory bus transactions are occur-
ring at the same time.

We discussed our experimental results for measuring TLB
parameters and number of registers in Secions 6 and Sec-
tion 7 respectively.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we described novel algorithms for measur-
ing the associativity, block size, and capacity of all lev-
els of the memory hierarchy, as well as TLB parameters
and number of registers. The experimental results show
that our approach automatically measures more parame-
ters with greater precision than existing approaches. This
is because our micro-benchmarks measure the parameters
of one level of the memory hierarchy at a time, unlike ex-
isting tools that consider all levels simultaneously. To do
this, our micro-benchmarks measure access time for more
complex sequences of addresses than existing tools do.

The memory hierarchy benchmarks described here are im-
plemented as part of an open framework for development of
micro-benchmarks called X-Ray [15]. X-Ray can also mea-
sure the following hardware parameters:

e CPU frequency,

e instruction latency and throughput,

e instruction existence (e.g. fused multiply-add),
e SMP and SMT availability, and

e the number and type of functional units in the CPU.

We are actively designing and developing new micro-bench-
marks and we are currently working on:

e implementing OS support for Solaris, AIX, etc.,
e improving quality of TLB measurements,
e measuring instruction cache parameters,

e cache bandwidth, parallelism, write mode, and shared-
ness (unified or dedicated).

X-Ray is freely available and a URL for downloading it
will be in the final paper.

10. REFERENCES

[1] R. Allan and K. Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufmann Publishers,
2002.

[2] Josep M. Blanquer and Robert C. Chalmers. MOB:
Memory Organization Benchmark.
http://www.nmsl.cs.ucsb.edu/mob.

3]

(10]

(11]

(12]

(14]

(15]

J. Dongarra, K. London, S. Moore, P. Mucci,

D. Terpstra, H. You, and M. Zhou. Experiences and
lessons learned with a portable interface to hardware
performance counters. In PADTAD Workshop, IPDPS
2003, April 2003.

Matteo Frigo and Steven G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2), 2005. special issue on ”Program Generation,
Optimization, and Adaptation”.

J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 1990.

Stefan Manegold. The calibrator: a cache-memory and
TLB calibration tool. http://homepages.cwi.nl/
~manegold/Calibrator/calibrator.shtml.

Larry McVoy and Carl Staelin. MOB: Memory
Organization Benchmark.
http://www.bitmover.com/lmbench/.

Larry McVoy and Carl Staelin. Imbench: Portable
tools for performance analysis. In USENIX 1996
Annual Technical Conference, January 22-26, 1996.
San Diego, CA, pages 279294, Berkeley, CA, USA,
January 1996.

Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan
Cox. Practical, transparent operating system support
for superpages. SIGOPS Oper. Syst. Rev.,
36(SI):89-104, 2002.

Markus Piischel, José M. F. Moura, Jeremy Johnson,
David Padua, Manuela Veloso, Bryan W. Singer,
Jianxin Xiong, Franz Franchetti, Aca Gaci¢, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nick
Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, 93(2), 2005.
special issue on ”Program Generation, Optimization,
and Adaptation”.

Rafael H. Saavedra and Alan Jay Smith. Measuring
cache and TLB performance and their effect of
benchmark run. Technical Report CSD-93-767,
February 1993.

Carl Staelin and Larry McVoy. mhz: Anatomy of a
micro-benchmark. In USENIX 1998 Annual Technical
Conference, January 15-18, 1998. New Orleans,
Louisiana, pages 155-166, Berkeley, CA, USA, June
1998.

R. Clint Whaley, Antoine Petitet, and Jack J.
Dongarra. Automated empirical optimization of
software and the ATLAS project. Parallel Computing,
27(1-2):3-35, 2001. Also available as University of
Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawnl47.ps).
Kamen Yotov, Xiaoming Li, Gang Ren, Maria
Garzaran, David Padua, Keshav Pingali, and Paul
Stodghill. Is search really necessary to generate
high-performance BLAS? Proceedings of the IEEE,
93(2), 2005. special issue on ”Program Generation,
Optimization, and Adaptation”.

Kamen Yotov, Keshav Pingali, and Paul Stodghill.
X-Ray: Automatic measurement of hardware
parameters. Technical Report TR2004-1966, October
2004.

